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Excitons, as bound states of electrons and holes, embody the solid state analogue of the hydrogen
atom, whose quantum spectrum is explained within a classical framework by the Bohr–Sommerfeld
atomic model. In a first hydrogenlike approximation the spectra of excitons are also well described
by a Rydberg series, however, due to the surrounding crystal environment deviations from this series
can be observed. A theoretical treatment of excitons in cuprous oxide needs to include the band
structure of the crystal, leading to a prominent fine-structure splitting in the quantum spectra.
This is achieved by introducing additional spin degrees of freedom into the system, making the
existence and meaningfulness of classical exciton orbits in the physical system a non-trivial question.
Recently, we have uncovered the contributions of periodic exciton orbits directly in the quantum
mechanical recurrence spectra of cuprous oxide [J. Ertl et al., Phys. Rev. Lett. 129, 067401 (2022)]
by application of a scaling technique and fixing the energy of the classical dynamics to a value
corresponding to a principle quantum number n = 5 in the hydrogenlike case. Here, we present a
comprehensive derivation of the classical and semiclassical theory of excitons in cuprous oxide. In
particular, we investigate the energy dependence of the exciton dynamics. Both the semiclassical and
quantum mechanical recurrence spectra exhibit stronger deviations from the hydrogenlike behavior
with decreasing energy, which is related to a growing influence of the spin-orbit coupling and thus
a higher velocity of the secular motion of the exciton orbits. The excellent agreement between
semiclassical and quantum mechanical exciton recurrence spectra demonstrates the validity of the
classical and semiclassical approach to excitons in cuprous oxide.

I. INTRODUCTION

Since the early days of quantum mechanics and the de-
velopment of Bohr’s model for the hydrogen atom there
has been a long standing debate on the significance of
classical dynamics in quantum theory. The states of
the hydrogen atom can well be described by applica-
tion of the semiclassical Bohr–Sommerfeld quantization
rules [1], however, the old quantum theory already fails
for the computation of the ground state energy of the he-
lium atom with its underlying classically chaotic three-
body dynamics. Modern semiclassical theories for both
regular and chaotic multidimensional systems have been
derived in the 1970’s; Gutzwiller’s periodic-orbit the-
ory [2] describes the density of states of chaotic systems in
terms of periodic-orbit parameters of the underlying clas-
sical system, an analogous theory has been developed by
Berry and Tabor for integrable systems [3]. The semiclas-
sical trace formulas of these theories are the foundation
for, e.g., the physical interpretation of quantum spec-
tra of the diamagnetic Kepler problem [4–6], the helium
atom [7], and the application of random matrix theory
to the quantum spectra of classically chaotic systems [8].

A system similar to the hydrogen atom occurs in solid
state physics. When an electron is excited from the va-
lence band of a semiconductor to the conduction band
it leaves behind a positively charged hole in the valence
band. Due to the Coulomb interaction between electron
and hole the two particles can form a bound hydrogen-
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like state, called exciton. While semiclassical approaches
are now well established in atomic physics, the majority
of theoretical investigations on excitons are performed
within a quantum mechanical framework [9–13]. This
might be due to historical reasons; when first discovered
in 1956 only exciton states with low principle quantum
numbers were experimentally accessible [14]. This situ-
ation has changed in 2014 when Kazimierczuk et al. ob-
served giant Rydberg excitons up to principle quantum
numbers n = 25 in cuprous oxide [15]. Recently even
Rydberg excitons with quantum numbers up to n = 30
could be resolved [16]. Taking into account the material
parameters of cuprous oxide the size of these states is of
the order of several µm, and thus the classical correspon-
dence principle should be applicable.

The question whether or not the quantum mechanical
exciton spectra can be explained in terms of a classical
exciton dynamics is nontrivial and interesting due to the
fact that the experimental spectra of cuprous oxide are
far more complicated than hydrogenlike Rydberg spec-
tra. In particular, the exciton spectra exhibit a promi-
nent fine-structure splitting [11]. In the quantum compu-
tations this fine structure can be considered by introduc-
ing additional spin degrees of freedom, viz. a quasispin
I, which couples to the spin Sh of the holes in the va-
lence band [12, 17, 18]. To obtain a classical picture an
adiabatic approach can be applied, where the spin de-
grees of freedom are treated in a quantum mechanical
framework, while the relative coordinates and momenta
are considered as classical variables [19].

A semiclassical analysis of quantum spectra is possi-
ble by extracting the periodic orbit parameters of the
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underlying classical dynamics by using the semiclassical
trace formulas, which describe the density of states as
a superposition of sinusoidal contributions from periodic
orbits [2, 3]. This is most easy for systems possessing
a scaling property in a way that the classical dynamics
does not depend on the energy or a suitable scaling pa-
rameter [6]. Contrary to hydrogenlike systems, which be-
come energy-independent by application of an appropri-
ate scaling transformation [6], the dynamics of excitons
in cuprous oxide, due to the spin-orbit coupling, still de-
pends on the energy, however, a scaling property can be
recovered via a modification of the spin-orbit term [20].
The Fourier transform of the quantum mechanical den-
sity of states then yields quantum mechanical recurrence
spectra with peaks corresponding to actions of periodic
exciton orbits. In Ref. [20] we demonstrated the exis-
tence of classical exciton orbits in the recurrence spectra
of a system where the energy for the classical dynamics
is fixed to a value corresponding to a principle quantum
number n = 5 in the hydrogenlike case.

In this paper we derive the classical and semiclassi-
cal theory for excitons in cuprous oxide. We discuss the
energy dependence of classical exciton orbits and demon-
strate the resulting differences in the corresponding re-
currence spectra. In Sec. II we present the Hamiltonian
for excitons in cuprous oxide. The adiabatic approach
leading to a classical description of excitons and the re-
sulting classical dynamics are discussed in Sec. III. Here
we study the energy dependence of the phase space struc-
ture via Poincaré surfaces of section (PSOS) of orbits in
the two distinct symmetry planes. Furthermore, we dis-
cuss stability properties of periodic orbits, as well as the
organization of the action for one- to three-dimensional
periodic orbits. The relation of classical exciton orbits to
the quantum properties of the crystal can be established
by semiclassical methods. The techniques used in this
manuscript are presented in Sec. IV as well as the calcu-
lation scheme of semiclassical amplitudes. The semiclas-
sical results are then compared to quantum mechanical
calculations. In Sec. V we introduce the techniques used
for the solution of the quantum mechanical problem, and
present a detailed comparison of semiclassical amplitudes
and quantum recurrence spectra. An outlook and con-
clusion are given in Sec. VI.

II. EXCITONS IN CUPROUS OXIDE

Excitons in a semiconductor like cuprous oxide are ex-
citations of the crystal, where an electron is lifted from
one of the valence bands to the conduction band, leav-
ing behind a hole. In a simple model, i.e., neglecting
the valence band structure, the electron and hole, due
to the Coulomb interaction, can form bound states sim-
ilar to the Rydberg series in the hydrogen atom. The
complex valence band structure of cuprous oxide causes
fine-structure splittings in the spectra, which can be con-
sidered via correction terms to the kinetic energy that

break the spherical symmetry. In the case of excitons
in cuprous oxide, these terms originate from the non-
parabolic shape of the uppermost valence bands, which
belong to the irreducible representation Γ+

5 [9, 10] of the
cubic Oh symmetry group [21] of the crystal. The treat-
ment of the three-dimensional space of Bloch functions
leads to the introduction of auxiliary degrees of freedom
compared to the hydrogenlike model, i.e., the quasispin
I in addition to the hole spin Sh, whose components are
given by the spin matrices for I = 1 and Sh = 1/2, re-
spectively [22–24]. The excitons in cuprous oxide can be
described using the Hamiltonian [12]

H = Eg+He(pe)+Hh(ph, Î, Ŝh)−
e2

4πε0ε|re − rh|
. (1)

Here,

He(pe) =
1

2me
p2
e (2)

and

Hh(ph, Î, Ŝh) =
γ1
2m0

p2
h +

1

2h̄2m0

[
4γ2h̄

2p2
h

− 6γ2(p
2
h1I

2
1 + c.p.)− 12γ3({ph1, ph2}{I1, I2}+ c.p.)

− 12η2(p
2
h1I1Sh1 + c.p.) + 2(η1 + 2η2)p

2
h(I · Sh)

− 12η3({ph1, ph2}(I1Sh2 + I2Sh1) + c.p.)
]
+HSO (3)

are the kinetic energy of the electron and hole at posi-
tions re and rh with momentum pe and ph, respectively.
{a, b} = 1

2 (ab + ba) denotes the symmetrized product,
c.p. stands for cyclic permutation, and γi and ηi are the
Luttinger parameters. Eq. (2) differs from the kinetic
energy in the vacuum only by a modified electron mass
me, i.e., the conduction band remains a parabola. By
contrast, the degenerate Γ+

5 bands significantly deviate
from a parabolic shape. The terms in Eq. (3) form the
Suzuki-Hensel Hamiltonian [24], which includes all cor-
rections up to quadratic order in ph that are compatible
with the Oh symmetry of the crystal. The degrees of free-
dom of the hole in the Γ+

5 bands can be described by an
effective internal angular momentum, viz. the quasispin
I. The last term in Eq. (1) is the screened Coulomb po-
tential with the dielectric constant ε. In this work we
neglect central-cell corrections, which play a role for the
even exciton states only and have been studied in detail
in Refs. [13, 25, 26].
When the system is expressed in relative and center-

of-mass coordinates [27],

r = re − rh , R = mhrh+mere

mh+me
,

P = pe + ph , p = mhpe−meph

mh+me
, (4)

with vanishing center-of-mass momentum P = 0, we ob-
tain the Hamiltonian [12, 17, 18]

H = Eg +Hkin(p, I,Sh)−
e2

4πε0ε|r|
+HSO . (5)
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FIG. 1. Schematic view of the band structure. The conduc-
tion band belongs to irreducible representation Γ+

6 while at
the Γ-point a Γ+

7 and Γ+
8 valence band exists. These bands

are separated by the spin-orbit coupling ∆. Transitions from
the upper and lower valence band to the conduction band re-
sult in the yellow and green exciton series, respectively.

Here the second term,

Hkin(p, I,Sh) =
γ′
1

2m0
p2 +

1

2h̄2m0

[
4γ2h̄

2p2

− 6γ2(p
2
1I

2
1 + c.p.)− 12γ3({p1, p2}{I1, I2}+ c.p.)

− 12η2(p
2
1I1Sh1 + c.p.) + 2(η1 + 2η2)p

2(I · Sh)

− 12η3({p1, p2}(I1Sh2 + I2Sh1) + c.p.)
]
, (6)

accounts for the kinetic energy of the electron and hole
quadratic in the momentum p, with γ′

1 = γ1 + m0/me.
Additionally, the Suzuki-Hensel Hamiltonian (3) contains
a spherically-symmetric term that couples the quasispin
and hole spin, viz. the spin-orbit term

HSO =
2

3
∆

(
1 +

1

h̄2 I · Sh

)
. (7)

Here, ∆ denotes the spin-orbit coupling strength. This
leads to a splitting of the Γ+

5 band into a higher lying
two-fold degenerate Γ+

7 band, connected to the yellow
exciton series, and a lower lying four-fold degenerate Γ+

8

band, connected to the green exciton series [9, 10, 21].
A schematic of the band structure is shown in Fig. 1.
The first term in the Hamiltonian (1) is the band-gap
energy Eg between the uppermost Γ+

7 valence band and
the lowermost Γ+

6 conduction band as also illustrated in
Fig. 1. The material parameters of cuprous oxide are
given in Table I.

III. CLASSICAL EXCITON DYNAMICS

The classical exciton dynamics of the simple hydrogen-
like model with Hamiltonian

Hhyd = Eg +
γ′
1

2m0
p2 − e2

4πε0ε|r|
, (8)

is well known. The bound orbits are classical Kepler
ellipses, which are obtained as analytical solutions of
Hamilton’s equations of motion. For the Hamiltonian (8)
the scaling

r = n2
eff r̃ , p =

1

neff
p̃ , (9)

of the coordinates and momenta with the effective quan-
tum number neff ≡

√
ERyd/(Eg − E), where ERyd is the

exciton Rydberg energy, removes the energy dependence
from the Hamiltonian after multiplication with n2

eff . This
means that, up to a scaling of the Kepler ellipses, the
classical dynamics is the same at all energies. The sit-
uation, however, becomes more complicated when con-
sidering the full Hamiltonian (5). The additional band
structure terms

Hband(p, I,Sh) =
1

2h̄2m0

[
4γ2h̄

2p2

− 6γ2(p
2
1I

2
1 + c.p.)− 12γ3({p1, p2}{I1, I2}+ c.p.)

− 12η2(p
2
1I1Sh1 + c.p.) + 2(η1 + 2η2)p

2(I · Sh)

− 12η3({p1, p2}(I1Sh2 + I2Sh1) + c.p.)
]
+HSO , (10)

which are neglected in the hydrogenlike model (8), de-
pend on the additional degrees of freedom introduced by
the quasispin I and the hole spin Sh. Note that the
spin-orbit term HSO given in Eq. (7) disables the scaling
procedure described above to remove the energy depen-
dence of the Hamiltonian (5).

A. Adiabatic approach

To obtain classical exciton orbits and their parameters
from the Hamiltonian (5) the spin degrees of freedom

TABLE I. Material parameters of Cu2O used in this paper.

band-gap energy Eg 2.172 08 eV [15]
electron mass me 0.99m0 [28]
hole mass mh 0.58m0 [28]
dielectric constant ε 7.5 [29]
spin-orbit coupling ∆ 0.131 eV [10]
Luttinger parameters γ1 1.76 [10]

γ2 0.7532 [10]
γ3 −0.3668 [10]
η1 −0.02 [10]
η2 −0.00367 [10]
η3 −0.03367 [10]
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also need to be considered. Therefore, we resort to the
adiabatic approach introduced in Ref. [19]. The idea is
based on the different characteristic timescales, related
to the corresponding energy splittings T ∼ h̄/∆E, on
which the dynamics of the spin degrees of freedom and
the relative coordinates take place. While for the Ryd-
berg series the splittings ∆E ∼ 2ERyd/n

3 strongly de-
crease with increasing quantum number n, the spin-orbit
splitting caused by the spin degrees of freedom is fixed
to the value of the spin-orbit coupling ∆. Comparing
the values of ERyd and ∆ it becomes apparent that the
dynamics of the spin degrees of freedom becomes much
faster than the dynamics of the relative motion already
for quantum numbers n >∼ 3. This means that the spin
degrees of freedom can react almost instantly to changes
in the relative configuration of the coordinates. Thus
we consider the spin degrees of freedom quantum me-
chanically by diagonalizing the band-structure part of the
Hamiltonian (10) in a six-dimensional basis for the qua-
sispin and hole spin |mI ,mSh

⟩ with the corresponding
magnetic quantum numbers mI and mSh

. This yields
three distinct two-fold degenerate energy surfaces Wk(p)
in momentum space obeying the eigenvalue equation

Hband(p, I,Sh)χk(p; I,Sh) = Wk(p)χk(p; I,Sh) (11)

with the corresponding wave functions

χk(p; I,Sh) =
∑

mI ,mSh

cmI ,mSh
(p) |mI ,mSh

⟩ , (12)

which can be assigned to the different exciton series,
i.e., one for the yellow series and two for the green se-
ries. The two-fold degeneracies can be explained using
Kramers’ theorem. Note that this procedure is somehow
the inverse of fitting the Luttinger parameters γi and
ηi to energy surfaces obtained from spin-DFT calcula-
tions [9, 10]. The adiabatic approach can now be derived
by using the product ansatz

Ψ =
∑
k

Φk(p)χk(p; I,Sh) (13)

in momentum space. Inserting this ansatz into the full
Hamiltonian (5) and multiplication from the left with χk′

yields six equations

HΦ =

[(
Eg +

γ′
1

2m0
p2 +Wk(p)

)
δk′k +HC

]
Φ = EΦ ,

(14)
where the operator HC, defined as

(HC)k′k = ⟨χk′ | −e2

4πε0ε|r|
|χk⟩ , (15)

couples the different wave functions Φk. However, for
Rydberg excitons with quantum numbers n >∼ 3 the cou-
pling terms can be neglected because of the different time
scales of the spin degrees and the relative motion as ex-
plained above, which leads to the Schrödinger equation[

Eg +
γ′
1

2m0
p2 − e2

4πε0ε|r|
+Wk(p)

]
Φk = EΦk . (16)

In this work we restrict the analysis of the exciton dynam-
ics to the yellow series described by the classical Hamilton
function

H = Eg +
γ′
1

2m0
p2 − e2

4πε0ε|r|
+W1,2(p) = E , (17)

with the two-fold degenerate lowest pair of energy sur-
faces W1,2(p). Since the Hamilton function (17) only
depends on the relative coordinates r and p we ob-
tain classical exciton orbits by fixing the energy E =
Eg − ERyd/n

2
eff , i.e., using a fixed value neff = n0, and

then numerically integrating Hamilton’s equations of mo-
tion

ṙi =
γ′
1

m0
pi +

∂Wk(p)

∂pi
, ṗi = − e2

4πε0ε

ri
|r|3 , (18)

with, e.g., a standard Runge-Kutta algorithm [30]. Due
to the additional band structure terms carried by the en-
ergy surfaces Wk the spherical SO(4) symmetry of the
hydrogenlike problem is reduced to the cubic Oh symme-
try. For the cubic symmetry nine symmetry planes exist,
where a two-dimensional motion is possible. One can
distinguish two classes of symmetry planes. The three
planes normal to the [100] axis and its equivalents exhibit
the same dynamics and likewise the six planes normal to
the [11̄0] axis and its equivalents. In contrast to the hy-
drogenlike model where every starting configuration leads
to a two-dimensional orbit, three-dimensional orbits are
possible when moving the starting configurations out of
the symmetry planes. This leads to an intricate phase
space structure for excitons in cuprous oxide.

B. Classical exciton orbits and PSOS

Since the phase space of the classical exciton dynamics
described by the Hamiltonian (17) is six-dimensional it
cannot easily be visualized. However, the phase space
related to the two-dimensional orbits in the symmetry
planes normal to the [100] and [11̄0] axes can be analyzed
directly by looking at the corresponding PSOS. They are
constructed by choosing a two-dimensional hyperplane in
the four-dimensional phase space, here the (z, pz) plane,
and recording the intersection points of orbits when cross-
ing the z axis, i.e., x = y = 0. The remaining momenta
px and py are given by the conservation of energy and
the choice of the symmetry plane. Such PSOS are shown
in Fig. 2 for the two different symmetry planes and three
different values of n0. In general, the PSOS exhibit reg-
ular, i.e., integrable or near-integrable parts of the phase
space as toruslike regular structures, while chaotic mo-
tion is indicated by stochastic regions. Periodic orbits
appear as fixed points in the PSOS.
In all PSOS in Fig. 2 one can observe a central fixed

point, belonging to a nearly circular orbit shown as inset
in the bottom right of the PSOS. This orbit is surrounded
by regular tori, which cover the majority of phase space.
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2ỹ

1

-1 z̃ 1 -1 z̃ 1

-1

√
2ỹ
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FIG. 2. PSOS for the symmetry planes normal to [100] (top row) and normal to [11̄0] (bottom row) at n0 = 3 (left), n0 = 5
(middle), and n0 = 10 (right). A selection of orbits is shown as insets, labeled by their winding numbers M1 = 1 for the nearly
circular orbits and M1:M2 for the periodic orbits on the two-dimensional tori. Their positions in the PSOS are marked by
corresponding symbols. Coordinates and momenta are given in the scaled units (9) and thus approximately cover the same
range for all values of n0. The figure extends previous results for n0 = 5 in the plane ⊥ [100] presented in Ref. [19].

The outermost parts of the PSOS exhibit small stochas-
tic (chaotic) regions. The area of the chaotic region is
larger for the symmetry plane normal to [11̄0] and de-
creases with increasing values of n0. In the regular, near-
integrable regions the two-dimensional orbits are char-
acterized as a secular motion of Kepler ellipses. Here,
stable and unstable periodic orbits appear in pairs of el-
liptic and hyperbolic fixed points in accordance with the
Poincaré–Birkhoff theorem as illustrated in the enlarged
PSOS in Fig. 3. These periodic orbits can be classified
by two integer winding numbers M1 and M2 with M1 the
number of Kepler ellipses and M2 the number of circu-
lations on the torus caused by the secular motion until
repetition. Some of them are illustrated in Fig. 3 and
as insets in Fig. 2. The assignment of winding numbers
can be confirmed by Fourier analysis of the periodic or-
bit coordinate functions [31, 32]. The ratio M1/M2 of the
winding numbers increases when moving from the outer-
most part of the PSOS towards the central fixed point,
where it takes its maximum value. This is related to
a decrease of the eccentricity of the Kepler ellipses and
thus to an increase of the angular momentum vector in

the direction perpendicular to the symmetry plane. The
maximum ratio (M1/M2)max is larger in the symmetry
plane normal to [11̄0] and increases with increasing n0.
It is important to note that the speed of the secular mo-
tion strongly decreases with growing n0 and thus with
growing energy. As can be seen in Fig. 2 tori with the
same ratio M1/M2 of the winding numbers are shifted
towards the outer regions of the PSOS with increasing
n0, which means that the inner regions more and more
belong to tori with higher ratios M1/M2 related to orbits
with slower secular motion, i.e., the band structure of the
crystal has a stronger influence on states with low prin-
cipal quantum numbers and a lower influence on highly
excited Rydberg excitons. Furthermore, orbits in the two
distinct symmetry planes also differ in their symmetry
properties and their orbit parameters.
The exciton dynamics outside the symmetry planes is

characterized by three-dimensional orbits, where a sec-
ular motion of Kepler ellipses occurs in orientations de-
scribed by two angles ϑ and φ. Here, periodic orbits
can be classified by three winding numbers, where the
third winding number M3 counts the cycles of the sec-
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FIG. 3. Top: Enlarged part of the PSOS for the plane nor-
mal to [100] at n0 = 5, where two fixed points are surrounded
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Stable and unstable periodic orbit with winding numbers
M1:M2 = 5:1 corresponding to the two fixed points.

ular motion in the additional direction compared to the
two-dimensional case. The orbits appear in sets of four
distinguished variants, not counting rotations and reflec-
tions of the same orbit within the Oh symmetry group.
A quadruple of three-dimensional orbits with n0 = 5 and
winding numbers M1:M2:M3 = 16:1:2 is illustrated in
Fig. 4. The projection of the three-dimensional orbits
onto the yz plane looks similar to the corresponding two-
dimensional orbits, where the orbits in the same column
show comparable behavior. The orbits in the same row
have identical orientation towards a symmetry plane of
the crystal. The orbits in the upper row appear folded
towards the plane normal [001], whereas the orbits in the
lower row are oriented towards the plane normal to [01̄1].

C. Stability properties of periodic orbits

The application of semiclassical periodic orbit theories
in the following sections requires the computation of pe-
riodic orbit parameters, including a quantitative descrip-
tion of their stability properties. The stability matrix
M(T ) describes, in a linear approximation, the devia-
tion of the phase space vector

γ(t) =

(
r(t)
p(t)

)
(19)

-1 0 1
-1

0
1

-1

0

1

-1 0 1
-1

0
1

-1

0

1

-1 0 1
-1

0
1

-1

0

1

-1 0 1
-1

0
1

-1

0

1

-1 0 1
-1

0
1

-1

0

1

-1 0 1
-1

0
1

-1

0

1

-1 0 1
-1

0
1

-1

0

1

-1 0 1
-1

0
1

-1

0

1

z̃

ỹ
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FIG. 4. Three-dimensional orbits with winding numbers
M1:M2:M3 = 16:1:2. Four distinct orbits with different ori-
entation and position of their maxima exist. The projection
onto the yz-plane is shown below each orbit.

from the initial point γ(0) after one period, i.e.,

∆γ(T ) = M(T )∆γ(0) , (20)

and can be calculated by integrating

d

dt
M = J

∂2H

∂γ∂γ
M , with J =

(
0 1

−1 0

)
(21)

and M(0) = 1 along the corresponding orbit.
Since the stability matrix is symplectic the eigenvalues

appear in pairs λi and 1/λi. An absolute value of the
sum |λi + 1/λi| > 2 indicates that the corresponding
direction is unstable, while values |λi+1/λi| ≤ 2 indicate
a stable direction. For every constant of motion a pair of
eigenvalues λi = 1 does exist. The stability eigenvalues
also allow us to study the stability properties of two-
dimensional orbits out of the symmetry planes.
For the nearly circular orbits the values of λi+1/λi as

functions of n0 are shown in Fig. 5. For both orbits the
stability in the symmetry plane (red and green curves) is
almost identical. For the direction out of the plane the
behavior differs. The nearly circular orbit in the plane
normal to [100] is stable and the orbit normal to [11̄0]
is unstable against perturbations out of the symmetry
planes. For the two-dimensional orbits a similar behav-
ior can be observed. Orbits in the plane normal to [11̄0]
are unstable against perturbations of the orbits out of the
plane, whereas the orbits in the symmetry plane normal
to [100] are mostly stable. This can be seen in Fig. 6,
where the sums λi + 1/λi for the directions orthogonal



7

1.8

1.85

1.9

1.95

2

2.05

4 6 8 10 12 14

λ
i
+

1
/λ

i

n0

λ⊥ + 1/λ⊥, ⊥ [100]
λ‖ + 1/λ‖, ⊥ [100]
λ⊥ + 1/λ⊥, ⊥ [11̄0]
λ‖ + 1/λ‖, ⊥ [11̄0]

FIG. 5. Sum λi+1/λi for the nearly circular orbits in the dif-
ferent symmetry planes, where λ∥ and λ⊥ describe the stabil-
ity of the orbits in the plane and out of the plane, respectively.
The directions normal to the symmetry plane are stable for
the plane normal to [100] (blue curve) and unstable for the
plane normal to [11̄0] (orange curve). Both orbits are stable
with respect to perturbations in the plane with almost iden-
tical stability eigenvalues λ∥ (red and green curves).

to the orbit are shown for n0 = 3, 5, and 10. Regarding
perturbations within the symmetry plane for a given ra-
tio M1/M2 two partner orbits exist, one stable and one
unstable, as already discussed above (see the elliptic and
hyperbolic fixed points in Fig. 3). The largest deviation
from λ∥ = 1 is found at low ratios M1/M2, where the
influence of the band structure terms on the orbits be-
comes more pronounced. The strongest effect occurs for
orbits exhibiting high symmetry, which are the shortest
orbits in the fundamental region.

The stability eigenvalues of the two orbits with the
same ratio M1/M2 against perturbations out of the sym-
metry plane are nearly identical and mostly located in
the stable region, i.e., |λ⊥ +1/λ⊥| ≤ 2. However, for the
stability properties in the symmetry plane only the orbits
with a low ratio M1/M2 show deviations from the inte-
grable behavior characterized by λ∥ = 1 and for n0 = 3
no deviations can be observed at all. We observe a simi-
lar behavior for the periodic orbits in the other symmetry
plane and for the three-dimensional orbits.

D. Action and ordering scheme for orbits in
cuprous oxide

To connect the classical trajectories to quantum prop-
erties of the system the action S of classical orbits is
needed. It can be calculated by integrating the corre-
sponding equation of motion

d

dt
S = p

dr

dt
(22)

along the orbit. In Fig. 7 the difference of the action
to the one of two-dimenisonal orbits in the plane normal
to [100] normalized by the second winding number M2

is plotted over the ratio M1/M2 of the first two winding
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FIG. 6. Sum λi + 1/λi for the two-dimensional orbits in the
plane normal to [100] for n0 = 3 (top), n0 = 5 (middle), and
n0 = 10 (bottom). λ∥ describes the stability of the orbits in
the plane, λ⊥ describes the stability of the orbits out of the
plane. The stability eigenvalues for n0 = 3 and 10 extend
results presented for n0 = 5 in the Supplemental Material of
Ref. [20].

numbers at n0 = 5 for selected pairs of winding num-
bers M2:M3. Different values of n0 lead to qualitatively
similar pictures. Note that additional orbits with other
pairs of winding numbers M2:M3 would fill a finite dense
area in Fig. 7. With increasing ratio M1/M2 the three-
dimensional orbits approach the zero line, where the two-
dimensional orbits are located and disappear when this
line is reached. The ratio M1/M2 where this is happen-
ing for the orbits with M2:M3 = 1:2 corresponds to the
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FIG. 7. Difference of the action S̃po of the periodic orbits
(po) at n0 = 5 and the corresponding two-dimensional orbits

S̃⊥[100] in the plane normal to [100] normalized by their wind-
ing number M2 over the ratio of winding numbers M1/M2.
Six different series of three-dimensional orbits with winding
numbers M2:M3 are shown as solid points, connected by lines
to guide the eye. The action of two-dimensional orbits in the
plane normal to [100] provides a lower border for the families
of three-dimensional orbits. For increasing ratio M1/M2 the
nearly circular orbit (indicated by a blue circle) is reached.

region in Fig. 6 where |λi + 1/λi| → 2. A crossing of the
line |λi+1/λi| = 2 indicates a change of stability proper-
ties, which is connected to a bifurcation of the respective
orbit. Similary, the eigenvalues of two-dimensional or-
bits with higher values of M2 approach λi = 1 where the
corresponding three-dimensional orbits disappear. Thus,
the two-dimensional orbits constitute a boundary for the
three-dimensional orbits. For increasing values of the ra-
tio M1/M2 these orbits approach the action of the nearly
circular orbit in the plane normal to [100] marked by a
blue circle at M1/M2 ≈ 44.8 in Fig. 7.

IV. SEMICLASSICAL APPROACH

To reveal the existence of a classical exciton dynamics
as described in Sec. III the classical dynamics needs to
be connected to the quantum spectra of the crystal. This
connection can be established by application of semiclas-
sical periodic orbit theory [2, 3, 33]. In these theories,
the semiclassical density of states

ϱsc(E) = ϱ0(E) +
∑
po

Apo cos
(
Spo(E)/h̄− π

2
µpo

)
(23)

is given as the sum of the average density of states ϱ0(E)
and a superposition of fluctuations. The frequencies of
the sinusoidal fluctuations depend on the classical action
Spo of the periodic orbits, the amplitudes Apo are deter-
mined by their stability properties, and the Maslov in-
dices µpo rely on their topology. Since in the semiclassical

limit the periodic orbit formulas coincide with the quan-
tum mechanical result, this approach allows for revealing
the contributions of classical orbits to the quantum spec-
tra of the system. The expression for the semiclassical
amplitudes Apo differs for integrable and non-integrable
systems, and the two cases have to be treated separately.

A. Integrable systems

In an integrable system one can introduce action-angle
variables

Ji =
1

2π

∮
Ci

pdr, ϑi = ωit+ βi , (24)

which make the corresponding Hamiltonian independent
of the angles ϑi. The action variables Ji therefore provide
a set of constants of motion. When one angle variable
goes from βi to βi+2π the system follows an independent
irreducible path on a torus Ci with frequencies

ωi =
∂H

∂Ji
. (25)

If all ratios ωi/ωj for the different frequencies on the
torus are given by rational numbers the corresponding
orbit becomes periodic and can be characterized by a set
of integer winding numbers Mi, which count the number
of cycles on each of the tori Ci until the orbit returns to
its initial position. The periodic orbits are located on
resonant tori.
For integrable systems the density of states is given

by the Berry-Tabor formula [3, 33]. In two dimensions
the periodic orbits of such a system can be characterized
by two winding numbers M1 and M2 and the density of
states can be written as [33]

ϱsc(E) = ϱ0(E)

+
1

πh̄

∑
po

Tpo√
h̄M3

2 |g′′E |
cos

(
Spo/h̄− π

2
µpo −

π

4

)
.

(26)

Here, the semiclassical amplitudes depend on the period
of the orbit Tpo, the second winding number M2, and on
the second derivative

g′′E =
d2gE
dJ2

1

, (27)

of the relation J2 = gE(J1) between the two action vari-
ables.

B. Non-integrable systems

When adding a non-integrable perturbation to an inte-
grable system the resonant tori break up leaving behind
isolated periodic orbits. The contribution of these orbits
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to the density of states is captured in Gutzwiller’s famous
trace formula [2]

ϱsc(E) = ϱ0(E)

+
1

πh̄

∑
po

Tppo√
|det(Mpo − 1)|

cos
(
Spo/h̄− π

2
µpo

)
.
(28)

In this case, the amplitudes depend on the stability prop-
erties of the system provided by the monodromy matrix
Mpo, which describes the linear response of the system to
perturbations in directions orthogonal to the orbit. The
index ‘ppo’ indicates primitive periodic orbits meaning
that only one repetition of the orbit is considered.

C. Systems with scaling property

The amplitudes in Gutzwiller’s trace formula (28) as
well as in the Berry-Tabor-formula (26) depend on the
energy or even additional parameters like external fields
through the orbit parameters. In some systems it is pos-
sible to perform a scaling operation in such a way that the
classical orbits no longer depend on a scaling parameter

w =
1

h̄eff
=

neff

h̄
. (29)

The action

Spo(w)/h̄ = S̃pow , (30)

then only depends linearly on the scaling parameter
w with the constant scaled action S̃po. Examples
where such scaling techniques have been applied are bil-
liard systems [34] or the hydrogen atom in a magnetic
field [4, 6, 35]. Transforming the semiclassical density of
states (23) from energy to w domain the resulting expres-
sion

ϱsc(w) = ϱ0(w) + Re
∑
po

Apo exp
(
iS̃pow

)
, (31)

can be understood as a Fourier series with constant peri-
odic orbit parameters. For convenience the Maslov index
µpo is contained in a complex valued amplitude Apo.
The individual periodic orbits provide sinusoidal fluc-

tuations to the density of states, which cannot be ob-
served directly. However, the contributions of the peri-
odic orbits can be revealed by Fourier transform from w
to the scaled action domain. The obtained recurrence
spectra now exhibit delta peaks at scaled actions S̃po

Csc(S̃) =
∑
po

Apoδ(S̃ − S̃po) , (32)

which allows for a direct assignment of individual orbits
to the quantum mechanical recurrence spectrum.

D. Scaling technique for excitons in cuprous oxide

Here we apply the scaling technique to the classical ex-
citon orbits in cuprous oxide. For all bound states of a
hydrogenlike Rydberg spectrum the scaling property (9)
holds. The corresponding classical orbits are Kepler el-
lipses, and thus the classical phase space structure does
not depend on the energy of the Rydberg states. How-
ever, the classical dynamics underlying a given exciton
state depends on the energy. This can be seen when
applying the scaling (9) to the Hamiltonian (1). After
multiplying by n2

eff the Hamiltonian reads

H = Hkin(p̃, Î, Ŝh) + n2
effHSO(Î, Ŝh)−

e2

4πε0ε|r̃|
. (33)

Thus, the impact of the spin-orbit coupling on the states
varies with energy. This dependence can be avoided by
application of a scaling technique to the spin-orbit cou-
pling. We apply a scaling technique to the spin-orbit
termHSO by replacing the coupling constant ∆ in Eq. (7)

with an energy-dependent coupling parameter ∆̃, i.e.,

∆ → ∆̃ =
n2
0

n2
eff

∆ , (34)

where the constant parameter n0 describes the strength
of the scaled spin-orbit coupling. While changing mate-
rial parameters as in Eq. (34) is not directly possible in
an experiment, it can prove useful in theoretical inves-
tigations. A tunable spin-orbit coupling ∆ has already
been used to study the exchange interaction in the yellow
exciton series [25].

E. Calculation of the trace formula amplitudes

Due to the energy surface W1(p) the dynamics of the
excitons in cuprous oxide is not integrable. For such sys-
tems the density of states is given by Gutzwiller’s trace
formula (28). Applying the scaling technique for the spin-
orbit coupling (34) the amplitudes in Gutzwiller’s trace
formula read

|Apo| =
1

πh̄

S̃ppo√∣∣(λ⊥ + 1/λ⊥ − 2)(λ∥ + 1/λ∥ − 2)
∣∣ . (35)

Note that in the scaled system the period Tppo must be

replaced by the scaled action S̃ppo [6]. For the isolated
nearly circular orbits the stability eigenvalues λ⊥ and λ∥
differ from one, and Eq. (35) can be directly evaluated.
The periodic orbit parameters and amplitudes for one
cycle of these orbits with n0 = 3, 5, and 10 are given in
Table II.
For the calculation of the amplitudes of the two- and

three-dimensional orbits Eq. (35), however, is not appli-
cable since the majority of orbits exhibit eigenvalue pairs
close to λ = 1, which would lead to the divergence of the
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TABLE II. Periodic orbit parameters and Gutzwiller ampli-
tudes for the nearly circular orbits in the planes ⊥ to [100]
and [11̄0].

n0 plane S̃po/(2π) λ⊥ + 1/λ⊥ λ∥ + 1/λ∥ |Apo|

3 [100] 1.0086 1.8333 1.9295 18.6128
3 [11̄0] 1.0033 2.0338 1.9299 41.2599
5 [100] 0.9983 1.9803 1.9917 157.0315
5 [11̄0] 0.9965 2.0041 1.9917 343.0293

10 [100] 0.9942 1.9988 1.9995 2619.0137
10 [11̄0] 0.9938 2.0002 1.9995 5671.3482

amplitude. For many orbits we find one eigenvalue pair
with λ (and thus 1/λ) close to one. The corresponding
degree of freedom can be handled by application of the
Berry-Tabor formula (26). The second eigenvalue pair
λpo significantly differs from λpo = 1, and here the cor-
responding degree of freedom can be handled by applica-
tion of Gutzwiller’s trace formula (28). When combining
the two semiclassical expressions we arrive at the semi-
classical amplitude

|Apo| =
1

πh̄

1√
|λpo + 1/λpo − 2|

S̃po√
h̄M3

2 |g′′E |
. (36)

The calculation of the semiclassical amplitudes (36) re-
quires the knowledge of the function g′′E discussed in
Sec. IVA. For the two-dimensional orbits the action vari-
ables J1 and J2 defining the function J2 = gE(J1) are
constructed with the help of derivatives of the classical
action

SM = 2π(M1J1 +M2J2) , (37)

with respect to the respective winding number Mi. The
derivatives are obtained numerically via difference quo-
tients of periodic orbits with consecutive winding num-
bers. For the three-dimensional orbits an effective two-
dimensional description can be obtained by combin-
ing the contributions of the secular motion in φ- and
ϑ-direction described by the greatest common divisor
M̃2 = GCD(M2,M3) giving the action variable J̃2 =

(M2/M̃2)J2 + (M3/M̃2)J3. With the two action vari-
ables at hand the function g′′E is obtained with Eq. (27)
by differentiating J2 two times with respect to J1. In
Fig. 8 this is illustrated for the two-dimensional orbits in
the plane normal to [100] at n0 = 3, 5, and 10. The pe-
riodic orbit parameters and semiclassical amplitudes of
some of these periodic orbits with n0 = 5 and winding
number M2 = 1 are given in Table III.

V. VERIFICATION OF EXCITON ORBITS IN
QUANTUM SPECTRA

Exciton spectra described by the Hamiltonian (5) have
already been investigated experimentally [15] and theo-
retically [12, 13, 36]. Here, we want to reveal the exis-
tence of classical exciton orbits in quantum spectra of the
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FIG. 8. Second derivative of the function J2 = gE(J1) with
respect to J1 for the two-dimensional orbits in the plane nor-
mal to [100] at n0 = 3 (top), 5 (middle), and 10 (bottom).
The function of g′′E for n0 = 5 has already been presented in
the Supplemental Material of Ref. [20].

yellow exciton series of cuprous oxide. For this aim we
now exploit the scaling property introduced in Sec. IV by
using the scaled spin-orbit splitting (34) in quantum com-
putations. The semiclassical analysis of Fourier trans-
form quantum recurrence spectra then allows for the ob-
servation of signatures of classical exciton orbits and a
detailed study of the energy dependence of the exciton
dynamics in the quantum spectra.

A. Scaled exciton spectra

For the quantum mechanical description of the scaled
system obtained by replacing the spin-orbit coupling in
Eq. (33) with the scaled version (34) we need to find the
expression for the operators in the scaled coordinates (9).
In quantum mechanics the components of coordinates
and momenta must satisfy the canonical commutation
relations

[r̂i, p̂j ] = ih̄δij . (38)
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TABLE III. Periodic orbit parameters and amplitudes of se-
lected two-dimensional orbits in the plane normal to [100]
with M2 = 1 at n0 = 5. The flag s/u denotes the stable or
unstable partner orbit. For M1 > 12 the parameters of the
stable and unstable orbit are numerically identical.

M1 s/u S̃po/(2π) λ⊥ + λ−1
⊥ g′′E |Apo|

5 s 5.592 640 0.361 22.627 1.659
5 u 5.592 664 0.364 22.627 1.659
6 s 6.630 923 −0.862 33.283 1.241
6 u 6.631 008 −0.877 33.283 1.241
7 s 7.663 179 −1.770 46.191 1.072
7 u 7.663 179 −1.773 46.191 1.072
8 s 8.690 824 −1.988 60.435 1.042
8 u 8.691 180 −1.989 60.435 1.042
9 s 9.715 495 −1.971 75.354 1.052
9 u 9.715 495 −1.970 75.354 1.052

10 s 10.737 310 −1.827 90.875 1.084
10 u 10.737 310 −1.827 90.875 1.084
11 s 11.756 909 −1.612 106.562 1.133
11 u 11.756 909 −1.612 106.562 1.133
12 s 12.774 618 −1.347 122.214 1.199
12 u 12.774 623 −1.347 122.214 1.199
13 s,u 13.790 694 −1.047 138.635 1.278
14 s,u 14.805 326 −0.723 155.795 1.374
15 s,u 15.818 674 −0.386 173.523 1.490
16 s,u 16.830 868 −0.044 191.687 1.633

Inserting the scaled variables (9) into Eq. (38) yields the
commutation relations

[ˆ̃ri, ˆ̃pj ] = i
h̄

neff
δij , (39)

in the scaled coordinates, where now the Planck constant
is replaced by an effective Planck constant

h̄eff = h̄/neff . (40)

The operators in coordinate space then take the form

ˆ̃r = r̃ , ˆ̃p = −ih̄eff∇r̃ . (41)

In the scaled picture the Schrödinger equation can now
be transformed to the generalized eigenvalue problem[

e2

4πε0ε|r̃|
− n2

0HSO(Î, Ŝh)− ERyd

]
|Ψ⟩

=
h̄2

n2
eff

Hkin(−i∇r̃, Î, Ŝh)|Ψ⟩ (42)

for the effective Planck constant h̄eff = h̄/neff (or the
effective quantum number neff). The classical dynamics
does not depend on the Planck constant, which means
that for a given n0 the classical dynamics is the same
for all eigenvalues neff,i. This allows us to reveal con-
tributions of the classical exciton dynamics to the quan-
tum mechanical recurrence spectra obtained via Fourier
transform of the scaled exciton spectra.

1. Matrix representation of the scaled generalized
eigenvalue problem

To obtain the quantum mechanical scaled exciton spec-
tra we need to solve the scaled Schrödinger equation (42).
To this end we use a complete set of basis functions,
which, in addition to the coordinate wave function, also
needs to incorporate the quasispin I and hole spin Sh

degrees of freedom.
Our ansatz for the angular part of the basis states is

as follows. We first couple the quasispin I and the hole
spin Sh to the effective hole spin J . This is an approx-
imate quantum number near the Γ point of the crystal,
differentiating between the yellow J = 1/2 and green
J = 3/2 states. In a second step, J is combined with
the orbital angular momentum L to form the total angu-
lar momentum F . Without central-cell corrections the
electron spin is a good quantum number of the Hamilto-
nian and need not be included into our basis. This makes
our coupling scheme slightly different compared to pre-
vious work [12, 13]. As a complete and discrete set of
the radial basis functions, we use the Coulomb-Sturmian
functions [37, 38]

UNL(ρ) = NNL(2ρ)
Le−ρL2L+1

N (2ρ) , (43)

with the radial quantum number N and the dilated ra-
dius ρ = r/α. The parameter α can be used to optimize
the convergence properties of the basis. With the pro-
jection MF of the total angular momentum F onto the
z axis, we obtain the basis states |Π⟩ = |N,L, J, F,MF ⟩.
When expanding the exciton wave function |Ψ⟩ as

|Ψ⟩ =
∑
Π

cΠ|Π⟩ , (44)

the scaled Schrödinger equation (42) can be expressed as
a generalized matrix eigenvalue problem,

Ac = λBc , (45)

with the matrices

AΠ′Π = ⟨Π′| e2

4πε0ε|r̃|
− n2

0HSO(Î, Ŝh)− ERyd|Π⟩ ,
(46)

BΠ′Π = ⟨Π′|Hkin(−i∇r̃, Î, Ŝh)|Π⟩ , (47)

and the vector c containing the coefficients cΠ. The gen-
eralized eigenvalue problem (45) can be solved numeri-
cally by using a LAPACK routine [39] and a finite number
of basis states to obtain a limited number of converged
eigenvalues λi = h̄2/n2

eff,i, and thus a spectrum with dis-
crete values neff,i of the effective quantum number. The
Hamiltonian (5) is symmetric under operations of the
cubic group Oh. In particular, this includes a fourfold
rotational symmetry around the z axis, which coincides
with our chosen quantization axis. Because of this, the
matrices (46) and (47) have a block diagonal form. There
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are four blocks, which are characterized by the magnetic
quantum number MF modulo 4 taking the values 1/2,
3/2, 5/2, and 7/2, respectively. Each of these blocks ad-
ditionally splits into two blocks characterized by their
parity. We exploit this block structure to accelerate the
numerical calculations.

2. Quantum recurrence spectra

We now want to uncover the contributions of classical
orbits directly in the scaled quantum spectra

ϱ(neff) =
∑
i

δ(neff − neff,i) . (48)

The eigenvalues of the scaled Schrödinger equation (42)
are shown in Fig. 9 for n0 = 3, 5, and 10, where n0

parameterizes the scaled classical dynamics, as shown in
the PSOS in Fig. 2, i.e., spectra with increasing n0 are
related to a classical exciton dynamics with slower secular
motion of orbits. The lowest axis label in Fig. 9 gives the
eigenvalues neff and the upper labels of the individual
plots compare the scaled spin-orbit coupling ∆̃ to the
real physical value ∆, i.e., ∆̃/∆ = 1 belongs to the crystal
with the real (unscaled) material parameters of cuprous
oxide.

As outlined in Sec. IV the scaled density of states (48)
can be approximated by a superposition of sinusoidal
fluctuations, whose amplitudes and frequencies are di-
rectly related to properties of the periodic orbits of the
underlying classical dynamics. Thus, we analyze the fluc-
tuations of the scaled quantum spectrum (48) via Fourier
transform in the variable neff , i.e., a quantum recurrence
spectrum is obtained as

C(S) =
1

2π

∫
ϱ(neff)e

−iS̃neff/h̄dneff . (49)

The quantum recurrence spectrum (49) should provide

peaks at frequencies given by the scaled actions S̃po of
the periodic orbits of the associated classical exciton dy-
namics. Due to the finite number of converged states
obtained from numerically solving the generalized eigen-
value problem (42) the peaks appear broadened in com-
parison to the full (infinite) spectrum. This can also be
understood in the following way. The finite spectrum
can be obtained by multiplying the infinite one with a
rectangular window function. Fourier transforming this
expression will give the convolution of the delta peaks of
the Fourier transformed infinite spectrum and

sin
(
∆neff S̃po/(2h̄)

)
πS̃po/h̄

e−in0
eff S̃po/h̄ , (50)

with the length of the finite spectrum ∆neff and its cen-
ter n0

eff . In addition to the main peaks this will also lead

to the appearance of side peaks. To suppress these un-
wanted features we use a Gaussian window function

w(neff) ≡ exp

(
− (neff − n0

eff)
2

2σ2

)
, (51)

where we choose σ ≈ ∆neff/6. The resulting expression
for the quantum mechanical recurrence spectrum is given
by

Ĉ(S̃) =
1

2π

kmax∑
k=1

∫
w(neff)δ(neff − neff,k)e

−ineff S̃/h̄ dneff

=
1

2π

kmax∑
k=1

w(neff,k)
[
cos

(
neff,kS̃/h̄

)
− i sin

(
neff,kS̃/h̄

)]
,

(52)

where kmax is the number of converged eigenvalues neff,k

considered.

3. Semiclassical analysis and discussion

The quantum recurrence spectra obtained from the
spectra in Fig. 9 are shown as solid black lines in Fig. 10
for the three different values of n0. They exhibit distinct
peaks at certain values of the scaled action S̃/(2π). The
number of peaks and thus the complexity of the quan-
tum recurrence spectra increases with decreasing values
of n0, i.e., with decreasing energy of the excitons. The
observed structures in the quantum recurrence spectra
can be explained and interpreted with the help of the
periodic exciton orbits. The semiclassical amplitudes of
periodic orbits at positions S̃po are shown in Fig. 10
as colored bars, labeled by the winding numbers of the
corresponding orbits. The majority of the peaks in the
quantum recurrence spectra can be understood in terms
of classical orbits. For low actions S̃/(2π) all peaks in
the recurrence spectra can be assigned to the nearly cir-
cular orbits, which appear as central fixed point in the
two symmetry planes in Fig. 2. These orbits move on
one-dimensional tori and can therefore be labeled by an
integer winding number M1 which characterizes the rep-
etitions of the orbits.

For increasing actions longer two-dimensional and
three-dimensional orbits start to contribute to the recur-
rence spectra, leading to an increased density of peaks.
These orbits belong to motion on two-dimensional tori in
the two symmetry planes characterized by winding num-
bers M1:M2 or motion on fully three-dimensional tori
characterized by winding numbers M1:M2:M3. Orbits
with the same winding numbers M1:M2 appear clustered
together in the recurrence spectra in Fig. 10. Therein
orbits in the mostly stable symmetry plane normal to
[100] exhibit the highest action as well as semiclassical
amplitudes. The orbits in the unstable symmetry plane
normal to [11̄0] have the lowest action in the cluster and
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FIG. 9. Eigenvalue spectra for n0 = 3 (top), n0 = 5 (middle), and n0 = 10 (bottom). Each eigenvalue contributes a delta
peak to the quantum mechanical density of states (48). The lowest axis label for the effective quantum number neff is valid for

all three parts of the figure. The three upper labels for the ratio ∆̃/∆ of the scaled and real physical spin-orbit coupling are
valid for the corresponding individual plots. Part of the spectrum for n0 = 5 has already been presented in Ref. [20].

typically also the lowest semiclassical amplitude. At in-
termediate actions the three-dimensional orbits can be
found.

For n0 = 3 only two pairs of primitive three-
dimensional orbits (not counting repetitions) are found
in the presented action range. Due to their small num-
ber the value g′′E for the corresponding orbits in the plane
normal to [100] are used for the calculation of their semi-
classical amplitudes at n0 = 3. This should provide
a good approximation since the action of these orbits
approaches their two-dimensional counterpart. Again,
their M1:M2 values correspond to the region in which a
change in stability properties can be observed in Fig. 6
(top). For n0 = 5 multiple three-dimensional orbits ex-
ist in the given range, whereas for n0 = 10 the three-
dimensional orbits start to appear only at higher actions.
For increasing n0 the contributions of the two- and three-
dimensional orbits decrease at low actions S̃/(2π) com-
pared to the one-dimensional orbits. On the one hand
the relative amplitudes of orbits with the same wind-
ing numbers decrease for increasing n0. On the other
hand the range of M1:M2 values increases with n0 yield-
ing more contributions for higher actions S̃/(2π). The

maximum value (M1/M2)max is reached at the nearly
circular one-dimensional orbits. Since (M1/M2)max in-
creases for increasing n0 the secular motion slows down
in the neighborhood of the central elliptical fixed points
giving a more hydrogenlike behavior in this region. This
also becomes apparent in the recurrence spectra. In the
hydrogenlike case only Kepler ellipses with scaled action
S̃po/(2π) = n with n = 1, 2, . . . exist and therefore the
peaks in the corresponding recurrence spectrum are lo-
cated at the integers giving the number of repetitions
of the orbits. When introducing the energy surface for
the yellow series W1 only the nearly circular orbits in
the symmetry planes are periodic after one cycle provid-
ing a similar contribution like the Kepler ellipses in the
hydrogenlike case. In comparison, contributions of other
two-dimensional orbits in the symmetry planes and three-
dimensional orbits become important for larger values of
S̃/(2π). With increasing values of n0 this effect becomes
more prominent and leads to a more hydrogenlike ap-
pearance of the recurrence spectra at n0 = 5 and 10 in
Fig. 10. This trend can also be observed at higher values
of n0.
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FIG. 10. Recurrence spectra for n0 = 3 (top), n0 = 5 (middle), and n0 = 10 (bottom). The semiclassical amplitudes are shown
as colored bars. Amplitudes for orbits in the plane normal to [100] are shown in blue, amplitudes for orbits in the plane normal
to [11̄0] in green and amplitudes for three-dimensional orbits are shown in red. The amplitudes are labeled with the winding
numbers of the corresponding orbits. The quantum recurrence spectra (black line) are shifted upwards for better visibility.
it coupling are valid for the corresponding individual plots. The recurrence spectrum for n0 = 5 has already been shown in
Ref. [20].

VI. CONCLUSION AND OUTLOOK

In this paper we investigated the classical dynamics of
the yellow excitons in cuprous oxide and the contribu-
tions of classical periodic exciton orbits to the quantum
spectra at various energies. This was achieved by apply-
ing the scaling technique for the spin-orbit coupling intro-
duced in Ref. [20]. For the two distinct symmetry planes
normal to the [100] axis and the [11̄0] axis the PSOS

revealed the phase space structure, viz. the existence of
a central fixed point surrounded by near-integrable tori
and a small chaotic region. The secular motion of or-
bits around the central fixed points becomes slower and
the size of the chaotic regions decreases with increasing
energy. In accordance with the Poincaré-Birkhoff theo-
rem periodic orbits on the near-integrable tori exist in
pairs and can be labeled by two integer winding num-
bers M1:M2. Out of the symmetry planes fully three-
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dimensional orbits on resonant tori characterized by three
winding numbers M1:M2:M3 do exist.

The existence of classical periodic exciton orbits has
been verified directly in quantum mechanical exciton
spectra. The obtained results go significantly beyond
those presented in Ref. [20], where the analysis has been
restricted to a single energy value with n0 = 5. Here,
we have extended our analysis to different energies and
discussed the energy dependence of the classical exciton
dynamics and the corresponding recurrence spectra by
way of examples at n0 = 3, 5, and 10. The Fourier trans-
form quantum recurrence spectra show detailed struc-
tures of peaks located at distinct values of the scaled ac-
tion. Their occurrence can both qualitatively and quan-
titatively be explained in terms of periodic exciton or-
bits by application of trace formulas from semiclassical
periodic orbit theories [2, 3, 40]. Line by line compar-
isons reveal a good agreement between semiclassical and
quantum mechanical recurrence spectra at various ener-
gies. The recurrence spectra show an increasing com-
plexity with decreasing energy, where two- and three-
dimensional periodic orbits occur at lower values of the
scaled action and with increased amplitudes compared
to the nearly circular orbits. We thus observe significant
deviations from a purely hydrogenlike system where the
Kepler ellipses and their repetitions would provide peaks
only at multiples of S̃ = 2π. This is related to a growing
influence of the spin-orbit interaction in the cuprous ox-
ide semiconductor and thus an increasing velocity of the
secular motion of the exciton orbits compared to hydro-
genlike Keplerian orbits.

In this paper we have focused on exciton spectra and

the classical exciton dynamics related to the yellow exci-
ton series in cuprous oxide. In future work it would be
interesting to further investigate the classical dynamics
of excitons in cuprous oxide, including the green exci-
ton series [36]. The PSOS are only capable of present-
ing the phase space of a two-dimensional system and are
therefore not suited to study the phase space of exci-
tons when including three-dimensional motion. One ap-
proach to study the corresponding dynamics could be
using Lagrangian descriptors [41–43], which have proven
to be a useful tool for revealing phase structures in non-
integrable systems.
Another interesting topic would be to extend the

semiclassical treatment. In this work the contributions
of classical orbits were studied by connecting classical
orbits to the peaks in the quantum recurrence spectra.
Due to the large regular part of phase space and the
possibility of reconstructing action variables from the
classical orbits, it will be interesting to see if the
spectrum of excitons in cuprous oxide can be directly
connected to classical orbits using the EBK-quantization
method [44]. These approaches have successfully been
applied for the hydrogen atom in external electric and
magnetic fields [31, 32]. This would allow for a direct
understanding of the quantum spectra in terms of
classical exciton orbits.

ACKNOWLEDGMENTS

This work was supported by Deutsche Forschungsge-
meinschaft (DFG) through Grant No. MA1639/16-1.

[1] A. Sommerfeld, Zur Quantentheorie der Spektrallinien,
Annalen der Physik 356, 1 (1916).

[2] M. C. Gutzwiller, Chaos in Classical and Quantum Me-
chanics (Springer, New York, 1990).

[3] M. V. Berry and M. Tabor, Closed orbits and the regular
bound spectrum, Proc. R. Soc. Lond. A 349, 101 (1976).

[4] H. Friedrich and H. Wintgen, The hydrogen atom in a
uniform magnetic field – An example of chaos, Physics
Reports 183, 37–79 (1989).

[5] H. Hasegawa, M. Robnik, and G. Wunner, Classical
and Quantal Chaos in the Diamagnetic Kepler Prob-
lem, Progress of Theoretical Physics Supplement 98, 198
(1989).

[6] J. Main, Use of harmonic inversion techniques in semi-
classical quantization and analysis of quantum spectra,
Phys. Rep. 316, 233–338 (1999).

[7] G. S. Ezra, K. Richter, G. Tanner, and D. Wintgen, Semi-
classical cycle expansion for the helium atom, Journal of
Physics B: Atomic, Molecular and Optical Physics 24,
L413 (1991).

[8] F. Haake, S. Gnutzmann, and M. Kuś, Quantum Signa-
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