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Abstract
This paper proposes an early detection method for cluster structural changes. Cluster struc-
ture refers to discrete structural characteristics, such as the number of clusters, when data
are represented using finite mixture models, such as Gaussian mixture models. We focused
on scenarios in which the cluster structure gradually changed over time. For finite mix-
ture models, the concept of mixture complexity (MC) measures the continuous cluster size
by considering the cluster proportion bias and overlap between clusters. In this paper, we
propose MC fusion as an extension of MC to handle situations in which multiple mixture
numbers are possible in a finite mixture model. By incorporating the fusion of multiple
models, our approach accurately captured the cluster structure during transitional periods
of gradual change. Moreover, we introduce a method for detecting changes in the cluster
structure by examining the transition of MC fusion. We demonstrate the effectiveness of
our method through empirical analysis using both artificial and real-world datasets.

Keywords: clustering, change detection, information theory, mutual information

1 Introduction

1.1 Motivation
This study focused on detecting changes in the underlying cluster structure of time-series
data and identifying the signs of these changes. Cluster structure refers to discrete structural
characteristics, such as the number of clusters, when data are represented using finite mix-
ture models, such as Gaussian mixture models. Furthermore, we investigated the differences
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Fig. 1: Transition of the number of clusters gradually changing from 3 to 4.

Fig. 2: Example of MC for a Gaussian Mixture Model with a mixture size of 2 [11].

in cluster structure by examining the cluster proportions and overlaps between clusters. We
consider scenarios in which the cluster structure changes over time. The detection of such
changes is crucial because they correspond to significant real-world events. For example, in
the context of modeling consumer purchase data using a Gaussian mixture model, changes in
the number of clusters indicate the emergence or disappearance of purchase patterns, which
reflect shifts in market trends [5].

The field of structural change detection has been extensively investigated [4, 10, 18, 21].
However, many existing approaches assume sudden changes due to the discrete nature of
the underlying structures. It is natural to consider that structural changes occur gradually, as
shown in Fig. 1. The concept of structural change sign detection was proposed to detect
gradual structural changes at an early stage.

An applicable concept for detecting signs of changes in the cluster structure is mixture
complexity (MC) [11]. MC is a measure of the continuous cluster size for finite mixture
models that considers the bias in cluster proportions and the overlap between clusters. For
instance, consider the data generated from the Gaussian mixture model depicted in Fig. 2.
Although all three cases had the same number of components (two), the cluster structures
differed. In case (a), the two clusters were separate, with no bias in the cluster proportions.
Hence, it is reasonable to assume that the cluster size is 2. However, in case (b), the means of
the two clusters were close and overlapped. In case (c), the data are concentrated in one cluster
with bias. Therefore, asserting that the cluster size is 2 for cases (b) and (c) is problematic.
By utilizing MC, which provides a continuous extension of cluster size, the corresponding
values for these examples were 1.99, 1.39, and 1.21.

MC is a measure that calculates the mutual information between the observed variable X
and the latent variable Z ∈ {1, . . . , k}, which indicates the cluster from which the observed
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variable X is generated in a finite mixture model with k mixture components. MC itself holds
theoretical value for evaluating the cluster structure in finite mixture models. However, MC is
based on the assumption that the distribution is known, meaning that the number of mixtures
and parameters of the distributions in the finite mixture model are fixed and known. When
applying MC to sign detection, where the distribution is unknown, the calculated MC values
may not accurately represent the cluster sizes. In sign detection, the MC values are calculated
using the estimated number of components, making the MC dependent on the estimated num-
ber of components at each time step. This dependency poses a challenge as it can lead to an
inaccurate capture of the cluster size, especially when the number of components is underes-
timated. Consequently, the early detection of an increase in the number of clusters using the
structural change sign detection method based on MC is particularly challenging.

Other studies on structural change sign detection include Descriptive Dimensionality
(Ddim) [19], which quantifies the dimensionality of models based on the Minimum Descrip-
tion Length (MDL) principle [13, 17] under the assumption of stochastic fusion of multiple
models. Another approach is structural entropy (SE) [7], which measures the uncertainty
associated with model changes. However, Ddim suffers from the limitation that the dimen-
sionality of finite mixture models, which mix together, is solely determined by the respective
number of components, neglecting the differences in structure caused by overlap and bias.
Consequently, it fails to effectively capture gradual changes such as the emergence or dis-
appearance of clusters, making early detection difficult. The same limitation applies to the
SE.

To address these challenges, this study proposes an extension of MC called MC fusion,
which accommodates cases in which multiple components are possible in finite mixture
models. By extending MC in this manner, we preserve its advantages in evaluating cluster
structures while enabling the early detection of increases in the number of clusters, which is
a challenge with traditional MC. The effectiveness of the cluster structure change sign detec-
tion method using MC fusion is demonstrated through experiments conducted on artificial
and real-world datasets.

1.2 Related Work
In the field of model selection, various information criteria, such as AIC [1], BIC [14], and
MDL [13] have been applied to different scenarios. The MDL principle [13, 17], which mini-
mizes the normalized maximum likelihood (NML) code length, has been extensively studied
for model selection owing to its optimality in terms of Shtarkov’s minimax regret [15] and its
fast convergence in stochastic PAC learning scenarios [16].

Although model selection has primarily focused on stationary probabilistic models,
research has also investigated methodologies for situations in which models change over
time. Model change detection methods aim to identify changes in the underlying model struc-
ture of time-series data rather than changes in the distribution parameters. These changes
may involve alterations in the number of distribution parameters or clusters. In the context
of model change detection based on the MDL principle, progress has been made using the
Dynamic Model Selection (DMS) algorithm [20, 21]. The DMS algorithm outputs a sequence
of models that minimize code length, and Hirai and Yamanishi proposed the Sequential
Dynamic Model Selection (SDMS) algorithm, which applies DMS to sequentially obtained
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data [5]. Yamanishi and Fukushima extended the MDL change statistic [22], originally pro-
posed for parameter change detection, to model change detection and justified the DMS in the
context of hypothesis testing through a new theoretical analysis [18]. Model change detec-
tion was also explored for other scenarios. Herbster and Warmuth proposed a method that
tracks the best expert by iteratively updating the weights of the model candidates [4]. Erven
et al. defined the concept of switching distributions and presented an algorithm that selects
a sequence of models by maximizing their posterior probabilities [3]. Kleinberg proposed
a burst-detection algorithm that estimates the transitions of latent states [10]. Huang et al.
developed a method for detecting changes in the rate of detected changes, known as volatility
shift [9].

The aforementioned research on model change detection primarily focused on discrete
changes in models, assuming that model changes occur abruptly. However, gradual changes in
the model are often more prevalent. Consequently, recent studies have concentrated on devel-
oping model change sign detection methods capable of detecting progressive model changes
at earlier stages. Structural Entropy [7] and Graph-Based Entropy [12] are examples of meth-
ods for quantifying the uncertainty associated with model changes. However, these methods
do not provide information about the nature or abruptness of the detected changes. Yamanishi
and Hirai proposed Descriptive Dimensionality (Ddim), which defines the dimensionality of
models when multiple models are fused as a continuous value, and introduced a sign detection
method based on tracking changes in Ddim [19].

The aforementioned sign-detection methods utilize continuous metrics that consider mul-
tiple models. However, the individual model dimensions were still treated as discrete values,
which is consistent with conventional research. Kyoya and Yamanishi focused specifically on
the cluster structure of finite mixture models and introduced the concept of mixture complex-
ity (MC), which considers the overlap and bias between clusters by defining the cluster size
as a continuous value [11]. By tracking changes in the cluster size, represented as a continu-
ous value, it is possible to detect the signs of cluster structure changes. Nevertheless, there is
room for improvement in terms of sign detection performance because the accurate capture
of cluster size relies on the estimation of the number of mixtures in the finite mixture model.

1.3 Significance of this Work
The contributions of this study are as follows.

1) Proposal of MC fusion: Defining cluster size as a continuous value for finite
mixture models with multiple numbers of mixtures

We propose MC fusion as an extension of the existing concept of MC to address cases in
which multiple mixtures are possible in a finite mixture model. MC fusion is a natural exten-
sion of mutual information. We present a method for sequentially calculating the MC fusion
from time-series data when the distribution is unknown. By incorporating the model fusion
method used in Ddim, MC fusion overcomes the limitations of MC, which fails to capture the
cluster structure accurately owing to the estimation of the number of mixtures. Unlike Ddim,
MC-fusion fusion considers the bias of cluster ratios and the overlap between clusters for
each model, providing a more appropriate evaluation of the structure in a continuous manner.
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2) Empirical demonstration of the effectiveness of the cluster structure change
sign detection method using MC fusion

We propose a cluster structure change sign detection method that focuses on the transition
of MC fusion and empirically demonstrate its effectiveness by comparing it with existing
methods. In the artificial data analysis, we generated cluster structure changes using Gaussian
mixture models with four patterns: splitting, merging, disappearance, and emergence of clus-
ters. We performed sign detection and compared the transition of the MC fusion with other
existing methods, demonstrating the effectiveness of our approach by evaluating the scores
related to the speed and reliability of detection. Furthermore, we demonstrated the practi-
cal application of MC fusion by effectively capturing cluster structure changes in real-world
datasets, including COVID-19 infection and residential power consumption data.

2 Preliminaries
In this study, we focus on a scenario in which we observe a dataset xt at each time t, and
the cluster structure of xt gradually changes over time. Each dataset xt comprises N data
points with dimension d, which can be represented as xt = (xt,1, . . . , xt,N )⊤ ∈ RN×d. Our
goal was to effectively capture the changes in the cluster structure of the datasets using finite
mixture models for clustering.

In this section, we introduce two existing methods that evaluate cluster structures using
continuous values: Mixture Complexity (MC) [11], which continuously quantifies cluster
sizes by considering cluster overlap and bias, and Descriptive Dimensionality (Ddim) [19],
which defines model dimensionality as a continuous value. We also discuss the challenges
that arise when applying these methods to cluster structural change sign detection.

2.1 Mixture Complexity
Let us consider the cluster size of the finite mixture model. The distribution f of a finite
mixture model can be expressed as

f(x) =

k∑
i=1

πig(x;µi),

where k represents the number of mixture components; {πi}ki=1 are the parameters repre-
senting the probabilities of the data belonging to cluster i; and {µi}ki=1 are the parameters of
distribution g. In addition to the observed variable X generated from distribution f , we intro-
duce a latent variable Z ∈ {1, . . . , k} to indicate the cluster from which the observed variable
X is generated. The distribution of the latent variable is denoted by p(Z) and the conditional
distribution of the observed variable is denoted by p(X|Z):

p(Z = i) = πi, p(X|Z = i) = g(X;µi).
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To capture the cluster structure of the finite mixture model f , we consider the mutual
information between Z and X . The mutual information I(Z;X) can be expressed as

I(Z;X) = H(Z)−H(Z|X),

where H(Z) represents the entropy of the latent variable Z and H(Z|X) represents the con-
ditional entropy of Z. Denoting the posterior probabilities by γi(X) = p(Z = i|X), they are
defined as follows:

H(Z) = −
k∑

i=1

πi log πi,

H(Z|X) = −EX

[
k∑

i=1

γi(X) log γi(X)

]
.

Mutual information I(Z;X) represents information about the latent variable contained in the
observed data. Therefore, exp(I(Z;X)) can be interpreted as the number of latent variables
distinguished by the observed variables and can be considered a continuous measure of cluster
size.

However, calculating I(Z;X) is challenging even when the distribution f is known.
Therefore, the Mixture Complexity (MC) of a finite mixture model f is defined as an approx-
imation of I(Z;X) using data {xn}Nn=1. Specifically, given the posterior probabilities γi(xn)
for any i and n, MC is defined as

MC ({γi(xn)}i,n) = −
k∑

i=1

π̃i log π̃i +
1

N

N∑
n=1

k∑
i=1

γi(xn) log γi(xn),

where

π̃i =
1

N

N∑
n=1

γi(xn).

2.2 Descriptive Dimensionality
The descriptive dimensionality (Ddim) of the model was considered based on the MDL
principle [13, 17]. Ddim measures the dimensionality of a model by approximating the para-
metric complexity. A k-dimensional parametric model Pk with certain regularity conditions
is defined as Ddim(Pk) = k. In other words, Ddim corresponds to the conventional notion
of model dimensionality in terms of the degrees of freedom of the parameters. Ddim can also
be defined for models that do not have single parameters, making it a natural extension of the
traditional notion of dimensionality.
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Let us now consider a model F⊙ where multiple models P1, . . . ,Ps are stochastically
fused. In this case, the Ddim of F⊙ can be lower-bounded as

Ddim(F⊙) ≥
s∑

i=1

p(Pi)Ddim(Pi),

where p(Pi) represents the probability associated with each model Pi. This lower bound
serves as a pseudo-Ddim for model fusion F⊙. Pseudo-Ddim provides a continuous evalu-
ation of the dimensionality of the fused model and can be calculated when multiple finite
mixture models with different mixture components are fused.

2.3 Issues with Existing Methods
Both the mixture complexity (MC) and descriptive dimensionality (Ddim) methods are used
to evaluate the cluster structure in continuous values. Techniques have been proposed to detect
the early signs of gradual changes in the cluster structure by tracking the transitions of MC or
Ddim. Here, we outline the respective issues when applying MC and Ddim to detect changes
in the cluster structures in a dataset xt = (xt,1, . . . , xt,N )⊤ ∈ RN×d at each time t.

2.3.1 Detecting Cluster Structure Changes using MC

The MC method relies on estimating the number of components k̂t for each time t and then
computing the posterior probabilities {γ̂i(xt,n)}i,n using the estimated parameters of the
finite mixture model. The MC value MCt = MC({γ̂i(xt,n)}i,n) is then calculated. Gradual
changes in the cluster structure can be captured by tracking the continuous-valued MCt.

However, a significant issue with this approach is that the MC depends on the estimated
number of components k̂t. If k̂t is underestimated, the MC method may fail to accurately
capture the true cluster sizes, particularly when clusters are split and new clusters emerge.
These changes may only be considered as a single cluster until k̂t changes, leading to a delay
in detecting such changes.

2.3.2 Detecting Cluster Structure Changes using Ddim

The Ddim method detects changes in the cluster structures by considering the fusion of mul-
tiple finite mixture models. The conditional probability p(k|xt) is estimated for different
possible numbers of components k at time t. Instead of directly using Ddim, the quantity∑

k p(k|xt) · k is computed and denoted by Ddimt, which can be viewed as a continuous
model selection measure. Gradual structural changes can be captured by tracking the changes
in Ddimt or comparing them with the discrete number of components k̂t selected using
conventional methods.

However, a limitation of this approach is that it does not capture the structural differences
caused by the overlap or bias within each model with a specific number of components k. It
treats the dimensionality of each model simply as k, disregarding variations in the structure
due to overlap or bias. Consequently, when gradual changes occur owing to the appearance
or disappearance of clusters, it becomes challenging to capture these changes smoothly using
Ddimt. The transitions in Ddimt may exhibit sudden changes similar to those observed in
k̂t, delaying the detection of gradual structural changes.
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3 MC fusion
In this section, we propose MC fusion as an extension of MC for finite mixture models with
multiple possible components.

We attempt to improve the MC by employing the idea of model fusion, as used in
Ddim [19] and Structural Entropy [7]. In model fusion, the assumption is made that mul-
tiple finite mixture models with different numbers of mixtures are mixed together. Let
K = {k1, . . . , ks} be the set of possible numbers of components, and let p(K = k) denote the
probability that the data are generated from a finite mixture model with k ∈ K components.
In this case, the distribution f can be expressed as:

f(x) =
∑
k∈K

p(K = k) · fk(x)

=
∑
k∈K

p(K = k)

k∑
i=1

πk,ig(x;µk,i),

where fk represents the distribution of a finite mixture model with k components and
{πk,i}ki=1, {µk,i}ki=1 are the parameters of the distribution fk.

In MC, we fix a single number of components k̂ and compute

I(Z;X|K = k̂) = H(Z|K = k̂)−H(Z|X,K = k̂),

where Z denotes a latent variable. Under the assumption of model fusion, we can extend this
as follows and compute the MC fusion value:

I(Z;X|K) =
∑
k∈K

p(K = k) · I(Z;X|K = k).

When the distribution is unknown, we can compute the MC fusion by estimating
I(Z;X|K = k) for each k ∈ K as in MC, and estimate p(K = k) using an appropriate
method. This calculation method is described in the following section.

4 Cluster Structure Change Sign Detection Method Using
MC fusion

In this section, we demonstrate how to calculate MC fusion at each time point from the time-
series data and describe the application of MC fusion to the detection of predictive signs of
cluster structure changes.

4.1 Normalized Maximum Likelihood (NML) Code Length
First, we focused on the normalized maximum likelihood (NML) code for the model selec-
tion of each data point. The NML code length represents the optimal code length based on
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Shtarkov’s minimax regret [15] and provides model selection consistency. Therefore, min-
imizing the length of the NML code is suitable for accurately estimating the underlying
structure. The NML code length for a finite mixture model with k components is as follows.

Let xN = x1, . . . , xN be the data sequence of observed variables with length N . Let
zn ∈ {1, . . . , k} be the latent variable corresponding to xn and let zN = z1, . . . , zN . The
NML distribution for the complete variable (xN , zN ) is given by

pNML

(
xN , zN ; k

)
=

p(xN , zN ; θ̂(xN , zN ), k)

CN (k)
,

and the NML code length for the complete variable (xN , zN ) is given by

LNML

(
xN , zN ; k

)
= − log pNML

(
xN , zN ; k

)
= − log p(xN , zN ; θ̂(xN , zN ), k) + log CN (k),

where θ̂(xN , zN ) is the maximum likelihood estimate of the parameters. In addition, CN (k)
is the parametric complexity of the finite mixture model with k components and is defined as

CN (k) =

∫
p(x̃N , z̃N ; θ̂(x̃N , z̃N ), k) dx̃Ndz̃N ,

where the integral is taken over x̃N and z̃N . The term CN (k) can be computed efficiently
using the method proposed by Hirai and Yamanishi [6, 8].

4.2 MC fusion
Similar to the calculations in Ddim [19], we can estimate p(Kt = k) for each time step t in
the time-series data by considering the NML code lengths and model transition probabilities.

Let xT = x1, . . . ,xT be the time series of the observed data. Here, xt = xt,1, . . . , xt,N

represents the data observed at time t. For each time step t, we estimate the latent variable zt
corresponding to xt using the EM algorithm and define the posterior probability p(k|xt, zt)
of k given the complete variable (xt, zt) as follows:

p(k|xt, zt) =
(pNML(xt, zt; k) · p(k|kt−1))

β∑
k′ (pNML(xt, zt; k′) · p(k′|kt−1))

β

=
exp (−β (LNML(xt, zt; k)− log p(k|kt−1)))∑
k′ exp (−β (LNML(xt, zt; k′)− log p(k′|kt−1)))

, (1)

where kt−1 is the estimated mixture number at time t − 1 and α is a parameter defined as
follows:

p(k|kt−1) =


1− α if k = kt−1 and k ̸= 1, kmax,
1− α/2 if k = kt−1 and k = 1, kmax,
α/2 if k = kt−1 ± 1.
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Parameter β is the temperature parameter. In our experiments, we set β = 1/
√
N following

the calculation of Ddim.
Using the above estimations, we can obtain the estimate of p(K = k) as given in (1), and

I(Z;X|K = k) can be calculated using MC with the parameters estimated for the mixture
number k. Thus, we can compute the MC fusion as follows:

I(Z;X|K) =
∑
k∈K

p(K = k) · I(Z;X|K = k).

4.3 Cluster Structural Change Sign Detection
We propose a method for detecting cluster structural changes based on transitions in MC
fusion values over time. By computing the MC fusion at each time step t using the observed
data xT = x1, . . . ,xT , we obtain the MC fusion value MC-fusion(t) which provides a
continuous evaluation of the cluster structure for the data xt. Visualizing the values of
MC-fusion(t) over time allowed us to observe the changes in the cluster structure.

To detect cluster structural changes, we propose the following method based on the
transitions of MC fusion values.

Let W be the parameter representing the width of the window and δ be the threshold
parameter. We denote the MC fusion value at time t by yt. We raise an alert for cluster
structural change if the following condition is satisfied:

|median(yt−2W+1, . . . , yt−W )−median(yt−W+1, . . . , yt)| > δ.

This condition compares the medians of the MC fusion values within two consecutive win-
dows of width W . If the difference between these medians exceeds the threshold δ, the alert
is raised, indicating a significant change in the cluster structure. To ensure robust detection,
we adopted the median MC fusion values within the window instead of the mean.

The choice of parameters W and δ depends on the specific application and desired
sensitivity to cluster structural changes. A smaller window width W captures more local-
ized changes, whereas a larger window width provides a broader perspective of the overall
changes. Similarly, a smaller threshold δ increases the sensitivity of detecting smaller
changes, whereas a larger threshold focuses on more pronounced changes.

5 Experiments
In this section, we present the results of experiments conducted on both artificial and real-
world datasets to evaluate the performance of MC fusion in detecting cluster structural
changes.

5.1 Analysis of Artificial Data
5.1.1 Datasets

We generated two types of datasets with gradually changing cluster structures. These datasets
contained T = 100 time steps and N = 1000 data points, respectively. We considered four
patterns of structural changes by examining both the forward and reverse directions. For these
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(a) t = 1 (b) t = 50 (c) t = 76

Fig. 3: Plot of data in 2D for the moving overlap dataset at t = 1, 50, 76.

datasets, we computed MC-fusion(t) while selecting the number of mixture components k̂t
using SDMS [5] at each time step t. We visualize the transitions of MC-fusion(t) and compare
them with the transitions of other indicators. Furthermore, we compared the performance
of sign detection algorithms based on the changes detected by these indicators in terms of
detection speed and accuracy.

The first dataset, called the “moving overlap dataset,” consists of data where the overlap
between clusters gradually changes. Specifically, for each t, we generate data {xt,n}1000n=1 that
follow a 3D Gaussian mixture distribution, as follows:

xt,n ∼


N

(
x|µ = [0, 0, 0]⊤

)
(1 ≤ n ≤ 333),

N
(
x|µ = [10, 0, 0]⊤

)
(334 ≤ n ≤ 666),

N
(
x|µ = [10 + α(t), 0, 0]⊤

)
(667 ≤ n ≤ 1000),

where the variance of all components is Σ = I3 and

α(t) =


0 (1 ≤ t ≤ 25),

0.12(t− 26) (26 ≤ t ≤ 75),

6 (76 ≤ t ≤ 100).

The moving overlap dataset exhibits a gradually changing overlap between the clusters
during the transition periods at t = 26, . . . , 75. Fig. 3 shows a two-dimensional (2D) visu-
alization of the dataset. In the forward direction (t = 1 → 100), the right cluster splits,
increasing the number of clusters from two to three. Conversely, in the reverse direction
(t = 100 → 1), the two right-wing clusters merge, resulting in a decrease in the number of
clusters from three to two.

The second dataset, called the “moving imbalance dataset,” consists of data where the
bias in cluster ratios gradually changes. Specifically, for each t, we generate data {xt,n}1000n=1

that follow a 3D Gaussian mixture distribution, as follows:

xt,n ∼


N

(
x|µ = [0, 0, 0]⊤

)
(1 ≤ n ≤ 250),

N
(
x|µ = [10, 0, 0]⊤

)
(251 ≤ n ≤ 500),

N
(
x|µ = [20, 0, 0]⊤

)
(501 ≤ n ≤ 750 + α(t)),

N
(
x|µ = [30, 0, 0]⊤

)
(751 + α(t) ≤ n ≤ 1000),

11



(a) t = 1 (b) t = 55 (c) t = 76

Fig. 4: Plot of data in 2D for the moving imbalance dataset at t = 1, 55, 76.

where the variance of all components is Σ = I3 and

α(t) =


0 (1 ≤ t ≤ 25),

5(t− 26) (26 ≤ t ≤ 75),

250 (76 ≤ t ≤ 100).

The moving imbalance dataset exhibits a gradually changing bias in the cluster ratios
during the transition periods at t = 26, . . . , 75. Fig. 4 shows a two-dimensional (2D) visu-
alization of the dataset. In the forward direction (t = 1 → 100), the rightmost cluster
disappeared, resulting in a decrease in the number of clusters from four to three. Conversely,
in the reverse direction (t = 100 → 1), a cluster appeared on the right side, leading to an
increase in the number of clusters from three to four.

5.1.2 Methods for Comparison

The following existing methods were compared with the MC fusion:

1. Mixture Complexity (MC) [11]: MC defines the cluster size as a continuous value by
considering the overlap and bias between clusters in a finite mixture model with a selected
number of components. It evaluates a single selected model and does not assume model
fusion.

2. Descriptive Dimensionality (Ddim) [19]: Ddim defines the model’s dimensionality as a
continuous value. It assumes model fusion.

3. SDMS [5]: SDMS is an extension of DMS to the sequential setting. It sequentially selects
the number of components based on the MDL principle and outputs a sequence of models.

4. Fixed Share algorithm (FS) [4]: FS treats experts in an aggregating algorithm as candidate
models and updates the weights of experts sequentially to track the best expert.

The SDMS and FS are conventional methods that iteratively select the number of models
discretely. On the other hand, MC and Ddim are continuous evaluation methods that aim to
detect structural changes early.

5.1.3 Evaluation Metric

For each method, the early detection of structural changes and the reliability of detection
have a trade-off relationship. Therefore, to evaluate the performance of each method in terms
of both detection speed and accuracy while considering this trade-off, the Area Under Curve
(AUC) of the benefit-false alarm rate (FAR) curve was defined as an evaluation metric.
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The benefit metric evaluates the speed of detection, and is defined as follows:

benefit =

{
1− (t̂− t∗)/U (t∗ ≤ t̂ < t∗ + U),

0 otherwise,

where t̂ is the time when the first alarm is raised during the true transition period and t∗ is
the starting point of the true change. U is a parameter, and in this experiment, it was set to
U = 25, which is half of the transition period.

The FAR measures the ratio of alarms raised at time points not included in the transition
period to the total number of time points not included in the transition period. This quantifies
the reliability of the detection.

Let yt denote the values calculated at time t for MC-fusion(t), MCt, log(Ddimt), and the
selected number of components k̂t by SDMS and FS. Because the true change (increase or
decrease in cluster number) was known in this experiment, an alarm was raised when

median(yt−4, . . . , yt)−median(yt−9, . . . , yt−5) > δ

for an increasing number of clusters, and when

median(yt−4, . . . , yt)−median(yt−9, . . . , yt−5) < −δ

as the number of clusters decreased. To evaluate the performance of the sign detection algo-
rithm, the benefit and FAR are computed for various threshold values δ. By plotting the
benefit-FAR curve, the performance of the algorithm was assessed based on the AUC.

In addition, delay = t̂−t∗ was compared for each method, particularly when the threshold
was set to δ = 0.01. The delay indicates how quickly the method detects a change compared
to the true starting point of the change.

5.1.4 Results

The results of the performance comparison among the methods based on AUC and delay for
the four types of structural changes are presented in Table 1. Based on the results presented
in Table 1, we interpret the differences between the methods and visualize the transitions for
each type of structural change. However, because the same results were obtained from SDMS
and FS, we compared the estimated number of components k by using MC fusion, MC, and
Ddim.

For the moving overlap dataset, Fig. 5 illustrates the transitions of k, exp(MC),
exp(MC-fusion), Ddim estimated at time t. Focusing on the t = 1 → 100 direction, which
corresponds to cluster splitting, MC does not show a noticeable increase until k changes
from two to three, indicating that MC is not effective for early detection. By contrast, both
MC fusion and Ddim start to increase before the change in k, enabling early detection. The
delay for k and MC was 34, whereas it was 28 for MC fusion and Ddim. Moreover, the AUC
score for MC was lower than those for MC fusion and Ddim. In the t = 100 → 1 direction,
which corresponds to cluster merging, all three methods (MC, MC fusion, and Ddim) show a
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Table 1: AUC and Delay scores for each method on the four patterns of structural changes.
Moving overlap dataset Moving imbalance dataset

Method Split Merge Disappearance Emergence
AUC Delay AUC Delay AUC Delay AUC Delay

MC fusion 0.712 28 0.995 10 0.928 13 1.0 2
MC 0.590 34 0.994 14 1.0 14 1.0 2

Ddim 0.638 28 0.985 14 0.709 36 1.0 2
SDMS 0.5 34 0.660 19 0.5 51 1.0 2

FS 0.5 34 0.660 19 0.5 51 1.0 2

decrease in values from the stage where k is estimated to be three, indicating the early detec-
tion of a decrease in the number of clusters. MC fusion achieved the best scores in terms of
both the AUC and delay, whereas MC and Ddim performed similarly.

For the moving imbalanced dataset, Fig. 6 shows the transitions of k, exp(MC),
exp(MC-fusion), Ddim estimated at each time t. Focusing on the t = 1 → 100 direction,
which corresponds to cluster disappearance, MC fusion, which is similar to MC, captures the
gradual decrease in cluster size and detects early signs of change. However, the estimated
value of k remains unchanged until the transition period is complete, and Ddim follows a tra-
jectory similar to that of k, making it unable to detect the change early. The delay for Ddim
was more than 20 units higher than those for MC fusion and MC, and the AUC score was
particularly low. In the t = 100 → 1 direction, which corresponds to cluster emergence, both
MC and MC fusion smoothly captured the changes in cluster structure, and early detection
was possible with all methods.

5.2 Analysis of COVID-19 infection data
5.2.1 Dataset

We analyzed a dataset of COVID-19 cases and deaths1. The dataset included daily data on new
infections and deaths in various countries. We calculated the number of infected individuals,
individuals with immunity, and deaths at each time point in each country. We also calculated
the ratios of these quantities to the population in each country. The dataset covers the period
from January 22, 2020, to October 17, 2022, for 182 countries.

5.2.2 Results

Fig. 7 illustrates the transitions in k, exp(MC), exp(MC-fusion), and Ddim over time for the
COVID-19 data set. These clusters represent the patterns of infection in each country. Before
the outbreak, all countries had values close to zero for infected individuals (I), individuals
with immunity (R), and deaths (D). However, over time, countries have been divided into
those experiencing outbreaks and those that have not, with several outbreak patterns observed.
These changes were likely influenced by differences in infection control measures and the
movement of people between countries.

1https://github.com/CSSEGISandData/COVID-19
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Fig. 5: Estimated values of k, exp(MC), exp(MC-fusion), and Ddim for each time t in the
moving overlap dataset. The light blue area represents the transitional period of change, and
markers indicate the points where each method raised change alerts.

Owing to numerous factors influencing infection patterns and their impacts more than
a year after the start of the outbreak, we specifically examined two periods in 2020 when
the estimated mixture number k changed. Fig. 8 presents a subset of the analysis. First, to
gain a detailed understanding of the changes that occurred around April 2020, Table 2 shows
the transition of the cluster means and the number of countries belonging to each cluster. In
Table 2, we observe three clusters: pre-outbreak countries (c1), countries where the outbreak
began (c2), and countries that experienced an explosive outbreak (c3). While the number
of clusters remained constant, the number of countries with outbreaks gradually increased.
Fig. 8a illustrates that despite the constant estimation of k, MC and MC fusion successfully
captured gradual changes in the cluster structure.

Moving on to the changes that occurred around November 2020, Table 3 presents the tran-
sition of cluster means and the number of countries belonging to each cluster. From Table 3,
we observe that the expanding outbreak cluster c3 is split into two clusters: c3 and c4. Clus-
ter c3 indicates a decrease in the number of infected individuals and an increase in recovered
individuals, suggesting that the outbreak subsided in these countries. By contrast, cluster c4
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Fig. 6: Estimated values of k, exp(MC), exp(MC-fusion), and Ddim for each time t in the
moving imbalance dataset. The light blue area represents the transitional period of change,
and markers indicate the points where each method raised change alerts.

showed an increase in the number of infected individuals, implying an ongoing outbreak in
these countries. Fig. 8b demonstrates that k and MC capture this cluster split on November
26th, while the value of MC fusion starts to deviate upward in early November, enabling
the early detection of an increase in the number of clusters on November 5th when using a
detection threshold of δ = 0.01.

5.3 Analysis of Electric Power Consumption Data
5.3.1 Dataset

We analyzed a dataset of residential electric power consumption obtained from the UCI
machine learning repository [2]. The dataset covers the period from December 16, 2006,
to November 26, 2010, for three distribution networks in Tetouan, northern Morocco. The
data were recorded at 15-minute intervals each day, denoted by t = 1, . . . , 96. Each obser-
vation xt,n represents electric power consumption in three categories (kitchen, laundry, and
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Fig. 7: Estimated values of k, exp(MC), exp(MC-fusion), and Ddim for each day t in the
COVID-19 infection data (throughout the entire period).

Table 2: Transition of cluster means and the number of countries belonging to each cluster
around April 2020. Note that the unit of cluster means is 10−4.

(a) April 1, 2020.

cat. c1 c2 c3
I 0.34 4.7 28
R 0.055 1.1 8.0
D 0.007 0.21 1.7
# 147 26 9

(b) April 15, 2020.

cat. c1 c2 c3
I 0.44 6.3 25
R 0.36 6.3 49
D 0.026 0.80 3.1
# 140 37 5

(c) April 29, 2020.

cat. c1 c2 c3
I 0.24 4.5 9.7
R 0.49 6.2 37
D 0.029 0.29 3.3
# 121 44 17
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Fig. 8: Partial excerpts of the analysis of COVID-19 infection data, specifically focusing on
the early and middle stages of the infection.
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Table 3: Transition of cluster means and the number of countries belonging to each cluster
around November 2020. Note that the unit of cluster means is 10−4.

(a) November 10, 2020.

cat. c1 c2 c3
I 0.32 21 49
R 5.8 63 210
D 0.13 1.4 5.7
# 73 68 41

(b) November 20, 2020.

cat. c1 c2 c3
I 0.54 26 44
R 7.1 85 250
D 0.15 1.8 6.4
# 79 65 38

(c) December 1, 2020.

cat. c1 c2 c3 c4
I 0.54 13 40 70
R 6.4 79 290 190
D 0.14 1.5 6.1 6.8
# 75 55 34 18

air conditioning) at a specific time interval t and location n. The dataset contained 4326
observations.

5.3.2 Results

Fig. 9 illustrates the transitions of k, exp(MC), exp(MC-fusion), and Ddim over time for
the electric power consumption dataset. The clusters in this context represent the patterns of
electric power consumption in the RHs. For instance, an increase in the number of clusters
around 7 a.m. indicates that many people wake up at that time and start their daily activi-
ties, resulting in diverse power consumption patterns. By focusing on the cluster structure, it
is possible to capture latent changes in the data. In particular, both MC and MC fusion were
capable of detecting changes in the cluster structure at approximately 7 a.m. and 7 p.m. Fur-
thermore, both methods demonstrated the ability to capture essential changes without being
overly sensitive to minor and less significant variations in the data.
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Fig. 9: Estimation of k, exp(MC), exp(MC-fusion), and Ddim for residential power con-
sumption data at each time interval t.

5.4 Discussion
The experiments conducted in this study provide valuable insights into the effectiveness of
the cluster structure change sign detection method using MC fusion. The key findings and
conclusions based on the experiments with both artificial and real datasets are as follows:

1) Performance comparison with existing methods

MC fusion outperformed the existing methods, MC and Ddim, in terms of early detection of
structural changes. MC fusion was particularly effective in detecting cluster splitting, which
MC failed to capture. Ddim, however, struggled to detect cluster disappearance, whereas MC
fusion captured changes in cluster bias.

2) Consistency of results

The trends observed in the experiments using artificial data were consistent with those
observed in the experiments using real data. In the analysis of COVID-19 infection data, both
MC fusion and MC successfully captured changes in cluster bias as the number of affected
countries increased during the early stages of the pandemic. MC fusion demonstrated the abil-
ity to detect early signs of cluster splitting, whereas MC alone was unable to do so. However,
in some cases, such as the analysis of residential electric power consumption data, MC fusion
exhibits a behavior similar to that of MC for longer durations.

3) Effectiveness of MC fusion

Compared to Ddim, MC fusion proved to be more effective in capturing essential changes
without being overly sensitive to minor variations in the data. This is because of the consid-
eration of cluster overlap and bias in the MC fusion. Compared to MC, MC fusion exhibited
similar behavior for longer durations but was capable of detecting structural changes, such as
cluster splitting, at an earlier stage.
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6 Conclusion
In this study, we present MC fusion as an extension of Mixture Complexity (MC) for finite
mixture models. MC fusion incorporates the bias of cluster proportions and the overlap
between clusters by fusing multiple models with different mixture numbers. We demonstrated
the effectiveness of MC fusion in detecting signs of cluster structure changes using both arti-
ficial and real datasets. MC fusion outperformed existing methods, such as MC and Ddim, in
terms of the early detection and capture of changes in the cluster structure.

In future research, it would be valuable to further investigate and refine the methods
and criteria for raising alarms regarding the signs of cluster structure changes. This includes
exploring the optimal threshold and considering the parameter β used in the estimation of the
probability p(K = k), which determines the mixture number k. Optimizing the selection of
β as a hyperparameter can enhance the MC fusion performance. In addition, there are numer-
ous potential applications to explore, such as the analysis of communities in network data as
clusters.

Overall, MC fusion offers a promising approach for detecting and monitoring changes in
cluster structures and provides valuable insights and applications in various domains.
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A Implementation Code
The code used in our experiments can be accessed at the GitHub repository https://github.
com/uraken38/MC-fusion. Please refer to README for instructions. The experiments were
conducted on a server with the following specifications: an Intel Core i5 processor (1.6GHz),
8GB of RAM, and a 234GB solid-state drive. Programming was performed using Python
version 3.7.13.
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