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FORBIDDEN COMPLEXES FOR THE 3-SPHERE

MARIO EUDAVE-MUÑOZ AND MAKOTO OZAWA

Abstract. A simplicial complex is said to be critical (or forbidden) for the
3-sphere S3 if it cannot be embedded in S3 but after removing any one point,
it can be embedded.

We show that if a multibranched surface cannot be embedded in S3, it
contains a critical complex which is a union of a multibranched surface and
a (possibly empty) graph. We exhibit all critical complexes for S3 which are
contained in K5 × S1 and K3,3 × S1 families. We also classify all critical
complexes for S3 which can be decomposed into G× S1 and H, where G and
H are graphs.

In spite of the above property, there exist complexes which cannot be em-
bedded in S3, but they do not contain any critical complexes. From the
property of those examples, we define an equivalence relation on all simplicial
complexes C and a partially ordered set of complexes (C/∼;j), and refine the

definition of critical. According to the refined definition of critical, we show
that if a complex X cannot be embedded in S3, then there exists [X′] j [X]
such that [X′] is critical for [S3].

1. Introduction

Throughout this paper we work in the piecewise linear category, consisting of
simplicial complexes and piecewise-linear maps.

In [2], the definition of critical multibranched surfaces for the 3-sphere was in-
troduced. More generally, we can define the criticality on simplicial complexes as
follows. For two simplicial complexes X and Y , X is said to be critical (or forbid-
den) for Y if X cannot be embedded in Y , but for any point p ∈ X , X − p can be
embedded in Y . In this paper, the polyhedron |X | is expressed directly using X .
Hereafter, we assume the connectivity of simplicial complexes for simplicity.

Let Γ(Y ) denote the set of critical complexes for Y . By the Kuratowski’s and
Wagner’s theorems ([5], [9]), we will show that Γ(S2) = {K5,K3,3} (Proposition
2.3). In this direction, our major goal in this paper is to characterize Γ(Y ) for a
closed n-manifold Y (n ≤ 3). To achieve this, first enumerate the complexes X
that cannot be embedded in Y . One would think that if we remove as many points
as possible from X while maintaining the property that X cannot be embedded
in Y , we will obtain a critical complex. However, there are complexes that do not
satisfy this requirement (Example 2.16 and Theorem 2.18). Based on these, we
refine the definition of the criticality so that X cannot be embedded in Y , but for
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2 MARIO EUDAVE-MUÑOZ AND MAKOTO OZAWA

any proper subspace X ′ of X , which does not contain a subspace homeomorphic
to X , X ′ can be embedded in Y . Then we arrive at the equivalence X ∼ Y on
simplicial complexes C as X can be embedded in Y and Y can be embedded in
X , and we obtain a partially ordered set of complexes (C/∼;j). In (C/∼;j), the
definition of the criticality is changed to that [X ] is critical for [Y ] if [X ] " [Y ]
and for any [X ′] & [X ], [X ′] j [Y ]. Finally we will prove the existence of critical
subcomplexes, that is, if [X ] " [M ] for a closed n-manifold M (n ≤ 3), then there
exists [X ′] j [X ] such that [X ′] is critical for [M ]. For a typical example, a torus
T cannot be embedded in a 2-sphere S2. By applying this existence theorem, there
exist [K5], [K3,3] j [T ] such that [K5], [K3,3] are critical for [S2].

1.1. Symbol explanation. We decompose a 2-dimensional simplicial complex X
into the following parts. Let △i denote an i-dimensional simplex of X , and N(p;X)
denote an open neighborhood of p in X . The 2-dimensional part X2 of X is de-
composed into the sector S(X) and the branch B(X), where

S(X) = {p ∈ X | ∃N(p;X) ∼= R2},

B(X) = {∂△2 | int△2 ⊂ S(X)} \ S(X),

and put ∂X2 = {p ∈ B(X) | ∃N(p;X) ∼= R2
+}.

The 1-dimensional part X1 of X is decomposed into the edge E(X) and the
vertex V (X), where

E(X) = {p ∈ X | ∃N(p;X) ∼= R1},

V (X) = {∂△1 | int△1 ⊂ E(X)} \ E(X).

2. Critical complexes

2.1. Critical complexes for closed manifolds. In this subsection, we consider
critical complexes for closed n-manifolds (n ≤ 3).

Lemma 2.1. Let M be an n-manifold and X ∈ Γ(M) be a critical complex for M .
Then dimX ≤ n.

Proof. Suppose that dimX > n and let Bn+1 be an open (n+ 1)-ball in X . Then
for a point p ∈ Bn+1, X − p cannot be embedded in M since X − p contains an
open (n+ 1)-ball in Bn+1 − p. �

Let M be a connected compact n-manifold and p be a point in the interior of
M . We denote the quotient space obtained from M and the closed interval [0, 1]
by identifying p and {0} by M⊥.

Proposition 2.2. Γ(S1) = ∅.

Proof. Let X ∈ Γ(S1). By Lemma 2.1, dimX = 1. Since X cannot be embedded
in S1, X contains I⊥, where I denotes a closed interval. However, for a point
p ∈ I⊥ with a neighborhood which is homeomorphic to an open interval (0, 1),
X − p cannot be embedded in S1. Hence such complex X does not exist. �

Proposition 2.3. Γ(S2) = {K5,K3,3}.

Proof. It can be checked that K5 and K3,3 are critical for S2. Thus we have
Γ(S2) ∋ K5,K3,3.

Conversely, let X ∈ Γ(S2). By Lemma 2.1, dimX ≤ 2.
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First, suppose that dimX = 2. Then X contains a point p whose open neigh-
borhood is homeomophic to an open disk D. Since X is critical for S2, X − p can
be embedded in S2 and hence X −D can be embedded in S2. If X −D is a disk,
then X is homeomorphic to S2. This contradicts to the criticality of X . Otherwise,
we can find an embedding of X − D in S2 such that ∂N(p;X) bounds a disk in
S2 − (X − D). Therefore, by filling with D, we have an embedding of X in S2.
This contradicts to the criticality of X and we have dimX = 1.

Next, since X cannot be embedded in S2, by [5], X contains K5 or K3,3. If
X contains K5 and X − K5 6= ∅, then for a point p ∈ X − K5, X − p cannot be
embedded in S2. Hence X = K5. The same holds true for K3,3. Thus X is K5 or
K3,3. �

Let Fg be a closed orientable surface of genus g > 0, and Ω(Fg) be the set of
forbidden graphs for Fg.

Theorem 2.4. Γ(Fg) = {F0, . . . , Fg−1} ∪ Ω(Fg).

Proof. (⊃) Fi ∈ {F0, . . . , Fg−1} cannot be embedded in Fg since it is closed. If we
remove a point p from Fi ∈ {F0, . . . , Fg−1}, then Fi − p can be embedded in Fg.
Thus Fi ∈ Γ(Fg). It follows from the definition that Ω(Fg) ⊂ Γ(Fg).

(⊂) Let X be a critical complex. If X has no point whose neighborhood is
homeomorphic to R2, then it is a graph and by the criticality it belongs to Ω(Fg).
Otherwise, for a point p whose neighborhood is homeomorphic to R2, X−p can be
embedded in Fg. If ∂N(p;X) bounds a disk in Fg, then X can be embedded in Fg

and we have a contradiction. Otherwise, cutting and pasting Fg along ∂N(p;X),
X has an embedding in Fh (h < g). If X is closed, then X = Fh. Otherwise, by
connecting sum Fg−h to Fh at any point of Fh−X , X has an embedding in Fg and
we have a contradiction. �

Theorem 2.5 (Characterization of critical complexes with the same dimension).
Let M be a closed n-manifold and X ∈ Γ(M) be a critical complex for M . Then
dimX = n if and only if X is a closed n-manifold which is homeomorphic to a
connected proper summand of M including Sn, namely, M = X#M ′ for some
closed n-manifold M ′ which is not homeomorphic to Sn.

Proof. The “if” part obviously holds and we need to prove the “only if” part.
Since dimX = n, there exists a point p ∈ X whose neighborhood is homeomor-

phic to Rn. By the criticality of X , X − p can be embedded in M and we can
assume X − intB ⊂ M , where B = N(p;X) is an n-ball. We divide the proof into
two cases.

Case 1: ∂B separates M .
Case 2: ∂B does not separate M .

In Case 1, let M1 and M2 be compact submanifolds of M divided by ∂B, where
we assume without loss of generality that X − intB ⊂ M1. We remark that M2

is not homeomorphic to an n-ball. If X − intB = M1, then X is a connected
proper summand M̂1 of M , where M̂1 denotes the closed n-manifold obtained from
M1 by capping off ∂M1. Otherwise, there are a point q ∈ M1 − (X − intB) and

a neighborhood B′ = N(q;M1) ⊂ M1 − (X − intB). Note that M̂1 − intB′ can

be embedded in M since M̂1 − intB′ and M̂1 − intB are homeomorphic. Since

X ⊂ M̂1 − intB′, X can be embedded in M . This is a contradiction.
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In Case 2, there exists a simple closed curve C embedded in M such that C
intersects ∂B transversely in one point. The curve C cannot be completely con-
tained in the interior of X − intB, so C intersects ∂(X − intB) transversely. Let
α be a subarc of C, such that α is contained in X − intB, one of its endpoints is
a point in ∂B, and the other is a point in ∂X . Let N(α) be a neighborhood of α
in X − intB. Note that N(α) intersects ∂B in an (n− 1)-ball and intersects ∂X in
another (n− 1)-ball. Consider N(α∪∂B). Note that the closure of X−N(α∪∂B)
is homeomorphic to X since an (n−1)-ball adjacent to ∂X is removed. This implies
that X can be embedded in M , which is a contradiction. �

2.2. Critical multibranched surfaces. For a 2-dimensional simplicial complex
X , we say that X is a multibranched surface if B(X) consists of circles and E(X) =
∅. Eto–Matsuzaki–the second author proved that some family of multibranched
surfaces belong to Γ(S3).

Theorem 2.6 ([2], [6]). X1, X2, X3, Xg(p1, . . . , pn) ∈ Γ(S3).

2.3. K5 × S1 and K3,3 × S1 families and their critical subcomplexes.

Theorem 2.7. If a multibranched surface X cannot be embedded in S3, then there
exists a critical subcomplexes M ∪H of X, where M is a multibranched surface and
H is a (possibly empty) graph.

Proof. Suppose that a multibranched surface X cannot be embedded in S3. If X is
not critical, then there exists a point p ∈ X such that X − p cannot be embedded
in S3.

Case 1: p is contained in the interior of a sector S.
Case 2: p is contained in a branch B.

In Case 1, S − p is homeomorphic to the interior of a regular neighborhood
N(G ∪ ∂S;S), where G denotes a spine. Then, the following are equivalent.

• (X − intS) ∪N(G ∪ ∂S;S) cannot be embedded in S3.
• (X − intS) ∪G cannot be embedded in S3.

If (X − intS) ∪G is critical, then we have the conclusion of Theorem 2.7.
Otherwise, we continue this process on (X − intS) ∪G, eliminating points in G

or in other sector S′ of X . Eventually we get a critical complex M ∪ G ⊂ X as
desired.

In Case 2, for a point p ∈ B, X − p cannot be embedded in S3. Then for a
neighborhoodN(p) of p, X−N(p) cannot be embedded in S3. But N(p) necessarily
contains points in a sector, that is, there is a point q ∈ S such that q ∈ N(p). Then
X − q cannot be embedded in S3. We can proceed as in the Case 1. Eventually we
get a critical complex M ∪G ⊂ X as desired. �

Let Yn, Pn, Dn denote K1,n × S1, an n-punctured sphere, n disks respectively.
Suppose that a multibranched surface X contains Yn as a sub-multibranched

surface. We replace Yn with Pi ∪Dj (n = i+ j), where ∂Pi and ∂Dj are attached
by degree 1 maps to the branches of degree 1 in Yn. Note that the degree of
each branch remains the same. Make this replacement as recursive as possible into
K5 × S1 and K3,3 × S1 and get the K5 × S1 family (1) – (5) and K3,3 × S1 family
(6) – (9).

(1) K5 × S1

(2) (K4 × S1) ∪ P4
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(3) (K4 × S1) ∪ P3 ∪D1

(4) (K4 × S1) ∪D4

(5) (K3 × S1) ∪ P3 ∪D3

(6) K3,3 × S1

(7) (K2,3 × S1) ∪ P3

(8) (K2,3 × S1) ∪D3

(9) (K1,3 × S1) ∪ P3 ∪D3

To obtain (5) (K3×S1)∪P3∪D3, attach the three boundary components of P3 (or
D3) to three different branches ofK3×S1. Similarly, to obtain (K1,3×S1)∪P3∪D3,
attach the three boundary components of P3 (or D3) to three different branches of
K1,3 × S1.

Theorem 2.8. All members of K5×S1 and K3,3×S1 families cannot be embedded
in S3, and they contain critical subcomplexes of the form M ∪ H of X as in the
following list, where M is a multibranched surface and H is a (possibly empty)
graph.

(1) K5 × S1 ⊃ (K4 × S1) ∪K1,4

(2) (K4 × S1) ∪ P4 ⊃ (K4 × S1) ∪K1,4

(3) (K4 × S1) ∪ P3 ∪D1 = (K4 × S1) ∪ P3 ∪D1

(4) (K4 × S1) ∪D4 ⊃ (K4 −K3)× S1 ∪D4 ∪K3

(5) (K3 × S1) ∪ P3 ∪D3 = (K3 × S1) ∪ P3 ∪D3

(6) K3,3 × S1 ⊃ (K2,3 × S1) ∪K1,3

(7) (K2,3 × S1) ∪ P3 ⊃ (K2,3 × S1) ∪K1,3

(8) (K2,3 × S1) ∪D3 ⊃ (K1,3 × S1) ∪D3 ∪K1,3

(9) (K1,3 × S1) ∪ P3 ∪D3 ⊃ (K1,3 × S1) ∪D3 ∪K1,3

To prove Theorem 2.8, we need two lemmas below.
Let X be a complex embedded in a trivial bundle F × S1 with the projection

p : F × S1 → F . We say that X is vertical in F × S1 if p−1(p(X)) = X .

Lemma 2.9. Let G be a connected graph and f : G × S1 → S3 be an embedding.
Then f is one of the following type.

(1) There exist a knot K in S3 and a trivial bundle structure D2×S1 of N(K)
such that f(G × S1) is contained in N(K) and f(G × S1) is vertical in
N(K).

(2) There exist a cable knot K with a cabling annulus A and a trivial bundle
structureD2×S1 of N(K) such that f(G×S1) is contained in N(K)∪N(A),
f(G × S1) ∩N(K) is vertical in N(K) and f(G × S1) ∩N(A) consists of
mutually disjoint annuli parallel to A.

Proof. Let T be a spanning tree of G. Then N(f(T × S1)) is a solid torus with a
trivial bundle structure D2×S1 in which f(T×S1) is vertical. Put K = {0}×S1 ⊂
D2 × S1.

Let e1, · · · , en be the edges of E(G) − E(T ), and Ai = f(ei × S1) ∩ E(K)
(i = 1, · · · , n) be an annulus. Since the boundary slope of Ai is integral and E(K)
is a knot exterior in S3, there are only two possibilities.

(i) Ai is boundary parallel in E(K).
(ii) Ai is a cabling annulus of K.

It is known that a cabling annulus of a knot is unique up to isotopy.
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If all annuli A1, · · · , An are boundary parallel in E(K), then we can isotope them
into N(K). Then we have a conclusion (1). Otherwise, there is a cabling annulus
Ai and all other cabling annuli are parallel to Ai. Similarly all boundary parallel
annuli can be isotoped into N(K). Then we have a conclusion (2). �

We say that an embedding f : G × S1 → S3 is standard if it is of type (1) in
Lemma 2.9, K is the trivial knot and p × S1 bounds a disk in E(K) for a point
p ∈ ∂D2.

Let X be a multibranched surface. A circular permutation system for X is a
choice of a circular ordering of the sectors attached to each branch. See [6, Section
2] for details.

Lemma 2.10. Let G be a connected graph and f : G× S1 → S3 be an embedding.
Then there exists a standard embedding f0 : G × S1 → S3 with the same circular
permutation system as f .

Proof. First suppose that f is of type (1) in Lemma 2.9. By re-embedding N(K) =
D2 ×S1 in S3, we have that K is the trivial knot. Moreover, by Dehn twists along
D2, we have that p × S1 bounds a disk in E(K) for a point p ∈ ∂D2. Thus we
have a standard embedding f0 : G×S1 → S3. Since the rotation sysytem does not
change during the above two operations, we have a standard embedding f0 with
the same circular permutation system as f .

Next let f be of type (2) in Lemma 2.9. By re-embedding cabling annuli coin-
tained in N(A) into N(K), we will obtain another embedding f ′ which is of type
(1). Let A+ and A− be two annuli which are obtained from ∂N(K) by cutting along
∂A. We replace the cabling annulus A with one of those annuli A+ and A−, say
A−, and slightly push it into intN(K). By repeating this process on all mutually
disjoint annuli parallel to A, we obtain another embedding f ′ of type (1). We note
that the rotation sysytem does not change during the above process. �

Remark 2.11. By Lemma 2.10, if there exists an embedding f : G× S1 → S3 for a
connected graph G, then as the embedding is vertical, it induces an embedding of
G in a disk D2, and hence G is a planar graph and the rotation system of f is the
same as one of a planar embedding of G. Since the circular permutation system
determines the regions of S3 − f(G × S1), there is a one-to-one correspondence
between the regions of f and f0.

Proof of Theorem 2.8. First we show that each member of K5 × S1 and K3,3 × S1

families cannot be embedded in S3.
(1) By Remark 2.11, K5 × S1 cannot be embedded in S3 since K5 is not planar.
(2) Suppose that there exists an embedding f : (K4 × S1) ∪ P4 → S3. Then

by Lemma 2.10 and Remark 2.11, f(K4 × S1) divides S3 into four regions as K4

divides S2 into four regions. We note that each region of f(K4×S1) contains three
branches except for one branch. Now f(P4) is contained in one of those regions,
but in this case, one component of f(∂P4) cannot be attached to a branch. This is
a contradiction.

(3) Suppose that there exists an embedding f : (K4×S1)∪P3∪D1 → S3. Since
one branch of f(K4 × S1) bounds a disk of D1, f |K4×S1 is a standard embedding.
There are four regions of f |K4×S1 , say R1, R2, R3 and R4, which are all solid tori.
Exactly one region, say R4, contains three branches as meridians, and other three
regions R1, R2 and R3 contain three branches as longitudes. Therefore only R4 can
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contain a disk of D1 as meridian disks. Then P3 is contained in another region, say
R1, which does not contain ∂D1. However, ∂P3 consists of three longitudes of R1,
hence it is impossible. This is a contradiction.

(4) Suppose that there exists an embedding f : (K4 × S1) ∪ D4 → S3. In this
case, each branch of K4 × S1 bounds a disk of D4, hence f |K4×S1 is a standard
embedding. There are four regions of f |K4×S1 , say R1, R2, R3 and R4, which are
all solid tori. Exactly one region, say R4, contains three branches as meridians, and
other three regions R1, R2 and R3 contain three branches as longitudes. Therefore
only R4 can contain disks of D4 as meridian disks, but at most three meridian
disks. Then at most one disk of D4 cannot be attached to a branch. This is a
contradiction.

(5) Suppose that there exists an embedding f : (K3 × S1) ∪ P3 ∪ D3 → S3.
Similar to (3), f |K3×S1 is a standard embedding, and there are two solid torus
regions R1 and R2, where R2 contains three disks of D3 as meridian disks. Since
R2 is divided by D3 into three ball regions, P3 cannot be contained in it. Therefore
P3 is contained in R1. Then we obtain a 2-sphere S consiting of P3 and D3. By
observing three annuli of f(e×S1) for e ∈ E(K3), the 2-sphere S is non-separating
in S3. This is a contradiction.

(6), (7), (8) are similar to (1), (2), (4) respectively.
(6) By Remark 2.11, K3,3 × S1 cannot be embedded in S3 since K3,3 is not

planar.
(7) Suppose that there exists an embedding f : (K2,3 ×S1)∪P3 → S3. Then by

Lemma 2.10 and Remark 2.11, f(K2,3 × S1) divides S3 into three regions as K2,3

divides S2 into three regions. We note that each region of f(K2,3 × S1) contains
two branches except for one branch among three branches to which P3 attaches.
Now f(P3) is contained in one of those regions, but in this case, one component of
f(∂P3) cannot be attached to a branch. This is a contradiction.

(8) Suppose that there exists an embedding f : (K2,3 × S1) ∪D3 → S3. In this
case, each of degree two branches of K2,3×S1 bound a disk of D3, hence f |K2,3×S1

is a standard embedding. There are three regions of f |K2,3×S1 , say R1, R2 and R3,
which are all solid tori. Exactly one region, say R3, contains two branches of degree
one as meridians, and other two regions R1 and R2 contain two branches of degree
one as longitudes. Therefore only R3 can contain disks of D3 as meridian disks,
but at most two meridian disks. Then at most one disk of D3 cannot be attached
to a branch. This is a contradiction.

(9) Suppose that there exists an embedding f : (K1,3 × S1) ∪ P3 ∪ D3. Then
f((K1,3 × S1) ∪ D3) divides S3 into three regions, say R1, R2 and R3. f(P3) is
contained in one of those regions, say R1. However, since R1 contains only two
branches of degree one in f((K1,3 × S1) ∪ D3), one component of ∂P3 cannot be
attached to a branch of degree one in f((K1,3 × S1)∪D3). This is a contradiction.

It is straightforward to check along the proof of Theorem 2.7 that in the list of
Theorem 2.8, each subcomplex of each member of K5×S1 and K3,3×S1 is critical
for S3. We leave it to the reader. �

2.4. Classifying critical subcomplexes in the K5×S1 and K3,3×S1 families.

In the list of Theorem 2.8, all critical complexes except for (3) and (5) have a form
M ∪ G, where M = B ∪ S denotes a multibranched surface with a branch B and
a sector S and G denotes a graph. In cases (1), (2), a graph K1,3 is attached to
a multibranched surface in such a way that the degree one vertices of the graph
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are attached to different branches, while in cases (4), (6), (7), (8), (9), the graph
K3 or K1,3 is attached in such a way that the degree one vertices of the graph are
attached to different sectors.

We classify these critical complexes M ∪ G (G 6= ∅) as follows. We assume all
sectors are attached to branches by degree one maps. We assume that all sectors
are orientable surfaces, and that the multibranched surfaced does not contain a
non-orientable surface.

(I) K4-type — The branch B is divided into four parts Bi (i = 1, . . . , 4) and the
sector S is divided into six parts Sij (i < j, i = 1, 2, 3, j = 2, 3, 4), where
∂Sij = Bi∪Bj . The multibranched surfaceM can be embedded in S3 so that
it divides S3 into four regions Rk (k = 1, . . . , 4), where ∂Rk =

⋃
i6=k,j 6=k Sij .

Furthermore, we assume that M has a unique embedding in S3 up to home-
omorphism. (Thus, the branch B and the sector S are corresponding to the
vertices and the edges of K4.) The graph G is K1,4 or a tree which has a
K1,4-minor and each vertex vi (i = 1, . . . , 4) of degree one is attached to a
point in Bi. We call this complex M ∪ G a K4-type. In the above list, (1),
(2) are of K4-type.

U

Figure 1. K4-type

(II) Θ4-type — The sector S is divided into four parts Si (i = 0, . . . , 3) and
∂Si = B. The multibranched surface M can be embedded in S3 so that
it divides S3 into four regions Rj (j = 1, . . . , 4), where ∂Rj = Sj−1 ∪ Sj

for j = 1, 2, 3 and ∂R4 = S3 ∪ S0. Moreover, we assume that M can be
embedded in S3 so that the sector S takes any circular permutation like Θ4.
The graph G has three edges ek (k = 1, 2, 3) and each edge is attached to M
so that ek connects a point in intSk and a point in intSk+1 for k = 1, 2 and
e3 connects a point in intS3 and a point in intS1. Think of G as K3 or as a
union of three disjoint edges. We call this complex M ∪G a Θ4-type. In the
above list, (4) are of Θ4-type.

U

Figure 2. Θ4-type

(III) K2,3-type — The sector S is divided into three parts Si (i = 1, 2, 3) and
∂Si = B. The multibranched surface M can be embedded in S3 so that
it divides S3 into three regions Rj (j = 1, 2, 3), where ∂Rj = Sj ∪ Sj+1
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for j = 1, 2 and ∂R3 = S3 ∪ S1. The graph G is K1,3 and each vertex vi
(i = 1, 2, 3) of degree one is attached to a point in intSi. We call this complex
M ∪G a K2,3-type. In the above list, (6), (7), (8), (9) are of K2,3-type.

U

Figure 3. K2,3-type

It is straightforward to check that critical complexes of those types are critical.

Theorem 2.12. K4-type, Θ4-type and K2,3-type are critical for S3.

2.5. Critical complexes which have a form (G×S1)∪H. Let X be a simplicial
complex such that the 2-dimensional part X2 of X is a product G×S1 for a graph
G. Then X can be expressed as X = (G× S1) ∪H , where H is the 1-dimensional
part X1 of X .

We define a reduction ofX = (G×S1)∪H to X̂ = G∪H as follows. We regard S1

as the quotient space [0, 1]/{0} ∼ {1}. By a map f : (G×S1)∪H → (G×{0})∪H ,

we obtain a reduction X̂ = G ∪H of X = (G× S1) ∪H .

Theorem 2.13. Let X be a critical complex for S3 such that the 2 dimensional
part X2 of X is a product G × S1 for a graph G. Put X = (G × S1) ∪ H, where

H is the 1-dimensional part X1 of X. Then a reduction X̂ = G ∪H has a minor
G′ ∪H ′ which is one of the following.

(1) G′ ∪H ′ is K5, where H ′ = K1,4.
(2) G′ ∪H ′ is K5, where H ′ = K3.
(3) G′ ∪H ′ is K3,3, where H ′ = K1,3.

(1) (2) (3)

Figure 4.

The characterization (1), (2) and (3) in Theorem 2.13 coincide with three types
(I), (II) and (III) in Section 2.

Lemma 2.14. Let e ∈ E(G) be an edge and p ∈ int(e × S1) be a point. Suppose
that there exists an embedding f : X−p → S3. Then there exists an embedding f ′ :
X−p → S3 with the same circular permutation system as f such that f ′((G×S1)−p)
is contained in a standard embedding f0 : G× S1 → S3.
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Proof. We divide the proof into two cases.

Case 1: e is not a cut edge for G.
Case 2: e is a cut edge for G.

Case 1. By Lemma 2.10, there exists a standard embedding f0 : (G−e)×S1 → S3

with the same circular permutation system as f . We can regard a once punctured
annulus (e×S1)− p as a union of intN(∂e×S1; e×S1) and intN(e; e×S1). Since
e is not a cut edge for G, we may assume that e is contained in a region R of G− e
in D2, where f0((G− e)×S1) ⊂ D2×S1. We embed (e×S1)−p in R×S1 so that
it is contained in e × S1. Then we obtain the desired embedding f ′ : X − p → S3

with the same circular permutation system as f .
Case 2. Put G− e = G1 ∪G2. By Lemma 2.10, there exist standard embeddings

f0 : G1×S1 → S3 and g0 : G2×S1 → S3 with the same circular permutation system
as f . We combine those two embeddings into one embedding h0 : (G1∪G2)×S1 →
S3 so that G1∪G2 ⊂ D2, there is an arc α properly embedded inD2 which separates
G1 and G2, ∂α× S1 is the trivial link. Then we may assume that e is contained in
the outside region R of G1 ∪ G2 in D2. We embed (e × S1) − p in R × S1 so that
it is contained in e × S1. Then we obtain the desired embedding f ′ : X − p → S3

with the same circular permutation system as f . �

Lemma 2.15. If X = (G×S1)∪H is critical, then a reduction X̂ = G∪H is also
critical for S2.

Proof. First suppose that X̂ can be embedded in S2. Then X̂ is contained in a disk
D2 ⊂ S2 and by embedding D2 × S1 in S3, X = (G × S1) ∪ H can be embedded
in S3. This contradicts the criticality of X .

Next we will show that for any edge e in G ∪H , (G ∪H)− e can be embedded
in S2.

Let e ∈ E(G) be an edge and p ∈ int(e × S1) be a point. Then there exists an
embedding f : X−p → S3. By Lemma 2.14, there exists an embedding f ′ : X−p →
S3 with the same circular permutation system as f such that f ′((G × S1) − p) is
contained in a standard embedding f0 : G×S1 → S3. This shows that a reduction
X̂ = (G− e) ∪H can be embedded in S2.

Let e′ ∈ E(H) be an edge. Then there exists an embedding f ′ : (G×S1)∪ (H −
e′) → S3. By Lemma 2.10, there exists a standard embedding f ′

0 : G × S1 → S3

with the same circular permutation system as f ′. We embed H − e′ into the
corresponding regions of G in D2. Then we obtain an embedding G ∪ (H − e′) in
S2. �

Proof of Theorem 2.13. By Lemma 2.15, a reduction X̂ = G ∪H is critical for S2.
Hence by Kuratowski’s and Wagner’s Theorem ([5], [9]), X̂ has a minor of K5 or

K3,3. It is straightforward to check that if X̂ = G ∪ H has a minor K5, then we

have the conclusions (1) or (2), and if X̂ = G ∪H has a minor K3,3, then we have
the conclusion (3). We leave it to the reader. �

2.6. Complexes which do not contain critical complexes. Suppose that a
complex X cannot be embedded in the 3-sphere S3. Then we expect that there is
a subspace X ′ ⊂ X which is critical. However, there are many complexes which
cannot be embedded in S3 but do not contain any critical complexes. Let’s start
with a simple example.
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Example 2.16. Let S2 be the 2-sphere and α1, α2 be arcs embedded in S2 so
that they intersect 1 point transversely. Let D1, D2 be two disks and p1, p2 be two
points in ∂D1, ∂D2 respectively. We obtain a complex X from S2, D1, D2 and an
arc γ by gluing a subarc of ∂Di− pi to αi for i = 1, 2, and connecting p1 and p2 by
γ.

This complex X cannot be embedded in S3 since if it can be, then D1 and D2 lie
in different sides of S2, but then γ cannot connect p1 and p2. However, X does not
contain any critical complex. Suppose that X ′ ⊂ X is a critical complex. Then X ′

contains both of S2 and γ since if we remove any point from S2 or γ, then it can be
embedded in S3. Since X ′ cannot be embedded in S3, for any small neighborhood
N(x) of a point x = α1 ∩ α2, N(x) must contain two parts D′

1 and D′
2 of D1 and

D2 respectively, and there exists a path connecting D′
1 and D′

2 and containning
γ. However, for any point q in intD′

i, X
′ − q cannot be embedded in S3 since it

contains a subcomplex which is homeomorphic to X ′.

Example 2.16 leads us to the next lemma. We say that a point p in X is an
boundary point if it has a neighborhood in X which is homeomorphic to Rn

+ =
{(x1, . . . , xn) ∈ Rn | xn ≥ 0} for some integer n and p is corresponding to the
origin. We define the boundary ∂X of X as the set of boundary points.

Lemma 2.17. Let X be a complex which is critical for Y . Then ∂X = ∅.

Proof. Suppose that ∂X 6= ∅. Let p be a point in intX close to ∂X . Then X − p
can be embedded in Y . However, X can be contained in X − p and hence X can
be also embedded in Y . This is a contradiction. �

Theorem 2.18. The cone over K5 cannot be embedded in S3. But, it does not
contain any critical complex.

Proof. First we observe that the cone over K5 cannot be embedded in S3. If
it can be, then for the vertex v of it, a sufficiently small neighborhood N(v) is
homeomorphic to the cone over K5. This shows that the 2-sphere ∂N(v) contains
a non-planar graph K5, and we have a contradiction.

Next we show that the cone over K5 does not contain any critical complexes. By
Lemma 2.17, it is sufficient to check only subcomplexes X with ∂X = ∅. However,
such a subcomplex of the cone over K5 is only the vertex v. This completes the
proof. �

Example 2.19. The octahedron obstruction is introduced in [1]. It is obtained
from the octahedron with its eight triangular faces by adding 3 more faces of size
4 orthogonal to the three axis. We remark that after removing upper 4 triangular
faces, the octahedron obstruction still cannot be embedded in S3, and that after
removing 2 opposite triangular faces, the octahedron obstruction can be embedded
in S3, where the boundaries of 2 opposite triangular faces must form a Hopf link.
By removing non-adjacent 4 triangular faces from the octahedron obstruction, we
obtain a closed surface, which is homeomorphic to the real projective plane as Boy’s
surface.

Example 2.20. Let X be a complex which is obtained from the octahedron ob-
struction by removing a face of size four, and adding an arc connecting two points
p1, p2 in the interior of two faces D1, D2 of size four. We remove D1 and add a
graph G. Let D3 and D4 be disks in the octahedron separated by ∂D2. Since G
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contains two paths connecting p1 and two points in D3 and D4, eventually we ob-
tain a critical subcomplex X ′ ⊂ X with ∂X ′ = ∅, which is of K2,3-type in Theorem
2.12.

3. Refined critical complexes

3.1. Partially ordered set of complexes. From Example 2.16 and Theorem
2.18, we derive the following refined definition of critical. For two connected sim-
plicial complexes X and Y , X is said to be refined critical for Y if X cannot be
embedded in Y , but for any proper subspace X ′ of X , which does not contain a
subspace homeomorphic to X , X ′ can be embedded in Y . This refined definition
of critical leads us the following equivalence relation.

Let C be the set of simplicial complexes. We define an equivalence relation on C
as follows. This equivalence relation coincides with Fréchet dimension type ([3], [8]).
Two simplicial complexes X and Y are equivalent X ∼ Y if X can be embedded in
Y and Y can be embedded in X . Then we say that [X ] ∈ C is critical for [Y ] ∈ C
if X ∈ [X ] cannot be embedded in Y ∈ [Y ], but for any proper subcomplex X ′ of
X with [X ′] 6= [X ], X ′ can be embedded in Y .

Let Γ([Y ]) denote the set of equivalence classes of critical complexes for [Y ].
Then it holds that Γ(S3) ⊂ Γ([S3]) and that the complex X of Example 2.16, the
cone over K5 belong to Γ([S3]). To see this, just note that if a subcomplex of X
contains the cone point of X , then it is equivalent to X . But if the cone point is
removed, then the new complex can be embedded in S3.

For [X ], [Y ] ∈ C/∼, we define a relation [X ] j [Y ] if X can be embedded in Y .
Then we have a partially ordered set (C/∼;j). We denote [X ] & [Y ] if [X ] j [Y ]
and [X ] 6= [Y ].

3.2. Refined critical complexes for closed manifolds.

Proposition 3.1. If X ∈ Γ(Y ), then [X ] ∈ Γ([Y ]).

Proof. Suppose that X ∈ Γ(Y ). Then X cannot be embedded in Y , but for any
point p ∈ X , X − p can be embedded in Y . This implies that [X ] " [Y ], but for
any proper subcomplex X ′ of X , X ′ can be embedded in Y . Hence, [X ] " [Y ], but
for any [X ′] & [X ], [X ′] j [Y ]. Thus [X ] ∈ Γ([Y ]). �

Proposition 3.2. Let M be a closed n-manifold and [X ] ∈ Γ([M ]) be a critical

element such that [X ] " [M ′] for any closed n-manifold M ′. Then [X ] = [Bn⊥].

Proof. Let [X ] ∈ Γ([M ]) be a critical element such that [X ] " [M ′] for any closed
n-manifold M ′. This implies that there exists a point p ∈ X such that for any
neighborhood N(p;X), N(p;X) cannot be embedded in Bn. Let Bk be a k-ball in
X such that p ∈ Bk and k is maximal. Then k ≥ n and there exists Bn in N(p;X)
such that p ∈ Bn. Since N(p;X) \ Bn 6= ∅, there exists a point q ∈ N(p;X) \ Bn

and there exists an arc γ ∈ N(p;X) connecting p and q. Hence a union of Bn and

γ forms Bn⊥ and we have Bn⊥ j X . Since Bn⊥ cannot be embedded in M and

[X ] is critical for M , we have Bn⊥ = X . �

Proposition 3.2 shows the next proposition.

Proposition 3.3. Γ([S1]) = {B1⊥}.

Mardes̆ić–Segal essentially proved the next theorem.



FORBIDDEN COMPLEXES FOR THE 3-SPHERE 13

Theorem 3.4 ([7]). Γ([S2]) = {[K5], [K3,3], [B
2⊥]}.

We generalize Theorem 3.4 to the next theorem.

Theorem 3.5. Γ([Fg]) = {[F0], . . . , [Fg−1], [B
2⊥]} ∪ {[G] | G ∈ Ω(Fg)}.

Proof. By Theorem 2.4 and Proposition 3.1, 3.2, we have

Γ([Fg]) ⊃ {[F0], . . . , [Fg−1], [B
2⊥]} ∪ {[G] | G ∈ Ω(Fg)}.

Conversely, let [X ] ∈ Γ([Fg]). First, suppose that [X ] " [F ′] for any closed

surface F ′. Then, by Proposition 3.2, we have [X ] = [B2⊥]. Next, suppose that
[X ] j [F ′] for some closed surface F ′. This implies that X can be embedded in
F ′. In the case that X = F ′, we have [X ] ∈ {[F0], . . . , [Fg−1]}. In the case that
X & F ′, we will show that [X ] ∈ {[G] | G ∈ Ω(Fg)} as follows. Since X is a
compact subspace of F ′, the 2-dimensional part X2 of X is a compact subsurface
of F ′ and the 1-dimensional part X1 of X is a graph embedded in X − intX2.
Let α be an arc properly embedded in X2. We deform X2 along α as shown in
Figure 5. If the resultant complex X ′ can be embedded in Fg, then X can be

α

Figure 5. Topological deformations

also embedded in Fg. This contradicts that [X ] ∈ Γ([Fg]). Hence [X ′] " [Fg] and
[X ′] & [X ], therefore [X ] is not critical for [Fg]. It follows from this argument that
each component of X2 is a disk. Next we replace each disk of X2 with a “very large”
grid. Geelen–Richter–Salazar ([4]) showed that if a very large grid is embedded in
a surface, then a large subgrid is embedded in a disk in the surface. Similarly this
contradicts that [X ] ∈ Γ([Fg]). Hence X2 = ∅ and dimX = 1. It follows that
[X ] ∈ {[G] | G ∈ Ω(Fg)}. �

3.3. Existence of critical subcomplexes. As we have seen Example 2.16 and
Theorem 2.18, those examples do not satisfy the natural property. However, by
considering the equivalence relation above, we obtain the next natural property.

Theorem 3.6 (Existence of critical subcomplexes). Suppose that a 2-dimensional
complex X cannot be embedded in a closed n-manifold M (n ≤ 3). Then there
exists an element [X ′] j [X ] such that [X ′] is critical for [M ].

Proof. Suppose thatX cannot be embedded inM . While maintaining this property,
perform the following topological operations (I), (II) and (III) as much as possible.
We remark that the complex obtained by such deformations can be embedded in
the original complex.

(I) Remove an edge or a sector.
(II) Remove an open disk from a sector without boundary.
(III) Deform as (a), (b) or (c) of Figure 6 along an essential arc α, where if an

inequivalent complex is obtained by deforming along α, then α is said to be
essential.
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(a)

∂

∂
(a)

α

(b)

∂

B
(b)

α

(c)

∂

B
(c)

α

Figure 6. Topological deformations

Let X ′ be the resultant complex. We will show that [X ′] is critical for [M ]. Let
[X ′′] & [X ′], then X ′′ can be embedded in X ′. Hence there exists a triangulation
of X ′ such that X ′′ is a subcomplex of X ′. We take the barycentric subdivision on
this triangulation. Then there exist two subcomplexes X ′

0 and X ′′
0 of X ′ such that

X ′′ j X ′′
0 & X ′

0 j X ′,

X ′′
0 can be obtained from X ′

0 by removing a single simplex ∆, and X ′
0 ∼ X ′. We

will show that X ′′
0 can be embedded in M , and it follows that [X ′′] j [M ].

By an operation (I), dim∆ 6= 1. Thus dim∆ = 2. Since we take the barycentric
subdivision, ∂∆ contains at most one component of B(X ′

0). We need to consider
the following cases (1)-(7).

intint

int

intint

int

B

(1)-(a) (1)-(b)

Figure 7. Case (1)

In Case (1)-(a), by an operation (II), X ′′
0 can be embedded in M .

In Case (1)-(b), if ∆ is contained in a sector without boundary, then similarly
to (1)-(a), X ′′

0 can be embedded in M . Otherwise, by an operation (III)-(a) along
an arc α which connects a point in the boundary of the sector with a point ∂∆, we
have the same resultant as (III)-(b) on X ′

0. Hence X ′′
0 can be embedded in M .

In Case (2)-(a), X ′
0 ∼ X ′′

0 . This contradicts to X ′
0 6∼ X ′′

0 .
In Case (2)-(b), by an operation (III)-(b), X ′′

0 can be embedded in M .
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intint

∂

intint

∂

B

intint

∂ B
(2)-(a) (2)-(b) (2)-(c)

Figure 8. Case (2)

int

∂

∂ int

∂

B

∂ int

∂ B

∂

(3)-(a) (3)-(b) (3)-(c)

Figure 9. Case (3)

∂

∂∂

∂

B

∂∂

(4)-(a) (4)-(b)

Figure 10. Case (4)

intint

B

intint

B B
(5)-(a) (5)-(b)

Figure 11. Case (5)

In Case (2)-(c), X ′
0 ∼ X ′′

0 . This contradicts to X ′
0 6∼ X ′′

0 .
In Case (3)-(a), X ′

0 ∼ X ′′
0 . This contradicts to X ′

0 6∼ X ′′
0 .

In Case (3)-(b), X ′
0 ∼ X ′′

0 . This contradicts to X ′
0 6∼ X ′′

0 .
In Case (3)-(c), X ′

0 6∼ X ′′
0 . But it holds that X ′′

0 is embeddability equivalent to
X ′

0, that is, X
′′
0 can be embedded in M if and only if X ′

0 can be embedded in M .
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∂int

B

∂int

BB

∂int

B B
(6)-(a) (6)-(b) (6)-(c)

Figure 12. Case (6)

∂

B

∂ ∂

BB

∂

(7)-(a) (7)-(b)

Figure 13. Case (7)

We observe that X ′′
0 can be obtained from X ′

0 by an operation (III)-(a) and (I). By
the assumption, X ′′

0 can be embedded in M . It follows that X ′
0 can be embedded

in M , and this is a contradiction.
In Case (4)-(a), X ′

0 is disconnected, a contradiction.
In Case (4)-(b), it holds that X ′′

0 is embeddability equivalent to X ′
0. Note that

X ′′
0 can be obtained from X ′

0 by operations (III)-(a) and (I). Similarly to (3)-(c),
we have a contradiction.

In Case (5)-(a), if ∆ is contained in a sector without boundary, then by an
operation (II), X ′′

0 can be embedded in M . Otherwise, a complex which obtained
from X ′

0 by operations (III)-(b), (III)-(c) and (I) is embeddability equivalent to X ′′
0

as shown in Figure 14. Hence X ′′
0 can be embedded in M .

∂

B
(b) (c) (I)

Figure 14. Topological deformations

In Case (5)-(b), similarly to (5)-(a), X ′′
0 can be embedded in M .

In Case (6)-(a), by an operation (III)-(c), X ′′
0 can be embedded in M .

In Case (6)-(b), similarly to (6)-(a), X ′′
0 can be embedded in M .

In Case (6)-(c), similarly to (6)-(a), X ′′
0 can be embedded in M .

In Case (7)-(a), X ′′
0 is embeddability equivalent to X ′

0. But X
′′
0 can be obtained

from X ′
0 by operations (I)’s. This is a contradiction.

In Case (7)-(b), similarly to (7)-(a), we have a contradiction.
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This completes the proof. �
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