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Abstract

In this paper, we propose a new efficient method for a sparse Gaussian graphical model with hidden
clustering structures by extending a dual spectral projected gradient (DSPG) method proposed by
Nakagaki et al. (2020). We establish the global convergence of the proposed method to an optimal
solution, and we show that the projection onto the feasible region can be solved with a low computational
complexity by the use of the pool-adjacent-violators algorithm. Numerical experiments on synthesis
data and real data demonstrate the efficiency of the proposed method. The proposed method takes 0.91
seconds to achieve a similar solution to the direct application of the DSPG method which takes 4361
seconds.

1 Introduction

In this paper, we address the following optimization problem:

min
X∈Sn

f(X) := C •X − µ log detX + ρ
∑
i<j

|Xij |+ λ
∑
i<j

∑
s<t

|Xij −Xst|

s.t. A(X) = b, X ≻ 0,

(1.1)

where µ > 0, ρ > 0, λ > 0, C ∈ Sn and b ∈ Rm are given, and A : Sn → Rm is a linear map defined
by A(·) := (A1 • ·, A2 • ·, . . . ,Am • ·)⊤ with given matrices A1, A2, . . . ,Am ∈ Sn. The model (1.1) was
introduced by Lin et al. [9] to estimate sparse Gaussian graphical models with hidden clustering structures.
The third and the fourth terms are introduced for inducing the sparsity in X and the clustering structure
of the concentration matrix, respectively.

To describe the structure of the fourth term, define the linear map vect : Sn → R
n(n−1)

2 , which is the
map that converts the strictly upper triangular part of the symmetric matrix sequentially to the vector of
dimension n(n − 1)/2. We define the mapping K : {1, 2, . . . , n} × {1, 2, . . . , n} → {1, 2, . . . , n(n − 1)/2} by
K(i, j) is the position of the (i, j)th component of matrix X in vect(X). Since this mapping is bijective,
we can also define the inverse mapping K∗ : {1, 2, . . . , n(n− 1)/2} → {1, 2, . . . , n} × {1, 2, . . . , n} by K∗(a)

is the position of the ath component of vector vect(X) in X. We introduce a linear map Q : Sn → S
n(n−1)

2

defined by

[Q(X)]a,b =

 XK∗(a) −XK∗(b) if a < b
[Q(X)]b,a if a > b
0 if a = b,

then the fourth term can be expressed with λ∥Q(X)∥1.
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Lin et al. [9] reported that the estimated sparsity pattern obtained from this model is close to the true
sparsity pattern, which is useful for recovering the graph structure. They proposed a two-phase algorithm
to solve (1.1).

On the other hand, the model (1.1) without the last (fourth) term

min
X∈Sn

f0(X) := C •X − µ log detX + ρ
∑
i ̸=j

|Xij |

s.t. A(X) = b, X ≻ 0,

(1.2)

was well studied over the years and many solution methods have been proposed; see [10, 11, 12, 14]. In
particular, Nakagaki et al. [10] proposed a dual spectral projected gradient (DSPG) method. The DSPG
method solves the corresponding dual problem of (1.2) below:

max
y∈Rm,W∈Sn

b⊤y + µ log det
(
C −A⊤(y) +W

)
+ nµ− nµ logµ

s.t. ∥W ∥∞ ≤ ρ

C −A⊤(y) +W ≻ 0.

(1.3)

We use ∥W ∥∞ := max{|Wij |} to denote the maximum absolute element of W , and A⊤ : Rm → Sn
the adjoint operator of A (that is, A⊤(y) :=

∑m
i=1 Aiyi). The DSPG method is an iterative method; in

each iteration, it evaluates the gradient of the objective function of (1.3), computes the projection onto
∥W ∥∞ ≤ ρ, and calculates the step length to generate the next iteration point in the interior of the region
of C −A⊤(y) +W ≻ 0.

By reformulating the fourth term in the objective function of (1.1) similarly, the DSPG method is
directly applicable to (1.1). The dual problem of (1.1) is

max
y∈Rm,W∈Sn,Z∈S

n(n−1)
2

b⊤y + µ log det

(
C −A⊤(y) +

W

2
+Q⊤(Z)

)
+ nµ− nµ logµ

s.t. ∥W ∥∞ ≤ ρ, ∥Z∥∞ ≤ λ,

C −A⊤(y) +
W

2
+Q⊤(Z) ≻ 0.

(1.4)

Here, b⊤ is the transpose of the vector b and Q⊤ : S
n(n−1)

2 → Sn the adjoint operator of Q, thus,

[Q⊤(Z)]i,j =


∑

l>K(i,j) ZK(i,j),l −
∑

l<K(i,j) Zl,K(i,j) if i < j

[Q⊤(Z)]ji if i > j
0 if i = j.

If we group two variables W and Z in (1.4), then the DSPG method is applicable. However, such a
direct application of the DSPG method requires the gradient of the objective function with respect to W
and Z. In particular, the evaluation of the gradient for Z amounts to O(n4) operators, which is expensive
even for a moderate size of n. To resolve this issue, it is necessary to reduce the computational cost by
exploiting the structure of Q⊤.

In this paper, we propose a new efficient method for solving (1.1) by extending the DSPG method.
Specifically, to avoid the high computational cost due toQ⊤, we first reformulate (1.4), then apply a modified
DSPG method to the reformulated model. In the reformulated model, we move the difficult structure of Q⊤

from the objective function into the constraints, but this brings an extra cost for computing the projection
onto the new constraint set. We demonstrate that such a subproblem can be equivalently written as the
projection problem onto the ordered constraint set and this projection can be efficiently computed with the
pool-adjacent-violators algorithm (PAVA) [1, 6].

In this paper, our main contributions are as follows.

• We propose a new method (Algorithm 1) for solving (1.1), and establish the convergence analysis of
the method.
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• We discuss how to solve the subproblem of Algorithm 1 efficiently and show that the computational
complexity of the subproblem is significantly decreased compared with that of the direct application
of the DSPG method to (1.4).

• We illustrate the efficiency of Algorithm 1 by numerical experiments (Section 5). We obtain a notable
reduction in the computation time from the DSPG method.

The remainder of this paper is organized as follows.

We describe our DSPG-based method in Section 2 and establish its convergence analysis in Section 3.
In Section 4, we discuss how to solve the subproblem efficiently and evaluate the computational complexity.
In Section 5, we show numerical results to verify the efficiency of our method. Finally, we conclude this
paper and discuss future directions in Section 6.

1.1 Notation

Let Sn be the set of symmetric matrices of dimension n. The inner product between two matrices A,X ∈ Sn
is defined by A •X :=

∑n
i=1

∑n
j=1 AijXij . We use the notation X ≻ (⪰) 0 to denote that X ∈ Sn is

positive definite (positive semidefinite, respectively).

Given x ∈ Rn, let ∥x∥ :=
√
x⊤x denote the Euclidean norm. Given X ∈ Sn, we let ∥X∥ :=

√
X •X

denote its Frobenius norm.

In the direct product space Rm× Sn× Sℓ, the inner product for U1 = (y1, W1, S1) ∈ Rm× Sn× Sℓ and
U2 = (y2, W2, S2) ∈ Rm × Sn × Sℓ is defined as

⟨U1, U2⟩ := y⊤
1 y2 +W1 •W2 + S1 • S2.

We also define the norm of U ∈ Rm × Sn × Sℓ as ||U || :=
√
⟨U , U⟩.

Given a linear mapA, its adjoint operator is written asA⊤. We define the operator norm ofA : Sn → Rm

as ∥A∥ := supX ̸=0

{
∥A(X)∥
∥X∥

}
, and the operator norm of A⊤ : Rm → Sn as ∥A⊤∥ := supy ̸=0

{
∥A⊤(y)∥

∥y∥

}
.

For a closed convex set Ω, we use PΩ(·) to denote the projection onto Ω, i.e.,

PΩ(·) := argmin
x∈Ω
∥x− ·∥.

For simplicity of notation, let
W := {W ∈ Sn | ∥W ∥∞ ≤ ρ}.

2 A new DSPG-based method

Nakagaki et al. [10] proposed a dual spectral projected gradient (DSPG) method to solve (1.3) that does not
involve Z. A key idea of the DSPG method is to combine a non-monotone line search projected gradient
method with a feasible step adjustment. As stated in Section 1, if we directly apply the DSPG method
to solve (1.4), we need to calculate the gradient of the objective function in (1.4) in each iterate, which is
expensive due to the structure of Z.

To resolve this difficulty, we introduce a new variable that represents Q⊤(Z). Specifically, we introduce
a new set:

S :=
{
S ∈ Sn | S = Q⊤(Z), ∥Z∥∞ ≤ λ

}
. (2.1)

Using this set and W and combining the variables (y,W ,S) into one composite variable U , we can rewrite
(1.4) as the following optimization problem:

max
U :=(y,W ,S)∈Rm×Sn×Sn

g(U) := b⊤y + µ log det

(
C −A⊤(y) +

W

2
+ S

)
+ nµ− nµ logµ

s.t. W ∈ W, S ∈ S, C −A⊤(y) +
W

2
+ S ≻ 0.

(2.2)

We list the blanket assumption which also appears in [10] as follows:
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Assumption 2.1. We assume the following statements hold for problem (1.1) and its corresponding dual
(2.2):

(i) The linear map A is surjective;

(ii) The primal problem (1.1) has a strictly feasible solution X̂ ≻ 0 such that A(X̂) = b;

(iii) The dual problem (2.2) has a feasible solution.

With the introduction of a new variable S in (2.2), the computational cost for the gradient is now
reduced. The computational cost of ∇Sg is O(n2), which is significantly reduced from the O(n4) cost of the
gradient of the objective function in (1.4) with respect to Z, since the numbers of elements in S and Z are
O(n2) and O(n4), respectively. On the other hand, the difficulty is now embedded into the computation of
the projection onto set S in (2.1), which we will discuss about this problem in Section 4.

Let F denote the feasible set of (2.2). Then we can write it as F =M∩N , where

M := Rm ×W × S,

N :=

{
(y,W ,S) ∈ Rm × Sn × Sn : C −A⊤(y) +

W

2
+ S ≻ 0

}
.

In the proximal gradient step, we compute ∇g in (2.2) and the projection ontoM. Note thatW is a simple
set whose projection operator yields a closed-form solution. In contrast, the projection operator of set S is
more complicated; it will be discussed in Section 4 and it is the main difference from Nakagaki et al. [10].

We present the framework of our new DSPG-based algorithm as Algorithm 1. For the simplicity of
notation in the algorithm, we introduce a linear map

B(U) := −A⊤(y) +
W

2
+ S, where U := (y, W , S) ∈ Rm × Sn × Sn,

which allows us to rewrite the set N simply as N = {U ∈ Rm × Sn × Sn : C + B(U) ≻ 0}.
We let Uk :=

(
yk, W k, Sk

)
.

Algorithm 1 A new DSPG-based algorithm for solving (2.2)

Initialization. Choose parameters ε > 0, τ ∈ (0, 1), γ ∈ (0, 1), 0 < β < 1, 0 < αmin < αmax < ∞ and
integer M > 0. Take U0 ∈ F and α0 ∈ [αmin, αmax]. Set k = 0.

Step 1. Let Rk :=
(
∆yk

(1), ∆W k
(1), ∆Sk

(1)

)
= PM

(
Uk +∇g(Uk)

)
− Uk. If ∥Rk∥ ≤ ε, terminate; other-

wise, go to Step 2.

Step 2. Let Dk :=
(
∆yk, ∆W k, ∆Sk

)
= PM

(
Uk + αk∇g(Uk)

)
−Uk. Let LkL

⊤
k := C + B(Uk) be the

Cholesky decomposition and θ be the minimum eigenvalue of L−1
k B(Dk)

(
L⊤

k

)−1
. Set

νk :=

{
1 if θ ≥ 0,

min{1, −τ/θ} otherwise.

Apply a line search to find the largest element σk ∈ {1, β, β2, . . .} such that

g(Uk + σkνkD
k) ≥ min

[k−M+1]+≤j≤k
g(U j) + γσkνk⟨∇g(Uk), Dk⟩.

Step 3. Let Uk+1 = Uk + σkνkD
k. Let pk := ⟨Uk+1 −Uk, ∇g(Uk+1)−∇g(Uk)⟩. Set

αk+1 :=

{
αmax if pk ≥ 0,

min
{
αmax, max

{
αmin, −∥Uk+1 −Uk∥2/pk

}}
otherwise.

Set k ← k + 1. Return to Step 1.
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Note that the projection PM(U) can be decomposed as (y, PW (W ), PS (S)), since the projections onto
R,W,S are independent. In addition, the DSPG method [10] and Algorithm 1 are non-monotone gradient
methods, as Step 2 guarantees a non-monotone increase in the objective function (See [2]).

Remark 2.2 (Remark on the computation in Algorithm 1). Algorithm 1 involves the computation of
projection ontoM := Rm×W ×S. While the projection onto W has a closed-form solution, the projection
onto S is not easy, which will be discussed in Section 4. Another computational cost lies in the computation
of ∇g(Uk). Denote

X(U) := µ (C + B(U))
−1

.

Then we can express

∇g(U) =
(
b−A⊤ (X(U)) ,

1

2
X(U), X(U)

)
.

3 Convergence Analysis

In this section, we present the convergence properties of Algorithm 1. We start with the following lemma
stating the boundedness of the sequence.

Lemma 3.1 (Boundedness of sequence). Let sequence {Uk} be generated by Algorithm 1. Define a level
set

L :=
{
U ∈ Rm × Sn × Sn : U ∈ F , g(U) ≥ g(U0)

}
.

Then, {Uk} ⊆ L and {Uk} is bounded.

Proof. We first prove that {Uk} ⊆ L by induction. It is easy to see that U0 ∈ L. We assume that
Uk ∈ L holds for some k ≥ 0. Since σkνk ∈ (0, 1], we have that Uk+1 is a convex combination of
PM

(
Uk + αk∇g(Uk)

)
and Uk, which together with Uk ∈M and the convexity ofM implies that Uk+1 ∈

M. Moreover, we see from the update of νk that

L−1
k

(
C + B(Uk+1)

) (
L⊤

k

)−1
= L−1

k

(
C + B

(
Uk + σkνkD

k
)) (

L⊤
k

)−1

=L−1
k

(
C + B(Uk)

) (
L⊤

k

)−1
+ σkνkL

−1
k B(D

k)
(
L⊤

k

)−1
= I + σkνkL

−1
k B(D

k)
(
L⊤

k

)−1 ⪰ I + σkνkθI ≻ 0.

This together with Uk ∈ N implies that Uk+1 ∈ N , therefore, it holds that Uk+1 ∈ F . By induction, this
proves that Uk ∈ F for all k.

On the other hand, sinceM is convex and Uk ∈ M, using Proposition 2.1 (1) in [5], we have for all k
that

0 ≥
〈
PM

(
Uk + αk∇g(Uk)

)
−
(
Uk + αk∇g(Uk)

)
, PM

(
Uk + αk∇g(Uk)

)
−Uk

〉
=

〈
Dk − αk∇g(Uk), Dk

〉
= ∥Dk∥2 − αk

〈
∇g(Uk), Dk

〉
.

This implies that
〈
∇g(Uk), Dk

〉
≥ ∥Dk∥2

αk
≥ ∥Dk∥2

αmax
≥ 0, which together with the line search in Step 2 in

Algorithm 1 proves that g(Uk) ≥ g(U0). Consequently, we have {Uk} ⊆ L.
It then shows that {Uk} is bounded. Note that Uk ∈ F =M∩N and M = Rn ×W × S, where W

is bounded, S is the image of Q on a bounded set. Therefore, {W k} and {Sk} are bounded, thus showing
the boundedness of {yk} is enough. By {Uk} ⊆ L and Assumption 2.1 (i), we have

g(U0) ≤ g(Uk) = b⊤yk + µ log det
(
C + B(Uk)

)
= ⟨X̂, A⊤(yk)⟩+ µ log det

(
C + B(Uk)

)
= ⟨X̂, C +

W k

2
+ Sk⟩ − ⟨X̂, C + B(Uk)⟩+ µ log det(C + B(Uk)).

Since X̂ ≻ 0, and {W k} and {Sk} are bounded, we then have {C + B(Uk)} is bounded.
This together with Assumption 2.1 (ii) (A is surjective) indicates that {yk} is bounded. This completes

the proof.
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Theorem 3.2 (Optimality condition). U∗ is an optimal solution of (2.2) if and only if U∗ ∈ F and there
exists some α > 0 such that

PM (U∗ + α∇g(U∗)) = U∗.

Proof. Note that we can rewrite (2.2) as

max
U

g(U)− δF (U), (3.1)

where δF is the indicator function with respect to F . Let NF (U) be the normal cone at U . Since the
objective function in (3.1) is a convex problem, U∗ is an optimal solution if and only if U∗ ∈ F and

0 ∈ ∇g(U∗)−NF (U
∗) = ∇g(U∗)−NM∩N (U∗) = ∇g(U∗)−NM(U∗),

where the last equality follows from [3, Theorem 3.30] and that N is an open set. This can be rewritten as
∇g(U∗) ∈ NM(U∗), which is further equivalent to U∗ ∈ F and the existence of α > 0 such that

⟨U −U∗, α∇g(U∗)⟩ ≤ 0, ∀U ∈M.

We rewrite the above as U∗ ∈ F and

⟨U −U∗, (U∗ + α∇g(U∗))−U∗⟩ ≤ 0, ∀U ∈M.

Due to the uniqueness of the projection onto the convex setM and Proposition 2.1 (1) in [5], we see that
this is equivalent to U∗ ∈ F and the existence of α > 0 such that

PM (U∗ + α∇g(U∗)) = U∗.

This completes the proof.

The following corollary can be derived from Lemma 3.1.

Corollary 3.3. A set {X(U) | U ∈ L} is bounded.

We define the lower bound and upper bound of ∥X(U)∥ by βmin and βmax, respectively. In other words,
βminI ⪯X(U) ⪯ βmaxI. Letting Xk := X(Uk), we consider the boundedness of components.

Lemma 3.4. There exist positive constants ηX , ηX−1 , η∆y, η∆W and η∆S such that ∥Xk∥ ≤ ηX ,

∥(Xk)−1∥ ≤ ηX−1 , ∥∆yk∥ ≤ η∆y, ∥∆W k∥ ≤ η∆W , and ∥∆Sk∥ ≤ η∆S hold for all k.

Proof. By following Remark 2 in [10], we obtain ηX and ηX−1 . In addition, it holds that ∥∆yk∥ ≤
αk(∥b∥+∥A∥ ·∥Xk∥) ≤ αmax(∥b∥+ηX∥A∥) =: η∆y . From the inequalities

∥∥PW
(
W k + αk

2 Xk
)
−W k

∥∥ ≤
∥αk

2 Xk∥ and
∥∥∥PS (

Sk + αkX
k
)
− Sk

∥∥∥ ≤ ∥αkX
k∥, we know ∥∆W k∥ ≤

∥∥∥αk

2 Xk
∥∥∥ ≤ αmax

2 ηX =: η∆W and

∥∆Sk∥ ≤
∥∥∥αkX

k
∥∥∥ ≤ αmaxηX =: η∆S .

If ∥Dk∥ = 0, we can say that Uk is an optimal solution of (2.2) due to Theorem 3.2, and Algorithm 1
also terminates at Step 1. Therefore, we can assume that ∥Dk∥ > 0 without loss of generality during the
iterations of Algorithm 1.

The termination status of Algorithm 1 can be divided into two cases, (i) the step length νk converges
to zero before reaching divided into two cases, (i) the step length νk converges to zero before reaching an
optimal solution (ii) Algorithm 1 will stop at the optimal value, or generate a sequence that converges to
the optimal value.

The case (i) will be denied by Lemma 3.5 below. The proof of this lemma is similar to Lemma 7 in [10],
but we need different constants like η∆S . Therefore, the only possibility is the case (ii), and the convergence
to the optimal value will be guaranteed in Theorem 3.9. The proof of this lemma is similar to Lemma 7
in [10], but we need different constants like η∆S . Therefore, the only possibility is the case (ii), and the
convergence to the optimal value will be guaranteed in Theorem 3.9.
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Lemma 3.5 (Lower bound of step length). The step length νk of Algorithm 1 has a positive lower bound.

Proof. We consider that

∥B(Dk)∥ =
∥∥∥∥−A⊤(∆y) +

∆W

2
+ ∆S

∥∥∥∥
≤ ∥A⊤∥∥∆yk∥+ ∥∆W k∥

2
+ ∥∆Sk∥

≤ max
{
∥A⊤∥, 1

} (
∥∆yk∥+ ∥∆W k∥+ ∥∆Sk∥

)
(3.2)

≤
√
3max

{
∥A⊤∥, 1

}
∥Dk∥. (3.3)

From Lemma 3.4, we apply µ(Xk)−1 ⪰ βminµI, ∥∆yk∥ ≤ η∆y , ∥∆W k∥ ≤ η∆W , ∥∆Sk∥ ≤ η∆S , and we
can obtain ∥B(Dk)∥ can be bounded; ∥B(Dk)∥ ≤ ηB(D) := max

{
∥A⊤∥, 1

}
(η∆y + η∆W + η∆S) from (3.2)

and ∥B(Dk)∥ ≤
√
3max

{
∥A⊤∥, 1

}
∥Dk∥ from (3.3).

Our first goal is to show that νk from Step 2 of Algorithm 1 has a lower bound. If θ ≥ 0, νk = 1 is the fixed

value, so we consider only the case that θ < 0. Since θ is the minimum eigenvalue of L−1
k B(Dk)

(
L⊤

k

)−1
, θ

is also the maximum value such that B(Dk) ⪰ θ(C + B(Uk)). This implies that ν = − 1
θ is the maximum

value that satisfies C + B(Uk) + νB(Dk) ⪰ O.

Next, we consider the bound of positive ν that satisfies C + B(Uk) + νB(Dk) ⪰ O. From the upper
bound C + B(Uk) = µ(Xk)−1 ⪰ µ

βmax
I and ∥B(Dk)∥ ≤ ηB(D), we have

C + B(Uk) + νB(Dk) ⪰ µ

βmax
I − ν∥B(Dk)∥I ⪰

(
µ

βmax
− νηB(D)

)
I.

Therefore, for any ν ∈
[
0, µ

βmaxηB(D)

]
, C + B(Uk) + νB(Dk) ⪰ 0 is satisfied. This implies that − 1

θ ≥
µ

βmax
ηB(D) when θ < 0. Now we can obtain a lower bound of νk by the following inequality,

νk = min
{
1,−τ

θ

}
≥ min

{
1,

τµ

βmax
ηB(D)

}
=: vmin.

Next, we will show that for any ν ∈ (0, νk), C+B(Uk)+νB(Dk) is bounded below byC+B(Uk). If θ ≥ 0,
B(Dk) ⪰ 0 and it is obvious that C+B(Uk)+νB(Dk) ⪰ C+B(Uk) ⪰ (1− τ)(C+B(Uk)). If θ < 0, from
the definition νk = min{1,−τ/θ}, C+B(Uk)+νB(Dk) ⪰ C+B(Uk)+νθ(C+B(Uk)) ⪰ (1−τ)(C+B(Uk)).
We use the lower bound C+B(Uk) = µ(X(Uk))−1 ⪰ µ

βmax
I to imply C+B(Uk)+νB(Dk) ⪰ (1−τ) µ

βmax
I.

From Lemma 6 (iii) in [10], if X ⪰ βI,Y ⪰ βI then ||Y −X|| ≥ β2||Y −1 −X
−1||. Therefore, from

X(Uk + νDk) = µ(C + B(Uk) + νB(Dk))−1 , we obtain∥∥(X(Uk + νDk)−X(Uk)
)∥∥ = µ∥(C + B(Uk) + νB(Dk))−1 − (C + B(Uk))−1∥

≤ µ∥νB(Dk)∥
((1− τ) µ

βmax
)2

=
ν∥B(Dk)∥
µ( 1−τ

βmax
)2

.

We are now in a position to show that ∇g is a Lipschitz continuity for the direction Dk.

∥∇g(Uk + νDk)−∇g(Uk)∥

=

∥∥∥∥(−A(X(Uk + νDk)−X(Uk)),
1

2
X(Uk + νDk)− 1

2
X(Uk),X(Uk + νDk)−X(Uk)

)∥∥∥∥
≤

√
∥A∥2 + 5

4
∥X(Uk + νDk)−X(Uk)∥

≤
ν
√
∥A∥2 + 5

4

µ( 1−τ
βmax

)2
∥B(Dk)∥

7



≤

√
∥A∥2 + 5

4

√
3max {∥A∥, 1}

µ( 1−τ
βmax

)2
ν∥Dk∥,

where the last inequality came from (3.3). We can conclude that ∥∇g(Uk + νDk) −∇g(Uk)∥ is bounded
by ∥νDk∥, which shows the Lipschitz continuity with the Lipschitz constant L :=

√
∥A∥2+ 5

4

√
3max{∥A∥,1}

µ( 1−τ
βmax

)2
.

In the last part, We consider the termination condition at Step 2 of Algorithm 1. When it terminates at
the first iteration (σk = 1), it holds that σkνk = νk ≥ νmin. If it terminates at σk = βj , then the condition
is not satisfied at σk = βj−1, thus,

g(Uk + βj−1νkD
k) < min

[k−M ]+≤j≤k
g(U j) + γβj−1νk⟨∇g(Uk),Dk⟩

≤ g(Uk) + γβj−1νk⟨∇g(Uk),Dk⟩. (3.4)

From Taylor’s expansion, we obtain

g(Uk + βj−1νkD
k)k − g(Uk)

= ⟨βj−1νk∇g(Uk),Dk⟩+
∫ βj−1νk

0

⟨∇g(Uk + λDk)− g(Uk),Dk⟩dλ. (3.5)

Since ∇g is a Lipschitz continuity for the direction Dk,

⟨∇g(Uk + λDk)− g(Uk),Dk⟩ ≥ −∥∇g(Uk + λDk)− g(Uk)∥∥Dk∥ ≥ −Lλ∥Dk∥2.

Thus, ∫ βj−1νk

0

⟨∇g(Uk + λDk)− g(Uk),Dk⟩dλ ≥ −
∫ βj−1νk

0

Lλ∥Dk∥2dλ =
−L(βj−1νk)

2

2
∥Dk∥2. (3.6)

Combining (3.4) , (3.5), and (3.6) implies

βj−1νk ≥
2(1− γ)

L

⟨∇g(Uk),Dk⟩
∥Dk∥2

.

In Lemma 3.1, we obtained ⟨∇g(Uk),Dk⟩ ≥ ∥Dk∥2

αk
, therefore,

⟨∇g(Uk),Dk⟩
∥Dk∥2

≥ 1

αk
≥ 1

αmax
.

Finally, since the step length is σkνk = βjνk, we can conclude that βjνk ≥ 2β(1−γ)
Lαmax

, which means that the
step length σkνk has a lower bound. This completes the proof.

Let (σν)min := min{νmin,
2β(1−γ)
Lαmax

} denote the positive lower bound of the step length (σkνk). In the
next lemma, we will use this result to show that a subsequence of the search direction converges to 0.

Lemma 3.6. Algorithm 1 with ϵ = 0 stops after reaching the optimal value g∗, or

lim inf
k→∞

∥Rk∥ = 0.

Proof. Firstly, we will show that ∥Rk∥ is bounded by ∥Dk∥. From the property of the projection in [5], we
know that ∥PM

(
Uk + α∇g(Uk)

)
−Uk∥ is a non-decreasing function and ∥PM

(
Uk + α∇g(Uk)

)
−Uk∥/α

is a non-increasing function for α > 0. This implies ∥Rk∥ ≤ ∥Dk∥ for α ≤ 1, and ∥Rk∥ ≤ α∥Dk∥ for α > 1.
We can conclude that ∥Rk∥ ≤ max{1, αmax}∥Dk∥. Therefore, it is enough to show lim infk→∞ ∥Dk∥ = 0
instead. Therefore, it is enough to show lim infk→∞ ∥Dk∥ = 0 instead.
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Suppose that there exists δ > 0 and k0 > M such that ∥Dk∥ > δ for any k > k0 and we derive a

contradiction. From the proof of Lemma 3.1, we obtain
〈
∇g(Uk), Dk

〉
≥ ∥Dk∥2

αk
≥ ∥Dk∥2

αmax
. Combining with

the lower bound of step length in Lemma 3.5, we can show that γσkνk⟨∇g(Uk), Dk⟩ has a lower bound;

γσkνk⟨∇g(Uk), Dk⟩ ≥ γσkνk
∥Dk∥2

αmax
≥ γ(σν)min

δ2

αmax
=: δ̂. Let gmin

k := mink−M≤j≤k g(U
j). Following the

condition in Step 2 of Algorithm 1, we obtain

g(Uk+1) ≥ gmin
k + δ̂.

This follows by

g(Uk+2) ≥ min
k−M+1≤j≤k+1

g(U j) + δ̂ ≥ min{g(Uk+1), gmin
k }+ δ̂ ≥ gmin

k + δ̂.

Using the induction, we can derive that for j = 1, 2, . . . ,M ,

g(Uk+j) ≥ gmin
k + δ̂.

This leads to
gmin
k+M = min

k+1≤j≤k+M
g(U j) ≥ gmin

k + δ̂.

The above statement is true for all k > k0, so repeating the inequality P times leads to

gmin
k+PM ≥ gmin

k + P δ̂.

On the other hand, the level set L is bounded and closed, therefore, the dual problem has a finite optimal
value. Consequently, the sequence {g(Uk)} should be bounded by the optimal value g∗ from the above,
and we have a contradiction. This completes the proof.

To show the convergence of the objective value (lim infk→∞ |g(Uk)− g∗| = 0) in Lemma 3.8 below, we
need more upper bounds.

Lemma 3.7. |
∑

i<j ρ|Xij | − W k

2 •X
k| is bounded by ∥∆W k

(1)∥, and |
∑

i<j,s<t λ|Xk
ij −Xk

st| −Sk •Xk| is
bounded by ∥∆Sk

(1)∥.

Proof. We can prove the first statement by following the proof of Lemma 9 in [10], thus we focus on the
second statement. Due to the definition of the linear map Q, we have

∑
i<j

∑
s<t |Xij −Xst| = ||Q(X)||1.

Let Ek ∈ S
n(n−1)

2 be the sign matrix of Q(Xk) defined by Ek
ij = sign([Q(Xk)]ij) and Ŝk = PS (S

k +Xk).
Then,

|λ∥Q(Xk)∥1 − Sk •Xk| = |λEk • Q(Xk)− Sk •Xk| = |λQ⊤(Ek) •Xk − Sk •Xk|

≤ |λQ⊤(Ek) •Xk − Ŝk •Xk|+ |(Ŝk − Sk) •Xk| = |(λQ⊤(Ek)− Ŝk) •Xk|+ |∆Sk
(1) •X

k|. (3.7)

The last equality was derived from Remark 2.2 and ∆Sk
(1) = PS (S

k +Xk)− Sk.

We can show the bound of the second term in (3.7) by |∆Sk
(1) •X

k| ≤ ||∆Sk
(1)||||X

k|| ≤ ηX ||∆Sk
(1)||.

Therefore, we will focus on the first term. Since λQ⊤(Ek) = Q⊤(λEk) ∈ S and S is a convex set, a property
of the projection (Proposition 2.1 (1) in [5]) leads to(

(Sk +Xk)− Ŝk
)
•
(
λQ⊤(Ek)− Ŝk

)
=

(
Xk −∆Sk

(1)

)
•
(
λQ⊤(Ek)− Ŝk

)
≤ 0.

This indicates

Xk • (λQ⊤(Ek)− Ŝk) ≤ ∆Sk
(1) • (Q

⊤(Ek)− Ŝk). (3.8)

From the property of projection onto S, there exists V̂ ∈ S
n(n−1)

2 such that ∥V̂
k
∥∞ ≤ λ and Ŝk = Q⊤(V̂

k
).

Now we examine the value ofXk•(λQ⊤(Ek)−Ŝk) = Q(Xk)•(λEk−V̂
k
) =

∑n(n−1)
2

i=1

∑n(n−1)
2

j=1 [Q(Xk)]ij(λE
k
ij−

V̂ k
ij). We will divide the value of [Q(Xk)]i into three cases.
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Case 1: [Q(Xk)]ij = 0

In this case, we obtain [Q(Xk)]ij(E
k
ij − V̂ij) = 0.

Case 2: [Q(Xk)]ij > 0

By the definition of Ek, Ek
ij = 1, which means λEk

ij − V̂ij ≥ 0 because |V̂ k
ij | ≤ λ. This implies

[Q(Xk)]ij(λE
k
ij + V̂ ij) ≥ 0.

Case 3: [Q(Xk)]ij < 0

By the definition of Ek, Ek
ij = −1, which means λEk

ij − V̂ij ≤ 0 because |V̂ k
ij | ≤ λ. This implies

[Q(Xk)]ij(λE
k
ij − V̂ ij) ≥ 0.

Therefore, it holds that

Xk • (λQ⊤(Ek)− Ŝk) = Q(Xk) • (λEk − V̂ k) ≥ 0.

Applying this result to (3.8), we obtain

|Xk • (λQ⊤(Ek)− Ŝk)| ≤ |∆Sk
(1) • (λQ

T (Ek)− Ŝk)|, (3.9)

which means |Xk • (Q⊤(Ek) − Ŝk)| is bounded by ∥∆Sk
(1)∥, since Ŝk ∈ S and S is bounded. Combining

(3.7) and (3.9), we can conclude this lemma.

Lemma 3.8. Algorithm 1 with ϵ = 0 stops after reaching the optimal value g∗, or generate a sequence
{Uk} ⊂ F such that

lim inf
k→∞

|g(Uk)− g∗| = 0.

Proof. We split the left-hand side of the objective equation into three parts as the following inequality:

|g(Uk)− g∗| ≤ |g(Uk)− f(Xk)|+ |f(Xk)− f(X∗)|+ |f(X∗)− g∗|, (3.10)

where X∗ is the optimal solution of the primal problem (1.1). We will show that each term is bounded by

∥Rk∥. Remind that Xk := X(Uk) = µ
(
C + B(Uk)

)−1
. Since the third term of (3.10) is equal to zero by

the duality theorem, we focus on the bounds of the first and second terms. The first term of (3.10) can be
bounded by

|g(Uk)− f(Xk)|

=

∣∣∣∣∣
(
b⊤yk + µ log det

(
C −A⊤(yk) +

W k

2
+ Sk

)
+ nµ− nµ logµ

)

−

C •Xk − µ log detXk + ρ
∑
i<j

|Xk
ij |+ λ

∑
i<j

∑
s<t

|Xk
ij −Xk

st|

∣∣∣∣∣
=

∣∣∣∣∣
W k

2
•Xk −

∑
i<j

ρ|Xk
ij |

+

Sk •Xk −
∑

i<j,s<t

λ|Xk
ij −Xk

st|

+ (b−A(Xk))Ty

∣∣∣∣∣
≤

∣∣∣∣∣∣W
k

2
•Xk −

∑
i<j

ρ|Xk
ij |

∣∣∣∣∣∣+
∣∣∣∣∣∣Sk •Xk −

∑
i<j,s<t

λ|Xk
ij −Xk

st|

∣∣∣∣∣∣+ ∥yk∥∥A∥∥X∗ −Xk∥. (3.11)

From Lemma 3.7, the sum of the first and second terms of (3.11) is bounded by ∥∆W k
(1)∥ and ∥∆Sk

(1)∥,

respectively. Thus, they are also bounded by ∥Rk∥ =
√
||yk||2 + ∥∆W k

(1)∥2 + ∥∆Sk
(1)∥2. From Lemma 3.1,

∥yk∥ is bounded, and ∥A∥ is also a constant. Therefore, the third term in (3.11) is bounded by ∥Xk−X∗∥.
Combining the results, we can show that

|g(Uk)− f(Xk)| ≤ c1||Rk||+ c2∥Xk −X∗∥ (3.12)
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for some positive constants c1 and c2.

Next, we show that |f(Xk)− f(X∗)| is bounded by ∥Xk −X∗∥ by splitting |f(Xk)− f(X∗)| into the
following four terms:

|f(Xk)− f(X∗)| ≤
∣∣∣C • (Xk −X∗)

∣∣∣+ µ
∣∣∣(log detXk − log detX∗)

∣∣∣+
∣∣∣∣∣∣ρ

∑
i<j

(|Xk
ij | − |X∗

ij |)

∣∣∣∣∣∣
+ λ

∣∣∣∣∣∣
∑
i<j

∑
s<t

(|Xk
ij −Xk

st| − |X∗
ij −X∗

st|)

∣∣∣∣∣∣ ,
and show that each term is bounded by ∥Xk −X∗∥.

Since C is an input matrix, the boundedness of the first term is obvious. For the second term, using the
convexity of function f2(X) = − log detX, we obtain

f2(X
k) ≤ f2(X

∗) +∇f2(X∗) • (Xk −X∗)

f2(X
∗) ≤ f2(X

k) +∇f2(Xk) • (X∗ −Xk),

which imply

| log detXk − log detX∗| = |f2(Xk)− f2(X
∗)|

≤ max
{
∥∇f2(X∗)∥, ∥∇f2(Xk)∥

}
∥(Xk −X∗)∥ = max

{
∥(X∗)−1∥, ∥(Xk)−1∥

}
∥(Xk −X∗)∥.

and it is bounded by ∥Xk −X∗∥ due to ∥(Xk)−1∥ ≤ ηX−1 in Lemma 3.4. For the third term, we have∣∣∣∣∣∣
∑
i<j

(|Xk
ij | − |X∗

ij |)

∣∣∣∣∣∣ ≤
∑
i<j

||Xk
ij | − |X∗

ij || ≤
∑
i<j

|Xk
ij −X∗

ij | ≤
√

n(n− 1)

2
∥Xk −X∗∥,

and, for the fourth term, we have∣∣∣∣∣∣
∑
i<j

∑
s<t

(|Xk
ij −Xk

st| − |X∗
ij −X∗

st|)

∣∣∣∣∣∣ ≤
∑
i<j

∑
s<t

∣∣|Xk
ij −Xk

st| − |X∗
ij −X∗

st|
∣∣

≤
∑
i<j

∑
s<t

∣∣Xk
ij −Xk

st −X∗
ij +X∗

st

∣∣ ≤∑
i<j

∑
s<t

(
|Xk

ij −X∗
ij |+ |Xk

st −X∗
st|

)
= n(n− 1)

∑
i<j

|Xk
ij −X∗

ij | ≤
(n(n− 1))

3
2

2
∥Xk −X∗∥.

Therefore, we obtain that |f(Xk)− f(X∗)| is bounded by ∥Xk −X∗∥. In other words, there is a constant
c3 such that

|f(Xk)− f(X∗)| ≤ c3∥Xk −X∗∥. (3.13)

Next, we employ similar steps to Lemma 10 in [10] to derive

∥Xk −X∗∥ ≤ h1(∥Rk∥),

such that h1(x) ≥ 0 for any x ≥ 0 and limx→0+ h1(x) = 0.

Lastly, applying (3.12) and (3.13) into (3.10), we can conclude that

lim inf
k→∞

|g(Uk)− g∗| ≤ lim inf
k→∞

(
c1||Rk||+ (c2 + c3)∥Xk −X∗∥

)
≤ lim inf

k→∞

(
c1||Rk||+ (c2 + c3) · h1(||Rk||)

)
.

From Lemma 3.6 and the definition of function h1, both terms are converge to zero, which means that
lim infk→∞ |g(Uk)− g∗| = 0. This completes the proof.
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Based on the above preparation, we are now in the position to show the convergence of Algorithm 1.

Theorem 3.9. Algorithm 1 with ϵ = 0 stops after reaching the optimal value g∗, or generates a sequence
Uk such that

lim
k→∞

|g(Uk)− g∗| = 0.

Proof. We will derive a contradiction to show this theorem. Suppose that there is ϵ > 0 such that we have
infinite sequence {k1, k2, . . . } such that g(Uki) < g∗ − ϵ for all positive integer i, and g(U j) ≥ g∗ − ϵ for all
j /∈ {k1, k2, . . . }.

We will show that the sequence should satisfy ki+1 − ki ≤M . Suppose that ki+1 − ki > M . Therefore,
g(U l) ≥ g∗−ϵ for all ki < l < ki+1. From the condition in Step 2 of Algorithm 1 and ⟨∇g(Uki+1−1), Dki+1−1⟩ ≥
0, we obtain

g(Uki+1) ≥ min
ki+1−M≤l≤ki+1−1

g(U l) + γσkνk⟨∇g(Uki+1−1), Dki+1−1⟩ ≥ g∗ − ϵ.

and contradicts with the assumption g(Uki) < g∗ − ϵ for all i. Thus, the sequence {k1, k2, . . . } should
satisfy ki+1 − ki ≤M and should be infinite.

From Lemma 3.8, |g(Uk)−g∗| ≤ h2(||Rk||), therefore, there is ϵ̄ such that ||Rki || > ϵ̄ for all i. Applying
the same proof as Lemma 3.6, ||Rki || has a lower bound, hence, ||Dki || has a lower bound Dmin > 0 due

to [10, Lemma 5]. This leads to that γσki
νki
⟨∇g(Uki), Dki⟩ ≥ γσki

νki

∥Dki∥2

αmax
> γ(σν)min

∥Dki∥2

αmax
, thus,

⟨∇g(Uki), Dki⟩ has a lower bound δ̄ := γ(σν)min
D2

min

αmax
. Using the definition gmin

k := mink−M+1≤j≤k g(U
j),

for any ki > M , we have
g(Uki) ≥ gmin

ki−1 + δ̄.

From the property of sequence {ki}, we have ki −M ≤ ki−1 ≤ ki − 1. It follows that there exists a
positive integer l(i) such that g(Ukl(i)) = gmin

ki−1 and ki − kl(i) ≤ M . It means that for any ki > M , there
exists kl(i) ≥ ki −M such that

g(Uki) ≥ g(Ukl(i)) + δ̄.

Repeating the inequality P times, we can see that for any positive integer P and kj > PM , there exists
klP (j) > kj − PM such that

g(Ukj ) ≥ g(UklP (j)) + P δ̄,

where lP (j) := l(l(· · · l(j) · · · )), the P repetition of l. From Lemma 3.1, g(U0) is a lower bound of g(Uki).

Therefore, when g∗ is the optimal value of the dual problem (2.2) and we take P > g∗−g(U0)

δ̄
and kj > PM ,

we get g(Ukj ) > g∗, which contradicts the optimality of g∗. This completes the proof.

4 Computation Complexity

In this section, we focus on the computation complexity of obtaining the projection

PM(U) = (y, PW(W ), PS(S)).

This is the main reason for the use of the variable S. Recall that we can also apply the original DSPG
to (1.4) directly by using the variable (y,W ,Z) and define the projection of Z by the box constraint like

W. However, the number of constraints in ∥Z∥∞ amounts to approximately n4

8 , and this needs O(n4)
operations. The main purpose of introducing S is to reduce the size of the variable matrix, and we will
show that the cost of the projection onto S can be reduced to O(n2 log n).

12



Let n̄ = n(n−1)
2 and s = {s1, s2, . . . , sn̄} = vect(S). Therefore, the subproblem for computing PS(S)

can be reduced to the form:

min

u∈Rn̄
,s∈R

n̄(n̄−1)
2

1

2

n̄∑
i=1

(ui − si)
2

s.t. ui =
∑
j>i

zij −
∑
j<i

zji for i = 1, . . . n̄

|zij | ≤ λ for 1 ≤ i < j ≤ n̄.

(4.1)

Its dual problem is

min
π∈Rn̄

p(π) :=
1

2

n̄∑
i=1

(πi − si)
2 + λ

∑
i<j

|πi − πj |. (4.2)

Since these primal and dual problems are convex problems, if u∗ and π∗ are their optimal solutions, it holds
that

u∗ − s = π∗.

Let s′ be the vector whose components are the components of s in the non-decreasing order. We use T ′

to denote a permutation matrix T that corresponds to the order s′, that is, s′ = T ′s. We can rewrite the
problem (4.2) as

min
π′∈Rn̄

p′(π′) :=
1

2

n̄∑
i=1

(π′
i − s′i)

2 + λ
∑
i<j

|π′
i − π′

j |. (4.3)

If an optimal solution of (4.3) is π′, that of (4.2) is given by (T ′)−1π′. Let π′′ be the vector whose
components are the components of π′ in the non-decreasing order.

Lemma 4.1. If π′ is an optimal solution of (4.3), π′′ is also an optimal solution of (4.3).

Proof. Suppose that there is an index t such that π′
t > π′

t+1. Let π̃ be the vector obtained by swapping the
components at the indexes t and t+ 1 of π′. Therefore,

p′(π′)− p′(π̃) =
1

2
((π′

t − s′t)
2 + (π′

t+1 − s′t+1)
2 − (π′

t − s′t+1)
2 − (π′

t+1 − s′t)
2)

= −π′
ts

′
t − π′

t+1s
′
t+1 + π′

ts
′
t+1 + π′

t+1s
′
t

= −(π′
t − π′

t+1)(s
′
t − s′t+1) ≥ 0,

where the equality holds if and only if s′t = s′t+1. This means that we can swap the value of π′
t and π′

t+1

until we obtain π′′, thus π′′ is also an optimal solution.

This lemma guarantees that there is an optimal solution π′ that satisfies the condition π′
1 ≤ π′

2 ≤ · · · ≤
π′
n̄. We can add this condition into (4.3) as below:

min
π′∈Rn̄

p′(π′) =
1

2

n̄∑
i=1

(π′
i − s′i)

2 + λ
∑
i<j

|π′
i − π′

j |

s.t. π′
1 ≤ π′

2 ≤ . . . π′
n̄.

(4.4)

For any π′ ∈ Rn̄ in the non-decreasing order, it holds that

∑
i<j

|π′
i − π′

j | =
n̄∑

i=1

(2i− n̄− 1)π′
i.

13



Therefore, it follows that

1

2

n̄∑
i=1

(π′
i − s′i)

2 + λ
∑
i<j

|π′
i − π′

j | =
1

2

n̄∑
i=1

(π′
i − s′i)

2 + λ

n̄∑
i=1

(2i− n̄− 1)π′
i

=
1

2

n̄∑
i=1

(
(π′

i − s′i)
2 + 2λ(2i− n̄− 1)π′

i

)
=

1

2

n̄∑
i=1

(
π′
i − (2s′i − 2λ(2i− n̄− 1))π′

i + s′i
2
)

=
1

2

n̄∑
i=1

((
π′
i − (s′i − λ(2i− n̄− 1))

)2)
+ c,

where c = 1
2

∑n̄
i=1

(
2λ(2i− n̄− 1)s′i −

(
λ(2i− n̄− 1)

)2)
is a constant. Letting s†i = s′i − λ(2i− n− 1), we

rewrite (4.4) as

min
π′′∈Sn̄

p′′(π†) :=
1

2

n̄∑
i=1

(
π†
i − s†i

)2
s.t. π†

1 ≤ π†
2 ≤ . . . π†

n̄.

(4.5)

The solution of (4.5) can be computed by using pool-adjacent-violators algorithm [1, 6] in O(n̄) = O(n2)
operations. After we obtain the optimal solution of (4.5) as π∗∗, we can derive the optimal solution u∗ of
(4.1) by u∗ = (T ′)−1π∗∗ + s. Using this result, we have the following theorem.

Theorem 4.2. We can compute the projection

PM(U) = (y, [W ]≤ρ, [S]S).

in O(n2 log n)

Proof. For the complexity to obtain PW(W ), we compute max{−ρ,min{ρ,Wij}} for each component of
W , Therefore, the complexity of O(n2) is enough for PW(W ). We divide the computation of PS (S) into
three parts. The first part is extracting the upper-triangular part of S as the vector s = vect(S) and sorting
the components of s in the non-decreasing order, which has a complexity of O(n̄ log n̄) = O(n2 log n). The
second part is the pool-adjacent-violators algorithm, which has complexity O(n̄) = O(n2). The third part
is to convert the optimal solution of (4.4) back to the optimal solution of (4.2), which has complexity
O(n̄) = O(n2). Therefore, the total complexity of computing the projection is

O(n2 log n) +O(n2) +O(n2) = O(n2 log n).

5 Numerical Experiments

We conducted numerical experiments for Algorithm 1, DSPG [10] and Logdet-PPA [13] on randomly gen-
erated synthesis data and a real animal dataset [8]. All experiments are performed in Matlab R2022b on a
64-bit PC with Intel Core i7-7700K CPU (4.20 GHz, 4 cores) and 16 GB RAM.

For Algorithm 1 and DSPG, we set the parameters as γ = 10−3, τ = 0.5, σ = 0.5, αmin = 10−8, αmax =
108 and M = 5. We take an initial point (y0,W 0,S0) = (0,0,0) for Algorithm 1 and (y0,W 0,Z0) =
(0,0,0) for DSPG. For Logdet-PPA, we employed its default parameters.

The performance of each algorithm is evaluated with the number of iterations, the execution time, and
a relative gap which is defined as

Gap =
|P −D|

max{1, (|P |+ |D|)/2}
,
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where P and D are the output values of primal and dual objective functions, respectively. In addition, the
convergence rate is evaluated with a normalization error in each iteration by

Ek =
|Dk −Dopt|
|D0 −Dopt|

,

where D0, Dk, Dopt are objective values of g at the initial point, the kth iteration, and the output point,
respectively.

As the stopping criteria, we stopped DSPG and Algorithm 1 when the iterate satisfies
∥(∆yk

(1),∆W
k
(1),∆S

k
(1))∥ ≤ 10−16, or reached 5000 iterations. Logdet-PPA was stopped when max{RP , RD} ≤

10−6, where RP and RD denote the primal and dual feasibility, respectively. We chose these stopping criteria
so that the three algorithms attained a relative gap of about 10−7.

5.1 Randomly Generated Synthesis Data

In this experiment, we generated input data following the procedure in [10]. We first generated a sparse
positive definite matrix Σ−1 ∈ Sn with a density parameter σ = 0.1, then we constructed the covariance
matrix C ∈ Sn from 2n samples of the multivariate Gaussian distribution N (0,Σ). For a nonnegative
integer p, let Ωp := {(i, j) | Σ−1

ij = 0, 1 ≤ i < j ≤ n, |i− j| ≤ p}.
We solved the following problem with unconstrained instances (p = 0) and constrained instances (p = 2

and p = ⌊0.3 ∗ n⌋):

min
X∈Sn

f(X) := C •X − µ log detX + ρ
∑
i<j

|Xij |+ λ∥Q(X)∥1

s.t. Xij = 0 ∀(i, j) ∈ Ωp,X ≻ 0.

(5.1)

In the objective function, we employed the same weight parameters ρ = 5
n and λ = ρ

n(n−1)/2 as in [10].

We divide the experiments into two parts; the first is a comparison between three algorithms, while the
second is the performance test of Algorithm 1 with large instances.

Table 1 shows numerical results on problem (5.1). The first column is the size n. The second, third, and
fourth columns are the number of iterations, the computation time, and the relative gap for Algorithm 1.
Similarly, the other six columns are for DSPG and Logdet-PPA.

We can observe from Table 1 that the proposed method (Algorithm 1) outperforms DSPG and Logdet-
PPA in the viewpoint of computation time in both unconstrained and constrained cases. For the uncon-
strained case p = 0 and the size n = 25, the proposed method solves the problem in 0.02 seconds, while
DSPG and Logdet-PPA require 2.96 seconds and 19.64 seconds, respectively. In addition, Algorithm 1 is
also efficient for constrained cases. According to the structure of the last term in the objective function
of (5.1) (the term whose weight is λ), the number of elements in the summation grows rapidly when n
increases. Algorithm 1 can deal with this problem better than DSPG and Logdet-PPA.

Figure 1 displays the convergence rates of three methods in the case n = 25 and p = 2. The horizontal
axis of the graph is the computation time in seconds, and the vertical axis is the Ek value. It is clear
from the figure that the convergence speed of Algorithm 1 is remarkably faster than those of DSPG and
Logdet-PPA.

Table 2 shows numerical results on (5.1) with medium matrices. We excluded Logdet-PPA from Table 2,
since Logdet-PPA demanded more than 128 GB memory space for n = 30.
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Table 1: Comparison of the performance for randomly generated synthesis data with small matrices

p = 0 (unconstrained case)

Algorithm 1 DSPG Logdet-PPA

n Iterations Time (s) Gap Iterations Time (s) Gap Iterations Time(s) Gap

10 41 0.03 7.78e-9 350 0.11 1.50e-7 2 0.12 2.78e-7

20 47 0.01 1.77e-8 1303 1.27 2.80e-7 14 1.77 2.11e-8

25 51 0.02 3.92e-9 1414 2.96 1.25e-7 84 19.64 1.86e-8

p = 2 (constrained case)

Algorithm 1 DSPG Logdet-PPA

n Iterations Time (s) Gap Iterations Time (s) Gap Iterations Time (s) Gap

10 94 0.01 3.17e-8 338 0.06 1.29e-7 6 0.20 2.47e-6

20 104 0.03 1.31e-8 1492 1.40 1.49e-7 19 2.30 1.66e-7

25 90 0.02 1.59e-9 1289 2.77 6.61e-8 84 19.40 2.47e-8

p = ⌊0.3 ∗ n⌋ (constrained case)

Algorithm 1 DSPG Logdet-PPA

n Iterations Time (s) Gap Iterations Time (s) Gap Iterations Time (s) Gap

10 90 0.01 1.05e-7 454 0.07 2.74e-7 6 0.18 4.08e-7

20 102 0.02 2.54e-8 1326 1.75 2.13e-7 51 5.25 7.92e-9

25 83 0.03 1.36e-8 1629 3.34 5.23e-8 102 20.97 8.95e-8

Figure 1: Comparison of the convergence rate for randomly generated synthesis data with n = 25 and p = 2

16



Figure 2: Comparison of the convergence rate for randomly generated synthesis data with n = 100 and
p = 2

Table 2: Comparison of the performance for randomly generated synthesis data with medium matrices

p = 0 (unconstrained case)

Algorithm 1 DSPG

n Iterations Time (s) Gap Iterations Time (s) Gap

50 59 0.06 2.85e-9 5000 284.83 1.46e-6

75 75 0.20 1.66e-8 5000 1430.53 1.36e-4

100 90 0.37 1.47e-8 5000 4352.69 1.48e-3

p = 2 (constrained case)

Algorithm 1 DSPG

n Iterations Time (s) Gap Iterations Time (s) Gap

50 85 0.10 7.12e-9 4199 241.21 3.24e-5

75 127 0.29 1.17e-8 5000 1420.47 8.55e-5

100 180 0.64 2.54e-8 5000 4707.48 2.81e-3

p = ⌊0.3 ∗ n⌋ (constrained case)

Algorithm 1 DSPG

n Iterations Time (s) Gap Iterations Time (s) Gap

50 170 0.28 1.60e-8 5000 290.35 3.02e-6

75 149 0.32 2.93e-8 5000 1415.39 5.06e-4

100 220 0.91 3.81e-8 5000 4361.37 4.25e-3

The result in Table 2 indicates that the proposed method is faster than DSPG, and it also outputs
solutions with higher accuracy. In addition, DSPG takes more iterations for the convergence as shown in
Figure 2. In particular, the projection onto Z in DSPG does not capture the structure of Q⊤, therefore,
the projection in DSPG is not effective compared to the projection discussed in Section 4.
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Furthermore, only Algorithm 1 solves large instances with n ≥ 500 in 5000 iterations, as indicated in
Table 3. In the case of n = 4000, Algorithm 1 can solve the unconstrained problem in 1455 seconds, and
constrained problems in 4106 seconds.

Table 3: Performance of Algorithm 1 for large instances

p = 0 (unconstrained) p = 2 (constrained) p = ⌊0.3 ∗ n⌋ (constrained)

n Iterations Time (s) Gap Iterations Time (s) Gap Iterations Time (s) Gap

500 146 15.18 3.88e-9 241 21.73 1.89e-8 276 28.69 3.15e-8

1000 113 54.92 4.31e-9 727 322.27 1.34e-8 311 155.72 1.39e-8

2000 89 257.94 1.26e-9 411 1082.65 8.42e-9 234 697.72 1.31e-8

4000 77 1455.74 5.23e-9 221 4106.26 1.42e-8 207 4120.75 1.65e-8

5.2 Clustering Structure Covariance Selection

In this experiment, we generated input data following the procedure in Lin et al. [9]. We first generated a
matrix in [9]. We compute and construct the covariance matrix C ∈ Sn from 10n samples of the multivariate
Gaussian distribution N (0,Σ), and nG is the number of clusters of coordinates. For the constraints, we set

Ωp with p = ⌊0.3 ∗ n⌋. We employ the weight parameters λ = ρ
N , where N = n(n−1)

2 .

Similarly to Section 5.1, we divide the experiments into two parts. The first part is the comparison
between the three algorithms, and the second part is for Algorithm 1 with large matrices, where we increase
the matrix size n and the number of clusters nG. The parameter of ρ is 0.001 in the first part, while ρ is
adjusted in each experiment in the second part to balance the sparsity and the clustering structure from
the relative error and F-score obtained in preliminary experiments.

Table 4 shows numerical results on the problem (5.1) with clustering structure covariance selection with
small matrices. The results in the table show that the Algorithm 1 is still advantageous. It requires much
less computational time than Logdet-PPA and has a better convergence speed than DSPG. The result of
the case when (n, nG) = (25, 5) shows that Algorithm 1 can solve the problem in 0.18 seconds, while DSPG
and Logdet-PPA take 7.07 seconds and 13.82 seconds, respectively. From the results on medium matrices
in Table 5, Algorithm 1 again attains a better convergence rate than DSPG. Table 6 shows the results on
large instances. Algorithm 1 is effective even for large problems. It can solve problems in a reasonable time
and can output highly accurate solutions. It can satisfy the stopping criterion of 10−16 for the problem
with a large matrix size n = 4000 in 14 minutes and 24 seconds.

Table 4: Comparison using covariance selection data with small matrices

Algorithm 1 DSPG Logdet-PPA

(n, nG) Iterations Time (s) Gap Iterations Time (s) Gap Iterations Time (s) Gap

(10, 5) 57 0.01 4.70e-11 132 0.02 2.85e-11 29 0.34 2.38e-7

(20, 5) 90 0.04 2.86e-10 626 0.55 1.49e-9 67 2.44 2.93e-7

(25, 5) 467 0.18 4.55e-9 3435 7.07 5.31e-8 89 13.82 1.23e-6
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Table 5: Comparison using covariance selection data with medium matrices

Algorithm 1 DSPG

(n, nG) Iterations Time (s) Gap Iterations Time (s) Gap

(50, 5) 146 0.22 1.88e-9 2518 153.35 1.39e-7

(75, 5) 908 2.74 1.94e-7 5000 1541.50 1.89e-4

(100, 5) 135 0.67 2.86e-11 4670 4674.50 1.06e-7

Table 6: The performance of Algorithm 1 for covariance selection data in large matrices

Algorithm 1

(n, nG, ρ) Iterations Time(s) Gap

(500, 10, 10−3) 168 17.18 5.72e-10

(1000, 20, 10−4) 87 42.28 2.65e-11

(2000, 50, 10−4) 73 195.78 4.85e-11

(4000, 50, 10−5) 61 864.55 1.09e-11

5.3 Real Data Experiments

We also executed experiments on a real animal dataset in [8]. The dataset consists of binary values which
are the answers to d = 102 true-false questions on n = 33 animals. We followed the procedure used in [4, 9],
computed the input matrix C = S + 1

3I, where S is the sample covariance matrix and I is the identity

matrix. We applied the model (5.1) with no constraints and took ρ = 0.01 and λ = 4ρ
n(n−1) .

Table 7 summarizes the result of Algorithm 1 and DSPG on the animal dataset problem, and Figure 3
show their convergence rates. We did not include Logdet-PPA here due to being out of memory. From these
results, we can also see that Algorithm 1 can obtain a highly accurate solution in a short computation time.

Table 7: Comparison of the performance for animal dataset

Algorithm 1 DSPG

n Iterations Time (s) Gap Iterations Time (s) Gap

33 29 0.03 2.50e-11 497 5.03 5.44e-9

19



Figure 3: Comparison of the convergence rate for Animal Dataset

6 Conclusion

In this paper, we extended the dual spectral projected gradient method in [10] to the novel DSPG method
(Algorithm 1) for solving (1.4). To reduce the length of the gradient vector of the dual objective function,
we replaced Q⊤(Z) with the new variable matrix S, and we developed an efficient method to compute the
projection onto S. We established the convergence of Algorithm 1 to the optimal value. We also showed
that the projection in the proposed method can be computed in O(n2 log n) operations using the pool-
adjacent-violators algorithm. The results from numerical experiments on randomly generated synthetic
data, covariance selection, and animal data indicate that the proposed method obtains accurate solutions
in a short computation time and solves large instances.

One of the future directions of our research is an extension of the DSPG algorithm for solving more gen-
eral types of log-determinant semidefinite programming, for example, sparse and locally constant Gaussian
graphical models proposed by Honorio et al. [7].
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