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Abstract

We introduce a mean field game for a family of filtering problems related to the
classic sequential testing of the drift of a Brownian motion. To the best of our knowledge
this work presents the first treatment of mean field filtering games with stopping and
an unobserved common noise in the literature. We show that the game is well-posed,
characterize the solution, and establish the existence of an equilibrium under certain
assumptions. We also perform numerical studies for several examples of interest.
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1 Introduction

A classic continuous-time optimal stopping problem is the sequential testing of the drift of a Brownian
motion [32, 59, 60], where an agent observes a noisy signal process of an unknown binary variable θ:

Xt = αθt+Wt,

and tests sequentially the hypotheses H0 : θ = 0 and H1 : θ = 1 given the information gleaned from
the signal process. The agent’s response consists of the time τ to stop the test and make a decision,
and the decision d ∈ {0, 1} itself, i.e. which hypothesis to accept.

In the Bayesian formulation, the agent has a prior probability P(θ = 1) = π, and searches for a
minimizing pair (τ∗, d∗) to the Bayes risk:

Eπ

[
cτ + a11{d=1,θ=0} + a21{d=0,θ=1}

]
,

where c, a1 (resp. a2) are positive constants representing the cost of observation and the cost of
making a type I (resp. type II) error. It can be thought of as a hard-classification problem since a
binary decision d about the state of nature must be made at τ even if the agent is not certain.

It is well-known that the solution to the classic problem depends on the agent’s posterior prob-
ability Πt = P(θ = 1|FX

t ). This motivates us to consider a soft-classification approach that uses the
modified Bayes risk

Eπ [cτ + L (θ,Πτ )] ,

where L : {0, 1} × [0, 1] → R+ is a loss function satisfying L (j, π) = 0 if and only if j = π. A
primary example we have in mind is the cross-entropy loss L (j, π) = −j log(π)− (1− j) log(1− π).
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In our study, we embed this “soft” sequential testing problem in a game setting with a continuum
of agents and a finite horizon T > 0. The infinite player limit allows us to consider mean field type
interactions through population statistics. We take µ = (µ0, µ1) to be the distribution of stopped
agents in time if θ = 0, 1. In the simplest one-dimensional setting, a representative agent i observes
the private signal

Xi
t =

∫ t

0

h(s, θ, F θ
µ(s))ds+W i

t ,

for some function h that depends on both the state of nature θ and the fraction of agents F j
µ(s)

that have stopped by time s given θ = j. In economic contexts where agents take resources with
them, the signal may get weaker as more agents decide to exit the game. On the other hand, if there
is an accumulation of common knowledge or reduced competition for resources, the signal may get
stronger as agents leave. Both cases can be modeled by choosing a suitable hµ; see Example 2.2.

Each agent’s risk minimization can be cast as an optimal stopping problem (parameterized by

the population measure µ) in terms of the private posterior probability Πi
t := P(θ = 1|FXi

t ):

Vi(µ) = inf
τ i

Eπ

[
cτ i + g(Πi

τ i)
]
,

where g is a concave penalty derived from the loss function L . We then search for a pair of measures
µ = (µ0, µ1) such that for the smallest optimal stopping time τ∗µ of V·(µ) we have a fixed point of
the mapping

µ 7→
(
L(τ∗µ |θ = 0),L(τ∗µ |θ = 1)

)
. (1)

Any such fixed point is a mean-field equilibrium in the sense of Nash by the Exact Law of Large
Numbers [63].

Mean field games of optimal stopping (also called mean field games of timing) are generally
more difficult to solve than mean field games of optimal control. An additional challenge in our
setting is the incorporation of a common noise and agent learning, the latter of which requires the
preservation of the information structure. Nonetheless, under suitable assumptions we are able to
show that a strong solution exists.

The proof follows the standard application of Schauder’s fixed point theorem. However, estab-
lishing the continuity of the mapping (1) turns out to be a difficult task, and is a major technical
contribution of the present paper. It requires a deep understanding of the representative agent prob-
lem, particularly the shape of the continuation region and the regularity of the free boundaries. We
characterize the free boundaries as the “maximal” solutions to a pair of integral equations, and es-
tablish a uniform boundary regularity in the input measures. The analysis relies on new probabilistic
techniques introduced in [20] alongside a time and space transformation of the problem.

1.1 Literature

Our problem lies squarely at the intersection of sequential analysis and mean field games (MFGs).
The field of sequential analysis covers a broad class of statistical problems where data is collected
and analyzed sequentially over time. It has a long and rich history, and the decades following Wald’s
pioneering work [66] are marked by many important developments [17, 41, 67, 68]. Of particular
relevance to the present study is [24] where the theory of sequential decision making for stochastic
processes in continuous time was introduced. Our motivating sequential testing problem for the
drift of a signal process [59] is studied in the finite horizon setting in [32], extended to a signal
process whose drift has a state dependence in [33], and studied for a general (not necessarily binary)
unknown state θ and arbitrary prior distribution in [26].

Due to our game’s (infinite) population design, the interaction structure is very similar to what
arises in the mean field game literature. In the initial works [42, 43, 44, 36, 37], mean field games were
used to study Nash equilibria with a continuum of agents. There is now a broad extant literature
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in this area (see e.g. [5, 12, 18]) and mean field game formulations have found many applications
in economics that include population dynamics [18], production models [18], systemic risk [15], and
models for renewable energy certificate [7, 62] and electricity markets [2, 3, 8, 28, 30, 34].

Theoretically, there are two main branches to this theory corresponding to the use of analytical
[36, 37, 42, 43, 44] or probabilistic [9, 10, 11] solution techniques. The former approach involves
solving a coupled system of partial differential equations (PDEs) while the latter obtains a coupled
system of forward-backward stochastic differential equations (FBSDEs). Additional elements have
been incorporated into the theory to accommodate a growing set of use cases. For instance, the
literature has studied games with common noise [1, 14, 15, 31], and constructions that involve
partially observed systems and tools from filtering theory [16, 31, 54, 55]. Both of these directions
are relevant to our proposed study since agents will need to make an inference about the unobserved
and common state of nature θ.

Spurred on by the recent developments in the original works [13, 45], mean field games of optimal
stopping has been an area of increasing interest in the past few years. Both of these papers take a
probabilistic approach and the mean field interaction occurs through the proportion of players that
have already stopped. One remarkable feature of [45] is the tractability of the introduced model
under a monotonicity assumption which allows for explicitly solvable examples to be investigated.
On the other hand, the authors of [13], motivated by a bank run model, study mean field games of
timing in a more general setting. In their work, strong and weak notions of equilibria are defined
and the existence of the latter is established under a strategic complementarity assumption using
monotonicity-based proofs. By comparison, the existence of weak equilibria is established using
continuity-based arguments.

An alternative analytical approach to timing games is provided in [6], where a system of for-
ward–backward obstacle problems associated to the mean field game is analyzed. In contrast with
[13, 45], the proposed agent interaction is through the density of the states of the players who have
yet to stop. This type of interaction is similar to the one adopted in the emerging literature on
the Linear Programming approach to mean field games with stopping [21, 22]. An interesting and
encouraging recent extension of this approach to problems with common noise and partial observa-
tions in a discrete setting is given in [23]. Another direction, presented in [64], studies an optimal
stopping problem for McKean–Vlasov diffusions where the interaction arises through the law of the
stopped process.

A primary goal of our current work is to combine several of the previously discussed features
into a tractable family of mean field game problems with optimal stopping. By tractable we mean
that the existence of equilibria can be established and that they can be characterized in detail, even
if exactly solvable examples like in [45, 47] are not obtained. The main elements we would like
to incorporate are an unobserved common noise, agent learning, and a population interaction that
can influence the information structure. To the best of our knowledge these features have not been
incorporated together into a single problem in the existing literature. Sequential testing style games
are a promising candidate for these objectives due to the natural occurrence and interpretation of
these features, and the solvability in the classic setting without interaction.

The rest of this paper is organized as follows. In Section 2, we formulate the sequential testing
game and state our main result on the existence of a mean-field equilibrium. Section 3 provides an
in-depth analysis of the representative agent problem, the solution of which is then used to complete
the fixed point analysis in Section 4. In Section 5, we extend our results to the special case of
the classic hard classification loss function for “preemption games”. Finally, Section 6 showcases
several numerical examples: we explore preemption games in both the soft-classification and classic
frameworks, and illustrate war of attrition games exclusively within the soft-classification setting.
We draw our conclusions in Section 7. Auxiliary results and lengthy technical proofs are delegated
to Appendices.
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1.2 Notation

We adopt the following notational conventions throughout this paper, where D is an arbitrary Polish
space.

• P(D): The space of probability measures on D equipped with the topology of weak convergence.
• Cb(D): The space of continuous bounded functions on D.
• Ck(D): The space of k-times continuously differentiable functions on D.
• Lip(D): The space of Lipschitz functions on D.
• ∥·∥: The standard Euclidean norm.
• ∥·∥∞: The supremum norm given by ∥f∥∞ := maxi∈d supx∈D |fi(x)| for d dimensional vector-

valued functions defined on D.
• (Ω,F ,P): The (complete) probability space that corresponds to the sample space of our problem.
• FX = (FX

t )t: The filtration generated by a stochastic process X augmented by the P-null sets in
F .

• ⇒: The weak convergence of measures.

In addition, for a stochastic process X = (Xt)t≥0, if (t,X) is Markovian we denote the expectation
operator conditioned on (t,Xt) = (t, x) by Et,x[·]. When X is defined to start at t = 0 we may
drop the time subscript. Where appropriate we also write Xt,x = (Xt,x

s )s≥t to denote the stochastic
process X = (Xt)t≥0 started at Xt = x. When it is unambiguous, we similarly drop both subscripts
on Et,x[·] in favor of writing Xt,x under the expectation.

2 Sequential Testing Game

Let (I, I, λ) be an atomless probability space, to be used as the agent space, and let (Ω,F ,P) be
another complete probability space, to be used as the sample space. We will work with a rich Fubini
extension of the product space (I ×Ω, I ⊗F , λ⊗ P) which supports a family of essentially pairwise
independent d-dimensional Brownian motions {Wi}i∈I = {(Wi

t)t∈[0,T ]}i∈I and a binary random
variable θ ∈ {0, 1} that is common to all agents, i.e. θ(i, ω) = θ(ω), and independent of Wi for all
i ∈ I. Moreover, the Conditional Exact Law of Large Numbers holds in this space; see Appendix A
for details. It is implicitly understood that any family of random variables or stochastic processes
indexed by i ∈ I is measurable in the extended product space.

Let (Gi)i∈I be a family of filtrations to be specified later, representing the information available
to each agent. The control of Agent i is modeled as a Gi-stopping time τ i. The following lemma is a
direct consequence of the Conditional Exact Law of Large Numbers (Proposition A.2). It describes
the population statistics that emerges from essentially pairwise conditionally independent controls:
the distribution of stopped agents at different points in time is a random measure, say m, from {0, 1}
to P([0, T ]) where the randomness is completely determined by the common noise θ.

Lemma 2.1. If the family of stopping times (τ i)i∈I is essentially pairwise conditionally independent
given θ, then

λ{i : τ i ≤ t} =

∫
I
P(τ i ≤ t|θ)λ(di).

That is, the fraction of agents that have stopped by time t equals the conditional probability that a
randomly chosen representative agent will stop by time t.

In the sequel, we identify the random measure m with a pair of deterministic measures µ =
(µ0, µ1) ∈ P([0, T ])2 such that m = µθ.
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2.1 Signal process

Let µ = (µ0, µ1) ∈ P([0, T ])2 be the distribution of stopped agents in time corresponding to the two
states of θ. We introduce the regularization

F j
µ(t) :=

∫
R
µj [0, s]φ(t− s)ds, (2)

where φ : R → R is a positive mollifier, i.e. a smooth and compactly supported function which
integrates to one. It is easy to see that F j

µ(·) is increasing1 and [0, 1]-valued; it is an approximation
to the true fraction of agents that have stopped. We may choose φ to be asymmetric about zero so
that it puts mass in the recent past. Then, it can be seen as introducing a delayed interaction.

Each agent (say Agent i) observes a private signal Xi, the strength of which depends on the
collective stopping behavior of other agents:

Xi
t =

∫ t

0

hi(s, θ, F θ
µ(s))ds+ΣiWi

t. (3)

Here Σi is an invertible d × d matrix and hi : R+ × {0, 1} × [0, 1] → Rd is a bounded (jointly)
continuous function such that (t, ρ) → hi(t, j, ρ) is continuously differentiable for each j. The
observation filtration Gi in this case is the one generated by Xi and augmented by the P-null sets
in F ; we write it as FXi

= (FXi

t )t∈[0,T ]. Using the boundedness of hi, it can be shown that FXi

is

right-continuous; see [4, Theorem 2.35]. The set of [0, T ]-valued FXi

-stopping times will be denoted

by T Xi

.
Note that the information generated by Xi and (Σi)−1Xi are the same. By replacing Xi with

(Σi)−1Xi and hi with (Σi)−1hi if needed, we may further assume that Σi = Id (the identity matrix)
in the rest of the paper without loss of generality. To simplify notation, we will frequently write
hi
µ(t, j) := hi(t, j, F j

µ(t)) and ∆hi
µ(t) := hi

µ(t, 1) − hi
µ(t, 0). To avoid a degenerate formulation, we

also assume that there is always some information content in the signal process for all agents. That
is, we enforce

∥∆hi
µ(t)∥ ≥ hi ∀(t, µ) ∈ R+ × P([0, T ])2, ∀i ∈ I, (4)

where hi > 0 is a constant. An example of hi that fits into our framework is given below.

Example 2.2. Let d = 1, λi
0 > 0, λi

1 > −λi
0, and

hi(t, j, ρ) = (j − 1/2)(λi
0 + λi

1ρ).

In this setting hi is positive when j = 1 and negative when j = 0, and∥∥∆hi
µ(t)

∥∥ = λi
0 + λi

1(F
1
µ(t) + F 0

µ(t)) ≥ λi
0 ∧ (λi

0 + λi
1).

One can interpret λi
0 as a baseline signal and λ1

i as the strength of interaction. If λi
1 > 0 (resp.

λi
1 < 0), the signal strength increases (resp. decreases) as more agents make a decision and exit the

game. In other words, the case when λi
1 > 0 for all i ∈ I represents a “war of attrition” where

it is beneficial to stay in the game longer than other agents; the case when λi
1 < 0 for all i ∈ I is

analogous to a “preemption game” where agents benefit from exiting before others.

2.2 Bayes risk

The objective of each agent is to make an inference as quickly as possible while minimizing the
decision error. Specifically, Agent i solves the optimal stopping problem

inf
τ i∈T Xi

Eπ

[
ciτ

i + Li(θ,Π
i
τ i)
]
,

1Throughout we interpret “increasing” and “decreasing” in the non-strict sense.
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where ci > 0 is the cost of observation, π = P(θ = 1) is the prior probability, Πi
t := P(θ = 1|FXi

t ) is
the posterior probability, and Li : {0, 1} × [0, 1] → R+ is a loss function satisfying Li(j, π) = 0 if
and only if j = π. By iterated conditioning, we can remove the unknown variable θ in the objective
and write

Eπ

[
Li(θ,Π

i
τ i)
]
= Eπ

[
Eπ

[
Li(0,Π

i
τ i)1θ=0 + Li(1,Π

i
τ i)1θ=1

∣∣FXi

τ i

]]
= Eπ[gi(Π

i
τ i)],

where
gi(π) := πLi(1, π) + (1− π)Li(0, π).

It is easy to see that gi(0) = gi(1) = 0, i.e. certainty about the state of nature incurs no penalty. We
take gi : [0, 1] → R as our starting point and refer to Eπ[ciτ

i + gi(Π
i
τ i)] as the Bayes risk of τ i. If

there are multiple minimizers of the Bayes risk, we break the tie by assuming that the agent favors
early stopping.

Define an operator A by

(Af)(π) :=
1

2
π2(1− π)2f ′′(π), f ∈ C2(0, 1). (5)

The following technical assumption on gi will be enforced for all i ∈ I throughout Section 3 and 4
of the paper.

Assumption G.

(G1) gi ∈ C3(0, 1) is symmetric about 1/2, concave, and gi(0) = gi(1) = 0.

(G2) Agi satisfies ∂π(Agi) < 0 on (0, 1/2), and ∂π(Agi) > 0 on (1/2, 1).

(G3) Agi(1/2) < −ci/h
2
i .

Remark 2.3. There are a few important consequences of the above assumptions that we highlight
here for future reference. First, (G1) and (G2) imply thatAgi is a continuous, bounded and unimodal
function on (0, 1). Since Agi is a univariate function, this implies that it is quasiconvex2. It is also
possible to check that (G1) and (G2) imply that the composition of gi with the sigmoid function
S(x) = 1/(1 + e−x) is Lipschitz. Indeed, differentiating gi ◦ S yields

(gi ◦ S(x))′ = S′(x)g′i ◦ S(x) = S(x)(1− S(x))g′i ◦ S(x),

where we have used that S′(x) = S(x)(1 − S(x)). Since S(x) ∈ (0, 1) for all x ∈ R it suffices to
bound π(1 − π)g′i(π) for π ∈ (0, 1). To this end, observe under (G1) gi is concave, so Agi ≤ 0. By
continuity and (G2) there is a β > 0 such that:

inf
π∈(0,1)

Agi(π) = Agi(1/2) = −β > −∞.

Rearranging says |g′′i (π)| ≤ 2β/π2(1− π)2 for all π ∈ (0, 1). Using 1/2 as a reference point we have
that for any π ∈ [1/2, 1):

|g′i(π)| ≤ |g′i(1/2)|+
∫ π

1
2

|g′′i (u)|du = |g′i(1/2)|+ 4β log

(
π

1− π

)
+ β

4π − 2

π(1− π)
,

and a similar bound holds for π ∈ (0, 1/2]. It is then easy to verify that |π(1 − π)g′(π)| ≤ M for
some M > 0, and so gi ◦ S is M -Lipschitz.

2A real-valued function defined on a convex set is said to be quasiconvex if all sublevel sets are convex.
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The concavity and endpoint constraints in Assumption (G1) are natural conditions motivated
by the loss function formulation, while regularity is enforced to make certain stochastic analytic
tools applicable in our analysis (see e.g. Appendix C). It is worth emphasizing that the assumed
symmetry is not necessary for most of the analysis to go through, and is solely used to simplify the
proof of the regularity of the stopping boundaries (Proposition 3.10). The interested reader may
inspect how it arises in the proof if a relaxation of the assumptions on g is desired. The explicit use
of the point 1/2 in Assumption (G2)-(G3) is similarly tied to the symmetry of g and can likewise be
modified if g is asymmetric. These last two technical assumptions are imposed primarily to ensure
that the stopping time solution for the representative agent problem is well-behaved.

It is to be expected that the analysis of strong mean field equilibria generally requires stronger
regularity and additional structure. These assumptions are not overly restrictive and are satisfied by
many popular loss functions, as the next two examples show. The index i is omitted in the examples
for simplicity.

Example 2.4 (Cross-entropy loss). Suppose L (j, π) = −j log(π) − (1 − j) log(1− π) which is the
most commonly used loss function in machine learning for classification problems. The induced cost
function is given by

g(π) = −π log(π)− (1− π) log(1− π),

where we extend the domain of g to [0, 1] by taking limits. We also find that

(Ag)(π) = −1

2
π(1− π) and ∂π(Ag) = π − 1

2
.

Clearly, (G1) and (G2) hold; (G3) is satisfied if h ≥
√
8c.

Example 2.5 (L1 and L2 losses). For the L1 loss L (j, π) = |j − π|, the induced cost function is

g(π) = 2π(1− π). For the L2 loss L (j, π) = (j − π)
2
, the induced cost function is g(π) = π(1− π).

In both cases, g is of the form g(π) = βπ(1− π) for some β > 0. With

(Ag)(π) = −βπ2(1− π)2 and ∂π(Ag) = −2βπ(2π2 − 3π + 1),

it is straightforward to check that all assumptions are satisfied if h ≥
√
8c/β.

Remark 2.6. The cost function g(π) = a1π ∧ a2(1 − π) for the classical sequential testing problem
contains a kink, and thus, does not satisfy the C3 condition in Assumption G. The kink poses
technical difficulties to the proof of boundary regularity which is essential for the existence of a
mean field equilibrium. Although our main analysis does not cover this setting, we can adapt the
proof to handle a subclass of mean field interaction – the case of “preemption games”; see Section 5.

2.3 Mean field equilibrium

Having introduced the interaction (via the signal process) and the optimal stopping problem faced
by each agent, we next define what it means to be a (strong) mean field equilibrium of the sequential
testing game.

Definition 2.7. Let π ∈ (0, 1). We say µ = (µ0, µ1) ∈ P([0, T ])2 is a mean field equilibrium of the
sequential testing game if both of the following hold.

1. (Optimality) For each i ∈ I, τ i,∗µ is the smallest optimal stopping time for the single-agent
problem

Vi(µ) = inf
τ i∈T Xi

Eπ

[
ciτ

i + gi(Π
i
τ i)
]
, (6)

where the signal process Xi is given by (3) with drift hi
µ(t, θ), and Πi

t = P(θ = 1|FXi

t ) is the
posterior probability.

8



2. (Consistency) Let ι be the identification function on (I, I, λ), representing a randomly chosen
agent according to λ. Then µ is a fixed point of the mapping

µ 7→
(
L(τ ι,∗µ |θ = 0),L(τ ι,∗µ |θ = 1)

)
, (7)

i.e.

µθ[0, t] =

∫
i∈I

P(τ i,∗µ ≤ t|θ)λ(di) ∀t ∈ [0, T ]. (8)

Remark 2.8. The mean field equilibrium defined above is in the sense of Nash, i.e. τ i,∗ is the best
response to (τ j,∗)j∈I\{i} for all i ∈ I. To see this, observe that the family of signal processes (Xi)i∈I

is essentially pairwise conditionally independent given θ. Since each τ i,∗µ is an FXi

-stopping time,

the same conditional independence holds for (τ i,∗µ )i∈I . By Lemma 2.1 and the atomless property of

the agent space, we see that when all but one agents use their respective τ i,∗µ , the fraction of agents
that have stopped by time t is precisely the right hand side of (8). Definition 2.7 then says that
each τ i,∗µ is the best response to µ which is the population statistics that emerges from (τ j,∗)j∈I\{i}.

We are ready to state our main result whose proof we defer to Section 4.

Theorem 2.9. Under Assumption G, there exists a mean field equilibrium for the sequential testing
game.

As in other games with optimal stopping, the involvement of the law of the stopping times
makes this problem difficult to solve. A further complication in our formulation is that the agents
must learn about a common noise which couples their posterior beliefs and forces us to preserve the
information structure. As a result, alternative weak solution approaches are unlikely to be directly
applicable.

That said, the overarching idea for establishing Theorem 2.9 is straightforward and standard in
the mean field game literature. Namely, we equip P([0, T ])2 with the topology of weak convergence
and apply Schauder’s fixed point theorem to the map in (7). Demonstrating the compactness of
the underlying space is trivial, however, due to our “strong” notion of equilibrium, proving the
continuity of the mapping requires a detailed and protracted analysis.

Indeed, in the process we show that for a weakly converging sequence of measures, the associated
value functions converge, the stopping boundaries converge, and the conditional laws of the optimal
stopping times converge. Many of the results and technical difficulties of the following section are
undertaken for the primary purpose of ultimately proving continuity in Section 4. Crucial challenges
include deriving a representation of the stopping boundaries as the “maximal” solutions to a pair of
integral equations, and establishing a uniform regularity of the boundaries in the input measures.

3 Analysis of the Single-Agent Problem

In this section, we fix µ = (µ0, µ1) ∈ P([0, T ])2 and study the single-agent optimal stopping problem
(6). The index i ∈ I is suppressed with the understanding that the analysis holds for all agents.
From Section 3.2 to 3.5, we assume that Assumption G is in force.

3.1 Posterior probability and the log-likelihood ratio

We begin by describing the evolution of the posterior probability Πt.

Lemma 3.1. The posterior probability Π = (Πt)t∈[0,T ] satisfies the SDE

dΠt = Πt(1−Πt)∆h⊤
µ (t)dWt, (9)
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where

Wt := Xt −
∫ t

0

[hµ(s, 0) + ∆hµ(s)Πs]ds (10)

is a d-dimensional FX-Brownian Motion known as the innovation process.

Proof. For any bounded measurable function ϕ, standard nonlinear filtering theory implies that
Ξt(ϕ) := E[ϕ(t, θ)|FX

t ] satisfies the Kushner-Stratonovich equation

dΞt(ϕ) =
(
Ξt(ϕh

⊤
µ )− Ξt(ϕ)Ξt(h

⊤
µ )
)
dWt, (11)

where

Wt = Xt −
∫ t

0

Ξs(hµ)ds (12)

is an FX-Brownian Motion; see e.g. [4, Theorem 3.35 and Proposition 2.30]. Setting ϕ(t, θ) := θ =
1{θ=1} leads to Ξt(ϕ) = E[1{θ=1}|FX

t ] = Πt and

Ξt(ϕhµ) = E[1{θ=1}hµ(t, 1)|FX
t ] = hµ(t, 1)Πt.

We also find that Ξt(hµ) = hµ(t, 0) + ∆hµ(t)Πt. Substituting these expressions into (11) and (12)
yields the desired results.

Remark 3.2. The distribution of the Π depends on µ via the real-valued deterministic function
∥∆hµ∥, by Lévy’s characterization of Brownian motion. We will refer to ∥∆hµ∥ as the “volatility”
of Π. By the non-degeneracy condition (4) and the boundedness of h, we have that

h ≤ ∥∆hµ∥ ≤ 2
√
d∥h∥∞ =: H,

and these bounds are uniform in µ. Hence Π is the unique strong solution to (9). Since h(·, j, ·) is
continuously differentiable and F j

µ is the convolution with a mollifier, it is also straightforward to
check that ∥∆hµ∥ ∈ C1[0, T ] ∩ Lip([0, T ]), and the Lipschitz constant can be made independent of
µ.

Remark 3.3. The P-augmentation of the natural filtration generated by W, denoted by FW =

(FW
t )t∈[0,T ], coincides with FX. Indeed, it is clear from the definition (10) that FW

t ⊆ FX
t . The

reverse set inclusion follows from the fact that (X,Π) is the unique strong solution of the system of
SDEs {

dXt = [hµ(t, 0) + ∆hµ(t)Πt]dt+ dWt, X0 = 0,

dΠt = Πt(1−Πt)∆h⊤
µ (t)dWt, Π0 = π.

As in Wald’s sequential probability ratio test, it is often convenient to work with the log-
likelihood ratio process

Lt := log

(
Πt

1−Πt

)
= S−1(Πt), (13)

where S−1 is the logit function, or the inverse of the sigmoid function S. Itô’s formula implies

dLt =
1

2
∥∆hµ(t)∥2

eLt − 1

eLt + 1
dt+∆h⊤

µ (t)dWt. (14)

We see that the state-dependence in the diffusion coefficient of Πt is removed by such a spatial
transformation. The next lemma shows that the log-likelihood ratio process is conditionally Gaussian
given θ; hence, it enjoys many nice properties.

Lemma 3.4.
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(i) Conditioned on θ = 1,

dLt =
1

2
∥∆hµ(t)∥2dt+∆h⊤

µ (t)dWt, L0 = log (π/(1− π)) , (15)

and conditioned on θ = 0,

dLt = −1

2
∥∆hµ(t)∥2dt+∆h⊤

µ (t)dWt, L0 = log (π/(1− π)) . (16)

(ii) For any L0 ∈ R and t > 0, Lt admits a density on R. Moreover, Lt almost surely diverges to
±∞ as t → ∞ but does not explode to ±∞ in finite time.

Proof. Expanding dWt in (14) using (3), (10) and (13) yields

dLt = −1

2
∥∆hµ(t)∥2dt+∆h⊤

µ (t)[hµ(t, θ)− hµ(t, 0)]dt+∆h⊤
µ (t)dWt.

Since W is independent of θ, we get (15) and (16) by conditioning.
Because ∆hµ(t) is deterministic, Lt is conditionally Gaussian with nonzero variance (see (4)).

Hence, it has a density of Gaussian mixture type. Conditioned on θ = 1, we can write by (15) and
a time change that

Lt = L0 +
1

2
α(t) + W̃α(t)

for some Brownian motion W̃ and “clock” α(t) :=
∫ t

0
∥∆hµ(s)∥2ds satisfying α(t) ∈ (0,∞) for all

t > 0 and limt→∞ α(t) = ∞ (recall h ≤ ∥∆hµ∥ ≤ H). Clearly, L does not explode in finite time. By
the Law of Large Numbers for Brownian motion,

Lt = α(t)

(
L0

α(t)
+

1

2
+

W̃α(t)

α(t)

)
a.s.−−→ ∞ as t → ∞.

The case when we condition on θ = 0 is analogous.

The following corollary is an immediate consequence of the bijection Πt = S(Lt).

Corollary 3.5. For any Π0 ∈ (0, 1) and t > 0, Πt admits a density on (0, 1). Moreover, Πt almost
surely converges to 0 or 1 as t → ∞ but does not exit (0, 1) in finite time.

3.2 Value function and optimal stopping time

We see in Lemma 3.1 that Πt is a diffusion in the observation filtration FX which coincides with
FW by Remark 3.3. This allows us to use a Markovian approach to the optimal stopping problem
(6). For (t, π) ∈ [0, T ]× [0, 1], define the value function

V (t, π) = V (t, π;µ) := inf
τ∈T X

t

E
[
c(τ − t) + g(Πt,π

τ )
]
, (17)

where Πt,π = (Πt,π
s )s≥t is given by (9) with the initial condition Πt,π

t = π, and T X
t is the set of

[t, T ]-valued FX-stopping times. One can also reparametrize the value function in terms of L:

Ṽ (t, l) := V (t, S(l)) = inf
τ∈T X

t

E
[
c(τ − t) + g ◦ S(Lt,l

τ )
]
. (18)

Since g ◦S is Lipschitz continuous by Remark 2.3 and the coefficients of L satisfy the usual Lipchitz
and linear growth conditions, we know from standard optimal stopping theory (see e.g. [65, Propo-
sition 4.7 and Remark 4.1]) that Ṽ (t, l), and hence V (t, π) = Ṽ (t, S−1(π)), is (jointly) continuous.
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Define the stopping region

D = {(t, π) ∈ [0, T ]× [0, 1] : V (t, π) = g(π)} (19)

and the continuation region C = Dc. Then

τD = inf{s ≥ t : (s,Πt,π
s ) ∈ D} (20)

is the smallest optimal stopping time for the problem (17); see [49, Theorem 2.4 and Corollary 2.9].
The optimality of τD implies that (17) can equivalently be posed over FΠ-stopping times, and that
V depends on µ only via ∥∆hµ∥. With a slight abuse of notation, in the next lemma we write
V (t, π; η) for the value function when the volatility ∥∆hµ∥ of Π is replaced by a general measurable
function η : [0, T ] → R+.

Proposition 3.6.

(i) (Concavity) V (t, π) is concave in π for each fixed t.

(ii) (Monotonicity in volatility) If η1(t) ≥ η2(t) ≥ 0∀ t, then V (t, π; η1) ≤ V (t, π; η2) ∀ (t, π) ∈
[0, T ]× [0, 1]. Consequently, for V := V ( · ;H) and V := V ( · ; h), we have that V ≤ V ≤ V .

Proof. See [26, Proposition 4.1] for (i) and an analogue of [26, Proposition 4.2] for (ii). Both proofs
are based on an approximation argument where the stopping time is restricted to take values in
a discrete set, alongside with the dynamic programming principle and the fact that the price of a
European option with a concave contract function is concave in the underlying martingale diffusion
and non-increasing in the volatility.

Let L := 1
2∥∆hµ(t)∥2π2(1−π)2∂ππ be the infinitesimal generator of Π. The following regularity

result can also be obtained for V by appealing to standard arguments (c.f. [40, Theorem 2.7.7]).
While [40, Theorem 2.7.7] pertains to American options, the arguments can be consulted for our
purposes and carry over naturally to this setting. We omit the details.

Proposition 3.7. The value function V satisfies:

∂tV (t, π) + LV (t, π) = −c ∀(t, π) ∈ C .

In particular, V is C1,2 in C .

3.3 Structure of the continuation region

In order to study our game, we will need a detailed characterization of the continuation region C .
Unlike in the classic problem where g(π) = a1π ∧ a2(1 − π), we will see that C may be empty for
some specifications of g and c. We show that under suitable conditions, C is characterized by two
boundaries which are bounded away from 0 and 1, and enclose a strip around [0, T )× {1/2}.

The continuation region C is closely related to the following set which can be computed a priori:

U := {(t, π) ∈ [0, T )× (0, 1) : Lg(t, π) < −c} .

Let Ct := C ∩ ({t} × (0, 1)) be the t-slice of C and let C[t,T ) :=
⋃

t≤s<T Ct. Similarly, we define
Ut := U ∩ ({t} × (0, 1)) and U[t,T ) :=

⋃
t≤s<T Ut.

Proposition 3.8.

(i) Ut ⊂ Ct.

(ii) C[t,T ) = ∅ if and only if U[t,T ) = ∅.
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(iii) There exist boundaries b(·) < 1/2 < B(·) such that

C = {(t, π) ∈ [0, T )× (0, 1) : b(t) < π < B(t)}. (21)

Proof. (i) Let (t, π) ∈ Ut. By continuity there exists an ϵ > 0 such that Lg < −c on U :=
[t, t+ ϵ)× (π − ϵ, π + ϵ) ⊆ [0, T )× (0, 1). Let τU be the first exit time of Πt,π from U . As τU ∈ T X

t ,
by Dynkin’s formula,

V (t, π) ≤ E
[
c(τU − t) + g(Πt,π

τU )
]

= g(π) + E
[
c(τU − t) +

∫ τU

t

Lg(s,Πt,π
s )ds

]
< g(π).

It follows that (t, π) ∈ Ct.
(ii) Necessity follows from (i). For sufficiency suppose Lg(s, π) ≥ −c for all (s, π) ∈ [t, T )×(0, 1).

For any stopping time τ ∈ T X
s with s ≥ t, we have by Dynkin’s formula that

E [g(Πs,π
τ )] = g(π) + E

[∫ τ

s

Lg(r,Πs,π
r )dr

]
≥ g(π)− E [c(τ − s)] ,

and thus, E[c(τ − s) + g(Πs,π
τ )] ≥ g(π). Since τ and (s, π) are arbitrary, the result C[t,T ) = ∅ is

immediate.
(iii) Assumption (G1) implies that g ≥ 0, which further yields V ≥ 0. On the other hand, we

always have V ≤ g. Therefore, it must hold that V (t, 0) = g(0) = 0 = g(1) = V (t, 1). Define for
t ∈ [0, T ),

D t := {π ∈ [0, 1/2] : V (t, π) = g(π)}, b(t) := supD t,

D t := {π ∈ [1/2, 1] : V (t, π) = g(π)}, B(t) := inf D t.

It is easy to see that D t and D t are non-empty and closed (by continuity). It follows that b(t) ∈ D t

and B(t) ∈ D t. Claim that b(t) < 1/2 < B(t). Indeed, Lg(t, 1/2) = ∥∆hµ(t)∥2Ag(1/2) < −c by
Assumption (G3), which implies (t, 1/2) ∈ Ut. By (i), we then have (t, 1/2) ∈ Ct. It remains to
show that the curves b and B define C .

From the definition of Ct, it is clear that {t} × (b(t), B(t)) ⊆ Ct. We want to show the reverse
set inclusion, i.e. there are no isolated “pockets” of the continuation region below b or above B. We
will focus on the case 0 < π < b(t) as the other case is analogous. Note that the endpoints 0 and
b(t) have already been eliminated since they lie in D t.

First, observe that if 0 < π < b(t), then π /∈ Ut. This is a consequence of the quasiconvexity
of Ag (see Remark 2.3) from which one can deduce that Ut is convex (hence connected). Being a
convex set which contains (t, 1/2) and which does not contain (t, b(t)), (t, B(t)) (by (i)), Ut must be
a subset of {t} × (b(t), B(t)).

Next, we show that O := C ∩ {(t, π) ∈ [0, T ) × (0, 1) : 0 < π < b(t)} is empty. Suppose to the
contrary ∃(t0, π0) ∈ O. Let τO be the first time Πt0,π0 exits from O. It must coincide with the first
exit time from C when starting from (t0, π0) because the boundaries of {(t, π) ∈ [0, T )× (0, 1) : 0 <
π < b(t)} are not in C . By optimality we can write:

V (t0, π0) = E
[
c(τO − t) + g(Πt0,π0

τO )
]
.

Since Lg ≥ −c on O (as O ∩ U = ∅), we find as in (ii) that V (t0, π0) ≥ g(π0). This is a clear
contradiction to (t0, π0) ∈ C .

The next proposition says the boundaries b, B are uniformly bounded away from 0, 1/2, and
1. The proof makes use of the solution to the infinite horizon version of the problem with constant
volatility which we address in Appendix B and may be of independent interest.
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Proposition 3.9. There exist constants b∗, b
∗, B∗, B

∗, independent of µ, such that the boundaries
b and B defined in Proposition 3.8(iii) satisfy

0 < b∗ ≤ b(t) ≤ b∗ < 1/2 < B∗ ≤ B(t) ≤ B∗ < 1, ∀ t ∈ [0, T ).

Proof. Let V be defined in Proposition 3.6(ii), and let V ∞ be the value function for the infinite
horizon problem associated with the volatility H. By Proposition 3.6(ii) and the nature of the
infimum, we have that V ≥ V ≥ V ∞. Consequently, the continuation region for V must be
contained in that for V ∞. The latter is defined by two constant boundaries 0 < b∗ < B∗ < 1 (see
Proposition B.2). Thus, we have shown 0 < b∗ ≤ b(t) < 1/2 < B(t) ≤ B∗ < 1 for t ∈ [0, T ).

To get the inner bounds, we use Assumption (G3). By continuity, there exist constants b∗ <

1/2 < B∗ such that Ag < −c/h2 on [b∗, B∗]. Again, using the relations Lg(t, π) = ∥∆µh(t)∥2Ag(π)
and ∥∆µh(t)∥ ≥ h, as well as Proposition 3.8(i), we obtain {t} × [b∗, B∗] ⊆ Ut ⊆ Ct for all t.

3.4 Regularity of the stopping boundaries

With our characterization of the continuation region complete, we turn to establishing the regularity
of the defining boundaries.

Proposition 3.10. The boundaries b(·) and B(·) are Lipschitz on any compact subset of [0,T) and
the local Lipschitz constant can be made independent of µ.

Proof. We will treat the upper boundary as the lower boundary is analogous. Define J = V − g
with the additional restriction that its domain is the upper region (t, π) ∈ [0, T )× [1/2, 1) for all t.
The upper boundary B(·) is the minimum element of the zero level set of J , i.e. J(t, B(t)) = 0 for
t ∈ [0, T ). The motivation for this proof is to use the derivatives of J to obtain a local estimate on the
regularity of the boundary. Since by Proposition 3.7 we can only make use of the derivatives in the
interior of the continuation region, we first step away from the boundary and attempt to characterize
the regularity of a family of “δ-level” boundaries Bδ(t). By obtaining a uniform estimate in δ and
showing that B(t) = limδ→0 Bδ(t) we are able to extend the regularity to B. To obtain the regularity,
the idea is to use a time and space transformation (see Appendix C) alongside the differentiable flow
and pathwise derivative techniques of [20]. We model much of our analysis after the approach of
[20, Theorem 4.3].

We begin by collecting some properties of J and the continuation region. From Lemma C.7 and
the discussion preceding Proposition C.9 we have ∂πJ(t, ·) > 0 on (1/2, B(t)) so that J(t, ·) is strictly
increasing on (1/2, B(t)). Moreover, by definition J ≤ 0, and by continuity limπ↑B(t) J(t, π) = 0.
By Proposition 3.9 we can pick a π ∈ (1/2, B∗) so that for all t, (t, π) ∈ C . Evidently, J(t, π) < 0
for all t.

We now fix t ∈ [0, T ). To analyze the boundary regularity locally we choose an (arbitrary)
interval of analysis that is independent of µ. Pick t0, t1 ∈ [0, T ) with t0 < t < t1 so that [t0, t1] ⊂
[0, T ) (if t = 0 then we can extend J to (−ϵ, T ) × [1/2, 1) so that this argument can be repeated
without loss of generality). Next, we want to ensure that a given δ-level boundary is well-defined
for all s ∈ [t0, t1]. Define δ0 := sups∈[t0,t1] J(s, π). By continuity and compactness, the supremum
is attained and consequently δ0 < 0. As J(s, ·) is strictly increasing and continuous, we have that
for fixed s ∈ [t0, t1] that J(s, π) attains every δ ∈ (δ0, 0) on the spatial interval (1/2, B(s)). So, for
s ∈ [t0, t1] if δ ∈ (δ0, 0) there is a single point defining the δ-level set.

Since J is continuously differentiable in the interior of the continuation region we have by the
implicit function theorem that there is a continuously differentiable function Bδ(s) defined on (t0, t1)
such that

J(s,Bδ(s)) = δ. (22)
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Notice that we must have Bδ(s) < B(s) and Bδ(s) is increasing in δ. By monotonicity and the
boundedness of B(s) there is a limit function B0(s) such that

lim
δ↑0

Bδ(s) = B0(s) ≤ B(s), s ∈ (t0, t1).

On the other hand, by taking limits across the previous equality (22) we have

0 = lim
δ↑0

J(s,Bδ(s)) = J(u,B0(s))

so that B0(s) ≥ B(s) by definition of B(s). We conclude B0(s) = B(s) and so Bδ(s) ↑ B(s) on
(t0, t1) as δ ↑ 0.

We want to use this convergence to show that B(s) is Lipschitz on any compact subset of (t0, t1)
containing t. To obtain our desired result we will adapt the arguments of [20, Theorem 4.3]. Let
ϵ > 0 be arbitrarily small enough so that t ∈ Iϵ := [t0 +

ϵ
2 , t1 −

ϵ
2 ] ⊂ (t0, t1). Again by the implicit

function theorem we have

B′
δ(s) = − ∂tJ(s,Bδ(s))

∂πJ(s,Bδ(s))
, s ∈ Iϵ.

Then by Proposition C.9 we find that there exists a Kϵ independent of δ and the measure µ such
that: ∣∣∣∣ ∂tJ(s,Bδ(s))

∂πJ(s,Bδ(s))

∣∣∣∣ ≤ Kϵ, s ∈ Iϵ.

The proof of this result may be of independent interest as it makes use of the time and space change
discussed in Appendix C alongside pathwise derivative techniques inspired by [20]. As a result of
this bound, by Bδ(s) → B(s) and the compactness of uniformly bounded and uniformly Lipschitz
functions (by the Arzelà-Ascoli Theorem) we have that B(s) must also be Kϵ-Lipschitz on Iϵ.

As t0 < t < t1 and ϵ > 0 were arbitrary we have that for any t ∈ [0, T ) there exists an ϵ′ > 0 and
a constant Kϵ′ , both independent of µ, such that B(s) is Kϵ′-Lipschitz on [t− ϵ′, t+ ϵ′] ∩ [0, T ). As
R is locally compact, we get that there is a uniform (in µ) Lipschitz constant for B on any compact
subset of [0, T ). This completes the proof.

3.5 Free-boundary problem and boundary integral equations

Our final step in the analysis of the representative agent problem is to derive the free-boundary
problem associated with the value function and obtain a characterization of the free boundaries as
the solution to a pair of integral equations.

Proposition 3.11. The value function V and stopping boundaries b(·), B(·) satisfy the free boundary
problem {

∂tV (t, π) + LV (t, π) = −c π ∈ (b(t), B(t)), t ∈ [0, T )

V (t, π) = g(π) π ∈ [0, b(t)] ∪ [B(t), 1], t ∈ [0, T )
.

Moreover, the smooth fit condition holds in the sense that the function π 7→ V (t, π) is C1[0, 1] for
all t ∈ [0, T ).

Proof. The form of the PDE when t and π satisfy b(t) < π < B(t) follows from Proposition 3.7.
The smooth fit condition follows from Proposition C.10 which exploits the time change techniques
introduced in Appendix C.
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Proposition 3.12. The pair (b, B) solves:

g(r(t)) = E
[
g(Π

t,r(t)
T )

]
+ c

∫ T

t
P
(
Π

t,r(t)
u ∈ (r(u), R(u))

)
du

−
∫ T

t
E
[
Lg(u,Πt,r(t)

u )1{
Π

t,r(t)
u ∈(0,r(u))∪(R(u),1)

}] du.
g(R(t)) = E

[
g(Π

t,R(t)
T )

]
+ c

∫ T

t
P
(
Π

t,R(t)
u ∈ (r(u), R(u))

)
du

−
∫ T

t
E
[
Lg(u,Πt,R(t)

u )1{
Π

t,R(t)
u ∈(0,r(u))∪(R(u),1)

}] du.
(23)

Moreover, it is the maximal continuous solution in the sense that if the pair (r,R) is a continuous
solution to the above integral equation with r ≤ b and B ≤ R (i.e. b and B are contained between r
and R), then r = b and B = R.

Proof. To establish this result we will adapt the arguments of [26, Theorem 5.1]. Let (t, π) ∈
[0, T )× (0, 1). For sufficiently small ϵ > 0 define

τϵ := inf{s ≥ t : Πt,π
s ̸∈ (ϵ, 1− ϵ)} ∧ (T − ϵ).

Applying [48, Theorem 3.1 and Remark 3.2] to V (s ∧ τϵ,Π
t,π
s∧τϵ) we obtain:

E
[
V (τϵ,Π

t,π
τϵ )
]
= V (t, π) + E

[∫ τϵ

t

(∂t + L)V (u,Πt,π
u )1{Πt,π

u ̸∈{b(u),B(u)}}du
]

= V (t, π)− cE
[∫ τϵ

t

1{Πt,π
u ∈(b(u),B(u))}du

]
+ E

[∫ τϵ

t

Lg(u,Πt,π
u )1{Πt,π

u ∈(0,b(u))∪(B(u),1)}du
]

after taking expectations. The result applied here, [48, Theorem 3.1 and Remark 3.2], extends
Itô’s formula and the sufficient conditions are readily verified in our setting by using the smooth fit
property from Proposition 3.11, the boundedness of Lg (implied by the boundedness of Ag given in
Remark 2.3), and the fact that the boundaries (b, B) are bounded variation on [t, T − ϵ] by being
locally Lipschitz on [0, T ) (see Proposition 3.10).

Now, as ϵ ↓ 0 we have τϵ → T a.s. and by bounded convergence we obtain after rearranging:

V (t, π) = E
[
g(Πt,π

T )
]
+ c

∫ T

t

P
(
Πt,π

u ∈ (b(u), B(u))
)
du

−
∫ T

t

E
[
Lg(u,Πt,π

u )1{Πt,π
u ∈(0,b(u))∪(B(u),1)}

]
du.

Setting π = b(t) and π = B(t) we obtain that b(t) and B(t) solve (23).
We now show that b(·), B(·) are the maximal continuous solutions to (23). Suppose that (r,R)

are continuous solutions to the integral equations with r ≤ b and B ≤ R. We will show that we
must have r = b and B = R. As in [26, Theorem 5.1], define

H(t, π) := E
[
g(Πt,π

T )
]
+ c

∫ T

t

P
(
Πt,π

u ∈ (r(u), R(u))
)
du

−
∫ T

t

E
[
Lg(u,Πt,π

u )1{Πt,π
u ∈(0,r(u))∪(R(u),1)}

]
du.

We have H(t, r(t)) = g(r(t)) and H(t, R(t)) = g(R(t)) since r and R are solutions to the equations
(23), and further that H(T, π) = g(π). For any (t, π) define for s ≥ t the two processes (M t,π

s )s≥t
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and (M̃ t,π
s )s≥t by

M t,π
s := H(s,Πt,π

s ) + c

∫ s

t

1(r(u),R(u))(Π
t,π
u )du

−
∫ s

t

Lg(u,Πt,π
u )1{Πt,π

u ∈(0,r(u))∪(R(u),1)}du

and

M̃ t,π
s := V (s,Πt,π

s ) + c

∫ s

t

1(b(u),B(u))(Π
t,π
u )du

−
∫ s

t

Lg(u,Πt,π
u )1{Πt,π

u ∈(0,b(u))∪(B(u),1)}du

As in [26, Theorem 5.1], both processes can be shown to be martingales for any (t, π). Specifically,
these processes are of the same form as the process Y t,π = (Y t,π

ℓ )ℓ≥t defined below (for a placeholder
integrable function f). Since we are conditioning on a random starting point in the equation for H
and V , by the Markov property:

Y t,π
ℓ := E

[
g(Π

ℓ,Πt,π
ℓ

T )
]
+

∫ T

ℓ

E
[
f(u,Π

ℓ,Πt,π
ℓ

u )
]
du+

∫ ℓ

t

f(u,Πt,π
u )du

= Eℓ,Πt,π
ℓ

[
g(Πt,π

T )
]
+

∫ T

ℓ

Eℓ,Πt,π
ℓ

[
f(u,Πt,π

u )
]
du+

∫ ℓ

t

f(u,Πt,π
u )du

= E
[
g(ΠT )

∣∣FΠt,π

ℓ

]
+

∫ T

ℓ

E
[
f(u,Πu)

∣∣FΠt,π

ℓ

]
du+

∫ ℓ

t

f(u,Πt,π
u )du

= E

[
g(ΠT ) +

∫ T

t

f(u,Πu)du

∣∣∣∣FΠt,π

ℓ

]
.

The martingale property follows immediately from this representation by taking conditional expec-
tations and applying the tower property.

The remainder of the proof proceeds in parts.
Part 1: We verify that H(t, π) = g(π) for π ̸∈ (r(t), R(t)).

Assume that π ≤ r(t) ≤ b(t) as the other case is similar. Define

τr := inf{s ≥ t : Πt,π
s ≥ r(s)} ∧ T.

We see that:

M t,π
τr = H(τr,Π

t,π
τr )−

∫ τr

t

Lg(u,Πt,π
u )du (24)

and

M̃ t,π
τr = V (τr,Π

t,π
τr )−

∫ τr

t

Lg(u,Πt,π
u )du (25)

by the definition of the stopping time and our assumption on the boundaries. Then

H(t, π) = E
[
M t,π

τr

]
= E

[
H(τr,Π

t,π
τr )−

∫ τr

t

Lg(u,Πt,π
u )du

]
= E

[
g(Πt,π

τr )−
∫ τr

t

Lg(u,Πt,π
u )du

]
= E

[
V (τr,Π

t,π
τr )−

∫ τr

t

Lg(u,Πt,π
u )du

]
= E

[
M̃ t,π

τr

]
= V (t, π) = g(π).
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The first equality is justified by optional sampling and the martingale property of M , the second
by (24), the third by H(T, π) = g(π) and H(t, r(t)) = g(r(t)), the fourth by the fact that r ≤ b so
V = g at the stopping time, the fifth and sixth again by (25), optional sampling and the martingale
property, and the seventh by the fact that π ≤ r(t) ≤ b(t).
Part 2: We verify that H(t, π) ≥ V (t, π) for all π ∈ (0, 1).

In view of Part 1, it suffices to check that H(t, π) ≥ V (t, π) for π ∈ (r(t), R(t)). Let

τ(r,R) := inf{s ≥ t : Πt,π
s ̸∈ (r(s), R(s))} ∧ T

Then, arguing similarly to Part 1 we obtain:

H(t, π) = E
[
M t,π

τ(r,R)

]
= E

[
H(τ(r,R),Π

t,π
τ(r,R)

) + c

∫ τ(r,R)

t

1(r(u),R(u))(Π
t,π
u )du

]
= E

[
g(Πt,π

τ(r,R)
) + c(τ(r,R) − t)

]
≥ V (t, π).

Here the last inequality follows by the definition of V .
Part 3: We verify that r(t) = b(t) and B(t) = R(t) for all t ∈ [0, T ).

Suppose that b(t) > r(t) for some t. Take π = r(t) and let

τb := inf{s ≥ t : Πt,r(t)
s ≥ b(s)} ∧ T.

Now

0 = g(r(t))− g(r(t)) = H(t, r(t))− V (t, r(t))

= E
[
M t,r(t)

τb

]
− E

[
M̃ t,r(t)

τb

]
= E

[
H(τb,Π

t,r(t)
τb

)− V (τb,Π
t,r(t)
τb

)
]
+ E

[
c

∫ τb

t

1{
Π

t,r(t)
u ∈(r(u),b(u))

}du
]

− E
[∫ τb

t

Lg(u,Πt,r(t)
u )1{

Π
t,r(t)
u ∈(0,r(u))

}du
]

+ E
[∫ τb

t

Lg(u,Πt,r(t)
u )1{

Π
t,r(t)
u ∈(0,b(u))

}du
]

= E
[
H(τb,Π

t,r(t)
τb

)− V (τb,Π
t,r(t)
τb

)
]
+ E

[
c

∫ τb

t

1{
Π

t,r(t)
u ∈(r(u),b(u))

}du
]

+ E
[∫ τb

t

Lg(u,Πt,r(t)
u )1{

Π
t,r(t)
u ∈(r(u),b(u))

}du
]

> E
[
H(τb,Π

t,r(t)
τb

)− V (τb,Π
t,r(t)
τb

)
]
+ E

[
c

∫ τb

t

1{
Π

t,r(t)
u ∈(r(u),b(u))

}du
]

− E
[
c

∫ τb

t

1{
Π

t,r(t)
u ∈(r(u),b(u))

}du
]

= E
[
H(τb,Π

t,r(t)
τb

)− V (τb,Π
t,r(t)
τb

)
]
≥ 0.

This is a contradiction and so we conclude r = b. Here the strict inequality follows from Proposition
3.8 given the form of U , the fact that ∂πLg < 0 on (0, 1/2) under Assumption (G2), and boundary
continuity. The second inequality follows from Part 2 where we obtained H ≥ V . The argument
that B = R is analogous and so this completes the proof.
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4 Existence of a Mean Field Equilibrium

With the analysis of the single agent problem in Section 3 complete, we are now in a position to
tackle the proof of our main result (Theorem 2.9). Our approach centers on an application of the
Schauder-Tychonoff Fixed Point Theorem (see [35, Corollary 17.56]) to the mapping (7) which we
denote by Φ : P([0, T ])2 → P([0, T ])2 and recall here as

Φ(µ) =
(
L(τ ι,∗µ |θ = 0),L(τ ι,∗µ |θ = 1)

)
. (26)

This typically requires verifying the compactness and convexity of the underlying space (when viewed
as a subset of a suitable locally convex Hausdorff topological vector space), as well as, the continuity
of the mapping.

The continuity of Φ can be broken down into several steps, as shown in the next three auxiliary
lemmas. In this section, we add back the index i ∈ I on all agent-dependent elements of the problem.

Lemma 4.1 (Continuity of the value function in µ). Let Assumption G hold. If µn ⇒ µ, then the
corresponding signals hi

µn
(t, θ), volatilities ∥∆hi

µn
(t)∥, and value functions converge pointwise:

hi
µn

(t, ·) → hi
µ(t, ·), ∥∆hi

µn
(t)∥ → ∥∆hi

µ(t)∥,

and Vi(t, π;µn) → Vi(t, π;µ), ∀(t, π) ∈ [0, T )× [0, 1].

Proof. It is easy to check that as µn ⇒ µ we have that the regularized distributions given by (2)
satisfy: F j

µn
(t) → F j

µ(t) for j ∈ {0, 1} and all t ∈ [0, T ]. By the continuity of hi
µ(t, j) := hi(t, j, F j

µ(t))

in the argument corresponding to F j
µ(t), we readily obtain the pointwise convergence of the signals

hi
µn

→ hi
µ and volatilities ∥∆hi

µn
∥ → ∥∆hi

µ∥. It remains to show the continuity of the value function
in µ.

As noted in Remark 3.2, the dependence of the value function on µ is entirely through the
influence of ∥∆hi

µ∥ on the distribution of Πi. Hence it suffices to show that the value function is
continuous in the volatility. The arguments are adapted from those of Erik Ekström who graciously
provided detailed notes on the omitted proof of [25, Theorem 4.5] which asserts continuity in a related
(but not identical) setting. The analysis relies on the idea of volatility times which correspond to
the quadratic variation of continuous local martingales. Since, in our problem, we may equivalently
work with FΠ stopping times (see Section 3.2) we can allow the posterior probability process to be
driven by an arbitrary Brownian motion. Then, using the work of Janson and Tysk [39] we may
write the sequence of problems indexed by µn in terms of the same Brownian motion but multiple
volatility times. This perspective is incredibly helpful for establishing the desired continuity. For
completeness, we include the proof in full detail in Appendix D.

Lemma 4.2 (Continuity of the boundaries in µ). Let Assumption G hold. If µn ⇒ µ, then the
corresponding optimal stopping boundaries Bi

n, b
i
n converge to Bi, bi locally uniformly on [0, T ).

We defer the proof of boundary convergence to Appendix E.1. The idea is to establish a unique
limit point of the boundary sequence. For any subsequence of (bin), (B

i
n), we argue that we may

extract a further subsequence (bin′), (Bi
n′) that converges locally uniformly to some b

i
and B

i
. Then,

by taking limits across the equations

Vi(t, b
i
n′(t);µn′) = gi(b

i
n′(t)), Vi(t, B

i
n′(t);µn′) = gi(B

i
n′(t)),

we can obtain b
i ≤ bi, Bi ≤ B

i
. The reverse direction (i.e. bi ≤ b

i
and B

i ≤ Bi) uses that the pair
(bi, Bi) is the maximal continuous solution to the integral equations (23) in Proposition 3.12.
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Lemma 4.3 (Continuity of the stopping times in µ). Let Assumption G hold and recall that τ i,∗µn
, τ i,∗µ

denote the smallest optimal stopping time for the single agent problem (6) associated with the input
measures µn and µ, respectively. If µn ⇒ µ, then τ i,∗µn

|θ=j converges to τ i,∗µ |θ=j in probability, for
j = 0, 1.

Proof. For a fixed agent i and an arbitrary input measure µ, observe that their associated posterior
probability process Πi hits their optimal stopping boundaries bi or Bi if and only if Li = S−1(Πi)
from (13) hits mi := S−1(bi) or M i := S−1(Bi). Moreover, since bi and Bi are bounded away from
0 and 1 (see Proposition 3.9), and S−1(·) is locally Lipschitz, the boundaries mi and M i inherit the
uniform (in µ) local Lipschitz property of bi and Bi from Proposition 3.10.

Let bin and Bi
n be the boundaries associated with µn and define the corresponding transformed

boundaries mi
n = S−1(bin) and M i

n = S−1(Bi
n) analogously to the definition of mi and M i above.

Similarly let Ln,i and Li be the log-likelihood ratio processes whose dynamics in (14) are induced
by µn and µ for the agent i. Define the hitting times to each of the boundaries up to time T :

τ imi
n
:= inf{t ≥ 0 : mi

n(t)− Ln,i
t ≥ 0} ∧ T,

τ iMi
n
:= inf{t ≥ 0 : Ln,i

t −M i
n(t) ≥ 0} ∧ T.

By Lemma 4.2, bin → bi and Bi
n → Bi locally uniformly, and by our transformation we also have

mi
n → mi and M i

n → M i locally uniformly on [0, T ). We can now write the conditional hitting
times τ imi

n,j
:= τ imi

n
|θ=j , τ

i
Mi

n,j
:= τ iMi

n
|θ=j , and express the (smallest) conditional optimal stopping

time for the input measure µn, τ
i,∗
µn,j

:= τ i,∗µn
|θ=j , as:

τ i,∗µn,j
= τ imi

n,j
∧ τ iMi

n,j
.

In Lemma 3.4, we have already observed that Ln,i and Li are conditionally Gaussian, and in Ap-
pendix F we establish a result on convergence of hitting times for Gaussian processes. In particular,
since the coefficients of our Gaussian process converge (see (15)-(16) and Lemma 4.1) and the initial
condition Ln,i

0 = Li
0 = S−1(π) is fixed, by Lemma F.1 and the continuous mapping theorem we have

that τ i,∗µn,j
→ τ i,∗µ,j in probability.

We now collect these results in order to prove our main theorem.

Proof of Theorem 2.9. We formally verify the conditions of Schauder-Tychonoff Fixed Point Theo-
rem for Φ beginning with the compactness and convexity of the underlying space. Let M([0, T ]) be
the locally convex Hausdorff topological vector space of finite signed measures on the Borel σ-field
of [0, T ]. The space of probability measures P([0, T ]) is a compact and convex subset of M([0, T ])
when it is equipped with the weak*-topology3. Since the product space P([0, T ])2 inherits compact-
ness and convexity in the parent product space (which is also a locally convex Hausdorff topological
vector space), the remaining requirement of Schauder’s Theorem is continuity.

We introduce the notation Pθ to represent the conditional measure P(·|θ). It is clear from Defi-
nition 2.7 that the measure associated with conditional law in (26) can be written by disintegrating
in the agent space and representing the conditional law of the optimal stopping time for a given
agent i as the pushforward of Pθ by τ i,∗µ . We denote this measure by νµ which is defined formally
below for all Borel-measurable A ⊆ [0, T ]:

νµ(A) :=

∫
I

∫
Ω

1τ i,∗
µ (ω)∈AP

θ(dω)λ(di).

3This coincides with the usual topology of weak convergence on P([0, T ]).
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Suppose that µn ⇒ µ and let f ∈ Cb([0, T ]). Then,∫
fdνµn =

∫
I

∫
Ω

f(τ i,∗µn
(ω))Pθ(dω)λ(di)

n→∞−−−−→
∫
I

∫
Ω

f(τ i,∗µ (ω))Pθ(dω)λ(di) =

∫
fdνµ,

where the convergence follows by the bounded convergence theorem and the weak convergence of
the conditional stopping times τ i,∗µn

|θ for all i (implied by Lemma 4.3). This gives the convergence
we require and so, the mapping (26) is continuous.

Taken together, we have established that our mapping (26) has at least one fixed point. In view
of Definition 2.7 this gives the existence of a mean field equilibrium to the sequential testing game
and completes the proof of Theorem 2.9.

5 Preemption Games with the Classic Loss

Our existence result (Theorem 2.9) does not extend directly to games involving the classic loss
function. The penalty g(π) = a1π ∧ a2(1 − π) contains a kink which creates technical difficulties
that are not addressed by the techniques we use to establish boundary regularity (Proposition 3.10),
a critical ingredient in our proof. However, we can get around this limitation in the special case
where the volatility ∥∆hµ(t)∥ is monotone decreasing for all input measures µ. This can be used to
prove monotonicity of the optimal stopping boundaries b, B, which in turn can be substituted for
the aforementioned regularity requirements.

Assumption C (Classic Loss).

(C1) The penalty function is gi(π) = ai1π ∧ ai2(1− π) where ai1, a
i
2 > 0.

(C2) The volatility ∥∆hi
µ(t)∥ is monotone decreasing for all µ ∈ P([0, T ])2.

An example where this condition holds is the preemption game version (i.e. λ1 < 0) of Example
2.2. In general we can loosely think of (C2) as enforcing a preemption style game since it says
that the signal gets weaker as time progresses so agents trade off the benefits of outlasting other
agents and observing the process for a longer time with the cost of a weakening signal. If, as in the
λ1 < 0 case of Example 2.2, the exit of other agents further weakens the signal (i.e. µ1 ≤ µ2 in first
stochastic order implies ∥∆hi

µ1
(t)∥ ≤ ∥∆hi

µ2
(t)∥ for all t) then the benefit of “preempting” other

agents is even more pronounced and reinforced by the nature of the interaction.
As in Section 3, we will suppress the index i when discussing the representative agent problem.

We begin our analysis in this section by noting that most of the results in Section 3 have analogues
in the classic problem with monotone decreasing volatility. We report the main conclusions for the
value function here and also obtain monotonicity in time, Lipschitz regularity in π, and a useful
estimate on the second spatial derivative.

Proposition 5.1. Under Assumption C,

(i) V (t, π) is jointly continuous and τD from (20) is the smallest optimal stopping time.

(ii) V (t, π) is concave in π and monotone in the volatility.

(iii) t 7→ V (t, π) is increasing on [0, T ) for all π ∈ (0, 1).

(iv) π 7→ V (t, π) is Lipschitz on [0, 1] for all t ∈ [0, T ).

(v) V is C1,2 in C and satisfies:

∂tV (t, π) + LV (t, π) = −c ∀(t, π) ∈ C .
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(vi) ∂ππV ≤ − 2c
∥∆hµ(t)∥2π2(1−π)2 ≤ − 8c

H2 < 0 for all (t, π) ∈ C and ∂ππV = 0 otherwise.

Proof. (i),(ii) and (v) follow from the same arguments as in Section 3.2.
(iii) This is a special case of [26, Proposition 4.2] using (in their notation) σ(t, π) = ∥∆hµ(t)∥π(1−

π) for the diffusion coefficient4.
(iv) Since V (t, ·) is concave, it is locally Lipschitz on (0, 1). As 0 ≤ V ≤ a1π∧ a2(1−π) this can

be strengthened to globally Lipschitz on [0, 1] with constant max{a1, a2}.
(vi) follows by rearranging (v) and noting from (iii) that we must have ∂tV ≥ 0. The bounds

are then trivial.

Additionally, the continuation region for the classic problem can still be characterized in terms
of two time-dependent boundaries in a manner similar to Proposition 3.8(iii) and Proposition 3.9.
We also report the monotonicity properties of the boundaries that will take the place of regularity
in the analysis to follow.

Proposition 5.2. Under Assumption C there exist boundaries b(·) < a2

a1+a2
< B(·) such that:

C = {(t, π) ∈ [0, T )× (0, 1) : b(t) < π < B(t)}.

The lower boundary b : [0, T ) → (0, a2/(a1 + a2)] is continuous and increasing. The upper boundary
B : [0, T ) → [a2/(a1+a2), 1) is continuous and decreasing. Moreover, there exist functions b, b, B,B
and constants b∗, B

∗ independent of µ such that

(i) For all t ∈ [0, T ):

0 < b∗ ≤ b(t) ≤ b(t) ≤ b(t) <
a2

a1 + a2
< B(t) ≤ B(t) ≤ B(t) ≤ B∗ < 1,

(ii) b(T ) = a2

a1+a2
= B(T ) and so b(T ) = a2

a1+a2
= B(T ).

Proof. We begin by establishing the existence of the boundaries. By the argument in [26, Lemma
4.5], since ∥∆hµ(t)∥ ≥ h the value function satisfies

V (t, a2/(a1 + a2)) < g(a2/(a1 + a2))

for all t < T . The claim is then a consequence of the concavity of V (t, π) in π since V −g is piecewise
concave and non-positive everywhere with (V − g)(t, 0) = (V − g)(t, 1) = 0. Hence, (V − g)(t, ·)
must be decreasing on [0, a2/(a1 + a2)) and increasing on (a2/(a1 + a2), 1]. It follows that for every
t there exists a b(t), B(t) such that V − g = 0 on (b(t), B(t))c. Then, the claimed monotonicity
and continuity follow from a special case of [26, Proposition 4.6 and Theorem 4.10] using (in their
notation) σ(t, π) = ∥∆hµ(t)∥π(1− π) for the diffusion coefficient; also see [26, Remark 4.11].

For (i) it suffices to note that the upper and lower bounds in Proposition 3.6(ii) on the value
function and the definition of the continuation region in terms of V (see (19)) imply a corresponding
upper and lower bound on the continuation region with respect to the usual set ordering. In view of
the preceding characterization in terms of boundary functions b(t), B(t) we can associate b(t), B(t)
with the formulation using ∥∆hµ(t)∥ ≡ H and b(t), B(t) with ∥∆hµ(t)∥ ≡ h. The upper and lower
constant bounds, b∗ and B∗, then follow from the bounds on the classic problem in finite time (see
[49, Eq. (21.2.36)]). The terminal value in (ii) for the upper and lower bounds follows from [49, Eq.
(21.2.37)].

4Note that the results of [26, Section 4] holds for both the finite and infinite horizon problems. By [26,
Remark 2.1] the arguments extend to all constants a1, a2 > 0.
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We remark here that the remaining key results of Section 3 have analogues under Assumption
C. The representation of the value function as the solution to a free boundary problem and the
associated smooth fit condition in Proposition 3.11 follows by appealing once more to [26] (in par-
ticular, Proposition 4.9 and Remark 4.11 therein). Similarly, the integral equations in Proposition
3.12 for the boundaries follow from [26, Theorem 5.1] under Assumption C. For the classic loss, Lg
is well defined away from a2/(a1 + a2) and equal to 0. Consequently, the last terms in the integral
equations of Proposition 3.12 vanish in the classic setting.

With this, we have the preliminaries necessary for an adaptation of the proof in Section 4 of
Theorem 2.9. The structure of the proof of existence (i.e. the application of Schauder’s Theorem)
remains the same for the classic loss, and the arguments and conclusion of Lemma 4.1 extend directly
to the setting of Assumption C. However, the existing boundary convergence result (Lemma 4.2)
relies on regularity and so an alternative proof must be provided. We state this result formally here
and defer the proof to Appendix E.2.

Lemma 5.3 (Convergence of the classic boundaries). Under Assumption C, if µn ⇒ µ then the
associated boundaries for the classic penalty are such that Bn(t) → B(t) and bn(t) → b(t) locally
uniformly on [0, T ).

Finally, we arrive at the promised extension of our existence result to preemption games with
the classic loss.

Theorem 5.4. Under Assumption C, there exists a mean field equilibrium for the sequential testing
game.

Proof. To obtain the existence of an equilibrium (Theorem 2.9) under Assumption C it suffices to
ensure that the continuity of (26) still holds. The only missing ingredient from the proof employed
in Section 4 is the conclusion of Lemma 4.3. However, this is straightforward to verify. First,
the application of Lemma 4.2 can be substituted with Lemma 5.3. Then, by Proposition 5.2 the
boundaries are continuous and monotone. These properties are inherited by m = S−1(b), M =
S−1(B) which, in turn, allows us to apply the same consistency result as before (Lemma F.1) for
the hitting times of Gaussian processes. It is then easy to check that the remaining arguments of
Lemma 4.3 carry over to the setting of Assumption C.

6 Numerical Examples

In this section we will illustrate the solution to several sequential testing games that arise from the
parametric form of the signal in Example 2.2,

h(t, j, F j
µ(t)) = (j − 1/2)

(
λ0 + λ1F

j
µ(t)

)
, (27)

which leads to the volatility

∥∆hµ(t)∥ = λ0 + λ1(F
1
µ(t) + F 0

µ(t)). (28)

Here we will restrict our attention to the homogeneous agent setting for simplicity and so the index i
is suppressed. We will primarily focus on the cross entropy loss (Example 2.4) due to its prevalence
in machine learning applications but we also include a brief discussion on the classic loss.

As noted in Example 2.2, this class of problems is rich enough to allow for the investigation of
both preemption and war of attrition games. The parameter λ0 plays the role of a baseline signal
and λ1 governs the strength of the interaction with the agent population. Since we are interested in
investigating the effects of this interaction, this is the parameter we will modulate in (27). Thus, we
will fix the prior π = 1/2 and the global parameters λ0 = 1, c = 0.1, and T = 5. We noted in Example
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2.2 that for our assumptions to be satisfied we require λ1 > −λ0, so this will be the feasible range
we investigate. Figure 1 (left panel) visualizes the trajectory of the posterior probability process
when λ1 = 0 for reference.

Since the state space for the representative agent problem is low dimensional, the solution
remains amenable to conventional numerical techniques. For our purposes, we solve the sequential
testing game by first solving a discrete time approximation of the agent problem using dynamic
programming and then performing a fixed point interaction in the space of input measures until
convergence.

6.1 Cross entropy loss
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Equilibrium Stopping Boundaries

Figure 1: Π process trajectories in the non-interactive setting (λ1 = 0) (left panel) and
equilibrium stopping boundaries (right panel).

Figure 1 (right panel) illustrates the optimal stopping boundaries for different values of λ1 in
equilibrium when the cross entropy loss is used. We observe that as λ1 decreases the continuation
region gets smaller. We also see that the optimal stopping boundaries are decreasing in time when
λ1 < 0. Indeed, this should be the case since this implies that the game is one of preemption
and the volatility is decreasing in time. It is not hard to see that the proof of time monotonicity
in Proposition 5.1(iii) for the classic problem generalizes readily to the cross entropy loss (see the
arguments of [26, Proposition 4.2]).

Figure 2 (left panel) shows the corresponding stopping time distributions arising in equilibrium.
Since we have enforced π = 1/2 and the boundaries are symmetric, the conditional stopping time
distributions are the same for each θ and coincide with the stopping time CDF. Interestingly, we
observe an ordering on the stopping time distributions. In particular, as λ1 decreases the stopping
times appear to decrease in (first) stochastic order. Note that this is not immediate since a decrease
in λ1 decreases both the continuation region size and the volatility (holding the input measure
constant). These have conflicting effects as unilaterally decreasing the continuation region size
makes the first exit time smaller, while unilaterally decreasing the volatility makes the first exit time
larger. Evidently, here the former effect dominates in equilibrium.

As the continuation region and the value function are linked, the monotonicity of the continuation
regions is also reflected in Figure 2 (right panel). Here the value function is clearly seen to decrease
as λ1 increases. However, we see that there appears to be a difference in how the problem value
behaves for preemption and war of attrition games. For positive values of λ1, when λ1 increases we
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Figure 2: Equilibrium stopping time CDFs (left panel) and problem values (right panel).

see a relatively rapid decline in the problem value. On the other hand, for negative values of λ1, we
see a slow rate of increase in the problem value and a trend toward g(1/2) as λ1 ↓ −λ0.

It is worth noting that we can a priori expect an ordering of the continuation regions across the
two regimes λ1 > 0 (war of attrition) and λ1 < 0 (preemption). In equilibrium, the value function
for λ1 > 0 must be smaller (and hence continuation region is larger) than when λ1 < 0. This follows
as a consequence of Proposition 3.6 since we have a clear ordering of the volatility coefficients. On
the other hand, if we are comparing two preemption or war of attrition games the ordering of the
value function with respect to λ1 is no longer immediate. This is since the equilibrium measure
comes into the problem with the same sign and while the interaction parameter can be ordered
there is no guarantee in advance that the induced equilibrium measures will have the same ordering.
Nonetheless, we do observe, at least numerically, this ordering here.

6.2 Classic loss

We now briefly touch on the classic problem. In Figure 3 we illustrate the (numerical) solution
in the preemption regime of Section 5. We use the same global parameters as in the previous
figures, but choose the interaction parameters λ1 ∈ {−0.5,−0.25, 0}. For the classic penalty function
g(π) = a1π ∧ a2(1− π), we choose the coefficients a1 = 3 and a2 = 1.5.

Figure 3 (left panel) illustrates the continuation region corresponding to these parameters and
Figure 3 (right panel) visualizes the conditional stopping time distributions. A distinct feature here
is the asymmetry of the penalty which we do not presently handle in the soft-classification setting.
We see that the resulting continuation region is also asymmetric and that the conditional stopping
time distribution (for prior π = 1/2) is now different under each state of nature. We note again
the apparent monotonicity of the stopping time distributions in λ1 which also appeared in the cross
entropy analysis.

7 Conclusion

In this paper we have formulated a tractable mean field game of optimal stopping related to the
classic Bayesian sequential testing of the drift of a Brownian motion. Our setting can be thought
of as a simple example of interaction through information sharing. At a high level, this work
contributes to the literature on optimal stopping mean field games by introducing both a common
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Figure 3: Asymmetric classic problem continuation regions (left panel) and conditional
stopping time distributions (right panel) in equilibrium. In the latter plot, the line styles
distinguish between the choices of λ1.

unobserved noise and agent learning into the game design. These additional elements require that
we preserve the information structure available to each agent in the analysis. Our approach allows us
to characterize the solution, establish the existence of a strong mean field equilibrium under suitable
conditions, and illustrate the equilibria that arise. Based on our investigation, we believe that there
are several potential avenues for future research which we describe below.

(i) While we have solved for an equilibrium with a continuum of agents, it is desirable to study
the associated N -player game (see [46] which conducts such a study for a different optimal
stopping game). Establishing the existence of ϵ-Nash equilibria and the consistency of the
N -player formulation in our context appears to be a challenging open problem due to the
presence of information sharing.

(ii) An extension to multiple hypothesis testing problems (c.f. [27, 69]) is also natural, and will
likely require new mathematical techniques to deal with the higher dimensional state processes.
Moreover, potential generalizations of the existing setting to different structures for the signal
process may also be of interest (see [50] which studies a sequential testing problem for the
intensity of a Poisson process).

(iii) There are also possible extensions to filtering problems with a continuous state space for the
common noise. A famous related problem of this type is the quickest detection problem for
Brownian motions (c.f. [57, 58]). In this formulation an agent tries to detect a common
disorder time, θ, typically representing the occurrence of some financial event, using the
private signal Xt =

∫ t

0
1θ≤sds+Wt. Embedding this in a game setting introduces some new

challenges since the common noise is no longer binary and consequently, the filtering equations
become much more complicated. Establishing the existence, and possible uniqueness, of Nash
equilibria here would be an important result that lays the groundwork for more complicated
unobserved common noise structures in filtering games with stopping.

(iv) More broadly, applications of similar mean field game designs to concrete examples of in-
teraction in financial markets with filtering, stopping, and unobserved common noises (e.g.
indicators of economic health) is an important research direction that may be of interest to
central banks and regulators.
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A Conditional Exact Law of Large Numbers

The notion of essential pairwise independence and the exact law of large numbers in the framework
of a Fubini extension were introduced in [63], generalized to the conditional setting in [52] and
brought to the attention of the mean field game and mathematical finance community by [45]. We
include the results in the conditional setting here for the readers’ convenience.

Definition A.1 ([52, Definition 2]). A family X = (Xi)i∈I of random variables defined on a prob-
ability space (Ω,F ,P) is said to be essentially pairwise conditionally independent given a σ-field
G ⊆ F , if for λ-almost all i ∈ I, Xi is conditionally independent of Xj given G for λ-almost all
j ∈ I.

It is shown in [63, Proposition 2.1] that the usual product (I × Ω, I ⊗ F , λ ⊗ P) is not large
enough to support any nontrivial essentially pairwise independent family. One needs to define X on
a so-called rich Fubini extension of the product space, denoted by (I × Ω, I ⊠ F , λ ⊠ P); we refer
to [63] for its formal definition and existence. The name “Fubini” comes form the fact that any
integrable function in this extended space satisfies the Fubini theorem, which forms the basis for the
exact law of large numbers. The following conditional version of it is taken from [52, Corollary 2].

Proposition A.2 (Conditional Exact Law of Large Numbers). Let G ⊆ F be a countably generated
σ-field and let X be a real-valued integrable function on the rich Fubini extension (I×Ω, I⊠F , λ⊠P).
If X(i, ·), i ∈ I are essentially pairwise conditionally independent given G, then

∫
X(·, ω) dλ =∫

Eλ⊠P[X|I ⊗ G](·, ω) dλ for P-almost all ω ∈ Ω.

B Infinite Horizon Problem

In this appendix, we collect some results for the infinite horizon problem with constant volatility.
That is, we suppose T = ∞ and ∆hµ(t) is constant.

Proposition B.1. [38, Proposition 2.1] Under Assumption G the value function V (x) is time-
homogeneous, |V (x)| < ∞ for all x ∈ (0, 1), and the first exit time τ∗ = inf{t ≥ 0 : Π0,π

t ̸∈ C } from
the continuation region C := {π ∈ (0, 1) : V (π) < g(π)} is an optimal stopping time.

The following gives a boundary characterization for the continuation region of the infinite horizon
problem.

Proposition B.2. Under Assumption G there exist boundaries 0 < b∗ < 1/2 < B∗ < 1 for t ∈ [0, T )
such that C = {π ∈ (0, 1) : b∗ < π < B∗}.

Proof. The fact that there are boundaries satisfying 0 ≤ b∗ < 1/2 < B∗ ≤ 1 follows from [38,
Proposition 3.1] and an identical argument to Proposition 3.8. To see that the inequalities are all
strict (i.e. 0 < b∗ and B∗ < 1) we can directly borrow the arguments of [26, Proposition 4.8].

C Time Changed Problem

We have seen in Section 3.1 that the space-dependence in the diffusion coefficient of Πt can be
removed by the space change (13). We can further remove the time-dependence by a time change,
and formulate an equivalent time (and space) changed version of our optimal stopping problem. The
main motivation for this formulation is that many auxiliary results that are critical to the proof of
Proposition 3.10 are easier to obtain for the time changed problem than for the original problem.

To simplify the presentation, we will borrow the notional convention of Proposition 3.6(ii) by
writing ηµ(t) = ∥∆hµ(t)∥ in this section.
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C.1 Time changed log likelihood process

Consider the clock αµ(t) :=
∫ t

0
η2µ(s)ds. It is strictly increasing since ηµ(t) ≥ h > 0. Define the time

change as ζµ(t) := α−1
µ (t). We have by the Inverse Function Theorem that

ζ ′µ(u) =
1

η2µ(ζµ(u))
. (29)

From our assumptions on hµ, it is easy to check that ζµ and ζ−1
µ = αµ are both twice continuously

differentiable, and have bounded first and second derivatives. Moreover, these bounds can be made
independent of µ.

Let L̂t := Lζµ(t) be the time changed log likelihood process. One can show that L̂ has the
dynamics:

dL̂t = a(L̂t)dt+ dŴt, (30)

where

a(l) :=
el − 1

2(el + 1)
(31)

and Ŵt :=
∫ ζ(t)

0
∆h⊤

µ (s)dWs is a Brownian motion with respect to the time changed filtration

F̂ = (FW
ζµ(t)

)t∈[0,ζ−1
µ (T )] by Lévy’s Characterization. The infinitesimal generator of L̂, given by

L̂ := a(·)∂l +
1

2
∂ll,

is related to A (defined in (5)) and the sigmoid function S (see (13)) via

L̂(f ◦ S)(l) = a(l)f ′(S(l))S′(l) +
1

2

[
f ′′(S(l))(S′(l))2 + f ′(S(l))S′′(l)

]
= (Af)(S(l)), f ∈ C2(0, 1). (32)

In the derivation of (32), we have used the relations S′(l) = S(l)(1−S(l)) and a(l)S′(l)+S′′(l)/2 = 0.

In addition to being time-homogenous, L̂t admits a simple differentiable flow.

Lemma C.1. The flow l 7→ L̂u,l
t (ω) for ω ∈ Ω is continuously differentiable. The derivative is given

by

∂L̂u,l
t = exp

(∫ t

u

a′(L̂u,l
s )ds

)
, (33)

and satisfies 1 ≤ ∂L̂u,l
t ≤ exp((t− u)/4) for all l ∈ R.

Proof. By [51, Theorem V.49], ∂L̂u,l
t is well-defined, continuous, and satisfies the equation

∂L̂u,l
t = 1 +

∫ t

u

a′(L̂u,l
s )∂L̂u,l

s ds.

The solution is given by (33). The bound on ∂L̂u,l
t follows from the fact that 0 < a′(l) = el/(1+el)2 ≤

1/4.

C.2 Time and space changed value function

Define the time changed value function by

V̂ (u, l) = V̂ (u, l;µ) = inf
τ̂∈T Ŵ

u,T̂

E

[
c

∫ τ̂

u

1

η2µ(ζµ(s))
ds+ ĝ(L̂u,l

τ̂ )

]
, (34)
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where ĝ := g ◦ S, T̂ = T̂µ := ζ−1
µ (T ),5 and T Ŵ

u,T̂
is the set of FŴ -stopping times taking values in

[u, T̂ ]. It is not hard to see that this is related to V .

Lemma C.2. For all (t, π) ∈ [0, T )× (0, 1)

V (t, π;µ) = V̂ (ζ−1
µ (t), S−1(π);µ). (35)

Proof. From (18) we have that V (t, π;µ) = Ṽ (t, S−1(π);µ). Letting u = ζ−1
µ (t), l = S−1(π), and

observing that Ṽ (resp. V̂ ) can be posed over FL (resp. FL̂)) stopping times (see e.g. Remark C.3
below) we obtain:

Ṽ (t, l;µ) = inf
τ∈T L

t,T

E
[
c(τ − t) + ĝ(Lt,l

τ )
]

= inf
τ∈T L

t,T

E
[
c(ζµ ◦ ζ−1

µ (τ)− ζµ ◦ ζ−1
µ (t)) + ĝ(L

ζµ◦ζ−1
µ (t),l

ζµ◦ζ−1
µ (τ)

)

]
= inf

τ∈T L
t,T

E
[
c(ζµ ◦ ζ−1

µ (τ)− ζµ ◦ ζ−1
µ (t)) + ĝ(L̂

ζ−1
µ (t),l

ζ−1
µ (τ)

)

]
= inf

τ̂∈T L̂
u,T̂

E
[
c(ζµ(τ̂)− ζµ(u)) + ĝ(L̂u,l

τ̂ )
]

= inf
τ̂∈T L̂

u,T̂

E

[
c

∫ τ̂

u

1

η2µ(ζµ(s))
ds+ ĝ(L̂u,l

τ̂ )

]
= V̂ (u, l;µ)

where we have used L̂u := Lζµ(u), F L̂
u = FL

ζµ(u)
, and (29). The conclusion then follows.

Remark C.3. We have seen in Section 3.2 that whether we pose the original problem over FW-

stopping times or FΠ-stopping times does not change the optimal value. The set of FW-stopping
times (resp. FΠ-stopping times) is in one-to-one correspondence with the set of F̂-stopping times

(resp. FL̂-stopping times) for the time changed problem. Since the filtration FŴ is sandwiched

between FL̂ and F̂, we can define V̂ using FŴ -stopping times as in (34) without affecting the

equivalence (35). Moreover, since V̂ only depends on the distributional property of L̂ and Ŵ ,

the Brownian motion Ŵ in the problem definition can be taken to be a generic Brownian motion
independent of µ.

The equivalence between V̂ and V readily implies the following.

Corollary C.4. The following hold under Assumption G.

(i) V̂ is (jointly) continuous on [0, T̂ ]× R;

(ii) The continuation region corresponding to V̂ is characterized by two stopping boundaries

γ := S−1 ◦ b ◦ ζµ and Γ := S−1 ◦B ◦ ζµ;

(iii) The smallest optimal stopping time for V̂ (u, l) is given by

τ̂∗(u, l) = inf{s ≥ u : Lu,l
s ̸∈ (γ(s),Γ(s))} ∧ T̂ ; (36)

5We will suppress the µ-dependence unless it is necessary to be explicit.
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(iv) There are constants γ∗, γ
∗, Γ∗ and Γ∗ (independent of µ) such that

−∞ < γ∗ < γ(t) < γ∗ < 0 < Γ∗ < Γ(t) < Γ∗ < ∞. (37)

(v) V̂ is C1,2 in Ĉ := {(u, l) ∈ [0, T̂ )× R : γ(u) < l < Γ(u)}, and satisfies:

∂uV̂ (u, l) + L̂V̂ (u, l) =
−c

ηµ(ζµ(u))2
, (u, l) ∈ Ĉ . (38)

Proof. (i) follows from (35) and the continuity of V . (ii) follows since V (ζµ(u), S(l)) < g(S(l)) if

and only if V̂ (u, l) < ĝ(l). By the characterization of the continuation region for V , the former
inequality says b(ζµ(u)) < S(l) < B(ζµ(u)). (iii) follows immediately from (ii). (iv) follows from (ii)
and Proposition 3.9. Finally, (v) is a direct consequence of Proposition 3.7 and (35). It can also be
shown directly by the same arguments leading to Proposition 3.7.

C.3 Probabilistic representation of derivatives

In this section we establish probabilistic representations and estimates on the derivatives of the time
changed value function. These results are drawn primarily from the recent work [20]. Henceforth,

in this appendix we will define τ̂∗ = τ̂∗(u, l) ∈ T Ŵ
u,T̂

as in Corollary C.4 to be the smallest optimal

stopping time for our problem with initial data6 (u, l) ∈ [0, T̂ )× R.

Lemma C.5. Under Assumption G, the derivatives of V̂ satisfy the following, wherever they exist:

(i) ∂lV̂ (u, l) = Eu,l

[
ĝ′(L̂τ̂∗)∂L̂τ̂∗

]
;

(ii) ∂uV̂ (u, l) ≥ Eu,l

[∫ τ̂∗

u
− 2η′

µ(ζµ(s))

ηµ(ζµ(s))5
ds
]
;

(iii) There exists a constant K > 0 (independent of µ) such that

∂uV̂ (u, l) ≤ Eu,l

[∫ τ̂∗

u

−
2η′µ(ζµ(s))

ηµ(ζµ(s))5
ds

]
+KP(τ̂∗ = U).

Proof. The Markov property and time-homogeneity of the state process L̂ allow us to rewrite our
time changed value function as

V̂ (u, l) = − sup
τ̂∈T Ŵ

0,T̂−u

E

[
−c

∫ τ̂

0

1

η2µ(ζµ(u+ s))
ds− ĝ(L̂0,l

τ̂ )

]
, (39)

which falls exactly into the setting of [20]. We then apply [20, Theorem 3.1] to get (i) and (iii),
and [20, Corollary 3.3] to get (ii). (iii) additionally makes use of the bound |η−2

µ | ≤ h−2 and the

boundedness of L̂ĝ which holds by (32) and Remark 2.3.

From our assumptions on hµ it is clear that ηµ(·) is continuously differentiable with first deriva-
tive bounded by some K > 0 (independent of µ) on [0, T ]. By the bound

∣∣−2η′µη
−5
µ

∣∣ ≤ 2Kh−5 and
Markov’s inequality we obtain the following useful corollary.

6To avoid ambiguity, when τ̂∗ appears under an expectation (and in particular, when it appears alone)
we will make explicit the conditioning on the initial data (t, u) by writing Et,u[·]. In these instances, the

superscript on L̂u,l is dropped.
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Corollary C.6. There exists a constant C > 0 (independent of µ) such that

|∂uV̂ (u, l)| ≤ C

T̂ − u
Eu,l [τ̂

∗ − u] .

With these results in hand, we turn to studying the defining function of the continuation region,
V̂ − ĝ. By Assumption G, V and g are symmetric about π = 1/2 which readily gives

∂lV̂ (u, 0)− ĝ′(0) = 0 ∀u ∈ [0, T̂ ). (40)

Moreover, by (32) we obtain

∂πAg(S(l))S′(l) = ∂lL̂ĝ(l).

Since S′(l) > 0 for all l ∈ R the (strict) signs of ∂πAg and ∂lL̂ĝ can be compared. It follows from
Assumption G and S(0) = 1/2 that

∂lL̂ĝ(l) < 0, l ∈ (−∞, 0) and ∂lL̂ĝ(l) > 0, l ∈ (0,∞). (41)

The next result uses these observations to determine the sign of ∂l(V̂ − ĝ).

Lemma C.7. For each u ∈ [0, T̂ ) it holds that ∂l(V̂ − ĝ)(u, ·) < 0 on (γ(u), 0) and ∂l(V̂ − ĝ)(u, ·) > 0
on (0,Γ(u)).

Proof. Fix l ∈ (γ(u), 0). We use the representation of the derivative from Lemma C.5(i) and Dynkin’s
formula to get for τ̂∗ = τ̂∗(u, l):

∂l(V̂ − ĝ)(u, l) = Eu,l

[
ĝ′(L̂τ̂∗)∂L̂τ̂∗ − ĝ′(l)

]
= Eu,l

[∫ τ̂∗

u

e
∫ v
u

a′(L̂r)dr
(
a′ĝ′ + L̂(ĝ′)

)
(L̂v)dv

]

= Eu,l

[∫ τ̂∗

u

e
∫ v
u

a′(L̂r)dr∂lL̂ĝ(L̂v)dv

]
. (42)

The last equality can be verified by differentiating. Letting

τ0(u, l) := inf{v ≥ u : L̂u,l
v ≥ 0} ∧ T̂

we argue as in [20, Theorem 4.3] (see Equations (4.16)-(4.18) of the proof) by the Tower and Strong
Markov properties that

∂l(V̂ − ĝ)(u, l) = Eu,l

[ ∫ τ0∧τ̂∗

u

e
∫ v
u

a′(L̂r)dr∂lL̂ĝ(L̂v)dv

+ 1τ0<τ̂∗e
∫ τ0
u

a′(L̂r)drEτ0,L̂τ0

[ ∫ τ̂∗

τ0

e
∫ v
τ0

a′(L̂r)dr∂lL̂ĝ(L̂v)dv

]]
= Eu,l

[ ∫ τ0∧τ̂∗

u

e
∫ v
u

a′(L̂r)dr∂lL̂ĝ(L̂v)dv

+ 1τ0<τ̂∗e
∫ τ0
u

a′(L̂r)dr∂l(V̂ − ĝ)(τ0, L̂τ0)

]
.

Note that at τ0 either L̂u,l
τ0 = 0 so ∂l(V̂ − ĝ)(τ0, 0) = 0 by (40) or τ0 = T̂ in which case V̂ (T̂ , ·) = ĝ(·)

and so we still have ∂l(V̂ − ĝ)(T̂ , L̂u,l
τ0 ) = 0. We conclude that

∂l(V̂ − ĝ)(u, l) = Eu,l

[∫ τ0∧τ̂∗

u

e
∫ v
u

a′(L̂r)dr∂lL̂ĝ(L̂v)dv

]
.
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As a′ ≥ 0 we have by definition of τ0 and (41) that:

∂l(V̂ − ĝ)(u, l) ≤ Eu,l

[∫ τ0∧τ̂∗

u

∂lL̂ĝ(L̂v)dv

]
< 0.

Note in the above we use that the continuation region is open and contains l, so there is an ϵ > 0
such that the ϵ-ball Bϵ((u, l)) is contained in the continuation region. As l < 0 we can conclude
τ0 ∧ τ̂∗−u > 0 and so the inequality is strict. The same argument gives the analogous result for the
derivative on (0,Γ(u)).

For the last result of this subsection, we show that there are points in the continuation region for
which Lemma C.7 can be strengthened to obtain an explicit bound on the derivative. In particular,
the bound depends only on the original times t, T and not at all on µ.

Lemma C.8. For any l, l satisfying γ∗ < l < 0 and 0 < l < Γ∗ there exist constants κ > 0 and
∆ > 0 (independent of µ) such that for all t ∈ [0, T ) (equivalently, all u = ζ−1

µ (t) ∈ [0, T̂ )):

∂l(V̂ − ĝ)(ζ−1
µ (t), l) ≤ −κE0,l

[
τl±∆ ∧ (T − t)

]
< 0

and
∂l(V̂ − ĝ)(ζ−1

µ (t), l) ≥ κE0,l

[
τl±∆ ∧ (T − t)

]
> 0,

where τx±∆ is the first exit time of L̂ from the interval (x−∆, x+∆).

Proof. Without loss of generality suppose that we are treating the case of l. Arguing exactly as in
Lemma C.7 we get for

τ0(u, l) := inf{v ≥ u : L̂u,l
v ≥ 0} ∧ T̂

that

∂l(V̂ − ĝ)(u, l) ≤ Eu,l

[∫ τ0∧τ̂∗

u

∂lL̂ĝ(L̂v)dv

]
.

Choose ∆ > 0 to satisfy γ∗ < l − ∆ < l < l + ∆ < 0 so that the spatial values l ± ∆ are in the
continuation region for all times u. We can then define the first exit time from the strip (l−∆, l+∆)
as

τl±∆(u, l) := inf{v ≥ u : L̂u,l
v ̸∈ (l −∆, l +∆)}.

It is clear that τl±∆ ∧ T̂ ≤ τ0 ∧ τ̂∗ and so

∂l(V̂ − ĝ)(u, l) ≤ Eu,l

[∫ τl±∆∧T̂

u

∂lL̂ĝ(L̂v)dv

]

as ∂lL̂ĝ < 0 on (γ(u), 0). Letting

κ := inf
l∈[l−∆,l+∆]

−∂lL̂ĝ(l) > 0

(where the strict inequality holds by continuity of ∂lL̂ĝ and our assumption ∂lL̂ĝ < 0 on (γ(u), 0) ⊃
[l −∆, l +∆]) we have

∂l(V̂ − ĝ)(u, l) ≤ −κEu,l

[
τl±∆ ∧ T̂ − u

]
= −κEu,l

[
(τl±∆(u, l)− u) ∧ (T̂ − u)

]
< 0.
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Then, we note that as L̂ is time homogenous

τl±∆(u, l)− u
d
= inf{v ≥ 0 : L̂0,l

v ̸∈ (l −∆, l +∆)}.

and consequently,

∂l(V̂ − ĝ)(u, l) ≤ −κE0,l

[
τl±∆ ∧ (T̂ − u)

]
< 0. (43)

If we make the time change explicit so that u = ζ−1
µ (t) and T̂ = ζ−1

µ (T ) for t < T we can obtain

T̂ − u =

∫ T

t

(ζ−1
µ )′(u)du ≥ h2(T − t) > 0,

which in view of (43) (by modifying κ if necessary) completes the proof.

C.4 An estimate for boundary regularity

In this subsection we collect all of the preceding results in order to prove a key estimate on the
derivatives of the value function arising in the proof of Proposition 3.10. Recall that in the proof we
defined the function J = V − g where the spatial domain was restricted to π ≥ 1/2. We used J to
define the (upper) δ-level boundary Bδ(t) which solves J(t, Bδ(t)) = δ for δ < 0, and converges to
B(t) as δ ↑ 0.

Let us revisit the relationship between the derivatives (where they exist) of our original and
time-and-space changed problems. We have

J(t, π) = V (t, π)− g(π) = V̂ (ζ−1
µ (t), S−1(π))− ĝ(S−1(π)).

Consequently,

∂πJ(t, π) = ∂π(V − g)(t, π) = ∂l(V̂ − ĝ)(ζ−1
µ (t), S−1(π))(S−1)′(π) (44)

and
∂tJ(t, π) = ∂t(V − g)(t, π) = ∂u(V̂ − ĝ)(ζ−1

µ (t), S−1(π))(ζ−1
µ )′(t). (45)

We will make use of this relationship in the proof of the following proposition. Note that these
equalities also allow us to relate the signs of the derivatives through Lemma C.7 since (S−1)′(π) > 0
and (ζ−1

µ )′(t) > 0.

Proposition C.9. Consider the setting from the proof of Proposition 3.10. Fix ϵ > 0, 0 ≤ t0, t1 < T ,
and non-empty Iϵ := [t0+ ϵ/2, t1− ϵ/2] ⊂ [0, T ). There exists a Kϵ > 0 independent of µ and δ such
that for any t in Iϵ: ∣∣∣∣∂tJ(t, Bδ(t))

∂πJ(t, Bδ(t)

∣∣∣∣ ≤ Kϵ. (46)

Proof. Our approach is to adapt the arguments of [20, Theorem 4.3] to get an estimate that is
independent of µ. For brevity we do not reproduce the arguments surrounding [20, Equations
(4.16)-(4.24)] in their entirety as they apply directly to our setting with only minor modifications.
The remainder of this proof prepares the initial estimates necessary for these arguments to carry
through.

Define Ĵ := V̂ − ĝ and restrict to the domain [0, T̂ ) × [0,∞) (to mirror the restriction of J

to π ≥ 1/2 in Proposition 3.10). Using our representation in terms of the derivatives of Ĵ from
(44)-(45) we have∣∣∣∣∂tJ(t, Bδ(t))

∂πJ(t, Bδ(t)

∣∣∣∣ =
∣∣∣∣∣ ∂uĴ(ζ

−1
µ (t), S−1(Bδ(t)))(ζ

−1
µ )′(t)

∂lĴ(ζ
−1
µ (t), S−1(Bδ(t)))(S−1)′(Bδ(t))

∣∣∣∣∣ =: E1, t ∈ Iϵ.
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To be concise we will use lδ := S−1(Bδ(t)) and u := ζ−1
µ (t) where we do not need the functions to

be explicit. Using that ĝ does not depend on time and Corollary C.6 we have

E1 ≤ C

T̂ − u

Eu,lδ [τ̂
∗ − u] (ζ−1

µ )′(t)∣∣∣∂lĴ(u, lδ)(S−1)′(Bδ(t))
∣∣∣

=
C

ζ−1
µ (T )− ζ−1

µ (t)

Eu,lδ [τ̂
∗ − u]

∂lĴ(u, lδ)

(ζ−1
µ )′(t)

(S−1)′(Bδ(t))
.

The last equality follows since the denominator is strictly positive at these points. Now note that

ζ−1
µ (T )− ζ−1

µ (t) =

∫ T

t

(ζ−1
µ )′(s)ds ≥ h2(T − t) ≥ h2(T − t1),

(S−1)′ ≥ 4, and (ζ−1
µ )′ ≤ H2. Consequently,

E1 ≤ CH2

4h2(T − t1)

Eu,lδ [τ̂
∗ − u]

∂lĴ(u, lδ)
.

Using the representation for the derivative in the denominator from (42) in the proof of Lemma C.7
we find

E1 ≤ CH2

4h2(T − t1)

Eu,lδ [τ̂
∗ − u]

Eu,lδ

[∫ τ̂∗

u
e
∫ v
u

a′(L̂r)dr∂lL̂ĝ(L̂v)dv
] . (47)

We will now obtain a useful representation of the denominator in (47) for which an additional
estimate can be derived. First, we will define an analogue of Iϵ for the time changed problem. Let
u0 := ζ−1

µ (t0), u1 := ζ−1
µ (t1) and uϵ

0 := ζ−1
µ (t0 + ϵ

2 ), uϵ
1 := ζ−1

µ (t1 − ϵ
2 ). Observe that the gaps

between the interior points uϵ
0, u

ϵ
1 and the endpoints u0, u1 can be bounded independently of µ:

uϵ
0 − u0 = ζ−1

µ (t0 + ϵ/2)− ζ−1
µ (t0) ≥ h2ϵ/2,

and similarly, u1−uϵ
1 ≥ h2ϵ/2. So, for ϵ′ := h2ϵ we can define a set Îϵ′ :=

[
u0 +

ϵ′

2 , u1 − ϵ′

2

]
⊂ (u0, u1)

such that any t ∈ Iϵ maps to a u ∈ Îϵ′ .
In the proof of Proposition 3.10 we introduced a 1/2 < π < B∗ (independent of µ) which satisfies

π < Bδ(t) for all t ∈ Iϵ. Let us similarly choose here a 0 < l ≤ S−1(π) so that l < lδ. With this,
define

τl := inf{v ≥ u : (v, Lu,lδ
v ) ̸∈ (u0, u1)× (l,∞)}.

Arguing using iterated expectations and the strong Markov property as in [20, Theorem 4.3] (see
Equations (4.16)-(4.18) of the proof) we get for τ̂∗ = τ̂∗(u, lδ):

Eu,lδ

[∫ τ̂∗

u

e
∫ v
u

a′(L̂r)dr∂lL̂ĝ(L̂v)dv

]

= Eu,lδ

[∫ τl∧τ̂∗

u

e
∫ v
u

a′(L̂r)dr∂lL̂ĝ(L̂v)dv

]
+ Eu,lδ

[
1τl<τ̂∗e

∫ τ
l

u a′(Lr)dr∂lĴ(τl, Lτl
)
]
=: E2. (48)

Using this representation for the denominator in (47), take Γ∗ as in (37) to be the upper bound
on the (time-changed) optimal stopping boundaries. Note that the optimal stopping time for the
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problem in terms of L̂ must arise before L̂ hits Γ∗. As a′ ≥ 0 (and 1τl<τ̂∗∂lĴ(τl, L
u,lδ
τl

) ≥ 0) if we let

αl := minl∈[l,Γ∗] ∂lL̂ĝ(l) > 0 we have

E2 ≥ Eu,lδ

[
αl(τl ∧ τ̂∗ − u) + 1τl<τ̂∗∂lĴ(τl, Lτl

)
]
> 0. (49)

This gives us an estimate for the denominator in our bound of E1 from (47). Similarly, turning to
the numerator in the same bound we can argue that we have:

Eu,lδ [τ̂
∗ − u] = Eu,lδ

[
τl ∧ τ̂∗ − u+ 1τl<τ̂∗Eτl,Lτ

l

[
τ̂∗ − τl

]]
. (50)

Lastly, using ∆ > 0 and κ > 0 given by Lemma C.8

inf
u∈[u0,u1]

∂lĴ(u, l) ≥ inf
t∈[t0,t1]

κE0,l

[
τl±∆ ∧ (T − t)

]
≥ κE0,l

[
τl±∆ ∧ (T − t1)

]
> 0. (51)

Now let j∗
l
:= κE0,l

[
τl±∆ ∧ (T − t1)

]
be this lower bound. It will play a role in the arguments that

we borrow from [20, Theorem 4.3] when manipulating the estimate in (49).
Using (48)-(51), we are finally ready to invoke the proof of [20, Theorem 4.3]. Observe that

these equations give:

E1 ≤ CH2

4h2(T − t1)

Eu,lδ

[
τl ∧ τ̂∗ − u+ 1τl<τ̂∗Eτl,Lτ

l

[
τ̂∗ − τl

]]
Eu,lδ

[
αl(τl ∧ τ̂∗ − u) + 1τl<τ̂∗∂lĴ(τl, Lτl

)
] (52)

which, in view of [20, Equation (4.19)], is (up to a constant) precisely the form of the second
inequality in [20, Equation (4.21)]. Hence, arguing as they do in [20, Equation (4.21)-(4.23)] we

obtain for any u ∈ Îϵ′ (and therefore, any t ∈ Iϵ):

Eu,lδ

[
τl ∧ τ̂∗ − u+ 1τl<τ̂∗Eτl,Lτ

l

[
τ̂∗ − τl

]]
Eu,lδ

[
αl(τl ∧ τ̂∗ − u) + 1τl<τ̂∗∂lĴ(τl, Lτl

)
]

≤
(
α−1

l
∨ T̂

) (
1 + (j∗

l
)−1 + 2(αlϵ

′)−1
)

≤
(
α−1

l
∨ (H2T )

) (
1 + (j∗

l
)−1 + 2(αlh

2ϵ)−1
)
.

Thus, we arrive at our desired bound:

E1 ≤
CH2

(
α−1

l
∨ (H2T )

)
4h2(T − t1)

(
1 + (j∗

l
)−1 + 2(αlh

2ϵ)−1
)
, t ∈ Iϵ.

Notice that αl and j∗
l
do not depend in any way on the choice of µ and so, the right hand side

depends only on values that are common to the problem for all input measures. This completes the
proof.

C.5 Smooth fit condition

A consequence of the boundary regularity from Proposition 3.10 (which in view of Corollary C.4(ii)
is also inherited by the transformed boundaries γ, Γ) is the smooth fit condition for the spatial

derivative across the boundaries. That is, for any u ∈ [0, T̂ ) we have the mapping l 7→ ∂lV̂ (u, l) is
C1 (see [20, Remark 4.5] for a related example and justification). We state this result formally here
and also extend it to the original value function V .
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Proposition C.10. For any fixed times u ∈ [0, T̂ ) and t ∈ [0, T ), the value functions V̂ (u, l) and
V (t, π) are continuously differentiable in their spatial variables l and π, respectively.

Proof. We treat V̂ (u, l) as the result for V (t, π) then follows from (35). To begin, for any u ∈ [0, T̂ ) we
say that the boundary points Γ(u), γ(u) are probabilistically regular for the interior of the stopping
region:

intD̂ := {(u, l) ∈ (0, T̂ )× R : l ∈ (−∞, γ(u)) ∪ (Γ(u),∞)}

if P(σintD̂(u,Γ(u)) = 0) = 1 and P(σintD̂(u, γ(u)) = 0) = 1 for

σintD̂(u, l) := inf
{
v > u : (v, Lu,l

v ) ∈ intD̂
}
.

By the local Lipschitz property of the boundaries Γ, γ and standard properties of Brownian motion,
we obtain

σintD̂(u,Γ(u)) = 0, σintD̂(u, γ(u)) = 0 a.s.

for all u ∈ [0, T̂ ) and so the boundary points are probabilistically regular. With this, the claim in
the proposition follows from [19, Theorem 10].

D Continuity of the Value Function in the Volatility

The proof techniques we employ rely crucially on the idea of volatility times which correspond to
the quadratic variation of continuous local martingales. In particular, the work of Janson and Tysk
[39] shows that for a given Brownian motion W , there exists a unique stopping time solution to

ξ(t) =

∫ t

0

∥∆hµ(s)∥2W 2
ξ(s)(1−Wξ(s))

2ds

such that Π̃t = Wξ(t) is a solution of

dΠ̃s = ∥∆hµ(s)∥Π̃s(1− Π̃s)dW̃s

for some Brownian motion W̃ . Moreover, this ξ(t) is the quadratic variation of Π̃. This statement
is to be compared to the well known result that a continuous local martingale can be represented as
the time change of some Brownian motion. Working with the same Brownian motion and multiple
volatility times is remarkably useful for arguments of the type undertaken in this appendix. For a
formal statement of their result see [39, Theorem 1] or [25, Theorem 3.2].

In view of this, we cast our problem (17) in a way that is reminiscent of the setup in [25] and
exploits the structure just introduced. As in Section 3, we suppress the (arbitrary) index i ∈ I to
simplify the exposition. Recall from Section 3.2 that in our problem we may equivalently work with
FΠ stopping times, so by Levy’s characterization our value function can be equivalently written as:

V (t, π;µ) = inf
τ∈T Π

t

E
[
c(τ − t) + g(Πt,π

τ )
]

(53)

where
dΠt,π

s = ∥∆hµ(s)∥Πt,π
s (1−Πt,π

s )dW̃s, Πt,π
t = π, (54)

and W̃ is an arbitrary Brownian motion. In the remainder of this section we will maintain this
simplification and treat the posterior probability process as driven by a one-dimensional Brownian
motion.

We are ready to prove the required continuity in the volatility.
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Proposition D.1. If ∥∆hµn
∥ → ∥∆hµ∥ pointwise as n → ∞ then

lim
n→∞

V (t, π;µn) = V (t, π;µ), ∀(t, π) ∈ [0, T )× (0, 1).

Proof. Without loss of generality, we will show the result for t = 0. Let W be a Brownian motion
with W0 = π and let ξ and ξn be the stopping time solutions to:

ξ(t) =

∫ t

0

∥∆hµ(s)∥2W 2
ξ(s)(1−Wξ(s))

2ds,

ξn(t) =

∫ t

0

∥∆hµn
(s)∥2W 2

ξn(s)
(1−Wξn(s))

2ds.

which by [39, Theorem 1] exist and are almost surely unique. Let FW , FΠ, FΠn

be the completed
filtrations generated by W , Π = (Πt)t≥0 := (Wξ(t))t≥0, and Πn = (Πn

t )t≥0 := (Wξn(t))t≥0, respec-
tively. As we have noted, these processes can be interpreted as the posterior probability processes
from our main discussions.

We now gather some properties for later use. By [39, Lemma 9] (which applies to our setting of a
compact state space) we have ξn(t) → ξ(t) almost surely for every t, and so as they are monotone and
continuous we get the stronger result that the convergence holds for all t almost surely. Moreover,
from the representation as the Quadratic Variation (see also [39, Theorem 1]), ξ(t) and ξn(t) are
continuous and increasing. Since ∥∆hµ(t)∥, ∥∆hµn

(t)∥ ≥ h > 0 for all t ∈ [0, T ] and all n we have
∥∆h·(t)∥π(1 − π) > 0 for all (t, π) such that π ∈ (0, 1). This, in turn, implies that ξ(t) is strictly
increasing so long as Wξ(t) ∈ (0, 1). In particular, if ξ is constant on some interval [t, t+ ϵ) it must
be constant on [t, T ] as both 0 and 1 are absorbing states for our process Π. On such an interval we
must have Πt = Wξ(t) ∈ {0, 1} and g(Πt) = 0. However, by Corollary 3.5, Π and Πn do not hit 0 or
1 in finite time almost surely, so ξ and ξn are strictly increasing.

We begin by showing lim supn→∞ V (0, π;µn) ≤ V (0, π;µ). Let τ∗ be an optimal stopping time
for the problem in terms of Π over FΠ-stopping times. Consider also the stopping times

τ ϵ := inf{s ≥ 0 : V (s,Πs;µ) ≥ g(Πs)− ϵ}.

By the continuity of V and g we have that τ ϵ < τ∗ (unless τ∗ = 0) and by [29] we have τ ϵ is
ϵ-optimal in the sense that

V (0, π;µ) ≥ Eπ [cτ
ϵ + g(Πτϵ)]− ϵ. (55)

Defining

τ ϵn := inf{s : ξn(s) ≥ ξ(τ ϵ) ∧ ξn(T )}
= inf{s : ξn(s) ≥ ξ(τ ϵ)} ∧ inf{s : ξn(s) ≥ ξn(T )}

we have by [25, Lemma 3.5] that τ ϵn ≤ T is a FΠn

stopping time. At the same time, it is straightfor-
ward to verify the following standalone fact: Suppose f, fn : [0, T ] → [0,∞) are continuous functions
with f(0) = fn(0) = 0, fn increasing, f strictly increasing, and

tn := inf{s ∈ [0, T ] : fn(s) ≥ f(t)}

for any fixed t ∈ [0, T ]. If fn → f pointwise,then tn → t as n → ∞.
By applying this result to our expression for τ ϵn we obtain that τ ϵn → τ ϵ almost surely as n → ∞.

It follows that

0 ≤ ξ(τ ϵ)− ξn(τ
ϵ
n) = (ξ(τ ϵ)− ξn(T ))1ξ(τϵ)>ξn(T ) ≤ (ξ(T )− ξn(T ))1ξ(T )>ξn(T )
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and so by taking limits across the above we have ξn(τ
ϵ
n) → ξ(τ ϵ) a.s. As a result, g(Wξn(τϵ

n)
) →

g(Wξ(τϵ)) almost surely. Note that

0 ≤ τ ϵn + g(Wξn(τϵ
n)
) ≤ T + C

for some C > 0 playing the role of the upper bound on g (as from Assumption G it is a concave
function on [0, 1] with g(0) = 0 = g(1)). The dominated convergence theorem and (55) then gives

V (0, π;µ) ≥ lim sup
n→∞

V (0, π;µn)− ϵ.

Since ϵ > 0 was arbitrary our first claim follows.
To complete the proof we will now show lim infn→∞ V (0, π;µn) ≥ V (0, π;µ). First, let τ∗n be

a sequence of optimal FΠn

-stopping times associated with V (0, π;µn). Define τ̃n := inf{s : ξ(s) ≥
ξn(τ

∗
n) ∧ ξ(T )}. Again by [25, Lemma 3.5] we have that that τ̃n ≤ T is a FΠ stopping time for each

n. Then

0 ≤ ξn(τ
∗
n)− ξ(τ̃n) = (ξn(τ

∗
n)− ξ(T ))1ξn(τ∗

n)>ξ(T ) ≤ (ξn(T )− ξ(T ))1ξn(T )>ξ(T )

and so as n → ∞, ξn(τ
∗
n) − ξ(τ̃n) → 0 a.s. since ξn(T ) → ξ(T ) a.s. Moreover, it can be seen that

τ∗n − τ̃n → 0 a.s. Writing ξ−1(y) := inf{x : ξ(x) ≥ y}, for any ϵ > 0 we have

|τ̃n − τ∗n| = |ξ−1(ξn(τ
∗
n) ∧ ξ(T ))− τ∗n|

≤ |ξ−1(ξn(τ
∗
n))− τ∗n)|1τ∗

n≤T−ϵ + (T − τ∗n)1τ∗
n>T−ϵ

≤ sup
0≤t≤T−ϵ

|ξ−1(ξn(t))− t|+ ϵ. (56)

Let t ∈ [0, T−ϵ] be fixed. Observe that if there is a δ > 0 such that lim supn→∞ ξ−1(ξn(t)) > t+δ
then ξ(t+δ) ≤ ξn(t) for sufficiently large n. By the strict increase of ξ we must have ξ(t) < ξ(t+δ) ≤
ξn(t) which contradicts the convergence of ξn to ξ. It follows that lim supn→∞ ξ−1(ξn(t)) ≤ t. A
similar argument gives lim infn→∞ ξ−1(ξn(t)) ≥ t so limn→∞ ξ−1(ξn(t)) = t. Since t was arbitrary
in [0, T −ϵ] this holds for all such t. As the ξ−1(ξn(t)) are increasing functions for each n that have a
continuous limit, the convergence is uniform on [0, T−ϵ]. We conclude sup0≤t≤T−ϵ |ξ−1(ξn(t))−t| →
0 and since ϵ was arbitrary in (56), that |τ̃n − τ∗n| → 0 a.s.

Note now that ξ(t), ξn(t) ≤ ξ̄(t) where ξ̄ is defined as the stopping time solution to

ξ̄(t) =

∫ t

0

H2W 2
ξ̄(s)(1−Wξ̄(s))

2ds (57)

by [25, Lemma 3.3.]. Then, by monotonicity ξ(t), ξn(t) ≤ ξ̄(T ). By the Hölder continuity of the
Brownian path on [0, ξ̄(T )] and the uniform continuity of g on [0, 1], it is not hard to see that:

|τ̃n + g(Wξ(τ̃n))− τ∗n − g(Wξn(τ∗
n)
)| n→∞−−−−→ 0 a.s.

Once again, since g is bounded and the stopping times satisfy τ̃n, τ
∗
n ≤ T we have by the dominated

convergence theorem:

V (0, π;µ)− V (0, π;µn) ≤ E
[
τ̃n + g(Wξ(τ̃n))

]
− E

[
τ∗n + g(Wξn(τ∗

n)
)
] n→∞−−−−→ 0.

That is, lim infn→∞ Vn(0, π) ≥ V (0, π) as required. Taken together with the previous claim, the
proof is complete.
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E Continuity of the Boundaries in the Input Measure

E.1 Soft-classification problem

Before tackling the main proof we provide a preliminary technical result that allows us to pass to
the limit across the integral equations (23) of Proposition 3.12. In what follows, we suppress the
index i ∈ I. To make explicit the dependence on µ of the equations, we write L = ∥∆hµ(·)∥2A and
the posterior probability process as Πt,π,µ.

Lemma E.1. Suppose µn ⇒ µ and bn → b, Bn → B pointwise. If (πn(t), π(t)) = (bn(t), b(t)) or
(πn(t), π(t)) = (Bn(t), B(t)) then:

E
[
g(Π

t,πn(t),µn

T )
]
→ E

[
g(Π

t,π(t),µ
T )

]
, (58)

∫ T

t

P
(
Πt,πn(t),µn

u ∈ (bn(u), Bn(u))
)
du

→
∫ T

t

P
(
Πt,π(t),µ

u ∈ (b(u), B(u))
)
du, (59)

and ∫ T

t

E
[
∥∆hµn

(u)∥2Ag(Πt,πn(t),µn
u )1{

Π
t,πn(t),µn
u ∈(0,bn(u))∪(Bn(u),1)

}] du
→
∫ T

t

E
[
∥∆hµ(u)∥2Ag(Πt,π(t),µ

u )1{
Π

t,π(t),µ
u ∈(0,b(u))∪(B(u),1)

}] du. (60)

Proof. By Lemma 4.1 we have ∥∆hµn
∥ → ∥∆hµ∥ pointwise. Applying [56, Theorem 3.1] on our

compact state space of [0, 1] we have that Π
t,πn(t),µn
u → Π

t,π(t),µ
u in probability. Moreover, by

Corollary 3.5 for any u > t, Π
t,πn(t),µn
u and Π

t,π(t),µ
u admit a density on (0, 1). Since g is bounded on

[0, 1] the convergence in (58) follows by the continuous mapping and bounded convergence theorems.
Write

G0(Π, b, B) := 1(−∞,0)(Π−B)− 1(−∞,0)(Π− b)

and
G1(Π, η, b, B) := η2Ag(Π)

(
1(−∞,0)(Π− b) + 1(−∞,0)(B −Π)

)
so that these functions correspond to the integrands of (59) and (60). We have that G0 and G1 are
continuous almost everywhere and are bounded over the range of our inputs. Thus, the continuous
mapping and bounded convergence theorems again give for u > t:

E
[
G0(Π

t,πn(t),µn
u , bn(u), Bn(u))

]
→ E

[
G0(Π

t,π(t),µ
u , b(u), B(u))

]
,

E
[
G1(Π

t,πn(t),µn
u , ∥∆hµn

(u)∥, bn(u), Bn(u))
]

→ E
[
G1(Π

t,π(t),µ
u , ∥∆hµ(u)∥, b(u), B(u))

]
.

Another application of the bounded convergence theorem then gives the desired convergence in (59)
and (60).

We are now ready to prove the Proposition.
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Proof of Lemma 4.2. From Proposition 3.10 we have that the boundaries (bn)n≥0, b, (Bn)n≥0, and
B are uniformly locally Lipschitz. Since the boundaries are also uniformly bounded away from (0, 1)
(see Proposition 3.9), a diagonalization argument gives that for any subsequence of (bn) and (Bn)
we can always extract further subsequences (bn′), (Bn′) that converge locally uniformly to locally
Lipschitz limits b and B on [0, T ).

As V (t, ·;µn′), V (t, ·;µ) are concave and uniformly bounded on (0, 1) we have that the pointwise
convergence V (t, ·;µn′) → V (t, ·;µ) from Lemma 4.1 can be extended to local uniform convergence
on (0, 1) for each t (see [53, Theorem 10.8]). Fix t and take b∗, B

∗ from Proposition 3.9 so that
b∗ ≤ bn′ , b, Bn′ , B ≤ B∗. On [b∗, B

∗] ⊂ (0, 1), we have that V (t, ·;µn′) → V (t, ·;µ) uniformly.
Moreover, by assumption

V (t, bn′(t);µn′) = g(bn′(t)), V (t, Bn′(t);µn′) = g(Bn′(t)).

By the convergence of the boundaries for t ∈ [0, T ), and the continuity and uniform convergence of
V (t, ·;µn), V (t, ·;µ) on [b∗, B

∗] we have by taking limits that

V (t, b̄(t);µ) = g(b̄(t)), V (t, B̄(t);µ) = g(B̄(t)).

Thus, since t was arbitrary we conclude that b̄ ≤ b, B ≤ B̄ by the definition of the continuation
region for V .

It remains to show the reverse inequality. Recall that the boundaries b, bn′ , B and Bn′ satisfy
the integral equations from Proposition 3.12. We obtain for b:

g(b(t)) = E
[
g(Π

t,b(t),µ
T )

]
+ c

∫ T

t

P
(
Πt,b(t),µ

u ∈ (b(u), B(u))
)
du

−
∫ T

t

E
[
∥∆hµ(u)∥2Ag(Πt,b(t),µ

u )1{
Π

t,b(t),µ
u ∈(0,b(u))∪(B(u),1)

}] du,
and similarly for bn′ , B, and Bn′ . Taking limits across the integral equations we have:

g(b(t)) =

lim
n′→∞

(
E
[
g(Π

t,bn′ (t),µn′
T )

]
+ c

∫ T

t

P
(
Πt,bn′ (t),µn′

u ∈ (bn′(u), Bn′(u))
)
du

−
∫ T

t

E
[
∥∆hµn′ (u)∥2Ag(Πt,bn′ (t),µn′

u )1{
Π

t,b
n′ (t),µn′

u ∈(0,bn′ (u))∪(Bn′ (u),1)
}] du),

g(B(t)) =

lim
n′→∞

(
E
[
g(Π

t,Bn′ (t),µn′
T )

]
+ c

∫ T

t

P
(
Πt,Bn′ (t),µn′

u ∈ (bn′(u), Bn′(u))
)
du

−
∫ T

t

E
[
∥∆hµn′ (u)∥2Ag(Πt,Bn′ (t),µn′

u )1{
Π

t,B
n′ (t),µn′

u ∈(0,bn′ (u))∪(Bn′ (u),1)
}] du).

By Lemma E.1 the limit can be passed through on the right hand side. Hence, the integral
equations of Proposition 3.12 for input measure µ that are satisfied by b and B are also satisfied by
the continuous functions b and B. Moreover, we have already shown that b ≤ b and B ≥ B. At
the same time, Proposition 3.12 gives that b and B are the unique maximal continuous solutions to
these integral equations. We conclude b = b and B = B. Since the sub-sequence was arbitrary the
limit of (bn)n≥0 and (Bn)n≥0 exists and coincides with b and B. Moreover, by the uniform bounds
and uniform local Lipschitz constants, the convergence is locally uniform on [0, T ).
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E.2 Classic problem

We organize this appendix by first proving a collection of short preliminary lemmas.

Lemma E.2. If V (t, π;µn) → V (t, π;µ) then ∂πV (t, π;µn) → ∂πV (t, π;µ) for all (t, π) ∈ [0, T ) ×
(0, 1). Moreover, the convergence is locally uniform in π ∈ (0, 1).

Proof. Since V (t, ·;µ), V (t, ·;µn) are concave, we have by standard results in convex analysis that
the convergence of the derivatives holds at all points of differentiability of V (t, ·;µ) in (0, 1) for
fixed t ∈ [0, T ). Since V (t, ·;µ) ∈ C1(0, 1) we have the convergence is pointwise on (0, 1). Since
∂πV (t, ·;µn) and ∂πV (t, ·;µ) are necessarily monotone (by concavity) and continuous, we have that
the convergence is locally uniform in π.

Lemma E.3. For fixed µ ∈ P([0, T ])2, the boundaries can be equivalently represented by:

B(t) = inf

{
π ≥ a2

a1 + a2
: ∂π(V − g)(t, π;µ) = 0

}
b(t) = sup

{
π ≤ a2

a1 + a2
: ∂π(V − g)(t, π;µ) = 0

}
Proof. We treat the first case and the second is analogous. We have that V − g is concave in π and

increasing on
[

a2

a1+a2
, 1
]
(see the proof of Proposition 5.2). Moreover if π ≥ B(t), ∂π(V −g)(t, π;µ) =

0 by the smooth fit condition (see Proposition 3.11 which holds in the classical sense). Then, by

Proposition 5.1(vi) we have ∂ππ(V − g) = ∂ππV ≤ −8c
H2 < 0 on

(
a2

a1+a2
, B(t)

)
. Since for fixed t,

(V − g)(t, π;µ) is C1 everywhere and twice differentiable except at π = B(t) we have that for any
ϵ > 0 and a2

a1+a2
≤ π0 ≤ B(t)− ϵ that

∂π(V − g)(t, π0;µ) = ∂π(V − g)(t, B(t)− ϵ;µ)−
∫ B(t)−ϵ

π0

∂ππV (t, u;µ)du

≥ ∂π(V − g)(t, B(t)− ϵ;µ) +
8c

H2
|B(t)− ϵ− π0|.

Taking ϵ ↓ 0 and applying continuity gives:

∂π(V − g)(t, π0;µ) ≥
8c

H2
|B(t)− π0| > 0.

Hence, if a2

a1+a2
≤ π < B(t) we have ∂π(V − g)(t, π;µ) > 0 and the result holds.

Lemma E.4. For fixed µ ∈ P([0, T ])2

(i) ∂π(V − g) is strictly decreasing on
(

a2

a1+a2
, B(t)

)
and

(
b(t), a2

a1+a2

)
.

(ii) |∂π(V − g)| ≤ L for some constant L > 0.

(iii) On the domain
(
b(t), a2

a1+a2

)
or
(

a2

a1+a2
, B(t)

)
and fixed t ∈ [0, T ), the function ∂π(V −

g)(t, ·;µ) admits a strictly decreasing and Lipschitz inverse function Qt(·) with Lipshitz con-
stant independent of µ.

Proof. The first claim is an immediate consequence of Proposition 5.1(vi). The second claim follows
since V and g are both Lipschitz (see Proposition 5.1). We now turn to the third claim. Since
∂π(V − g) is C1 and strictly decreasing on these intervals, the inverse function theorem says:

0 ≥ Q′
t(x) =

1

∂ππ(V − g)(t, Qt(x);µ)
≥ −H2

8c

where we have used Proposition 5.1(vi).
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Lemma E.5. For any sequence V (t, π;µn) restricted to π ∈
(
bn(t),

a2

a1+a2

)
or π ∈

(
a2

a1+a2
, Bn(t)

)
(where bn, Bn are the corresponding boundaries) the associated inverse functions Qn

t (·) have a com-
mon domain (−αt, 0) or (0, αt), respectively, for some αt > 0 depending on t. Moreover, if the
pointwise convergence ∂πV (t, ·;µn) → ∂πV (t, ·;µ) holds, the associated inverses satisfy Qn

t (·) → Q(·)
pointwise on (0, αt) (resp. (−αt, 0)).

Proof. We will treat the upper interval and the lower interval is analogous. From the proof of Lemma
E.3 we have that

∂π(V − g)

(
t,

a2
a1 + a2

;µn

)
≥ 8c

H2

(
Bn(t)−

a2
a1 + a2

)
> 0.

By Proposition 5.2 we have that there is a B(t) such that a2

a1+a2
< B ≤ Bn. Hence, we have

∂π(V − g)

(
t,

a2
a1 + a2

;µn

)
≥ 8c

H2

(
B(t)− a2

a1 + a2

)
=: αt > 0.

Since ∂π(V − g)(t, ·;µn) is decreasing to 0, by continuity it must take on every value in (0, αt) on(
a2

a1+a2
, Bn(t)

)
. It follows that for any n there is a common domain for the inverse functions Qn

t .

It remains to show the convergence. Without loss of generality we treat the first case of (0, αt).
This proof is a modification of standard arguments. Let ϵ > 0 and fix y ∈ (0, αt). Since Qt is
continuous by our above analysis we can choose δ > 0 sufficiently small so that 0 < y−δ < y+δ < αt

and:
|Qt(y + δ)−Qt(y)| < ϵ, |Qt(y − δ)−Qt(y)| < ϵ

Since ∂πV (t, ·;µn) → ∂πV (t, ·;µ) on
(

a2

a1+a2
, 1
)
and Qt(y±δ) ∈

(
a2

a1+a2
, 1
)
we have that there exists

a sufficiently large N such that for all n > N :

|∂πV (t, Qt(y + δ);µn)− (y + δ)| < δ,

|∂πV (t, Qt(y − δ);µn)− (y − δ)| < δ.

As a consequence

∂πV (t, Qt(y + δ);µn) > y and ∂πV (t, Qt(y − δ);µn) < y

Since Qn
t is monotonic by our above analysis, the above inequalities tell us that Qn

t (y) must be
contained in the interval defined by Qt(y + δ) and Qt(y − δ). However, the first set of inequalities
derived above implies that these values are in turn contained in [Qt(y) − ϵ,Qt(y) + ϵ] which then
implies |Qn

t (y)−Qt(y)| < ϵ, ∀n > N as required.

With this we are prepared to tackle the proof.

Proof of Lemma 5.3. We treat the case for the upper boundary B and the lower boundary is similar.
Let t ∈ [0, T ) and Qn

t , Qt be the inverses of ∂πV (t, ·;µn) and ∂πV (t, ·;µ) as per the above analysis.
We define Qn

t (0) := limx↓0 Q
n
t (x), Q

n
t (αt) := limx↑αt Q

n
t (x) and Qt(0) := limx↓0 Qt(x), Qt(αt) :=

limx↑αt Qt(x). We also note that B(t) = Qt(0), Bn(t) = Qn
t (0). By continuity in the volatility

(Lemma 4.1), the above Lemmas give us that Qn
t (x) → Qt(x) for x ∈ (0, αt). Since we have shown

that Qt, Q
n
t are uniformly Lipschitz on (0, αt), their extensions are also uniformly Lipschitz on [0, αt].

To see this simply take any sufficiently small ϵ0, ϵ1 > 0 and note that by the Lipschitz property on
(0, αt) we have for any y ∈ (0, αt):

|Qt(ϵ0)−Qt(y)| ≤
H2

8c
|ϵ0 − y|,
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|Qt(αt − ϵ1)−Qt(y)| ≤
H2

8c
|αt − ϵ1 − y|,

|Qt(αt − ϵ1)−Qt(ϵ0)| ≤
H2

8c
|αt − ϵ1 − ϵ0|.

Taking ϵ0, ϵ1 ↓ 0 shows the claim. They are also uniformly bounded by definition. Then, by the
Arzéla Ascoli Theorem, for any subsequence (n′) we can extract a further subsequence (n′′) for
which (Qn′′

t ) converges uniformly to some Lipschitz continuous limit function Q∗
t on [0, αt]. But

then, since Qn′′

t → Qt on (0, αt), by continuity Qt ≡ Q∗
t . Since the subsequence was arbitrary we

have the convergence of the functions on [0, αt]. So, Bn(t) = Qn
t (0) → Qt(0) = B(t) as n → ∞.

Since t ∈ [0, T ) was arbitrary we have pointwise convergence. Additionally, since all the boundaries
are continuous and monotone we have that the convergence is, in fact, locally uniform.

F Continuity of Hitting Times for Gaussian Processes

This appendix is a self-contained analysis of the convergence of stopping times for Gaussian processes.
We make use of this result in our proof of optimal stopping time convergence for our sequential testing
problem (see Lemma 4.3).

Consider a sequence of time dependent boundaries (Γn(t))n≥1, (γn(t))n≥1 on [0, T ] converging
on [0, T ) to limiting boundaries Γ∞(t) and γ∞(t), respectively. Additionally, consider a sequence
of Gaussian processes (Xn)n≥1 whose drift and diffusion coefficients converge pointwise to those of
the Gaussian process X∞. Define the stopping times given by the first hitting time to each of the
boundaries by:

τnγ := inf{t ≥ 0 : γn(t)−Xn
t ≥ 0} ∧ T

τnΓ := inf{t ≥ 0 : Xn
t − Γn(t) ≥ 0} ∧ T

for all n (including n = ∞). With this we are ready to state the result.

Lemma F.1. Let (Xn)n≥1, and X∞ be Gaussian processes of the form:

Xn
t = Xn

0 +

∫ t

0

µn(s)ds+

∫ t

0

σn(s)
⊤dWs

for a d-dimensional Brownian Motion W and continuous functions µn : R+ → R , σn : R+ → Rd

satisfying the bounds κ ≤ ∥σn(·)∥ ≤ K, |µn(·)| ≤ K, for some κ,K > 0 and all n (including n = ∞).
Suppose

(i) γn(t) → γ∞(t) and Γn(t) → Γ∞(t) locally uniformly on [0, T ).

(ii) The initial conditions and coefficients satisfy Xn
0 → X∞

0 , µn(t) → µ∞(t), and σn(t) → σ∞(t)
for all t ∈ [0, T ).

(iii) The boundaries (γn(t))n≥1, γ∞(t) are increasing in time and continuous OR uniformly locally
Lipschitz on [0, T ).

(iv) The boundaries (Γn(t))n≥1,Γ∞(t) are decreasing in time and continuous OR uniformly locally
Lipschitz on [0, T ).

Then we have the convergence in probability of the stopping times τnγ → τ∞γ and τnΓ → τ∞Γ as n → ∞.

Proof. The proof for both types of stopping times proceeds in a symmetric fashion. So, without loss
of generality, we restrict our attention to τnγ , τ

∞
γ . We note that many of the initial arguments in

the proof are adaptations of the arguments employed in [56].
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We aim to show that for any small ϵ, δ > 0, we can find an N ≥ 0 such that if n ≥ N then

P(|τnγ − τ∞γ | > ϵ) < δ

from which the convergence in probability follows.
Begin by fixing ϵ, δ > 0. Let η > 0 be a constant to be chosen later and define the stopping time

θn := inf
{
t ≥ 0 : |Xn

t −X∞
t | ≥ η

2

}
∧ T.

We have that:

P(|τnγ −τ∞γ | > ϵ)

≤ P
(
|τnγ − τ∞γ | > ϵ, θn > T − ϵ

2

)
+ P

(
θn ≤ T − ϵ

2

)
≤ P

(
|τnγ − τ∞γ | > ϵ, θn > T − ϵ

2

)
+ P

(
sup

t∈[0,T ]

|Xn
t −X∞

t | ≥ η

2

)
.

Assumption (ii) in the theorem statement and standard stochastic differential equation estimates

show that E
[
supt∈[0,T ] |Xn

t −X∞
t |2

]
converges to 0. Hence, we can find an N1 ≥ 0 such that for all

n ≥ N1 we have that

P

(
sup

t∈[0,T ]

|Xn
t −X∞

t | ≥ η

)
<

δ

2
.

As a consequence for n ≥ N1 we have by the above that:

P(|τnγ − τ∞γ | > ϵ) < P
(
|τnγ − τ∞γ | > ϵ, θn > T − ϵ

2

)
+

δ

2
. (61)

We now proceed to further bound the first term on the right hand side above. We have trivially
that

P
(
|τnγ − τ∞γ | > ϵ, θn > T − ϵ

2

)
(62)

≤ P
(
τ∞γ + ϵ < τnγ , θ

n > T − ϵ

2

)
+ P

(
τnγ + ϵ < τ∞γ , θn > T − ϵ

2

)
.

We will now treat each of these terms on the right hand side starting with

P
(
τ∞γ + ϵ < τnγ , θ

n > T − ϵ

2

)
.

First note that

P
(
τ∞γ + ϵ < τnγ , θ

n > T − ϵ

2

)
≤ P

(
τ∞γ < T − ϵ, τ∞γ +

ϵ

2
< τnγ , θ

n > T − ϵ

2

)
.

Now if the three conditions:

τ∞γ < T − ϵ, τ∞γ +
ϵ

2
< τnγ , and θn > T − ϵ

2
(63)

hold we have on
[
τ∞γ , τ∞γ + ϵ

2

]
that |Xn

t − X∞
t | ≤ η

2 . Moreover, for both (Γn)n≥1 and (γn)n≥1 by
our assumptions we can find an N2 ≥ 0 such that if n ≥ N2 then

sup
t∈[0,T− ϵ

2 ]
|γn(t)− γ∞(t)| < η

2
.
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As a consequence for n ≥ N1 ∨N2 we have

sup
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]
|γn(t)− γ∞(t)| < η

2
.

For the case where the boundaries are uniformly locally Lipschitz we also have that there is a local
Lipschitz constant Lϵ/2 > 0 (holding on [0, T − ϵ

2 ]) such that for all n (including n = ∞):

|γn(t)− γn(s)| ≤ Lϵ/2|t− s|, ∀(t, s) ∈
[
0, T − ϵ

2

]
,

and in particular, (as τ∞γ + ϵ
2 < T − ϵ

2 ) this holds for all (t, s) ∈
[
τ∞γ , τ∞γ + ϵ

2

]
⊂
[
0, T − ϵ

2

]
.

Case 1 (Monotone Boundaries): Let us start with the case where the γn are increasing in t.
Since under our three conditions in (63), τnγ ∈ (τ∞γ + ϵ

2 , T ] we have (by the path continuity of the
Gaussian process with continuous coefficients and the definition of τnγ ):

max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]
(γn(t)−Xn

t ) < 0.

Hence,

0 > max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]
(γn(t)−Xn

t )

= max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]
(γ∞(t)−X∞

t + γn(t)− γ∞(t) +X∞
t −Xn

t )

≥ max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]
(γ∞(t)−X∞

t )− η

= max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]

(
γ∞(t)−X∞

τ∞
γ

−
∫ t

τ∞
γ

µ∞(s)ds−
∫ t

τ∞
γ

σ∞(s)⊤dWs

)
− η

≥ max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]

(
γ∞(t)−X∞

τ∞
γ

−
∫ t

τ∞
γ

K

κ2
∥σ∞(s)∥2ds−

∫ t

τ∞
γ

σ∞(s)⊤dWs

)
− η

= max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]

(
γ∞(t)− γ∞(τ∞γ )−

∫ t

τ∞
γ

K

κ2
∥σ∞(s)∥2ds−

∫ t

τ∞
γ

σ∞(s)⊤dWs

)
− η

≥ max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]

(
−
∫ t

τ∞
γ

K

κ2
∥σ∞(s)∥2ds−

∫ t

τ∞
γ

σ∞(s)⊤dWs

)
− η

where in the second last line we have used path continuity to get X∞
τ∞
γ

= γ∞(τ∞γ ). The last line

then follows by our assumption that says γ∞(t) is increasing. Taken together, by rearranging we get
that if τ∞γ < T − ϵ, τ∞γ + ϵ

2 < τnγ and θn > T − ϵ
2 then for n ≥ N1 ∨N2:

max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]

(
−K

κ2

∫ t

τ∞
γ

∥σ∞(s)∥2ds−
∫ t

τ∞
γ

σ∞(s)⊤dWs

)
< η.

Hence we arrive at the bound:

P
(
τ∞γ < T − ϵ, τ∞γ +

ϵ

2
< τnγ , θ

n > T − ϵ

2

)
≤ P

(
max

t∈[τ∞
γ ,τ∞

γ + ϵ
2 ]

(
−K

κ2

∫ t

τ∞
γ

∥σ∞(s)∥2ds−
∫ t

τ∞
γ

σ∞(s)⊤dWs

)
< η, τ∞γ < T − ϵ

)
.
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Case 2 (Uniformly Locally Lipschitz Boundaries): When instead the uniform local Lipschitz
condition holds for the γn we repeat the arguments to get

0 > max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]

(
γ∞(t)− γ∞(τ∞γ )−

∫ t

τ∞
γ

µ∞(s)ds−
∫ t

τ∞
γ

σ∞(s)⊤dWs

)
− η

≥ max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]

(
−Lϵ/2(t− τ∞γ )−

∫ t

τ∞
γ

µ∞(s)ds−
∫ t

τ∞
γ

σ∞(s)⊤dWs

)
− η

= max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]

(
−
∫ t

τ∞
γ

(Lϵ/2 + µ∞(s))ds−
∫ t

τ∞
γ

σ∞(s)⊤dWs

)
− η

= max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]

(
−
∫ t

τ∞
γ

(Lϵ/2 + µ∞(s))

∥σ∞(s)∥2
∥σ∞(s)∥2ds−

∫ t

τ∞
γ

σ∞(s)⊤dWs

)
− η

≥ max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]

(
−
∫ t

τ∞
γ

(Lϵ/2 +K)

κ2
∥σ∞(s)∥2ds−

∫ t

τ∞
γ

σ∞(s)⊤dWs

)
− η

Once again by rearranging we get that if τ∞γ < T − ϵ, τ∞γ + ϵ
2 < τnγ and θn > T − ϵ

2 then for
n ≥ N1 ∨N2:

max
t∈[τ∞

γ ,τ∞
γ + ϵ

2 ]

(
−Kϵ

∫ t

τ∞
γ

∥σ∞(s)∥2ds−
∫ t

τ∞
γ

σ∞(s)⊤dWs

)
< η,

for some Kϵ > 0. Hence we arrive at the bound:

P
(
τ∞γ < T − ϵ, τ∞γ +

ϵ

2
< τnγ , θ

n > T − ϵ

2

)
≤ P

(
max

t∈[τ∞
γ ,τ∞

γ + ϵ
2 ]

(
−Kϵ

∫ t

τ∞
γ

∥σ∞(s)∥2ds−
∫ t

τ∞
γ

σ∞(s)⊤dWs

)
< η, τ∞γ < T − ϵ

)
.

Note that the monotone case leads us to the choice Kϵ = K
κ2 so rather than treat these cases

separately, we will proceed using this full generality without further comment.
For the remaining term in (62), a nearly identical argument gives us:

P
(
τnγ + ϵ < τ∞γ , θn > T − ϵ

2

)
≤ P

(
τnγ < T − ϵ, τnγ +

ϵ

2
< τ∞γ , θn > T − ϵ

2

)
and by exploiting the uniform local Lipschitz property (or monotonicity) that:

P
(
τnγ < T − ϵ, τnγ +

ϵ

2
< τ∞γ , θn > T − ϵ

2

)
≤ P

(
max

t∈[τn
γ ,τn

γ + ϵ
2 ]

(
−Kϵ

∫ t

τn
γ

∥σn(s)∥2ds−
∫ t

τn
γ

σn(s)
⊤dWs

)
< η, τnγ < T − ϵ

)

Now, if η can be chosen sufficiently small so that for all n the above quantities are each bounded by
δ
4 then we get from (62) that

P
(
|τnγ − τ∞γ | > ϵ, θn > T − ϵ

2

)
<

δ

2
.

Taking this bound together with (61) we will then arrive at

P(|τnγ − τ∞γ | > ϵ) < δ

46



as required to complete the proof.
This final piece of the proof will follow from the following claim which gives the result for all n

by our assumptions on σn(s).
Claim: For any δ > 0 we can find an η > 0 sufficiently small so that for all FW-stopping times

τ and ∥σ(s)∥ ≥ κ > 0:

P

(
max

t∈[τ,τ+ ϵ
2 ]

(
−Kϵ

∫ t

τ

∥σ(s)∥2ds+
∫ t

τ

σ(s)⊤dWs

)
< η, τ < T − ϵ

)
<

δ

4
.

Note first by the strong Markov property that the left hand side is trivially bounded by:

max
t0∈[0,T−ϵ]

P

(
max

t∈[t0,t0+ ϵ
2 ]

(
−Kϵ

∫ t

t0

∥σ(s)∥2ds+
∫ t

t0

σ(s)⊤dWs

)
< η

)

since the distribution of the Gaussian process under the maximum depends on τ only through the
random starting point for the interval and the outer maximum will choose the worst case starting
time. Now, for a given t0 we have the equivalent representation:

P

(
max

u∈[0, ϵ2 ]

(
−Kϵ

∫ u

0

∥σ(s+ t0)∥2ds+
∫ u

0

σ(s+ t0)
⊤dWs

)
< η

)

Now by traditional arguments we have that there exists a Brownian motion Ŵ such that for the
“clock”

α0(u) =

∫ u

0

∥σ(s+ t0)∥2ds

we have ∫ u

0

σ(s+ t0)
⊤dWs

d
= Ŵα0(u).

As a result we can treat

P

(
max

u∈[0, ϵ2 ]

(
−Kϵα0(u) + Ŵα0(u)

)
< η

)
.

Equivalently:

P

(
max

s∈[0,α0(
ϵ
2 )]

(
−Kϵs+ Ŵs

)
< η

)
since α0(0) = 0 and α(u) is increasing and continuous on [0, ϵ/2]. Now since ∥σ(s + t0)∥ > κ we
have α(ϵ/2) > κ ϵ

2 and

P

(
max

s∈[0,α0(
ϵ
2 )]

(
−Kϵs+ Ŵs

)
< η

)
≤ P

(
max

s∈[0,κ ϵ
2 ]

(
−Kϵs+ Ŵs

)
< η

)

since if the maximum over the larger interval is less than η then so is the maximum over the smaller
interval. But now this is just in terms of the probability of the maximum of a Brownian motion
with drift. In particular, we have by standard results (see for example [61]) that:

P

(
max

s∈[0,κ ϵ
2 ]

(
−Kϵs+ Ŵs

)
< η

)
= Φ

(
η + κKϵϵ/2√

κϵ/2

)
− e−2KϵηΦ

(
−η + κKϵϵ/2√

κϵ/2

)
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where Φ(·) is the standard normal CDF. Clearly as η ↓ 0 we have that the right hand side converges
to 0. Thus, for any δ > 0 we can find a sufficiently small η > 0 such that

Φ

(
η + κKϵϵ/2√

κϵ/2

)
− e−2KϵηΦ

(
−η + κKϵϵ/2√

κϵ/2

)
<

δ

4

Since this argument was independent of t0 ∈ [0, T − ϵ] and the particular choice of τ , this proves the
claim.

We now close by remarking that choosing η at the beginning of our proof to depend on ϵ, δ as
per the above and taking n ≥ N1 ∨N2 gives us the proof of the lemma.
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[43] J. M. Lasry and P. L. Lions. Jeux à champ moyen. ii - horizon fini et contrôle optimal. Comptes
Rendus de l’Académie des Sciences, 343:679–684, 2006.

[44] J.-M. Lasry and P.-L. Lions. Mean field games. Japanese journal of mathematics, 2(1):229–260,
2007.

[45] M. Nutz. A mean field game of optimal stopping. SIAM Journal on Control and Optimization,
56(2):1206–1221, 2018.

[46] M. Nutz, J. San Martin, and X. Tan. Convergence to the mean field game limit: A case study.
The Annals of Applied Probability, 30(1):259–286, 2020.

[47] M. Nutz and Y. Zhang. Mean field contest with singularity. Mathematics of Operations Re-
search, 2022.

[48] G. Peskir. A change-of-variable formula with local time on curves. Journal of Theoretical
Probability, 18(3):499–535, 2005.

[49] G. Peskir and A. Shiryaev. Optimal stopping and free-boundary problems. Springer, 2006.

[50] G. Peskir and A. N. Shiryaev. Sequential testing problems for poisson processes. Annals of
Statistics, pages 837–859, 2000.

[51] P. E. Protter. Stochastic differential equations. In Stochastic integration and differential equa-
tions, pages 249–361. Springer, 2005.

[52] L. Qiao, Y. Sun, and Z. Zhang. Conditional exact law of large numbers and asymmetric
information economies with aggregate uncertainty. Economic Theory, 62(1):43–64, 2016.

[53] R. T. Rockafellar. Convex analysis. Princeton university press, 2015.
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