Complete moment convergence of moving average processes for m-widely acceptable sequence under sub-linear expectations

Mingzhou Xu * 疗 Xuhang Kong ${ }^{2}$
School of Information Engineering, Jingdezhen Ceramic University
Jingdezhen 333403, China

Abstract

In this article, the complete moment convergence for the partial sum of moving average processes $\left\{X_{n}=\sum_{i=-\infty}^{\infty} a_{i} Y_{i+n}, n \geq 1\right\}$ is estabished under some proper conditions, where $\left\{Y_{i},-\infty<i<\infty\right\}$ is a sequence of m-widely acceptable (m-WA) random variables, which is stochastically dominated by a random variable Y in sub-linear expectations space $(\Omega, \mathcal{H}, \mathbb{E})$ and $\left\{a_{i},-\infty<i<\infty\right\}$ is an absolutely summable sequence of real numbers. The results extend the relevant results in probability space to those under sub-linear expectations.

Keywords: m-widely acceptabl random variables; Moving average processes; Complete convergence; Complete moment convergence; Sub-linear expectation

2020 Mathematics Subject Classifications: 60F15, 60F05

1 Introduction

In order to study the uncertainty in probability, Peng [14, 15, 16] introduced the concepts of the sub-linear expectations space. Motivated by the works of Peng [14, 15, 16], lots of people try to extend the results of classic probability space to those of the sub-linear expectations space. Zhang [28, 29, 30] got the exponential inequalities, Rosenthal's inequalities, and Donsker's invariance principle under sub-linear expectations. Under sub-linear expectations, Xu and Cheng [23] studied how small the increments of G-Brownian motion are. Xu and Zhang [20, 21] got a three series theorem of independent random variables and a law of logarithm for arrays of row-wise extended negatively dependent random variables under the sub-linear expectations. Zhong and Wu [35] obtained the complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectations. For more limit theorems under sub-linear expectations, the interested readers could refer to Wu and Jiang [17], Zhang and Lin [32], Zhong and Wu [35], Hu and Yang [9, Chen [1], Zhang [31], Hu, Chen, and Zhang [8, Gao and Xu [3], Kuczmaszewska [11, Chen and Wu [2], Xu and Cheng [22, 23], Xu et al. [24, 26], Xu and Kong [25], and references therein.

Guan, Xiao and Zhao [4] studied complete moment convergence of moving average processes for m-WOD sequence. For more results about complete moment convergence of moving average processes, the interested reader could refer to Zhang and Ding [34], Hosseini and Nezakati [6] and refercences therein. The main conclusions of Guan, Xiao and Zhao [4] are that under proper conditions the complete moment convergence for the partial sum of moving average processes produced by m-widely orthant dependent random variables holds. Recently, Wu, Deng, and Wang studied capacity inequalities and strong laws for m-widely acceptable (m-WA) random variables under sub-linear expectations. It is natural to wonder whether or not the relevant results of Guan, Xiao and Zhao

[^0][4] hold for moving average processes produced by m-WA random variables under sublinear expectations. Here, we try to get the complete moment convergence for the partial sum of moving average processes produced by m-WA random variables under sub-linear expectations, complementing the relevant results obtained in Guan, Xiao and Zhao [4].

We organize the rest of this paper as follows. We give some necessary basic notions, concepts and corresponding properties, and cite necessary lemma under sub-linear expectations in the next section. In Section 3, we give our main results, Theorems 3.1 3.2 the proofs of which are also presented in this section.

2 Preliminaries

As in Xu and Cheng [22], we use similar notations as in the work by Peng [15, 16], Chen [1], and Zhang [29]. Suppose that (Ω, \mathcal{F}) is a given measurable space. Assume that \mathcal{H} is a subset of all random variables on (Ω, \mathcal{F}) such that $X_{1}, \cdots, X_{n} \in \mathcal{H}$ implies $\varphi\left(X_{1}, \cdots, X_{n}\right) \in \mathcal{H}$ for each $\varphi \in \mathcal{C}_{l, L i p}\left(\mathbb{R}^{n}\right)$, where $\mathcal{C}_{l, L i p}\left(\mathbb{R}^{n}\right)$ represents the linear space of (local lipschitz) function φ fulfilling

$$
|\varphi(\mathbf{x})-\varphi(\mathbf{y})| \leq C\left(1+|\mathbf{x}|^{m}+|\mathbf{y}|^{m}\right)(|\mathbf{x}-\mathbf{y}|), \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

for some $C>0, m \in \mathbb{N}$ depending on φ.
Definition 2.1 A sub-linear expectation \mathbb{E} on \mathcal{H} is a functional $\mathbb{E}: \mathcal{H} \mapsto \overline{\mathbb{R}}:=[-\infty, \infty]$ fulfilling the following properties: for all $X, Y \in \mathcal{H}$, we have
(a) Monotonicity: If $X \geq Y$, then $\mathbb{E}[X] \geq \mathbb{E}[Y]$;
(b) Constant preserving: $\mathbb{E}[c]=c, \forall c \in \mathbb{R}$;
(c) Positive homogeneity: $\mathbb{E}[\lambda X]=\lambda \mathbb{E}[X], \forall \lambda \geq 0$;
(d) Sub-additivity: $\mathbb{E}[X+Y] \leq \mathbb{E}[X]+\mathbb{E}[Y]$ whenever $\mathbb{E}[X]+\mathbb{E}[Y]$ is not of the form $+\infty-\infty$ or $-\infty+\infty$.

A set function $V: \mathcal{F} \mapsto[0,1]$ is named to be a capacity if
(a) $V(\emptyset)=0, V(\Omega)=1$;
(b) $V(A) \leq V(B), A \subset B, A, B \in \mathcal{F}$.

A capacity V is called sub-additive if $V(A \bigcup B) \leq V(A)+V(B), A, B \in \mathcal{F}$.
In this sequel, given a sub-linear expectation space $(\Omega, \mathcal{H}, \mathbb{E})$, set $\mathbb{V}(A):=\inf \{\mathbb{E}[\xi]:$ $\left.I_{A} \leq \xi, \xi \in \mathcal{H}\right\}=\mathbb{E}\left[I_{A}\right], \forall A \in \mathcal{F}$ (see (2.3) and the definitions of \mathbb{V} above (2.3) in Zhang [28]). \mathbb{V} is a sub-additive capacity. Set

$$
C_{\mathbb{V}}(X):=\int_{0}^{\infty} \mathbb{V}(X>x) \mathrm{d} x+\int_{-\infty}^{0}(\mathbb{V}(X>x)-1) \mathrm{d} x
$$

As in 4.3 of Zhang [28], throughout this paper, define an extension of \mathbb{E} on the space of all random variables by

$$
\mathbb{E}^{*}(X)=\inf \{\mathbb{E}[Y]: X \leq Y, Y \in \mathcal{H}\}
$$

Then \mathbb{E}^{*} is a sublinear expectation on the space of all random variables, $\mathbb{E}[X]=\mathbb{E}^{*}[X]$, $\forall X \in \mathcal{H}$, and $\mathbb{V}(A)=\mathbb{E}^{*}\left(I_{A}\right), \forall A \in \mathcal{F}$.

Definition 2.2 Suppose $\left\{Y_{n}, n \geq 1\right\}$ is a sequence of random variables in sub-linear expectations space $(\Omega, \mathcal{H}, \mathbb{E}) .\left\{Y_{n}, n \geq 1\right\}$ is called to be widely acceptable (WA), if there exists a positive sequence $\{g(n), n \geq 1\}$ of dominating coefficients such that for all $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\mathbb{E} \exp \left(\sum_{i=1}^{n} a_{n i} f_{i}\left(Y_{i}\right)\right) \leq g(n) \prod_{i=1}^{n} \mathbb{E} \exp \left(a_{n i} f_{i}\left(Y_{i}\right)\right), \quad 0<g(n)<\infty \tag{2.1}
\end{equation*}
$$

where $\left\{a_{n i}, 1 \leq i \leq n, n \geq 1\right\}$ is an array of nonnegative constants and $f_{i}(\cdot) \in C_{b, L i p}(\mathbb{R})$, $i=1,2, \ldots$, are all non-decreasing (or all non-increasing) real valued truncation functions.

Definition 2.3 Let $m \geq 1$ be fixed integer. A sequence of random variables $\left\{X_{n}, n \geq 1\right\}$ is called to be m-wildely acceptable ($m-W A$), if for any $n \geq 2$, and $i_{1}, i_{2}, \cdots, i_{n}$ fulfilling $\left|i_{k}-i_{j}\right| \geq m$ for all $1 \leq k \neq j \leq n$, we have $X_{i_{1}}, X_{i_{2}}, \cdots, X_{i_{n}}$ are $W A$.

Definition 2.4 We say that $\left\{Y_{n} ; n \geq 1\right\}$ is stochastically dominated by a random variable Y in $(\Omega, \mathcal{H}, \mathbb{E})$, if there exists a constant C such that $\forall n \geq 1$, for all non-negative $h \in$ $\mathcal{C}_{l, \text { Lip }}(\mathbb{R}), \mathbb{E}\left(h\left(Y_{n}\right)\right) \leq C \mathbb{E}(h(Y))$.

Assume that \mathbf{X}_{1} and \mathbf{X}_{2} are two n-dimensional random vectors defined, respectively, in sub-linear expectation spaces $\left(\Omega_{1}, \mathcal{H}_{1}, \mathbb{E}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{H}_{2}, \mathbb{E}_{2}\right)$. They are called identically distributed if for every function $\psi \in \mathcal{C}_{l, \text { Lip }}(\mathbb{R})$ such that $\psi\left(\mathbf{X}_{1}\right) \in \mathcal{H}_{1}, \psi\left(\mathbf{X}_{2}\right) \in \mathcal{H}_{2}$,

$$
\mathbb{E}_{1}\left[\psi\left(\mathbf{X}_{1}\right)\right]=\mathbb{E}_{2}\left[\psi\left(\mathbf{X}_{2}\right)\right],
$$

whenever the sub-linear expectations are finite. $\left\{X_{n}\right\}_{n=1}^{\infty}$ is named to be identically distributed if for each $i \geq 1, X_{i}$ and X_{1} are identically distributed.

In the paper we assume that \mathbb{E} is countably sub-additive, i.e., $\mathbb{E}(X) \leq \sum_{n=1}^{\infty} \mathbb{E}\left(X_{n}\right)$, whenever $X \leq \sum_{n=1}^{\infty} X_{n}, X, X_{n} \in \mathcal{H}$, and $X \geq 0, X_{n} \geq 0, n=1,2, \ldots$. Hence \mathbb{E}^{*} is also countably sub-additive. Let C stand for a positive constant which may change from place to place. $I(A)$ or I_{A} represent the indicator function of A. Write $\log (x)=\ln \max \{\mathrm{e}, x\}$, $x>0$.

We cite the following lemma (cf. Lemma 2.2 of Xu et al. [26]).
Lemma 2.1 If for a random variable X on $(\Omega, \mathcal{F}), C_{\mathbb{V}}\{|X|\}<\infty$, then

$$
\mathbb{E}^{*}[|X|] \leq C_{\mathbb{V}}\{|X|\} .
$$

Next we cite and give some useful lemmas.
Lemma 2.2 (cf. Wu et al. [36])Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of m-WA random variables with dominating coefficients $g(n)$. If $\left\{f_{n}(\cdot), n \geq 1\right\}$ are all non-decreasing (nonincreasing), then $\left\{f_{n}\left(X_{n}\right), n \geq 1\right\}$ are still m-WA with dominating coefficients $\{g(n), n \geq$ $1\}$.

Lemma 2.3 Let $0<t \leq 1$ or $t=2$ and $\left\{X_{n}, n \geq 1\right\}$ be a sequence of $W A$ random variables in sub-linear expectations space $(\Omega, \mathcal{H}, \mathbb{E})$. Assume further that $\mathbb{E}\left(X_{n}\right) \leq 0$ for each $n \geq 1$ when $t=2$. Then for all $x>0$, and $y>0$,

$$
\begin{equation*}
\mathbb{V}\left(S_{n} \geq x\right) \leq \sum_{i=1}^{n} \mathbb{V}\left(X_{i}>y\right)+g(n) \exp \left(\frac{x}{y}-\frac{x}{y} \ln \left(1+\frac{x y^{t-1}}{\sum_{i=1}^{n} \mathbb{E}\left|X_{i}\right|^{t}}\right)\right) \tag{2.2}
\end{equation*}
$$

Proof If $0<t \leq 1$, then we can establish (2.2) by the adapted proof of Theorem 2.1 of Shen [37]. If $t=2$, (2.2) follows immediately from Lemma 2.1 of Wu et al. [36]. For readers' convenience, here we give detailed proof when $0<t \leq 1$.

For $y>0$, write $\bar{X}_{i}=\min \left\{X_{i}, y\right\}, i=1,2, \cdots, n$, and $T_{n}=\sum_{i=1}^{n} \bar{X}_{i}, n \geq 1$. We easily see that

$$
\left\{S_{n} \geq x\right\}=\left\{T_{n} \neq S_{n}\right\} \bigcup\left\{T_{n} \geq x\right\}
$$

which yields that for any positive h,

$$
\mathbb{V}\left(S_{n} \geq x\right) \leq \mathbb{V}\left(T_{n} \neq S_{n}\right)+\mathbb{V}\left(T_{n} \geq x\right) \leq \sum_{i=1}^{n} \mathbb{V}\left(X_{i}>y\right)+\mathrm{e}^{-h x} \mathbb{E} \mathrm{e}^{h T_{n}}
$$

It follows that

$$
\begin{equation*}
\mathbb{V}\left(S_{n} \geq x\right) \leq \sum_{i=1}^{n} \mathbb{V}\left(X_{i}>y\right)+g(n) \mathrm{e}^{-h x} \prod_{i=1}^{n} \mathbb{E} \mathrm{e}^{h \bar{X}_{i}} \tag{2.3}
\end{equation*}
$$

For $0<t \leq 1, h>0$, the function $\frac{\mathrm{e}^{h u}-1}{u^{t}}$ is increasing on $u>0$. Hence

$$
\begin{aligned}
\mathbb{E}^{h \bar{X}_{i}} & \leq 1+\mathbb{E}\left(\frac{\mathrm{e}^{h \bar{X}_{i}}-1}{\left|\bar{X}_{i}\right|^{t}}\left|\bar{X}_{i}\right|^{t}\right) \leq 1+\mathbb{E}\left(\frac{\mathrm{e}^{h y}-1}{|y|^{t}}\left|\bar{X}_{i}\right|^{t}\right) \\
& \leq 1+\frac{\mathrm{e}^{h y}-1}{|y|^{t}} \mathbb{E}\left(\left|\bar{X}_{i}\right|^{t}\right) \leq \exp \left\{\frac{\mathrm{e}^{h y}-1}{|y|^{t}} \mathbb{E}\left(\left|\bar{X}_{i}\right|^{t}\right)\right\} \\
& \leq \exp \left\{\frac{\mathrm{e}^{h y}-1}{|y|^{t}} \mathbb{E}\left(\left|X_{i}\right|^{t}\right)\right\} .
\end{aligned}
$$

Combining the inequality above and (2.3) yields that

$$
\begin{equation*}
\mathbb{V}\left(S_{n} \geq x\right) \leq \sum_{i=1}^{n} \mathbb{V}\left(X_{i}>y\right)+g(n) \exp \left\{\frac{\mathrm{e}^{h y}-1}{y^{t}} \sum_{i=1}^{n} \mathbb{E}\left(\left|X_{i}\right|^{t}\right)-h x\right\} \tag{2.4}
\end{equation*}
$$

Taking $h=\frac{1}{y} \log \left(1+\frac{x y^{t-1}}{\sum_{i=1}^{n} \mathbb{E}\left(\left|X_{i}\right|^{t}\right)}\right)$ in the right-hand side of (2.4), we obtain (2.2).
Lemma 2.4 For a positive real number $q \geq 2$, if $\left\{X_{n}, n \geq 1\right\}$ is a sequence of m-WA random variables with dominating coefficients $\{g(n), n \geq 1\}$. If $C_{\mathbb{V}}\left\{\left|X_{i}\right|^{q}\right\}<\infty$ for every $i \geq 1$, then for all $n \geq 1$, there exist positive constants $C_{1}(m, q), C_{2}(m, q)$, and $C_{3}(m, q)$ depending on q and m such that

$$
\begin{aligned}
& \mathbb{E}\left(\left|\sum_{i=1}^{n} X_{i}\right|^{q}\right) \leq C_{1}(m, q) \sum_{i=1}^{n} C_{\mathbb{V}}\left\{\left|X_{i}\right|^{q}\right\} \\
& \quad+C_{2}(m, q) g(n)\left(\sum_{i=1}^{n} \mathbb{E} X_{i}^{2}\right)^{q / 2}+C_{3}(m, q)\left(\sum_{i=1}^{n}\left[\left|\mathbb{E}\left(X_{i}\right)\right|+\left|\mathbb{E}\left(-X_{i}\right)\right|\right]\right)^{q} .
\end{aligned}
$$

Proof Note that

$$
C_{\mathbb{V}}\left\{\left|X^{+}\right|^{q}\right\}=\int_{0}^{\infty} \mathbb{V}\left(\left|X^{+}\right|^{q}>x\right) \mathrm{d} x=\int_{0}^{\infty} q x^{q-1} \mathbb{V}\left\{\left|X^{+}\right|>x\right\} \mathrm{d} x,
$$

where $X^{+}:=\max \{X, 0\}$. We first suppose that $\left\{X_{n}, n \geq 1\right\}$ is a sequence of WA random variables with dominating coefficients $\{g(n), n \geq 1\}$ and $\mathbb{E}\left(X_{n}\right) \leq 0$. Putting $y=x / r$ in (2.3) yields

$$
\begin{equation*}
\mathbb{V}\left(S_{n}^{+} \geq x\right) \leq \sum_{i=1}^{n} \mathbb{V}\left(X_{i}^{+}>y\right)+g(n) \mathrm{e}^{r}\left(\frac{r \sum_{i=1}^{n} \mathbb{E}\left(\left|X_{i}\right|^{2}\right)}{r \sum_{i=1}^{n} \mathbb{E}\left(\left|X_{i}\right|^{2}\right)+x^{2}}\right)^{r} \tag{2.5}
\end{equation*}
$$

By the similar proof of (3.4) of Zhang [31], $n \geq 1$, multiplying both sides of (2.2) by $q x^{q-1}$, and integrating on the half line, we have

$$
\begin{aligned}
& \mathbb{E}\left(\left(S_{n}^{+}\right)^{q}\right) \leq C_{\mathbb{V}}\left\{\left(S_{n}^{+}\right)^{q}\right\} \\
& \quad \leq \sum_{i=1}^{n} C C_{\mathbb{V}}\left\{\left|X_{i}^{+}\right|^{q}\right\}+C g(n)\left(\sum_{i=1}^{n} \mathbb{E} X_{i}^{2}\right)^{q / 2} .
\end{aligned}
$$

Hence when $\left\{X_{n}, n \geq 1\right\}$ is a sequence of WA random variables with dominating coefficients $\{g(n), n \geq 1\}$, by C_{r} inequality, we see that

$$
\begin{aligned}
\mathbb{E} & \left(\left(S_{n}^{+}\right)^{q}\right) \leq C \mathbb{E}\left(\left(\left(S_{n}-\sum_{i=1}^{n} \mathbb{E} X_{i}\right)^{+}\right)^{q}\right)+C\left(\sum_{i=1}^{n}\left|\mathbb{E}\left(X_{i}\right)\right|\right)^{q} \\
& \leq \sum_{i=1}^{n} C C_{\mathbb{V}}\left\{\left|\left(X_{i}-\mathbb{E} X_{i}\right)^{+}\right|^{q}\right\}+C g(n)\left(\sum_{i=1}^{n} \mathbb{E} X_{i}^{2}\right)^{q / 2}++C\left(\sum_{i=1}^{n}\left|\mathbb{E}\left(X_{i}\right)\right|\right)^{q} \\
& \leq \sum_{i=1}^{n} C C_{\mathbb{V}}\left\{\left|X_{i}^{+}\right|^{q}\right\}+C \sum_{i=1}^{n}\left|\mathbb{E}\left(X_{i}\right)\right|^{q}+C g(n)\left(\sum_{i=1}^{n} \mathbb{E} X_{i}^{2}\right)^{q / 2}++C\left(\sum_{i=1}^{n}\left|\mathbb{E}\left(X_{i}\right)\right|\right)^{q} \\
& \leq \sum_{i=1}^{n} C C_{\mathbb{V}}\left\{\left|X_{i}^{+}\right|^{q}\right\}+C g(n)\left(\sum_{i=1}^{n} \mathbb{E} X_{i}^{2}\right)^{q / 2}++C\left(\sum_{i=1}^{n}\left|\mathbb{E}\left(X_{i}\right)\right|\right)^{q}
\end{aligned}
$$

and

$$
\mathbb{E}\left(\left(\left(-S_{n}\right)^{+}\right)^{q}\right) \leq \sum_{i=1}^{n} C C_{\mathbb{V}}\left\{\left|X_{i}^{-}\right|^{q}\right\}+C g(n)\left(\sum_{i=1}^{n} \mathbb{E} X_{i}^{2}\right)^{q / 2}++C\left(\sum_{i=1}^{n}\left|\mathbb{E}\left(-X_{i}\right)\right|\right)^{q}
$$

Therefore, combining the two equations above yields

$$
\begin{aligned}
& \mathbb{E}\left(\left|\sum_{i=1}^{n} X_{i}\right|^{q}\right) \leq C_{1}(m, q) \sum_{i=1}^{n} C_{\mathbb{V}}\left\{\left|X_{i}\right|^{q}\right\} \\
& \quad+C_{2}(m, q) g(n)\left(\sum_{i=1}^{n} \mathbb{E} X_{i}^{2}\right)^{q / 2}+C_{3}(m, q)\left(\sum_{i=1}^{n}\left[\left|\mathbb{E}\left(X_{i}\right)\right|+\left|\mathbb{E}\left(-X_{i}\right)\right|\right]\right)^{q} .
\end{aligned}
$$

When $\left\{X_{n}, n \geq 1\right\}$ is a sequence of m-WA random variables with dominating coefficients $\{g(n), n \geq 1\}$, by the equation above, the similar proof of Corollary 3 of Fang et al. 38] (or the adapted proof of Theorem 2.2 of Wu et al. [36]) and C_{r} inequality, we finish the proof of this theorem.

3 Main results

Our main results, considered as an extension of Guan et al. [4] in some sense, are as follows.

Theorem 3.1 Suppose $l(x)$ is a function slowly varying at infinity, $p \geq 1, \alpha>\frac{1}{2}, \alpha p>1$. Suppose that $\left\{a_{i},-\infty<i<\infty\right\}$ is an absolutely summable sequence of real numbers. Assume that $\left\{X_{n}=\sum_{i=-\infty}^{\infty} a_{i} Y_{i+n}, n \geq 1\right\}$ is a moving average process produced by a sequence $\left\{Y_{i},-\infty<i<\infty\right\}$ of m-WA random variables with dominating coefficients $g(n)=O\left(n^{\delta}\right)$ for some $\delta \geq 0$, and $\left\{Y_{i},-\infty<i<\infty\right\}$ is stochastic dominated by Y in sub-linear expectation space $(\Omega, \mathcal{H}, \mathbb{E})$. If $\mathbb{E}\left(Y_{i}\right)=\mathbb{E}\left(-Y_{i}\right)=0, i=1,2, \cdots$, for $\frac{1}{2}<\alpha \leq 1$, $C_{\mathbb{V}}\left\{|Y|^{p} l\left(|Y|^{1 / \alpha}\right)\right\}<\infty$ for $p>1$ and $C_{\mathbb{V}}\left\{|Y|^{1+\lambda}\right\}<\infty$ for $p=1$ and some $\lambda>0$, then for any $\epsilon>0$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\alpha p-2-\alpha} l(n) C_{\mathrm{V}}\left\{\left(\left|\sum_{j=1}^{n} X_{j}\right|-\epsilon n^{\alpha}\right)^{+}\right\}<\infty \tag{3.1}
\end{equation*}
$$

Proof For $2^{-\alpha}<\mu<1$, define $\tilde{g}_{\mu}(x) \in \mathcal{C}_{l, \text { Lip }}(\mathbb{R})$ such that $I\{|x| \leq \mu\}<\tilde{g}_{\mu}(x)<$ $I\{|x| \leq 1\}$. Define $g_{j}(x) \in \mathcal{C}_{l, \text { Lip }}(\mathbb{R}), j \geq 1$ such that $g_{j}(x)$ is even function, and for $x, 0 \leq g_{j}(x) \leq 1 ; g_{j}\left(x / 2^{j \alpha}\right)=1$ while $2^{(j-1) \alpha}<|x| \leq 2^{j \alpha}$, and $g_{j}\left(x / 2^{j \alpha}\right)=0$ while $|x| \leq \mu 2^{(j-1) \alpha}$ or $|x|>(1+\mu) 2^{j \alpha}$. We see that

$$
\begin{gather*}
g_{j}\left(|Y| / 2^{j \alpha}\right) \leq I\left\{\mu 2^{(j-1) \alpha}<|Y| \leq(1+\mu) 2^{j \alpha}\right\},\left.|Y|\right|^{l} \tilde{g}_{\mu}\left(\frac{|Y|}{2^{k \alpha}}\right) \leq 1+\sum_{j=1}^{k}|Y|^{l} g_{j}\left(\frac{|Y|}{2^{j \alpha}}\right), \\
1-\tilde{g}_{\mu}\left(\frac{|Y|}{2^{k \alpha}}\right) \leq \sum_{j=k}^{\infty} g_{j}\left(\frac{|Y|}{2^{j \alpha}}\right) . \tag{3.2}
\end{gather*}
$$

Let $f(n)=n^{\alpha p-2-\alpha} l(n), Y_{x j}^{(1)}=-x I\left\{Y_{j}<-x\right\}+Y_{j} I\left\{\left|Y_{j}\right| \leq x\right\}+x I\left\{Y_{j}>x\right\}$, $Y_{x j}^{(2)}=Y_{j}-Y_{x j}^{(1)}$ be the monotone trunctions of $\left\{Y_{j},-\infty<j<\infty\right\}$ for $x>0$. Write $Y_{x}^{(1)}=-x I\{Y<-x\}+Y I\{|Y| \leq x\}+x I\{Y>x\}, Y_{x}^{(2)}=Y-Y_{x}^{(1)}$. Then by Lemma 2.2, we see that $\left\{Y_{x j}^{(1)},-\infty<j<\infty\right\}$ and $\left\{Y_{x j}^{(2)},-\infty<j<\infty\right\}$ are two sequences of m-WA random variables. We observe that

$$
\begin{align*}
& \sum_{n=1}^{\infty} f(n) C_{\mathbb{V}}\left\{\left(\left|\sum_{j=1}^{n} X_{j}\right|-\epsilon n^{\alpha}\right)^{+}\right\} \\
& \leq \sum_{n=1}^{\infty} f(n) \int_{\epsilon n^{\alpha}}^{\infty} \mathbb{V}\left\{\left|\sum_{j=1}^{n} X_{j}\right|>x\right\} \mathrm{d} x \leq C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} \mathbb{V}\left\{\left|\sum_{j=1}^{n} X_{j}\right|>\epsilon x\right\} \mathrm{d} x \\
& \leq C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} \mathbb{V}\left\{\left|\sum_{i=-\infty}^{\infty} a_{i} \sum_{j=i+1}^{i+n} Y_{x j}^{(2)}\right|>\epsilon x / 2\right\} \mathrm{d} x \\
& \quad+C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} \mathbb{V}\left\{\left|\sum_{i=-\infty}^{\infty} a_{i} \sum_{j=i+1}^{i+n} Y_{x j}^{(1)}\right|>\epsilon x / 2\right\} \mathrm{d} x=: I_{1}+I_{2} . \tag{3.4}
\end{align*}
$$

Firstly, we establish $I_{1}<\infty$. Observe $\left|Y_{x j}^{(2)}\right|<\left|Y_{j}\right|\left(1-\tilde{g}_{\mu}\left(\frac{\left|Y_{j}\right|}{x}\right)\right)$. Then by Markov's inequality under sub-linear expectations, we see that

$$
\begin{aligned}
I_{1} & \leq C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} x^{-1} \mathbb{E}^{*}\left|\sum_{i=-\infty}^{\infty} a_{i} \sum_{j=i+1}^{i+n} Y_{x j}^{(2)}\right| \mathrm{d} x \\
& \leq C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} x^{-1} \sum_{i=-\infty}^{\infty}\left|a_{i}\right| \sum_{j=i+1}^{i+n} \mathbb{E}^{*}\left|Y_{x j}^{(2)}\right| \mathrm{d} x \\
& \leq C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} x^{-1} \mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{x}\right)\right) \mathrm{d} x \\
& \leq C \sum_{n=1}^{\infty} f(n) \sum_{m=n}^{\infty} \int_{m^{\alpha}}^{(m+1)^{\alpha}} x^{-1} \mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{\alpha}}\right)\right) \mathrm{d} x \\
& \leq C \sum_{m=1}^{\infty} m^{-1} \mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{\alpha}}\right)\right) \sum_{n=1}^{m} f(n) .
\end{aligned}
$$

If $p>1, \alpha p-1-\alpha>-1$, we conclude that

$$
\begin{aligned}
I_{1} & =C \sum_{k=0}^{\infty} \sum_{m=2^{k}}^{2^{k+1}-1} m^{\alpha p-1-\alpha} l(m) \mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{\alpha}}\right)\right) \\
& \leq C \sum_{k=1}^{\infty} 2^{\alpha p k-\alpha k} l\left(2^{k}\right) \mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{2^{k \alpha}}\right)\right) \\
& \leq C \sum_{k=1}^{\infty} 2^{\alpha p k-\alpha k} l\left(2^{k}\right) \mathbb{E}^{*} \sum_{j=k}^{\infty}|Y| g_{j}\left(\frac{|Y|}{2^{j \alpha}}\right) \\
& =C \sum_{j=1}^{\infty} \mathbb{E}^{*}|Y| g_{j}\left(\frac{|Y|}{2^{j \alpha}}\right) \sum_{k=1}^{j} 2^{\alpha p k-\alpha k} l\left(2^{k}\right) \\
& \leq C \sum_{j=1}^{\infty} 2^{\alpha p j} l\left(2^{j}\right) \mathbb{V}\left\{|Y|>\mu 2^{(j-1) \alpha}\right\} \\
& \leq C \sum_{m=1}^{\infty} m^{\alpha p-1} l(m) \mathbb{V}\left\{|Y|>\mu 2^{-1} m^{\alpha}\right\} \leq C C \mathbb{V}\left\{|Y|^{p} l\left(|Y|^{1 / \alpha}\right)\right\}<\infty .
\end{aligned}
$$

If $p=1, C_{\mathbb{V}}\left\{|Y|^{1+\lambda}\right\}<\infty$ yields $C_{\mathbb{V}}\left\{|Y|^{1+\lambda^{\prime}} l\left(|Y|^{1 / \alpha}\right)\right\}<\infty$ for any $0<\lambda^{\prime}<\lambda$, then by Lemma 2.3 of Xu [27], we see that

$$
\begin{aligned}
I_{1} & \leq C \sum_{m=1}^{\infty} m^{-1} \mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{\alpha}}\right)\right) \sum_{n=1}^{m} n^{-1} l(n) \\
& \leq C \sum_{m=1}^{\infty} m^{-1} \mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{\alpha}}\right)\right) \sum_{n=1}^{m} n^{-1+\alpha \lambda^{\prime}} l(n) \\
& \leq C \sum_{m=1}^{\infty} m^{\alpha \lambda^{\prime}-1} l(n) \mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{\alpha}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =C \sum_{k=0}^{\infty} \sum_{m=2^{k}}^{2^{k+1}-1} m^{\alpha \lambda^{\prime}-1} l(m) \mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{\alpha}}\right)\right) \\
& \leq C \sum_{k=1}^{\infty} 2^{k\left(\alpha \lambda^{\prime}\right)} l\left(2^{k}\right) \mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{2^{k \alpha}}\right)\right) \\
& \leq C \sum_{k=1}^{\infty} 2^{k\left(\alpha \lambda^{\prime}\right)} l\left(2^{k}\right) \mathbb{E}^{*}\left(|Y| \sum_{l=k}^{\infty} g_{l}\left(\frac{|Y|}{2^{l \alpha}}\right)\right) \\
& \leq C \sum_{l=1}^{\infty} \mathbb{E}^{*}\left(|Y| g_{l}\left(\frac{|Y|}{2^{l \alpha}}\right)\right) \sum_{k=1}^{l} 2^{k\left(\alpha \lambda^{\prime}\right)} l\left(2^{k}\right) \\
& \leq C \sum_{l=1}^{\infty} \mathbb{E}\left(|Y| g_{l}\left(\frac{|Y|}{2^{l \alpha}}\right)\right) 2^{l\left(\alpha \lambda^{\prime}\right)} l\left(2^{l}\right) \\
& \leq C \sum_{l=1}^{\infty} \mathbb{V}\left\{|Y|>\mu 2^{(l-1) \alpha}\right\} 2^{l \alpha\left(\lambda^{\prime}+1\right)} l\left(2^{l}\right)<\infty
\end{aligned}
$$

Hence, we get

$$
\begin{equation*}
I_{1}<\infty \tag{3.5}
\end{equation*}
$$

Next we establish $I_{2}<\infty$. From Markov's inequality under sub-linear expectations, Hölder's inequality and Lemma 2.4, follows that

$$
\begin{align*}
I_{2} \leq & C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} x^{-r} \mathbb{E}^{*}\left|\sum_{i=-\infty}^{\infty} a_{i} \sum_{j=i+1}^{i+n} Y_{x j}^{(1)}\right|^{r} \mathrm{~d} x \\
\leq & \left.\left.C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} x^{-r} \mathbb{E}^{*}\left|\sum_{i=-\infty}^{\infty}\right| a_{i}\right|^{r-1}\left(\left|a_{i}\right|^{\frac{1}{r}}\left|\sum_{j=i+1}^{i+n} Y_{x j}^{(1)}\right|\right)\right|^{r} \mathrm{~d} x \\
\leq & C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} x^{-r}\left(\sum_{i=-\infty}^{\infty}\left|a_{i}\right|\right)^{r-1}\left(\sum_{i=-\infty}^{\infty}\left|a_{i}\right| \mathbb{E}^{*}\left|\sum_{j=i+1}^{i+n} Y_{x j}^{(1)}\right|^{r}\right) \mathrm{d} x \\
\leq & C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} x^{-r}\left(\sum_{i=-\infty}^{\infty}\left|a_{i}\right| \mathbb{E}\left|\sum_{j=i+1}^{i+n} Y_{x j}^{(1)}\right|^{r}\right) \mathrm{d} x \\
\leq & C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} x^{-r} \sum_{i=-\infty}^{\infty}\left|a_{i}\right| \sum_{j=i+1}^{i+n} C_{\mathbb{V}}\left\{\left|Y_{x j}^{(1)}\right|^{r}\right\} \mathrm{d} x \\
& +C \sum_{n=1}^{\infty} f(n) g(n) \int_{n^{\alpha}}^{\infty} x^{-r} \sum_{i=-\infty}^{\infty}\left|a_{i}\right|\left(\sum_{j=i+1}^{i+n} \mathbb{E}\left|Y_{x j}^{(1)}\right|^{2}\right)^{r / 2} \mathrm{~d} x \\
& +C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} x^{-r} \sum_{i=-\infty}^{\infty}\left|a_{i}\right|\left(\sum_{j=i+1}^{i+n}\left|\mathbb{E}\left(Y_{x j}^{(1)}\right)\right|+\left|\mathbb{E}\left(-Y_{x j}^{(1)}\right)\right|\right)^{r} \mathrm{~d} x \\
= & : I_{21}+I_{22}+I_{23}, \tag{3.6}
\end{align*}
$$

where $r \geq 2$ is given later.

For $I_{2} 1$, if $p>1$, taking $r>\max \{2, p\}$, then by C_{r} inequality, similar proof of (2.8) of Zhang [33], Lemma 2.3 of Xu [27], we see that

$$
\begin{align*}
I_{21} & \leq C \sum_{n=1}^{\infty} f(n) \int_{n^{\alpha}}^{\infty} x^{-r} \sum_{i=-\infty}^{\infty}\left|a_{i}\right| \sum_{j=i+1}^{i+n} C_{\mathbb{V}}\left\{\left|Y_{x}^{(1)}\right|^{r}\right\} \mathrm{d} x \\
& \leq C \sum_{n=1}^{\infty} f(n) n \sum_{m=n}^{\infty} \int_{m^{\alpha}}^{(m+1)^{\alpha}} x^{-r} C_{\mathbb{V}}\left\{\left|Y_{x}^{(1)}\right|^{r}\right\} \mathrm{d} x \\
& \leq C \sum_{n=1}^{\infty} f(n) n \sum_{m=n}^{\infty} m^{\alpha(1-r)-1} C_{\mathbb{V}}\left\{\left|Y_{(m+1)^{\alpha}}^{(1)}\right|^{r}\right\} \\
& \leq C \sum_{m=1}^{\infty} m^{\alpha(1-r)-1} \int_{0}^{(m+1)^{\alpha}} \mathbb{V}(|Y|>x) x^{r-1} \mathrm{~d} x \sum_{n=1}^{m} f(n) n \\
& \leq C \sum_{m=1}^{\infty} m^{\alpha(1-r)-1} \int_{0}^{(m+1)^{\alpha}} \mathbb{V}(|Y|>x) x^{r-1} \mathrm{~d} x m^{\alpha p-\alpha} l(m) \\
& \leq C \sum_{m=1}^{\infty} m^{\alpha(p-r)-1} l(m) \sum_{k=1}^{m+1} \int_{(k-1)^{\alpha}}^{k^{\alpha}} \mathbb{V}(|Y|>x) x^{r-1} \mathrm{~d} x \\
& \leq C \sum_{k=1}^{\infty} \int_{(k-1)^{\alpha}}^{k^{\alpha}} \mathbb{V}(|Y|>x) x^{r-1} \mathrm{~d} x \quad \sum_{m=1 \bigvee}^{\infty} m^{\alpha(k-1)} \\
& \leq C \sum_{k=2}^{\infty} \mathbb{V}\left(|Y|>(k-1)^{\alpha}\right) k^{r \alpha-1} k^{\alpha(p-r)} l(k)+C \sum_{m=1}^{\infty} m^{\alpha(p-r)-1} l(m) \\
& \leq C \sum_{k=2}^{\infty} \mathbb{V}\left(|Y|>(1 / 2)^{\alpha} k^{\alpha}\right) k^{\alpha p-1} l(k)+C<\infty . \tag{3.7}
\end{align*}
$$

For I_{21}, if $p=1$, taking $r>\max \left\{1+\lambda^{\prime}, 2\right\}$, where $0<\lambda^{\prime}<\lambda$, then by the similar discussion as above, we see that

$$
\begin{align*}
I_{21} & \leq C \sum_{m=1}^{\infty} m^{\alpha(1-r)-1} \int_{0}^{(m+1)^{\alpha}} \mathbb{V}(|Y|>x) x^{r-1} \mathrm{~d} x \sum_{n=1}^{m} f(n) n \tag{3.8}\\
& \leq C \sum_{m=1}^{\infty} m^{\alpha\left(1-r+\lambda^{\prime}\right)-1} \int_{0}^{(m+1)^{\alpha}} \mathbb{V}(|Y|>x) x^{r-1} \mathrm{~d} x l(m) \\
& \leq C \sum_{m=1}^{\infty} m^{\alpha\left(1-r+\lambda^{\prime}\right)-1} l(m) \sum_{k=1}^{m+1} \int_{(k-1)^{\alpha}}^{k^{\alpha}} \mathbb{V}(|Y|>x) x^{r-1} \mathrm{~d} x \\
& \leq C \sum_{k=1}^{\infty} \int_{(k-1)^{\alpha}}^{k^{\alpha}} \mathbb{V}(|Y|>x) x^{r-1} \mathrm{~d} x \sum_{m=1 \bigvee(k-1)}^{\infty} m^{\alpha\left(1-r+\lambda^{\prime}\right)-1} l(m) \\
& \leq C \sum_{k=2}^{\infty} \mathbb{V}\left(|Y|>(k-1)^{\alpha}\right) k^{r \alpha-1} k^{\alpha\left(1-r+\lambda^{\prime}\right)} l(k)+C \sum_{m=1}^{\infty} m^{\alpha\left(1-r+\lambda^{\prime}\right)-1} l(m) \\
& \leq C \sum_{k=2}^{\infty} \mathbb{V}\left(|Y|>(1 / 2)^{\alpha} k^{\alpha}\right) k^{\alpha\left(1+\lambda^{\prime}\right)-1} l(k)+C<\infty . \tag{3.9}
\end{align*}
$$

For I_{22}, if $1 \leq p<2$, observing that $g(n)=O\left(n^{\delta}\right)$, taking $r>2$ fulfilling that $\alpha p+r / 2-$
$\alpha p r / 2-1+\delta=(\alpha p-1)(1-r / 2)+\delta<0$, then by C_{r} inequality, we conclude that

$$
\begin{align*}
I_{22} \leq & C \sum_{n=1}^{\infty} n^{r / 2} f(n) g(n) \int_{n^{\alpha}}^{\infty} x^{-r}\left(\mathbb{E}\left|Y_{x}^{(1)}\right|^{2}\right)^{r / 2} \mathrm{~d} x \\
\leq & C \sum_{n=1}^{\infty} n^{r / 2} f(n) g(n) \sum_{m=n}^{\infty} \int_{m^{\alpha}}^{(m+1)^{\alpha}} \\
& \times\left[x^{-r}\left(\mathbb{E}\left(|Y|^{2} \tilde{g}_{\mu}\left(\frac{\mu|Y|}{x}\right)\right)\right)^{r / 2}+\left(\mathbb{E}\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{x}\right)\right)\right)^{r / 2}\right] \mathrm{d} x \\
\leq & C \sum_{m=1}^{\infty}\left[m^{\alpha(1-r)-1} \mathbb{E}\left(|Y|^{2} \tilde{g}_{\mu}\left(\frac{\mu|Y|}{(m+1)^{\alpha}}\right)\right)^{r / 2}+m^{\alpha-1}\left(\mathbb{E}\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{\alpha}}\right)\right)^{r / 2}\right]\right. \\
& \times \sum_{n=m}^{\infty} n^{r / 2} f(n) g(n) \\
\leq & C \sum_{m=1}^{\infty} m^{\alpha(p-r)+r / 2+\delta-2} l(m)\left[\mathbb{E}\left(|Y|^{p}|Y|^{2-p} \tilde{g}_{\mu}\left(\frac{\mu|Y|}{(m+1)^{\alpha}}\right)\right)\right]^{r / 2} \\
& +C \sum_{m=1}^{\infty} m^{\alpha p+r / 2+\delta-2} l(m)\left(\mathbb{E}\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{\alpha}}\right)\right)\right)^{r / 2} \\
\leq & C \sum_{m=1}^{\infty} m^{\alpha p+r / 2-\alpha p r / 2+\delta-2} l(m)\left(\mathbb{E}|Y|^{p}\right)^{r / 2}<\infty . \tag{3.10}
\end{align*}
$$

For I_{22}, if $p \geq 2$, observing that $g(n)=O\left(n^{\delta}\right)$, taking $r>(\alpha p-1) /(\alpha-1 / 2) \geq p$ satisfying $\alpha(p-r)+r / 2+\delta-1<0$, then by C_{r} inequality, and similar proof of (3.10), we have

$$
\begin{align*}
I_{22} \leq & C \sum_{m=1}^{\infty}\left[m^{\alpha(1-r)-1} \mathbb{E}\left(|Y|^{2} \tilde{g}_{\mu}\left(\frac{\mu|Y|}{(m+1)^{\alpha}}\right)\right)^{r / 2}+m^{\alpha-1}\left(\mathbb{E}\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{\alpha}}\right)\right)\right)^{r / 2}\right] \\
& \times \sum_{n=m}^{\infty} n^{r / 2} f(n) g(n) \\
\leq & C \sum_{m=1}^{\infty} m^{\alpha(p-r)+r / 2+\delta-2} l(m)\left(\mathbb{E}|Y|^{2} \tilde{g}_{\mu}\left(\frac{\mu|Y|}{(m+1)^{\alpha}}\right)\right)^{r / 2} \\
& +C \sum_{m=1}^{\infty} m^{\alpha p+r / 2+\delta-2} l(m)\left(\mathbb{E}\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{\alpha}}\right)\right)\right)^{r / 2} \\
\leq & C \sum_{m=1}^{\infty} m^{\alpha(p-r)+r / 2+\delta-2} l(m)\left(\mathbb{E}|Y|^{2}\right)^{r / 2}<\infty . \tag{3.11}
\end{align*}
$$

For I_{23}, we take $r>2$. By $\mathbb{E}\left(Y_{i}\right)=\mathbb{E}\left(-Y_{i}\right)=0$, Proposition 1.3.7 of Peng [16] and Lemma 4.5 (iii) of Zhang [28], we get

$$
\begin{aligned}
I_{23} & \leq C \sum_{n=1}^{\infty} f(n) \sum_{m=n}^{\infty} \int_{m^{\alpha}}^{(m+1)^{\alpha}} x^{-r}\left(\sup _{i} \sum_{j=i+1}^{i+n} \mathbb{E}\left|Y_{x j}^{(1)}-Y_{j}\right|\right)^{r} \mathrm{~d} x \\
& \leq C \sum_{n=1}^{\infty} f(n) \sum_{m=n}^{\infty} \int_{m^{\alpha}}^{(m+1)^{\alpha}} x^{-r} n^{r}\left(\mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{x}\right)\right)\right)^{r} \mathrm{~d} x
\end{aligned}
$$

$$
\begin{align*}
& \leq C \sum_{n=1}^{\infty} f(n) n^{r} \sum_{m=n}^{\infty} m^{\alpha(1-r)-1}\left(\mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{\alpha}}\right)\right)\right)^{r} \\
& \leq C \sum_{m=1}^{\infty} m^{\alpha(1-r)-1} \frac{\mathbb{E}\left(|Y|^{p} l\left(|Y|^{1 / \alpha}\right)\right)^{r}}{m^{\alpha(p-1) r} l^{r}(m)} \sum_{n=1}^{m} f(n) n^{r} \\
& \leq C \sum_{m=1}^{\infty} m^{-(\alpha p-1)(r-1)-1} / l^{r}(m)\left(C_{\mathbb{V}}\left\{|Y|^{p} l\left(|Y|^{1 / \alpha}\right)\right\}\right)^{r}<\infty \tag{3.12}
\end{align*}
$$

Hence, (3.1) is established by (3.4)-(3.12).
We next investigate the case $\alpha p=1$.
Theorem 3.2 Assume that l is a function slowly varying at infinity, $1 \leq p<2$. Suppose that $\sum_{i=-\infty}^{\infty}\left|a_{i}\right|^{\theta}<\infty$, where $\theta \in(0,1)$ if $p=1$ and $\theta=1$ if $1<p<2$. Assume that $\left\{X_{n}=\sum_{i=-\infty}^{\infty} a_{i} Y_{i+n}, n \geq 1\right\}$ is a moving average process produced by a sequence $\left\{Y_{i},-\infty<i<\infty\right\}$ of m-WA random variables with dominating $g(n)=O\left(n^{\delta}\right)$ for some $0 \leq \delta<(2-p) / p$, stochastically dominated by a random variable Y. While $p=1$, assume that $0<\delta<1$. If $\mathbb{E}\left(Y_{i}\right)=\mathbb{E}\left(-Y_{i}\right)=0$ and $C_{\mathbb{V}}\left\{|Y|^{p(1+\delta)} l\left(|Y|^{p}\right)\right\}<\infty$, then for any $\varepsilon>0$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-1-1 / p} l(n) C_{\mathbb{V}}\left\{\left(\left|\sum_{j=1}^{k} X_{j}\right|-\varepsilon n^{1 / p}\right)^{+}\right\}<\infty . \tag{3.13}
\end{equation*}
$$

Proof Let $h(x)=n^{-1-1 / p} l(n)$. As in the proof of (3.4), we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} h(n) C_{\mathbb{V}}\left\{\left(\left|\sum_{j=1}^{k} X_{j}\right|-\varepsilon n^{1 / p}\right)^{+}\right\} \\
\leq & C \sum_{n=1}^{\infty} h(n) \int_{n^{1 / p}}^{\infty} \mathbb{V}\left\{\left|\sum_{i=-\infty}^{\infty} a_{i} \sum_{j=i+1}^{i+n} Y_{x j}^{(2)}\right|>\varepsilon x / 2\right\} \mathrm{d} x \\
& +C \sum_{n=1}^{\infty} h(n) \int_{n^{1 / p}}^{\infty} \mathbb{V}\left\{\left|\sum_{i=-\infty}^{\infty} a_{i} \sum_{j=i+1}^{i+n} Y_{x j}^{(1)}\right|>\varepsilon x / 2\right\} \mathrm{d} x \\
= & : J_{1}+J_{2} . \tag{3.14}
\end{align*}
$$

For J_{1}, take $\varepsilon^{\prime}=\delta$. By Markov's inequality under sub-linear expectations, C_{r} inequality, and Lemma 2.3 of Xu [27], we see that

$$
\begin{aligned}
J_{1} & \leq C \sum_{n=1}^{\infty} h(n) \int_{n^{1 / p}}^{\infty} x^{-\theta} \mathbb{E}^{*}\left|\sum_{i=-\infty}^{\infty} a_{i} \sum_{j=i+1}^{i+n} Y_{x j}^{(2)}\right|^{2} \mathrm{~d} x \\
& \leq C \sum_{n=1}^{\infty} n h(n) \int_{n^{1 / p}}^{\infty} x^{-\theta} \mathbb{E}\left|Y_{x}^{(2)}\right|^{\theta} \mathrm{d} x \\
& \leq C \sum_{n=1}^{\infty} n h(n) \sum_{m=n}^{\infty} \int_{m^{1 / p}}^{(m+1)^{1 / p}} x^{-\theta} \mathbb{E}|Y|^{\theta}\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{x}\right)\right) \mathrm{d} x
\end{aligned}
$$

$$
\begin{align*}
& \leq C \sum_{n=1}^{\infty} n h(n) \sum_{m=n}^{\infty} m^{(1-\theta) / p-1} \mathbb{E}|Y|^{\theta}\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{1 / p}}\right)\right) \\
& =C \sum_{m=1}^{\infty} m^{(1-\theta) / p-1} \mathbb{E}|Y|^{\theta}\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{1 / p}}\right)\right) \sum_{n=1}^{m} n h(n) \\
& \leq \begin{cases}C \sum_{m=1}^{\infty} m^{-1 / p} l(m) \mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{1 / p}}\right)\right), & 1<p<2 \\
C \sum_{m=1}^{\infty} m^{(1-\theta) / p-1} \mathbb{E}|Y|^{\theta}\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{1 / p}}\right)\right) \sum_{n=1}^{m} n^{\varepsilon^{\prime}-1} l(n), & p=1\end{cases} \\
& \leq \begin{cases}C \sum_{k=0}^{\infty} \sum_{m=2^{k}}^{2^{k+1}-1} m^{-1 / p} l(m) \mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{1 / p}}\right)\right), & 1<p<2 \\
C \sum_{k=0}^{\infty} \sum_{m=2^{k}}^{2^{k+1}-1} m^{-\theta+\varepsilon^{\prime}} l(m) \mathbb{E}|Y|^{\theta}\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m}\right)\right), & p=1\end{cases} \\
& \leq \begin{cases}C \sum_{k=1}^{\infty} 2^{k(-1 / p+1)} l\left(2^{k}\right) \mathbb{E}^{*}\left(|Y| \sum_{j=k}^{\infty} g_{j}\left(\frac{|Y|}{2^{j / p}}\right)\right), & 1<p<2 \\
C \sum_{k=1}^{\infty} 2^{k\left(-\theta+\varepsilon^{\prime}+1\right)} l\left(2^{k}\right) \mathbb{E}^{*}\left(|Y|^{\theta} \sum_{j=k}^{\infty} g_{j}\left(\frac{|Y|}{2^{j}}\right)\right), & p=1\end{cases} \\
& \leq \begin{cases}C \sum_{j=1}^{\infty} \mathbb{E}^{*}\left(|Y| g_{j}\left(\frac{|Y|}{2^{j / p}}\right)\right) \sum_{k=1}^{j} 2^{k(-1 / p+1)} l\left(2^{k}\right), & 1<p<2 \\
C \sum_{j=1}^{\infty} \mathbb{E}^{*}\left(|Y|^{\theta} g_{j}\left(\frac{|Y|}{2^{j}}\right)\right) \sum_{k=1}^{j} 2^{k\left(-\theta+\varepsilon^{\prime}+1\right)} l\left(2^{k}\right), & p=1\end{cases} \\
& \leq \begin{cases}C \sum_{j=1}^{\infty} \mathbb{V}\left\{|Y|>\mu 2^{(j-1) / p}\right\} 2^{j} l\left(2^{j}\right)<\infty, & 1<p<2 \\
C \sum_{j=1}^{\infty} \mathbb{V}\left\{|Y|>\mu 2^{(j-1)}\right\} 2^{j\left(\varepsilon^{\prime}+1\right)} l\left(2^{k}\right)<\infty, & p=1,\end{cases} \tag{3.15}
\end{align*}
$$

where $\tilde{g}_{\mu}(\cdot), g_{j}(\cdot)$ here are defined as those of (3.2) and (3.3) with only $1 / p$ here in place of α there.

For J_{2}, as in the proof of I_{2}, observing that $g(n)=O\left(n^{\delta}\right)$, for some $0 \leq \delta<(2-p) / p$, taking $q=2$ by Lemma 2.4 and similar proof of (2.8) of Zhang [33], we get

$$
\begin{aligned}
J_{2} \leq & C \sum_{n=1}^{\infty} h(n) \int_{n^{1 / p}}^{\infty} x^{-2} \mathbb{E}^{*}\left|\sum_{i=-\infty}^{\infty} a_{i} \sum_{j=i+1}^{i+n} Y_{x j}^{(1)}\right|^{2} \mathrm{~d} x \\
\leq & C \sum_{n=1}^{\infty} n h(n)(1+g(n)) \sum_{m=n}^{\infty} \int_{m^{1 / p}}^{(m+1)^{1 / p}} x^{-2} C_{\mathbb{V}}\left\{\left|Y_{x}^{(1)}\right|^{2}\right\} \mathrm{d} x \\
& +C \sum_{n=1}^{\infty} h(n) \sum_{m=n}^{\infty} \int_{m^{1 / p}}^{(m+1)^{1 / p}} x^{-2}\left[\sum_{i=1}^{n}\left|\mathbb{E}\left(Y_{x j}^{(1)}\right)\right|+\left|\mathbb{E}\left(-Y_{x j}^{(1)}\right)\right|\right]^{2} \mathrm{~d} x \\
\leq & C \sum_{n=1}^{\infty} n h(n)(1+g(n)) \sum_{m=n}^{\infty} m^{-1 / p-1} \int_{0}^{(m+1)^{2 / p}} \mathbb{V}\left\{|Y|^{2}>y\right\} \mathrm{d} y \\
& +C \sum_{n=1}^{\infty} h(n) \sum_{m=n}^{\infty} m^{-1 / p-1}\left[\sum_{i=1}^{n} \mathbb{E}\left(\left|Y_{m^{1 / p} j}^{(2)}\right|\right)\right]^{2} \\
\leq & C \sum_{m=1}^{\infty} m^{-1 / p-1} \int_{0}^{(m+1)^{2 / p}} \mathbb{V}\left\{|Y|^{2}>y\right\} \mathrm{d} y \sum_{n=1}^{m} n^{-1 / p} l(n)(1+g(n)) \\
& +C \sum_{m=1}^{\infty} m^{-1 / p-1}\left[\mathbb{E}\left(\left|Y_{m^{1 / p}}^{(2)}\right|\right)\right]^{2} \sum_{n=1}^{m} n^{1-1 / p} l(n)
\end{aligned}
$$

$$
\begin{align*}
\leq & C \sum_{m=1}^{\infty} m^{-2 / p+\delta} l(m) \int_{0}^{(m+1)^{2 / p}} \mathbb{V}\left\{|Y|^{2}>y\right\} \mathrm{d} y \\
& +C \sum_{m=1}^{\infty} m^{-2 / p+1} l(m)\left[\mathbb{E}\left(\left|Y_{m^{1 / p}}^{(2)}\right|\right)\right]^{2} \\
\leq & C \sum_{m=1}^{\infty} m^{-2 / p+\delta} l(m) \sum_{\ell=1}^{m+1} \int_{(\ell-1)^{2 / p}}^{(\ell)^{2 / p}} \mathbb{V}\left\{|Y|^{2}>y\right\} \mathrm{d} y \\
& +C \sum_{m=1}^{\infty} m^{-2 / p+1} l(m)\left[\mathbb{E}|Y|\left(1-\tilde{g}_{\mu}\left(\frac{|Y|}{m^{1 / p}}\right)\right)\right]^{2} \\
\leq & C \sum_{\ell=1}^{\infty} \int_{(\ell-1)^{2 / p}}^{(\ell)^{2 / p}} \mathbb{V}\left\{|Y|^{2}>y\right\} \mathrm{d} y \sum_{m=1 \mathbb{V}(\ell-1)}^{\infty} m^{-2 / p+\delta} l(m) \\
& +C \sum_{m=1}^{\infty} m^{-2 / p+1} l(m) \frac{\left(\mathbb{E}\left(|Y|^{p(1+\delta)} l\left(|Y|^{p}\right)\right)\right)^{2}}{\left(m^{(p(1+\delta)-1) / p} l(m)\right)^{2}} \\
\leq & C \sum_{\ell=2}^{\infty} \int_{(\ell-1)^{2 / p}}^{(\ell)^{2 / p}} \mathbb{V}\left\{|Y|^{2}>y\right\} \ell^{1+\delta-2 / p} l(\ell) \mathrm{d} y+C \\
& +C \sum_{m=1}^{\infty} m^{-2 \delta-1} / l(m)\left(C_{\mathbb{V}}\left\{|Y|^{p(1+\delta)} l\left(|Y|^{p}\right)\right\}\right)^{2} \\
\leq & C \sum_{\ell=2}^{\infty} \int_{(\ell-1)^{2 / p}}^{\ell^{2 / p}} \mathbb{V}\left\{|Y|^{2}>y\right\} y^{(1+\delta-2 / p) p / 2} l\left(y^{p / 2}\right) \mathrm{d} y+C \\
\leq & C \int_{1}^{\infty} \mathbb{V}\left\{|Y|^{p}>y\right\} \mathrm{d}\left(l(y) y^{1+\delta}\right)+C \leq C C \mathbb{V}\left\{|Y|^{p(1+\delta)} l\left(|Y|^{p}\right)\right\}<\infty . \tag{3.16}
\end{align*}
$$

Therefore, combining (3.14)-(3.16) results in (3.13). This completes the proof. By Theorems 3.1, 3.2, we conclude that the following Corollary holds.

Corollary 3.1 Under the same conditions of Theorem 3.1, for any $\epsilon>0$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\alpha p-2} l(n) \mathbb{V}\left\{\left|\sum_{j=1}^{n} X_{j}\right|>\epsilon n^{\alpha}\right\}<\infty . \tag{3.17}
\end{equation*}
$$

Under the conditions of Theorem 3.2. for any $\epsilon>0$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-1} l(n) \mathbb{V}\left\{\left|\sum_{j=1}^{n} X_{j}\right|>\epsilon n^{1 / p}\right\}<\infty \tag{3.18}
\end{equation*}
$$

Acknowledgements

Not applicable.

Funding

This research was supported by Science and Technology Research Project of Jiangxi Provincial Department of Education of China (No. GJJ2201041), Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University (No. 102/01003002031), Re-accompanying Funding Project of Academic Achievements of Jingdezhen Ceramic University (No. 215/20506277).

Availability of data and materials

No data were used to support this study.

Competing interests

The authors declare that they have no competing interests.
Authors contributions
Both authors contributed equally and read and approved the final manuscript.

References

[1] Chen, ZJ: Strong laws of large numbers for sub-linear expectations. Sci. China Math. 59(5), 945-954 (2016)
[2] Chen, XC, Wu, QY: Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations. AIMS Math. 7, 9694-9715 (2022)
[3] Gao, FQ, Xu, MZ: Large deviations and moderate deviations for independent random variables under sublinear expectations (in Chinese). Sci. China Math. 41(4), 337-352 (2011)
[4] Guan, LH, Xiao, YS, Zhao, YN: Complete moment convergence of moving average processes for m-WOD sequence. J. Inequal. Appl. 2021, Article ID 16 (2021)
[5] Guo, ML, Dai, JJ, Zhu, DJ: Complete moment convergence of moving average processes under negative association assumptions. Math. Appl. (Wuhan) 25(3), 118-125 (2012)
[6] Hossenni, SM, Nezakati, A: Convergence rates in the law of large numbers for END linear processes with random coefficients. Commun. Stat. - Theor. M. 49(1), 88-98 (2020)
[7] Hossenni, SM, Nezakati, A: Complete monent convergence for the dependent linear processes with random coefficients. Acta Math. Sin. Engl. Ser. 35(8), 113-132 (2019)
[8] Hu, F, Chen, ZJ, Zhang, DF: How big are the increments of G-Brownian motion. Sci. China Math. 57(8):1686-1700 (2014)
[9] Hu, ZC, Yang, YZ: Some inequalities and limit theorems under sublinear expectations. Acta Math. Appl. Sin. Engl. Ser. 33(2), 451-462 (2017)
[10] Huang, WH, Wu, PY: Strong laws of large numbers for general random variables in sublinear expectation spaces. J. Inequal. Appl. 2019, Article ID 143 (2019)
[11] Kuczmaszewska, A: Complete convergence for widely acceptable random variables under the sublinear expecations. J. Math. Anal. Appl. 484(1). Article ID 123662 (2020)
[12] Li, YX, Zhang, LX: Complete moment convergence of moving-average processes under dependence assuptions. Stat. Probabil. Lett. 70(3), 191-197 (2004)
[13] Meng, B, Wang, DC, Wu, QY: Convergence of asymptotically almost negatively associated random variables with random coefficients. Commun. Stat. - Theor. M. (2021), DOI: 10.1080/03610926.2021.1963457, 2021
[14] Peng, SG: G-expectation, G-Brownian motion and related stochastic calculus of Itô type. Stoch. Anal. Appl. 2(4), 541-567 (2007)
[15] Peng, SG: Nonlinear expectations and stochastic calculus under uncertainty (2010). ArXiv: 1002.4546v1
[16] Peng, SG: Nonlinear expectations and stochastic calculus under uncertainty. Springer, Berlin (2019)
[17] Wu, QY, Jiang, YY: Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations. J. Math. Anal. Appl. 460(1), 252-270 (2018)
[18] Sung, SH: Moment inequalities and complete moment convergence. J. Inequal. Appl. 2009, Article ID 271265 (2009)
[19] Wu, QY: Precise asymptotics for complete integral convergence under sublinear expectations. Math. Probl. Eng. 2020, Article ID: 3145935 (2020)
[20] Xu, JP, Zhang, LX: Three series theorem for independent random variables under sub-linear expectations with applications. Acta Math. Sin. Engl. Ser. 35(2), 172-184 (2019)
[21] Xu, JP, Zhang, LX: The law of logarithm for arrays of random variables under sub-linear expectations. Acta Math. Appl. Sin. Engl. Ser. 36(3), 670-688 (2020)
[22] Xu, MZ, Cheng, K: Convergence for sums of independent, identically distributed random variables under sublinear expectations. J. Inequal. Appl. 2021, Article ID 157 (2021)
[23] Xu, MZ, Cheng, K: How small are the increments of G-Brownian motion. Stat. Probabil. Lett. 186, 1-9 (2022)
[24] Xu, MZ, Cheng, K, Yu,WK: Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Math. 7, 1999820019 (2022)
[25] Xu, MZ, Kong, XH: Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations. AIMS Math. 8, 8504-8521. (2023)
[26] Xu, MZ, Cheng, K, Yu,WK: Convergence of linear processes generated by negatively dependent random variables under sub-linear expectation. J. Inequal. Appl. 2023, Article ID 77 (2023)
[27] Xu, MZ: On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations. AIMS Math. 9, 3369-3385. (2024)
[28] Zhang, LX: Exponential inequalities under sub-linear expectations with applications. Sci. China Math. 59(12), 2503-2526 (2016a)
[29] Zhang, LX: Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications. Sci. China Math. 59(4), 759-768 (2016b)
[30] Zhang, LX: Donsker's invariance principle under the sub-linear expectation with an application to Chung's law of the iterated logarithm. Commun. Math. Stat. 3(2), 187-214 (2015)
[31] Zhang, LX: Strong limit theorems for extended independent random variables and extended negatively dependent random variables under sub-linear expectations. Acta Math. Sci., 42(2), 467-490 (2022)
[32] Zhang, LX, Lin, JH: Marcinkiewicz's strong law of large numbers for nonlinear expectations. Stat. Probabil. Lett. 137, 269-276 (2018)
[33] Zhang, LX, Lin, JH: On the laws of the iterated logarithm under sub-linear expectations. Probability, Uncertainty and Quantitative Risk 6, 409-460 (2021)
[34] Zhang, Y, Ding, X: Further research on complete moment convergence for moving average process of a class of random variables. J. Inequal. Appl. 2017, Article ID 46 (2017)
[35] Zhong, HY, Wu, QY: Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation. J. Inequal. Appl. 2017, Article ID 261 (2017)
[36] Wu, Y, Deng, X, Wang, XJ: Capacity inequalities and strong laws for m-widely acceptable random variables under sub-linear expectations. J. Math. Anal. Appl. 525. Article ID 127282 (2023)
[37] Shen, AT: Probability inequalities for END sequence and their applications. J. Inequal. Appl. 2011, Article ID 98 (2011)
[38] Fang, HY, Ding, SS, Li, XQ, Yang, WZ: Asymptotic approximations of ratio moments based on dependent sequences. Mathematics 8(3), 361 (2011). https://doi.org/10.3390/math8030361

[^0]: ${ }^{1 *}$ correspondence: mingzhouxu@whu.edu.cn
 ${ }^{2}$ Email: $869458367 @ q q . c o m$

