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Abstract—In the context of emerging stacked intelligent meta-
surface (SIM)-based holographic MIMO (HMIMO) systems, a
fundamental problem is to study the mutual information (MI)
between transmitted and received signals to establish their
capacity. However, direct optimization or analytical evaluation
of the MI, particularly for discrete signaling, is often intractable.
To address this challenge, we adopt the channel cutoff rate
(CR) as an alternative optimization metric for the MI maxi-
mization. In this regard, we propose an alternating projected
gradient method (APGM), which optimizes the CR of a SIM-
based HMIMO system by adjusting signal precoding and the
phase shifts across the transmit and receive SIMs in a layer-
by-layer basis. Simulation results indicate that the proposed
algorithm significantly enhances the CR, achieving substantial
gains proportional to those observed for the corresponding MI.
This justifies the effectiveness of using the channel CR for the
MI optimization. Moreover, we demonstrate that the integration
of digital precoding, even on a modest scale, has a significant
impact on the ultimate performance of SIM-aided systems.

Index Terms—Channel cutoff rate (CR), mutual information
(MI), stacked intelligent metasurface (SIM), holographic MIMO
(HMIMO), optimization.

I. INTRODUCTION

Intelligent metasurfaces are expected to play a significant

role in the evolution of future wireless communications. They

are engineered surfaces, composed of a large number of con-

trollable metamaterial elements that are capable of modifying

the propagation of incident waves at the electromagnetic (EM)

field level in dynamic and programmable manner [1]. This

unique ability enables intelligent surfaces to improve energy

efficiency, network capacity and connectivity, while also sup-

porting other heterogeneous functions, such as localization

and sensing. However, leveraging these advantages requires

the acquisition of accurate channel state information (CSI),

which presents a challenging task for conventional metasurface

structures, such as reconfigurable intelligent surfaces (RISs).

Furthermore, the multiplicative effect of the path loss of the

RIS-assisted link severely reduces the possible gains through

metasurface deployment. As a result, to maximize their poten-

tial, intelligent metasurfaces (e.g., RISs) are preferably placed

in the vicinity of the transmitter and the receiver.

The above discussions naturally motivate the integration of

intelligent metasurface structures with wireless communication

transceivers in massive MIMO (mMIMO) and holographic

MIMO (HMIMO) systems [2]. The use of intelligent metasur-

faces in these systems offers a tradeoff between minimizing the

number of radio frequency chains and maximizing the control-

lability over the radiated and received electromagnetic fields

in the wave domain [3]. Moreover, the intelligent metasurfaces

can provide beamforming capabilities comparable to those

of conventional phased array antennas, but with much lower

power consumption and cost. However, these metasurfaces

are usually single-layer structures, which may limit their

beamforming potential. In practical realizations, the elements

of intelligent metasurfaces are constrained to a finite set of

tunable states, and the number of these elements on a single

metasurface is also limited. This can lead to beam misalign-

ment, thereby undermining the expected performance results.

To address the above limitations, multi-layer metasurface

structures have emerged as a promising solution for flexibly

forming different radiation patterns compared to their single-

layer counterparts. Such structures, called stacked intelligent

metasurfaces (SIMs), were recently introduced [4], which

is inspired from the architecture of a deep neural network

[5]. Indeed, SIMs mirrors the multi-layer structure of neural

networks that are, if properly trained, capable of modeling

various functions with improved signal processing capabili-

ties. In the same way, when metasurface layers are properly

placed, SIM can implement signal processing directly in the

EM wave domain. This approach can potentially reduce the

reliance on digital beamforming and high-precision digital-to-

analog converters.

In [6], the signal processing capabilities of SIMs were

exploited for the implementation of 2D discrete Fourier trans-

form (DFT) for direction of arrival (DOA) estimation. More-

over, a hybrid channel estimator, in which the received training

symbols were processed first in the wave domain and later in

the digital domain, was proposed in [7]. A general path loss

model for an SIM-assisted wireless communication system

was developed in [8], based on which, an algorithm for the

receive power maximization was derived. In [9], the authors

studied the achievable sum-rate maximization for a downlink

channel between a SIM-assisted base station and multiple

single-antenna users. Integrating SIMs with transmitters and

receivers into the so-called SIM-based HMIMO system, which

performs signal precoding and combining in the wave domain,

was proposed in [10]. The introduced channel fitting approach

enables the SIM-based HMIMO system to achieve significant

channel capacity gains compared to mMIMO and RIS-assisted

counterparts. Furthermore, the achievable rate optimization for

the SIM-based HMIMO system was studied in [11].

Despite quite a few papers about SIM-based systems, none

of them has considered the achievable rate of such systems

using discrete signaling, i.e., the mutual information (MI). This

gap has motivated us to investigate the optimization of the MI

in the aforementioned systems. Since the direct optimization

of the MI is intractable, we instead propose the use of the
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channel cutoff rate (CR) as an alternative metric to facilitate

the MI optimization [12], [13]. The channel CR can be seen

as a lower bound on the MI [12, Eq. (36)] and is widely

recognized as a practical upper limit on the information rate

that guarantees reliable communications.

The main contributions of this paper are listed as follows:

• We show that using the channel CR as an alternative

optimization metric enables efficient maximization of the

MI in SIM-based HMIMO systems. Specifically, the CR

is expressed as a closed-form expression, which facilitates

the derivation of efficient optimization algorithms.

• To maximize the CR, we formulate a joint optimization

problem of transmit precoding and the phase shifts for

both transmit and receive SIMs. Then an alternating pro-

jected gradient method (APGM) is proposed to solve this

problem, which particularly optimizes the phase shifts for

the transmit and receive SIMs in a layer-by-layer basis.

Moreover, we provide the computational complexity of

the proposed algorithm.

• We demonstrate through simulation results that the pro-

posed algorithm can significantly increase the CR and

the MI in a proportional manner. Also, the increase of

the modulation order without changing the transmit signal

power has a negligible influence on the MI. Finally, incor-

porating even a small scale digital precoding into a SIM-

based HMIMO system leads to substantial improvements

on the achievable MI.

II. SYSTEM MODEL

We consider a SIM-based HMIMO communication system

with Nt transmit antennas and Nr receive antennas, where

both the transmitter and the receiver are equipped with SIMs.

The transmit SIM consists of L metasurface layers with N
meta-atoms in each layer, while the receive SIM consists of

K metasurface layers with E meta-atoms in each layer. The

meta-atoms of the SIMs are connected to smart controllers

or field programmable gate array (FPGA) devices, which can

independently adjust the phase shift of each meta-atom. In this

way, MIMO transceivers with closely spaced SIMs can imple-

ment signal beamforming directly in the EM wave domain.

For the l-th layer of the transmit SIM, the phase shift

matrix is denoted as Φl = diag(φl) = diag([φl1 φ
l
2 · · · φlN ]T ),

where diag(·) transforms a vector into a diagonal matrix. Also,

φln = exp(jθln), where θln is the phase shift of the n-th meta-

atom in the l-th layer. Signal propagation between the (l−1)-th
and l-th layer of the transmit SIM is modeled by the matrix

Wl ∈ CN×N , where [Wl]m,n denotes the signal propagation

between the n-th meta-atom of the (l − 1)-th layer and the

m-th meta-atom of the l-th layer. According to Rayleigh-

Sommerfeld diffraction theory, [Wl]m,n is given by [14, Eq.

(1)]

[Wl]m,n =
A cosχm,n

dm,n

( 1

2πdm,n
−
j

λ

)

ej
2πdm,n

λ (1)

for l = 2, 3, . . . , L, where A is the area of each meta-atom,

dm,n is the propagation distance between the meta-atoms in

the (l − 1)-th and l-th layer of the transmit SIM, χm,n is the

angle between the propagation direction and normal direction

of the (l− 1)-th layer1. Similarly, signal propagation between

the transmit antenna array and the first layer of the transmit

SIM is modeled by W1 ∈ CN×Nt , which is defined as (1).

Finally, the EM wave domain beamforming matrix of the

transmit SIM can be written as

B = ΦLWL · · ·Φ2W2Φ1W1 ∈ C
N×Nt . (2)

At the receive SIM, the phase shift matrix for the k-th layer

is given by Ψk = diag(ψk) = diag([ψk
1 ψ

k
2 · · · ψk

E ]
T ), where

ψk
e = exp(jυke ) and υke is the phase shift of the e-th meta-

atom in the k-th layer. Signal propagation between the k-th

and (k − 1)-th layer of the receive SIM is modeled by the

matrix Uk ∈ CE×E , which is defined similarly as in (1).

Also, signal propagation between the first layer of the receive

SIM and the receive antenna array is given by U1 ∈ CNr×E .

The EM wave domain beamforming matrix for the receive

SIM can be expressed as

Z = U1Ψ1U2Ψ2 · · ·UKΨK ∈ C
Nr×E . (3)

Let G be the channel between the transmit and the receive

SIM. Then the end-to-end channel matrix for the considered

communication system is written as

H = ZGB ∈ C
Nr×Nt (4)

and the signal vector at the receive antennas is given by

y = HPxi + n (5)

where P ∈ CNt×Ns is the precoding matrix that satisfies the

following the average transmit power constraint:

Tr(PPH) = Ns (6)

where Ns ≤ min(Nt, Nr) is the number of the transmitted

modulation symbols. The transmit vector xi ∈ CNs×1 consists

of elements chosen from a discrete symbol alphabet of size

M , and thus, the number of different transmit vectors is

Nvec =MNs . In addition, it is assumed that the average

symbol energy of the discrete symbol alphabet is one. Finally,

n ∈ CNr×1 is the noise vector with independent and identi-

cally distributed (i.i.d.) elements that are distributed according

to CN (0, σ2), where σ2 is the noise variance.

III. PROBLEM FORMULATION

We consider a discrete-input continuous-output memoryless

channel (DCMC). For equally probable transmitted symbol

vectors, the MI is found as [12], [13]

MI = log2(Nvec)−
1

Nvec

∑Nvec

i=1
En

{

log2
∑Nvec

j=1
eκi,j

}

(7)

where κi,j = (−||HP(xi − xj) + n||2 + ||n||2)/σ2.

As the direct optimization of the MI in (7) involves discrete

variables, which is intractable, we instead consider the opti-

mization of a closed related metric, known as the CR, which

is given by

R0 = − log2

[ 1

N2
vec

∑Nvec

i,j=1
e−

Fi,j

4σ2

]

(8)

1In this paper, it is assumed that all layers of the transmit SIM have the
same arrangement and thus the right-hand side (RHS) of (1) does not depend
on l. The same applies for the receive SIM.
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Algorithm 1: APGM algorithm for solving (9).

Input: P0, φ0, ψ0, ν0 > 0, µ1:L
0 > 0, τ 1:K

0 > 0, n← 0,
0 < ρ < 1, δ > 0.

1 repeat
2 repeat /* line search for P */

3 Pn+1 = PP (Pn − νn∇Pf(Pn,φn,ψn))
4 if f(Pn+1,φn,ψn) >

f(Pn,φn,ψn)− δ
∥

∥Pn+1 −Pn

∥

∥

2
then

5 νn ← ρνn
6 end
7 until

f(Pn+1,φn,ψn) ≤ f(Pn,φn,ψn)−δ
∥

∥Pn+1−Pn

∥

∥

2

8 for l = 1 to L do

9 repeat /* line search for φl
*/

10 φl
n+1 = Pφ(φ

l
n − µl

n∇φlf(Pn+1, φ̄
l

n,ψn))

11 if f(Pn+1, φ̄
l

n+1,ψn) >

f(Pn+1, φ̄
l

n,ψn)− δ
∥

∥φl
n+1 − φ

l
n

∥

∥

2
then

12 µl
n ← ρµl

n

13 end

14 until f(Pn+1, φ̄
l

n+1,ψn) ≤

f(Pn+1, φ̄
l

n,ψn)− δ
∥

∥φl
n+1 −φ

l
n

∥

∥

2

15 end
16 for k = 1 to K do

17 repeat /* line search for ψk
*/

18 ψk
n+1 = Pψ(ψ

k
n − τk

n∇ψk (Pn+1,φn+1, ψ̄
k

n)

19 if f(Pn+1,φn+1, ψ̄
k

n+1) >

f(Pn+1,φn+1, ψ̄
k

n)− δ
∥

∥ψk
n+1 −ψ

k
n

∥

∥

2
then

20 τk
n ← ρτk

n

21 end

22 until f(Pn+1,φn+1, ψ̄
k

n+1) ≤

f(Pn+1,φn+1, ψ̄
k

n)− δ
∥

∥ψk
n+1 −ψ

k
n

∥

∥

2

23 end
24 n← n+ 1
25 until convergence

where Fi,j = ||HP(xi − xj)||2 = ||HP�xi,j ||2. Since the

CR decreases with the argument of the logarithm function in

(8), maximizing R0 is equivalent to the following optimization

problem [13]

minimize
P,φ,ψ

f(P,φ,ψ) =
∑Nvec

i,j=1
e−

Fi,j

4σ2 (9a)

subject to
∣

∣φ
∣

∣ = 1, (9b)
∣

∣ψ
∣

∣ = 1, (9c)

Tr(PPH) = Ns, (9d)

where φ = [(φ1)T , (φ2)T , . . . , (φL)T ]T ∈ C(NL)×1, ψ =
[(ψ1)T , (ψ2)T , . . . , (ψK)T ]T ∈ C

(MK)×1, and the equalities

in (9b) and (9c) are treated element-wise.

IV. PROPOSED OPTIMIZATION METHOD

We remark that (9) can potentially become a large-scale

optimization problem, and thus, first order methods are par-

ticularly suitable. Indeed, we adopt the APGM to derive the

proposed method for solving (9), which is summarized in

Algorithm 1. Let (Pn,φn,ψn) be the value of (P,φ,ψ)
at iteration n. Then Pn+1 is obtained as

Pn+1 = PP (Pn − νn∇Pf(Pn,φn,ψn)) (10)

where ∇Pf(P,φ,ψ) is the gradient of f(P,φ,ψ) with

respect to (w.r.t.) P∗, PP (·) denotes the projection onto the set

defined by (6) and νn is the step size, which is found by the

line search routine described in steps 2 to 7 of Algorithm 1.

In optimizing the phase shifts of the SIMs, existing algo-

rithms typically perform a projected gradient step across all

phase shifts of all layers simultaneously using the same step

size [6], [7]. However, we have observed that such a method

results in a poor performance. To address this, our proposed

algorithm optimizes the phase shifts for the transmit and the

receive SIMs in a layer-by-layer basis, with each layer being

assigned a separate step size. This approach is shown to yield

better performance results in our numerical experiments.

More specifically, the phase shifts of the l-th layer of the

transmit SIM at iteration n+ 1 is determined by

φl
n+1 = Pφl(φl

n − µl
n∇φlf(Pn+1, φ̄

l
n,ψn)) (11)

for l = 1, 2, . . . , L, and where we denote φ̄
l
n =

[(φ1
n+1)

T , . . . , (φl−1
n+1)

T , (φl
n)

T , . . . , (φL
n)

T ]T and φ̄
l
n+1 =

[(φ1
n+1)

T , . . . , (φl
n+1)

T , (φl+1
n )T , . . . , (φL

n)
T ]T . In the above,

∇φlf(P,φ,ψ) is the gradient of f(P,φ,ψ) w.r.t. φl∗, Pφl(·)
denotes the projection onto (9b), and µl

n is the step size for the

l-th layer. The line search procedure for finding µl
n is outlined

in steps 9 to 14. Similarly, ψk
n+1 is found as

ψk
n+1 = Pψk(ψk

n − τkn∇ψkf(Pn+1,φn+1, ψ̄
k
n)), (12)

where ∇ψkf(P,φ,ψ) is the gradient of f(P,φ,ψ) w.r.t.

ψ
k∗, and τkn is the step size, which is determined in steps

17 to 22. The involved gradients are provided in Theorem 1.

Theorem 1. The gradients of f(P,φ,ψ) with respect to P∗,

φl∗
and ψk∗

are given by

∇Pf(P,φ,ψ) = −
1

4σ2
HHHP

Nvec
∑

i,j=1

e−
Fi,j

4σ2 �xi,j�x
H
i,j (13)

∇φlf(P,φ,ψ) = −
1

4σ2

Nvec
∑

i,j=1

e−
Fi,j

4σ2 vecd(Ll) (14)

∇ψkf(P,φ,ψ) = −
1

4σ2

Nvec
∑

i,j=1

e−
Fi,j

4σ2 vecd(Kk) (15)

where

Ll = Θl+1:LGHZHHP�xi,j�x
H
i,jP

HΘ1:l−1(Wl)H

(16a)

Kk = (Uk)HΥk−1:1HP�xi,j�x
H
i,jP

HBHGHΥK:k+1

(16b)

where Θm:n = (Wm)H(Φm)H · · · (Wn)H(Φn)H and

Υm:n = (Ψm)H(Um)H · · · (Ψm)H(Un)H .

Proof: See the Appendix.

After calculating the gradients, the next step is to perform

projection onto the corresponding feasible sets. It is easy to

see from (6) that PP (P) is given by

P = P

√

Ns/Tr(PPH). (17)
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Since the elements of φl are constrained to lie on the unit

circle, Pφ(φ
l) is defined by

φln =

{

φln/
∣

∣φln
∣

∣, φln 6= 0

exp(jα), α ∈ [0, 2π] φln = 0.
(18)

For φln = 0, the projection can take any point on the unit

circle. Finally, Pψ(ψ
k) is obtained similarly as in (18).

V. COMPUTATIONAL COMPLEXITY

In this section, the computational complexity of Algo-

rithm 1 is analyzed by counting the required number of

complex multiplications. We assume that N ≫ Nt and

E ≫ Nr, which is the usual case for a SIM-based HMIMO

communication system. We also assume that all matrices

�xi,j�x
H
i,j are precomputed. In the sequel, we provide the

complexity for the computation of the precoding matrix P,

and the transmit and the receive SIM phase shifts {φl}Ll=1

and {ψk}Kk=1, respectively.

The complexity of calculating all products e−
Fi,j

4σ2 �xi,j�x
H
i,j

in (13) is O(N2
vecN

2
s ), this is also the complexity of calculat-

ing the gradient ∇Pf(P,φ,ψ). In addition, O(N2
vecN

2
s ) mul-

tiplications are required to obtain f(Pn+1,φn,ψn). Hence,

the complexity of computing the precoding matrix P is equal

to O(IpN
2
vecN

2
s ), where Ip is the number of line search steps.

The complexity of
∑

i,j e
−

Fi,j

4σ2 �xi,j�x
H
i,j in (14) is

O(N2
vecN

2
s ). The complexity of calculating the matrix prod-

uct GHZHHP
∑

i,j e
−

Fi,j

4σ2 �xi,j�x
H
i,jP

H can be neglected.

Furthermore, O(LN3) multiplications are needed to calcu-

late Ll. Hence, the complexity of calculating the gradient

∇φlf(P,φ,ψ) is O(N2
vecN

2
s +LN

3). After obtaining φl
n+1,

the calculation of B has the complexity of O(LN3) and

O(MN min(Nt, Nr)) multiplications are required to com-

pute H. The complexity of calculating f(Pn+1, φ̄
l
n+1,ψn)

is O(N2
vecN

2
s ). Therefore, the complexity of computing the

transmit SIM phase shifts {φl}Ll=1 is given by O(L[N2
vecN

2
s +

LN3 + Iφ(LN
3 + MN min(Nt, Nr) + N2

vecN
2
s )]), where

Iφ is the number of line search loops. In a similar way,

the complexity of computing the receive SIM phase shifts

{ψk}Kk=1 is equal to O(K[N2
vecN

2
s + KE3 + Iψ(KE

3 +
EN min(Nt, Nr) + N2

vecN
2
s )]), where Iψ is the number of

line search steps.

In summary, the complexity of one iteration of the APGM

algorithm is given by

CAPGM = O(IpN
2
vecN

2
s + L[N2

vecN
2
s + LN3 + Iφ(LN

3+

MN min(Nt, Nr) +N2
vecN

2
s )] +K[N2

vecN
2
s +KE3

+ Iψ(KE
3 + EN min(Nt, Nr) +N2

vecN
2
s )]). (19)

VI. SIMULATION RESULTS

In this section, we evaluate the CR and the MI of Algo-

rithm 1 in a SIM-based HMIMO setup. The channel matrix

between the transmit and the receive SIM is modeled based on

the spatially-correlated channel model as G = R
1/2
R ḠR

1/2
T ∈

CE×L [10], [11] where Ḡ ∈ CE×L is distributed according

to CN (0, βI); β is the free space path loss between the

transmit and the receive SIM modeled as β(d) = β(d0) +
10b log10(d/d0), where β(d0) = 20 log10(4πd0/λ) is the free

space path loss at the reference distance d0, b is the path loss

exponent, and d is the distance between the transmitter and

the receiver. Moreover, RT ∈ CL×L and RR ∈ CE×E are

the spatial correlation matrices of the transmit and the receive

SIM, respectively, and the elements of these matrices are given

by [10, Eq. (14), (15)].

In the following simulation setup, the parameters are λ =
5 cm (i.e., f = 6GHz), Nt = 2, Nr = 2, Ns = 2, β = 3.5,

d0 = 1m, d = 300m, L = K = 4 and σ2 = −110 dB.

Both the transmit and the receive antennas are placed in

arrays parallel to the x-axis, and the midpoints of these arrays

have coordinates (0, 0, 0) and (0, 0, d), respectively. Also, the

inter-antenna separations of these arrays are λ/2. The meta-

atoms in every SIM layer are uniformly placed in a square

formation and the size of each meta-atom is λ
2 × λ

2 (i.e.,

A = λ2/4). Moreover, all SIM layers are parallel to the xy-

plane and their centers are along the z-axis. The separation

between the neighboring SIM layers, as well as the separation

between the first SIM layer and the adjacent antenna array

are λ/2. In the line search procedures in Algorithm 1, all

step sizes are initially set to 1000, δ = 10−3 and ρ = 1/2.

The initial values of the optimization variables P, φ, and

ψ are randomly generated. All results are averaged over 30

independent channel realizations.

In Fig. 1, we present the CR and the MI of the proposed

APGM algorithm for different sizes of the discrete symbol

alphabet and different numbers of meta-atoms in SIM layers.

In general, the MI reflects the same trend as observed in

the CR, albeit always achieving larger values. This justifies

the use of the CR as an alternative metric for the MI op-

timization. In all cases, the CR and the MI reach 90 % of

their convergent values in approximately 20 iterations of the

proposed algorithm. Furthermore, we notice that the change

of M has a negligible influence on the CR, and that the

MI may even decrease slightly if M increases when the

transmit and receive SIMs have 49 meta-atoms per layer.

This phenomenon is due to the reduced separation between

adjacent constellation points when M is increased without a

corresponding increase in the average symbol energy, which

consequently increases the bit error probability (BEP) per

transmission interval. On the other hand, the CR and the MI

demonstrate significant improvements as the number of meta-

atoms in the SIM layers increases. This enhancement reaffirms

the fact that the beamforming capabilities of SIMs are highly

dependent on the number of meta-atoms in SIM layers.

In Fig. 2, we show the MI of the considered system with and

without signal precoding. It can be clearly observed that signal

precoding can substantially increase the MI for about 47 % and

32 % for 49 and 100 meta-atoms per SIM layer, respectively.

On the other side, signal precoding alone, i.e., in the absence

of the transmit and the receive SIMs, is only able to provide

a near zero MI, which is not shown in Fig. 2. Hence, we

can conclude that while digital signal precoding of small scale

alone shows limited beamforming gain, but its integration with

SIM-based HMIMO systems can generate significant impact

on the achievable MI.
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Fig. 1. CR and MI of the proposed APGM algorithm.

VII. CONCLUSION

In this paper, we have demonstrated that the MI in a

SIM-based HMIMO system can be efficiently optimized with

the channel CR. To maximize the CR, we proposed the

APGM which optimizes for the CR by adjusting the transmit

precoding, and the phase shifts for the transmit and the receive

SIMs in a layer-by-layer basis. Simulation results show that the

CR is indeed a reliable metric for optimizing the MI in SIM-

based HMIMO systems. Also, integrating even a small scale

digital precoder in the considered system can substantially

increase the MI performance.

APPENDIX

PROOF OF THEOREM 1

The gradient of f(P,φ,ψ) with respect to P∗ is given by

∇Pf(P,φ,ψ) = −
1

4σ2

Ns
∑

i,j=1

exp

(

−
Fi,j

4σ2

)

∇PFi,j . (20)

Differentiating Fi,j , we obtain

dFi,j = Tr{(HHHP�xi,j�x
H
i,j)

T dP∗+�xi,j�x
H
i,jP

HHHHdP}

which becomes clear that

∇PFi,j = HHHP�xi,j�x
H
i,j . (21)

Substituting (21) into (20), we obtain (13).

The gradient of f(P,φ,ψ) with respect to φl∗ is given by

∇φlf(P,φ,ψ) = −
1

4σ2

Ns
∑

i,j=1

exp

(

−
Fi,j

4σ2

)

∇φlFi,j . (22)

Differentiating again Fi,j (but now w.r.t. φl) yields

dFi,j = Tr{HP�xi,j�x
H
i,jP

HdHH +P�xi,j�x
H
i,jP

HHHdH}

= Tr{Lld(Φ
l)H + LH

l dΦl} = Tr{LT
l dΦl∗ + LH

l dΦl}

= vecT (Ll) vec(Φ
l∗) + vecT (L∗

l ) vec(Φ
l). (23)

Thus, we can conclude that

∇φlFi,j = vecd(Ll), (24)

and substituting this gradient into (22), we obtain (14). Fol-

lowing the same steps, we can also prove (15).
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N = E = 49, w/- precoding

N = E = 49, w/o precoding

N = E = 100, w/- precoding

N = E = 100, w/o precoding

Fig. 2. MI of the considered system with (w/-) and without (w/o) signal
precoding (M = 4).
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