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Online Prediction for Streaming Tensor Time Series

Zhenting Luan, Haoning Wang, Liping Zhang, Shansuo Liang, Wei Han

Abstract—Real-time prediction plays a vital role in various
control systems, such as traffic congestion control and wireless
channel resource allocation. In these scenarios, the predictor
usually needs to track the evolution of the latent statistical
patterns in the modern high-dimensional streaming time series
continuously and quickly, which presents new challenges for
traditional prediction methods. This paper proposes a novel
algorithm based on tensor factorization to predict streaming
tensor time series online. The proposed algorithm updates the
predictor in a low-complexity online manner to adapt to the time-
evolving data. Additionally, an automatically adaptive version of
the algorithm is presented to mitigate the negative impact of stale
data. Simulation results demonstrate that our proposed methods
achieve prediction accuracy similar to that of conventional offline
tensor prediction methods, while being much faster than them
during long-term online prediction. Therefore, our proposed
algorithm provides an effective and efficient solution for the
online prediction of streaming tensor time series.

Index Terms—Tensor time series, streaming data, online pre-
diction, tensor factorization.

I. INTRODUCTION

Time series (TS) is a sequence of discrete data points ob-

served over time, which is generated naturally in various
areas such as economics, climate, and traffic. The prediction of
TS data is crucial in numerous real-world scenarios, including
stock market analysis [1]] and traffic flow [2]. Conventional
methods for TS prediction usually depend on autoregression
(AR) models, e.g., autoregressive integrated moving average
(ARIMA) model [3] and vector autoregressive (VAR) model
[4]], to handle scalar or vector batch data.

However, with the emergence of large-scale TS data gener-
ated in modern production activities, classical prediction meth-
ods face challenges posed by modern sensing technologies.
The modern TS data are usually super large-scale and detected
from numerous sensors. For instance, the freeway traffic
Performance Measurement System (PeMS) of the California
Department of Transportation is a sensor network of more than
26000 individual-lane inductive loops installed throughout
California freeways, with more than 35000 detectors that
send traffic measures to a road control unit per 30 seconds
[5], [6]. Classical methods are not efficient and reliable for
handling such large-scale TS. Moreover, modern TS data are
often multi-dimensional with different characteristics shown
in different dimensions, such as the channel state information
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in time, spatial, and frequency domains detected by periodic
sounding reference signals [7]].

With the rapid development of sensing technologies, stream-
ing TS data are collected continuously from various types of
sensors, such as the traffic flow measurement in the traffic
congestion control system [8] and the periodic channel state
information (CSI) in wireless channel resource allocation [9].
Accurate real-time prediction is beneficial for the system to
make timely decisions in such scenarios. However, conven-
tional prediction methods must re-exploit the entire dataset,
including the newly observed data, to rebuild the prediction
models in each process of predicting the upcoming data, which
is unsuitable for high-frequency streaming TS. Therefore,
online prediction is essential to help forecast upcoming data
and make immediate decisions continuously and rapidly.

Recent advances in tensor research have led to the develop-
ment of prediction models for tensor time series (TTS) data
with high dimensions based on tensor factorization, such as
Tucker decomposition and CP decomposition [[10], [[L1]. These
methods explore the joint low-rank structure of all observed
data, where the statistical patterns or the periodicity of data
are utilized for generating predictors. The tensor factorization
strategy is a generalization of matrix factorization, which
has been shown to be very efficient in large-scale multi-
variable TS [12]. Jing et al. [11] developed a multi-linear
prediction model, MOAR, based on Tucker decomposition,
which projected the original tensors into several subspaces
and built temporal connections among the core tensors by the
traditional autoregressive model. The constrained version of
MOAR, called MCAR, regularizes the residual of the joint
tensor decomposition to find a more stable solution. Shi et
al. [[13] proposed a prediction algorithm that combined tensor
decomposition and ARIMA model for the block-Hankelized
TTS data, which exploited the low-rank structure of TTS
and captured the intrinsic correlations among it. Both of
these approaches demonstrate strong performance for single-
time predictions by constructing predictors from scratch with
numerous iterative iterations. However, they are not suitable
for direct application in streaming TTS online prediction
due to the necessity of repeating the process of constructing
predictors. Tan et al. [14] presented a short-term traffic flow
prediction approach for predicting streaming traffic data based
on dynamic tensor completion (DTC). This approach regarded
the data to be predicted as some missing data in the corner
of a multi-dimensional tensor. It utilized DTC to complete
the tensor to obtain the missing data for prediction. However,
this process depends on the multi-mode periodicity of traffic
flow data, hence is unsuitable for generic TTS data without
periodicity.

In this paper, we design an algorithm, TOPA, for predicting
generic streaming TTS data in an online manner, which allows



us to quickly update the predictors from the previous model
and the latest observations rather than rebuild it from scratch.
At each sampling time during the streaming observation, we
employ the Tucker decomposition for dimension reduction
and joint feature subspace extraction of the streaming TTS,
and find the auto-regression pattern in the dimension-reduced
TTS (the core tensor series). Then, the prediction results
are obtained from the predicted core tensor together with
the inverse Tucker decomposition. We design a regularized
optimization problem with a least-squares (LS) form to search
for the proper Tucker decomposition and regression model.
In order to quickly solve the optimization and update the
previous predictor, we introduce an online updating scheme
for the optimization, of which the initialization is exactly the
solution to the previous optimization problem formulated at
the last time point. Moreover, for streaming data in which the
statistical pattern evolves over a long period, we propose an
automatically-adaptive-weight (AAW) strategy for processing
past data during online prediction, which can reduce the cumu-
lative error of the predictor from stale data and automatically
decrease the weights of very noisy data. In summary, the main
contribution of this paper is to propose an online prediction
algorithm for streaming TTS based on tensor factorization,
which includes the following specific aspects.

o The gradually varied joint tensor factorization structure
of streaming TTS is updated by the proposed online
updating strategy for tracking the changing underlying
dynamic statistical characteristics. Compared with con-
ventional joint tensor factorization methods, this strategy
takes much less time owing to only a few alternative
iterations with an inherited initialization.

e We design an online updating algorithm with inherited
solutions to quickly update the joint tensor factorization
structure once observing new data. The prediction accu-
racy of this algorithm is close to offline methods [11]],
[L3], while the time complexity is significantly lower.
The performance of our proposed algorithm is validated
in numerical simulations, including synthetic and real-
world datasets. We also analyze the convergence of our
proposed algorithms.

o To reduce the interference from stale data to the latest
statistical characteristics modeling, we propose an auto-
matically adaptive regularization strategy for the intro-
duced LS optimization. This regularization strategy can
gradually decrease the weights of historical and abnormal
data.

The paper is organized as follows. In Section [lI, we define
the online prediction problem and introduce the joint tensor
factorization strategy for TTS. In Section we propose
the tensor-factorization-based online prediction algorithm and
introduce the online manner for predicting streaming TTS data.
In order to address the problem of data staleness, we add
automatically adaptive weights for regularizing the joint tensor
factorization. We analyze the convergence of the proposed
algorithms. In Section [V| we evaluate the performance of our
proposed algorithms in different scenarios and compare it with
some tensor offline prediction methods and neural-network-

based methods. Finally, conclusions are drawn in Section @
Notations and tensor operators: We employ bold italic
lower-case letters, bold italic capital letters, and bold calli-
graphic letters to denote vectors, matrices, and tensors, respec-
tively (e.g., , X and X). For a positive integer n, denote the
set [n] = {1,2,...,n}. We use uppercase letters with script
typestyle to denote the set of data (e.g., ). Furthermore, we
represent the time series with given length T by uppercase
letters with script typestyle equipped with a subscript [T] (e.g.,
%7)). Denote I, as the k x k identity matrix. We use (-)
to denote the conjugate transpose of a complex matrix. The
unitary matrix set with given scale I x R(I > R) is denoted
as UIXE = {U e CI*BIUHU = Ir}. The Frobenius
norm of a tensor X is defined as ||X||r = +/(X,X),
where (-,-) is the inner product. Moreover, the Frobenius
norm of a tuple of tensor X = (Xq,...,X,) is defined
as | X|lr = /> i [|X:||%. Each dimension of a tensor is
called a mode. The m-mode product x,, between a tensor
X € ChvxxIm gpd a matrix U,,, € C/»>*Im ig denoted as

I
(X XU i sgimscig = ) Xiscinnia Uis (D
im=1
for Vj € [Jp], Vi, € [I}], VI € [M]\{m}. The m-mode unfold-
ing matrix of a tensor is recorded as X ;) € Clm* Tizem 1),
Denote R(X) = (rank(X(y),---,rank(Xp)) as the
Tucker-rank of an Mth-order tensor X.

II. PRELIMINARIES
A. Problem Formulation

Denote X; € Cli*xIam a5 the observation at sampling
time t and 27) := {&X'1,---, X} as the TTS until sampling
time 1. Given %T], the prediction of X7, is to find a
predictor hr(-) that minimizes the mean squared error (MSE)
as

min || X741 — hre (2 ||F, )
where X 741 := hr(Z7)) is the prediction value of X7, .
In this paper, we consider the online prediction problem (2)
for streaming TTS, in which hp(-) changes as streaming
observations X arrive sequentially. Therefore, the previous
predictor should be updated with the latest observation for the
next prediction at each sampling time. This dynamic process
is referred to as online prediction.

For high-dimensional streaming TTS, the curse of dimen-
sionality makes data processing challenging. To mitigate this
challenge and explore the multi-aspect temporal continuity of
TTS, we introduce the joint tensor factorization strategy in the
next subsection, which motivates us to develop low-complexity
algorithms for online prediction.

B. Joint Tensor Factorization Strategy

Tensor factorization is a powerful approach for compressing
high-dimensional data. In this subsection, we provide a brief
overview of this approach, which has been shown to be
effective in predicting non-streaming TTS [[L1].

Owing to the temporal continuity of TTS, the TTS data
share similar multi-aspect feature subspaces, which can be



extracted by Tucker decomposition [10]. The Tucker decom-
position factorizes a higher-order tensor into a core tensor
multiplied by a set of projection matrices along each mode.
The core tensor captures the essential information of the orig-
inal tensor, while the projection matrices represent the feature
subspaces. In this paper, we utilize joint Tucker decomposition
to compress the original TTS into a lower-dimensional repre-
sentation while preserving the important features. Specifically,
the joint Tucker decomposition finds the (Ry,--- , Rps)-rank
approximation of given TTS with joint projection matrices,
which is formulated as:

g" H xmUSH t € [T, (3)

where G\) € CRx-xRu s the core tensor corresponding
to Xy, and U, (T) € UIm*Bm ig considered as the m-th joint
feature subspace of Z|7y.

As discussed in [[L1]], the core tensors obtained via joint
Tucker decomposition can be viewed as a compact repre-
sentation of the intrinsic interactions among multiple feature
subspaces of TTS. This representation is more suitable for
modeling temporal continuity than the original data. Moreover,
the size of core tensors is much smaller than the original TTS,
which makes it computationally more efficient to apply au-
toregression models to the core tensor series. For instance, we
can utilize AR(p) model to illustrate the temporal correlations
among the core tensor series, which is formulated as
Z a(T)g J+ € T)7

g\ = pH1<t<T, @4

where {az(- } are AR parameters and 8§T) is the white noise

in X;. With (@), the core tensor G of next observation
data is predicted by

P

Grii=y oGl ., (5)

and the prediction of upcoming data is given by extending the

temporal continuity of multi-aspect feature subspace to the
next time point:

M
Xry1=Grp [ xnUS. 6)

m=1

When dealing with streaming TTS, traditional offline pre-
diction methods such as MCAR [11]] and BHT-ARIMA [13]
suffer from high computational complexity, as they require
finding a new predictor for after each observation without
inheriting any information from previous predictors. This
results in a time-consuming process of repeatedly solving the
model during the streaming observation. To address this issue,
we propose an online prediction method for (Z) with the
tensor-factorization strategy. The proposed method can quickly
find new predictors by updating the previous one with the latest
observation, thereby reducing computational complexity.

III. TOPA: TUCKER-DECOMPOSITION-BASED ONLINE
PREDICTION ALGORITHM FOR STREAMING TTS

In this section, we introduce a novel two-stage online
prediction algorithm for (@) called Tucker-Decomposition-
based Online Prediction Algorithm (TOPA). The first stage
aims to find an initial predictor using starting TTS. This
stage can be seen as a generalization of MCAR [11] with
a simplified optimization problem. The second stage is the
main focus of TOPA, which continuously updates the predictor
and predicts the upcoming data as the streaming observa-
tion arrives. We online update the predictor by solving an
incremental optimization problem with the previous predictor
as initialization. At the end of this section, we analyze the
convergence and computational complexity of TOPA.

A. Stage I: Initial Predictor with Starting TTS

In order to find a suitable initial predictor before receiving
streaming data, the observer needs to observe a starting TTS as
the initial input for TOPA. It is assumed that this starting TTS
comprises 7y samples, and the streaming observation starts
from time T 4 1. By treating the starting TTS as a non-
streaming TTS, we utilize the joint tensor-factorization strat-
egy introduced in Section to create the initial predictor.

The joint Tucker decomposition of starting TTS is for-
mulated as with T' = Ty, which estimates the joint
feature subspaces of TTS as % (T0) & {U,%TO)}MG[M} and
the core tensor series as %[(TT?) £ {QETU)}tE[TU]. To be more
generalized, we denote fg(ry)(-) as any desired AR-type
model for %, e.g., VAR model and ARIMA model, which
is formulated as

% fpa (1), tE ), )

where 22(T0) represents all regression parameters in f and

g[i]TD) are the first ¢ core tensors of the starting TTS. For

example, 2(T) = {agT)}i in (@).

Remark 1. Notice that the order of the autoregressive model,
denoted p(< Ty), defines the number of past data that
have dzrect tempoml correlations with the current data, i.e.,
f@(TO)(%t 1]) fJ(TU)(gtTO) . Q(TO)) For convenience,
we still use f 1) (%)) to represent the model with a little
abuse of notation when there is no ambiguity about the order.

With the tensor factorization and regression, TOPA predicts
X 1,41 by inversely projecting the predicted core tensor with
the joint feature subspaces:

M
Xr1=Gn1 [ xmU™

m=1
M
= fop@o) ( [To] ) H U = by (21m),

®)

where hr, () depends on 7 (To) g[(TO and 22(T0), With (§),
we can reformulate (2) as the LS optimization problem (9),
where the first term in FTO( ) is used to minimize the error of



core tensor series regression, and the second term is used to
regularize the joint Tucker decomposition of the starting TTS
with a residual minimization formulation and regularization

Z g™

t=p+1

min
@(T0) gp(T0) gy (To)
[Tol * )

st. U0 e glnxBu ym e [M)]

Fr, (g[(TTO?)7 @(Tn)7%(7})))

According to the multi-variable and LS structure of (9),
we propose an iterative algorithm for solving (9) using an
alternating minimization approach, as shown in Algorithm
[Il In this algorithm, we solve a series of subproblems of
(@) in an alternating manner, with each sub-problem fixing
all variables except the one being updated. Specifically, in
each iteration, we first update the regression model of the
core tensor series in terms of current iteration results of core
tensors (line 2 in Algorithm [I)), and then update the joint
projection matrices and core tensor series in the joint Tucker
decomposition structure (line 3—6 and line 7—12, respectively).
To ensure the convergence of the algorithm, we add a proximal
term [15] into each subproblem. The detailed derivation of
Algorithm [T]is presented in Appendix [A] and the convergence
is illustrated at the end of this section.

By executing Algorithm |1} we can build an initial predictor
() for the starting TTS, which is the basis for the subsequent
online prediction stage.

B. Stage II: Online Predictor Updating and Prediction

In this stage, new streaming TTS data arrive in sequence.
After each data sampling, we update the previous predictor on-
line and then predict the upcoming TTS data with the updated
predictor. The online manner relies on the same assumption of
temporal continuity of considered TTS as discussed in Section
In this stage, we repeat online updating and prediction
for online prediction, as illustrated in Fig. [T}

Online updating step: At time T+ 1(> Tj), new TTS data
X741 arrives. Similar to Stage I, the process of finding new
predictor hpy1(+) can be formulated as:

. (T+1)  g5(T+1) (T+1))
g(T+1r>Illg§1(T+l) FT+1 (g[TJ"l 7 % (10)
(T+1] ’
ar (T+1)
T+1
T+1 T+1
STUGTH = foan @D
t=p+1
T+1
T+1)
re 2 I - H X (USD)H |3

s.t. U,;T“) € Uln /xRM,vm S [M]

Under the assumption of temporal continuity of TTS, the
joint feature subspaces among TTS data and core tensor series
change smoothly as observation continues [11]]. Moreover,
compared to Fr(-), Fri1(-) contains only two additional
terms that relate to X'74;. Thus the change in the objective
function for the online optimization problem is relatively
small. When hr(-) is accurate enough, we can employ it as

- f@(To)(

parameter ¢ > 0.

(To)

T()) H||2
[t—1]

I + wan‘TO X, H Xim

€))

Algorithm 1 TOPA - Stage |

Input: TTS 2|7}, and autoregressive model f, step size A >
0, tolerance € > 0 and 1terat10n number k = 0
Output: Core tensor series %[T ]), autoregressive parameters

2(To) and joint projection matrices % (7o)

Initialize joint projection matrices %O(T ={U,,} (TO
randomly.
Initialize core t(ensor series: (o)
T T T T
070 = {gt,oo =X Hm 1 Xm(Um,(()) )
1: while £k >0 do
Compute regression parameters 32/&?1) for f with

n

g[(TTD?)k via solving subproblem @I).

33 form=1:M do
: Compute the left and right singular matrices of

T

11 xj(U},k-“))H) x

e (m)
H

(Q(TO ) : + 5 2 U (Tk) which denoted as L, g+1

and Rm 41 respectlvely

o (To) \H
>l & T Xi(Ui,k+1)

t=1 <m

5: Update U( k)+1 — Ly Ry

. end for
7. fort=1:pdo

) (To) Wxt [Ty Xm (U(Tk+1)H+;gi,Tk0>
8: G 1 € +3 '
9:  end for

10: fort=p+1:T, do

(To)

11: Giri1 & !

M
f (To>(<g[(t—01)],k+1)+‘prmul>< (U(TO)+1)H+AQ§7;CO)

1+p+3
12:  end for

. To) To) (T T
N SO [ [ AR A AT

H%ﬁﬂ — 2|3 < ¢ then
14: Break;
15:  end if
16: k<« k+1

17: end while

18: return Q(To)zﬁéﬂ’) %k(TO),g(TO)

o(T)
) =9m]

702/(7“0) — oLk

the initialization for solving (I0). Specifically, we take % ),

%™ and 2T) as the initialization of (10), and use an
alternative updating scheme to solve (I0) in closed forms. The
details of alternative updating are shown in the online updating
step of Algorithm [2| The derivation of this algorithm is similar
to Algorithm

In the practice of our proposed online manner, we only need
to run a few iterations to find a predictor accurate enough,
owing to the inheritance of the previous solution. In contrast,



Prediction 3 _
Output R
t
| | .
(11) | (11) 4
Online | ;?1 ‘
Prediction %) (m)
Uy Ul
e : (28) gm .] o0 — | (28) [' '] g+
[T-1] (m [T+1]
uT-n ] ( um - )( YT+
- (26\@ ™ (26) *
;,(T 1) 1) » (21) p(rn)
&3 g] & | | xn]

Observation

=)

Streaming TTS

Fig. 1: Stage II of TOPA for Streaming TTS

offline prediction algorithms, such as those discussed in [11]]
and [13]], need to perform multiple iterations with random
initialization to solve (1];0]) which is inefficient and repetitive
during streaming observations. The simulations in Section [V]
demonstrate that our online updating scheme performs as well
as those offline methods, even with just one iteration.

Online prediction step:

After online updating the predictor with new observation,
TOPA predicts the upcoming tensor data at time 7" + 2 by

Xrio= fopri (gTTJ:ﬁ)) H X U+

=: hry1(Zir41))- (11)

C. Convergence and Complexity Analysis

In this subsection, we analyze the convergence and com-
plexity of TOPA. Since the online updating process of Al-
gorithm [2] is similar to Algorithm [I] we only provide the
convergence of Algorithm |l| here. The proof of Theorem
is presented in Appendix

Theorem 1. Assume that the starting TTS and the
regression parameter sequence {9 ,iT" ) tr generated Dby
Algorithm [I| are bounded. Then, for any limit points

= (g[g())*, (") %(TO of the sequence
(To) _ (To) (To) (To)
{Wk = (%Toﬁ’k,gk R/ )}k, we have
aFTO (WiTO)) OFr, (W(To))
om0 7=0, (12)
0.2 (To) Y (To)
[To]
and
OFr, (W’ETO)) (To)
e € N(USY), (13)

T
ou)

where N(U,(nqji)) is the normal cone [I6] of Ulm*Em gt
U,Sf?). In other words, any limit point of the iteration sequence
generated by Algorithm [1| is the stationary point of ([©).

The computational complexity of stage II of TOPA is dom-
inated by updating joint projection matrices and core tensor
series. For each iteration in online prediction, the total compu-
tational complexity is O (2MTI™ R+ M (M —1)TRM1I),
where we denote I = ([T,.cnn L)YM and R =
(Hme[M] R,,)Y/M. The detailed complexity analysis is pre-
sented in Appendix [C]

IV. TOPA-AAW: TOPA WITH AUTOMATICALLY
ADAPTIVE WEIGHTS

In real-world scenarios, when streaming TTS data are
observed continuously over a relatively long period, the ef-
fectiveness of stale data in revealing the latest statistical
patterns in streaming TTS gradually diminishes. This leads
to an increasing cumulative prediction error, such as wireless
CSI, in which the intrinsic statistical patterns evolve rapidly
as observations continue, and the data becomes outdated
quickly. To address this issue, we propose an automatically
adaptive weight (AAW) regularization method with a time
sliding window 7 for modifying (I0). The AAW gradually
decreases the weights of stale data to reduce their impacts
on prediction accuracy. To further eliminate the interference
caused by heavily noisy data, we introduce an automatic factor
in AAW to reduce the weights of heavily noisy data. The
optimization problem for online prediction, once Xpyq is
observed at time 7" + 1, is modified as:



Algorithm 2 TOPA - Stage II

where w§T+1) is the AAW

Input: Streaming TTS 2|y from T = Tp, autoregressive t—(T—r41) (T+1)
model f, step size A > 0, and tolerance € > 0 _— (1-« ) max {57 1—¢ } ,
Output: Online prediction results {X}7°, o wy = T—r+2<t<T, U5
1, t=T+41,
1: while observing new data X1, at time 7'+ 1: do
2 ke 0 with Tucker-decomposition residual error
3:  step 1: online updatin T+1) (M T+1
P peafing RN I T 7 S | A o7 ] R
Fom @) Ve X TT xm U “ - [EAA (16)
4 gT+1 : e
. Q(Tﬂ) () %(Tﬂ)i% g(T-&-l) g(T) Here o € (0,1) is the damping parameter for reducing the
: k = ) %, = [T+1],k = J[T+1] . L oo
A accumulative prediction error from stale data. The ‘max’ factor
6: while & Z 0 do Lo X K (T+1) .
7. Compute regression parameters 9}27:{ ) for f with is inversely prop.o'rtlonal to the .re51dual .error €; of ]f)mt
g(T+ . Wi bproblem (1) tensor decomposition for streaming TTS in the last prediction,
g f017_1+1] K \{la]s\g \(/11(r)1g subprobiem : while 8 € (0,1) is the minimum residual factor.
: m=1:
9: Compute the left and right singular matrices of
741 - - Remark 2. The parameter 3 is configured as a threshold
Z X [T xq (Uz(kil)) I1 Xj(UjakJr ))H for checking the deviation of the joint Tucker decomposition
<m j>m . . .
(m)for each data in TTS, which can help prevent the data with
(g(T+1)>H + A U7V which denoted as Significant decomposition residual errors from being entirely
I bk (m) 2o mok el discarded. For stable TTS with gently evolving joint subspaces,
mok41 a&iﬁm let1, Tespectively. such as two real-world datasets in subsection [V-B| 3 can be
10: Update U,, ;711 ¢ L er1 By i broadly chosen from 0 to a positive number close to 1 since the
11: end for threshold is inactive. For unstable TTS with fast-evolving joint
12: for tT: 11 :p ?fx LI s (D )4 2 gD subspaces, such as the wireless channel discussed in Jé]
13: gi ,:_1 Loomet <p-7: gl ek should be set properly to deal with fast-fading or noisy channel
14: end for states. In addition, we specifically discuss the effects of choice
15: fort=p+1:T+1do of « and ¢ in subsection
M
aany Temn G reXe LU T+ 301
16: Gipl & —F Trot X Since the structure of (T4) is similar to (I0) except for the
17: end for sliding time window and AAW, we solve (I4) in a similar
18: if || TT ++11 b1 g[(TTfﬁ 3+ ||02/k3:1+ Y online manner as Algorithm[2} With AAW, the online updating
%(THB 12 + ||9(T+1) (T+1) |2, < ¢ then step in Algorithm [2]is modified as follows, while the prediction
19: kBreak' P b F step is the same.
20: end if
21: k+—k+1 . . . .
o Estimate New Core Tensor (line 4 in Algorithm [2)):
22: d whil
. e;(TYl)l e_ '@ (T+1) %(T+1) _ %(T+1) g(TJrl) _ (T) 1 (T)
2 B B [T+ G141 = TH1 (fgm Gry)+
g T+ L+ pw é’ﬂ )
[T+1],k (17)
M
T+1
step 2: online prediction SDW(T++1 'x T+1 H Xm(UT(nT))H> .
24: XT+2 = f@(T-H)(g[T:_ll)) Hm 1 X’”Ur(nT+1)- m=1

25: return X T+2
26: T+ T+1
27: end while

: (AAW) (o (T'+1) (T+1) (T+1)y _
_@<T+311§1<T+1>, T+1 (g[T‘H] 7 % )= a4
o (T+1)
(T-1]
T+1
S (165 = Foan @GR+
t=T—7+2

M
T+1 T+1
pwi VG — &, [ xS 3

m=1

st. UTH) ¢ ylnxBar i e [M]

)

o Update Projection Matrices (line 8—11 in Algorithm
R): In (k + 1)-th iteration, for m =1 to M,

U = Lopid (Roes) ™

m,k+1
where Ly, 11 and R,, ;1 are the left and right singular

matrices of
T+1
Z wt(T+1) X, H X Ufii}) H H X] U(T+1)
t=T—71+2 <m j>m
(g(TJrl)) n AU(TJrl)
(m)y  2p "™k as)
respectively.

« Update core tensor series (line 12—17 in Algorithm [2):

(m)



In (k 4 1)-th iteration, fort =T —7+2to T + 1,

(7;;+11) = ! [f (T+1>(
t,k+ 1+sDwt(Tﬂ) +% P

(T+1)
g[tfl],k:Jrl)

M
T+1 T+1 A L (T+1
et T e+ 2600

m=1

(19)

With the time sliding window, TOPA-AAW further reduces

the computational complexity to 7/7 times that of TOPA, as
Appendix [C] analyzes.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of TOPA in
various scenarios, including synthetic low-rank TTS, wireless
channel simulations, and two real-world datasets. All numer-
ical experiments are conducted using MATLAB R2018b on
a Windows PC with a quad-core Intel(R) Core(TM) 2.0GHz
CPU and 8 GB RAM.

To the best of our knowledge, TOPA is the first method
for online prediction of generic streaming TTS. In order to
provide a reference for comparing the performance of TOPA,
we also conduct five other non-online prediction methods:

o BHT-ARIMA [13] and MCAR [11]: These are two
effective offline one-shot prediction methods for TTS.
We run these offline methods using the same online
observations at each sampling time as the online methods
by building their predictors from scratch with multiple
iterations to forecast the next tensor data. BHT-ARIMA
employs BHT, a Hankelized tensor expansion technique,
to further exploit the temporal relationships among TTS
and uses a structure similar to MCAR to formulate pre-
dictors. The offline methods perform sufficient iterations
until convergence in each prediction, thereby revealing
good prediction performance.

o TOPA-init: To illustrate the importance of the online
updating for predictors, we test the performance of TOPA
without model updating in some experiments. In other
words, we use the initial predictor obtained from Al-
gorithm [I] and the streaming observations to forecast
upcoming data at each sampling time.

e LSTM [17] and GMRL [18]: These are two neural-
network-based prediction methods. Long Short-Term
Memory (LSTM) is a classical time-series forecasting
method in the deep learning area, which utilizes a type
of recurrent neural network (RNN) architecture that is
designed to process and retain information over long se-
quences. GMRL is a latest work based on neural networks
equipped with the tensor decomposition framework.

When comparing the time costs of LSTM and GMRL, we
did not account for the training time costs of neural networks,
though it may cost much time in practice. On the other hand,
owing to the predictor inheritance of TOPA, we conduct TOPA
and TOPA-AAW with only one iteration at each sampling time
during the online prediction.

In addition, taking two real-world datasets in subsection
as examples, we discuss the effects of parameter choice
for TOPA-AAW. We evaluate the prediction accuracy of

algorithms with the Normalized Root Mean Square Error
(NRMSE) metric.

A. Synthetic Datasets

1) Synthetic Low-Rank Streaming TTS: We generate a low-
rank noisy streaming TTS with a similar process as [[19, Sec.
6.3]. The low-rank TTS structure follows the joint Tucker
decomposition. We first generate the core tensor series {G; €
CHH4170  with ARIMA(3,1,0) model. Then, we generate
the joint feature subspace matrices {U,, € U20x4}3
by orthogonalizing randomly generated matrices with i.i.d.
N(0,1) entries. The generated noisy TTS are formulated as

M
Xt _ gt H XmUm +P||gt||th c (C20><20><20,

m=1

(20)

where p = 0.1 is the noise parameter and &, is the noise
tensor with i.i.d. A'(0, 1) entries. Note that we have ||G¢||r =
|G+ H%:l XmUm || and p represents the ratio of noise in
TTS.

The generated TTS with noise is divided into two sets:
the first 7; = 20 data in the training set, and the rest 50
in the test set. The regularization parameters for TOPA-AAW
are set as p = 10, = 0.4,8 = 0.4. Fig. [2] compares the
average NRMSE of different prediction methods with 10000
Monte Carlo experiments, each independently and randomly
generates a TTS as (20). The “TOPA-init” line in Fig. [2]
shows that prediction error increases as prediction continues
without model online updating due to the noises in TTS.
With the online updating manner, TOPA reveals almost the
same performance as MCAR, while BHT-ARIMA has a little
advantage over these two methods. Two neural-network-based
methods do not perform as well as other algorithms, due to the
implicit regression patterns of the core tensor series. Among
all these methods, TOPA and TOPA-AAW are much more
efficient owing to the one-loop algorithms, while also keep
high prediction accuracy similar to the offline methods.

%
03504 5 % a2 xS 8 D A
® i oy ¥ - SIS - s P
03F" 18 17 Lx ¥ o % %
——BHT-ARIMA
b |-ae MCAR
—o—TOPA
u 02[ |0 TOPA-AAW
2 —+—LSTM
o
b

%+ GMRL
TOPA-init

0.1

20 25 30 35 40 45 50 55 60 65 70
Prediction Time

Fig. 2: Performance of different prediction methods on syn-
thetic TTS (20). TOPA and TOPA-AAW reveal almost the
same performance as the offline methods.



TABLE I: Average time costs and NRMSE of different algo-
rithms on synthetic TTS

TOPA TOPA-AAW MCAR BHT-ARIMA GMRL LSTM
47.8 25.1 77.4 238.4 200.7 722
0.0776 0.0760 0.0778 0.0750 0.3299  0.1390

Time(ms)
NRMSE

2) Wireless CSI Prediction: We consider the wireless
channel prediction problem with high-frequency observa-
tion and wild fluctuation of statistical features. For fifth-
generation wireless communication, many massive multiple-
input multiple-output (MIMO) transmission techniques highly
rely on accurate CSI acquisition, such as precoding and
beamforming. However, the observation of CSI and later data
processing usually quickly become outdated due to the short
coherent time. CSI prediction is a natural way to tackle
this issue. For time-varying channels, the online manner is
important to predict CSI in upcoming time slots.

We use QuaDRiGa [20] to generate realistic CSI streaming
data for single base-station (BS) and single user-equipment
(UE) downlink transmission. BS and UE are equipped with
16 and 2 antennas, respectively. The transmission occupies the
700MHz frequency with 10MHz bandwidth and 50 subcarri-
ers. During the CSI observation, BS is static, and UE moves
with 1.5m/s speed. The CSI observation frequency is config-
ured as f; = 25Hz, so we sample CSI per 40ms. Then, the CSI
observation produces a streaming TTS {X, € C16x2x50}e0
of which (X,);;; denotes the channel state at time ¢ on k-th
subcarrier between BS’s i-th antenna and UE’s j-th antenna.

We run 1000 times Monte Carlo (MC) simulations to
evaluate the performance of our proposed algorithms. For each
MC simulation, we randomly select a continuous part of CSI
TTS with 70 samples and let the first 7y = 20 CSI tensors be
the training set, while the last 50 tensors are the streaming data
observed in the following 50 sampling time. The scale of core
tensors is set as (10,2,20), which significantly compresses
the TTS data. The regularization parameters for the residual
of tensor decomposition are set as ¢ = 10, = 0.9, 8 = 0.6.
Since the CSI fluctuates wildly, we shorten the time sliding
window in TOPA-AAW to 7 = 8. All prediction methods
employ ARIMA(2, 1, 1) model for building temporal relations
among core tensor series. To further improve the adaptability
of TOPA/TOPA-AAW for the time-varying property of CSI,
we conduct two iterations instead in the online updating step
of Algorithm

TABLE II: Average Time costs and NRMSE of different
algorithms on CSI prediction

TOPA TOPA-AAW MCAR BHT-ARIMA GMRL LSTM
186.8 37.6 915.8 2634.7 22.6 50.7
0.0636 0.0591 0.0635 0.0634 0.1295  0.9170

Time(ms)
NRMSE

Fig. 3] illustrates the average NRMSE of CSI online predic-
tion for different prediction methods. The “TOPA-init” line in
Fig. B reveals the extreme change in the wireless environment,
even in low-speed mobility scenarios. As an online method,
TOPA shows very close performance to two offline methods,
while the prediction accuracy of TOPA-AAW is much better
than TOPA and MCAR, owing to the good adaptation of AAW
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Fig. 3: Performance of different prediction methods on CSI
prediction. TOPA-AAW has the best performance, while
TOPA performs as well as the offline methods.

to the wireless channel evolution.

Table [II] presents the average time costs and NRMSE of six
methods in each prediction. It should be emphasised that the
training of the GMRL and LSTM methods cost up to a few
minutes, which is not considered in Table [l TOPA-AAW is
much more efficient than other methods except GMRL, while
has the best prediction performance. Table[[l)illustrates that the
difference in the number of necessary alternative iterations for
building predictors leads to a significant difference in the time
costs between online and offline methods.

B. Real-world Datasets: USHCN and NASDAQ100

In this subsection, We apply our prediction algorithm to two
real-world datasets:

e USHC this dataset records the monthly climate data
of 1218 weather stations in the United States during
the past 100 years, including four statistical features:
monthly mean maximum temperature, monthly mean
minimum temperature, monthly minimum temperature,
and monthly total precipitation. 120 meteorological sta-
tions with relatively complete data are screened for nu-
merical experiments. With their quarterly average obser-
vation data from 1940 to 2014, we establish a 75-length
TTS with the scale 120 x 4 x 4 of each tensor data.

. NASDAQ]O(ﬂ This dataset records the daily business
data of 102 NASDAQ-listed companies over 90 days in
2014, including five statistical features: opening quota-
tion, highest quotation, lowest quotation, closing quota-
tion and adjusting the closing price. Therefore, we obtain
a 90-length TTS with the scale 102 x 5 of each matrix
data.

We divide the screened USHCN TTS into two parts: the
first Ty = 40 data are used for finding the initial predictor and
predicting the data at sampling time 41, and the last 35 data

Uhttps://www.ncei.noaa.gov/pub/data/ushcn/v2.5/
Zhttps://github.com/Karin-Karlsson/stockdata



are regarded as the streaming observation of USHCN TTS.
In terms of the discussion in [11, Sec. V], we choose AR(2)
model to build the temporal correlations among core tensor
series. In the structure of joint tensor decomposition, the scale
of core tensors is given as 12 x 4 x 4. Since the statistical
characteristics of data are nearly stable, we configure a wide
time sliding window in TOPA-AAW with length 7 = 20.
For the NASDAQ100 dataset, we find the initial predictor
with the first Ty = 60 traffic flow data, and streamly observe
the last 30 data. The ARIMA(3, 1,0) model captures the sta-
tistical characteristics in NASDAQ100 TTS. The time sliding
window used in TOPA-AAW is configured as 7 = 20.
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Fig. 4: Effect of parameter ¢ and « for the TOPA-AAW
algorithm on two real-world datasets: (a) average NRMSE
with a = 0.95 and different ¢, and (b) average NRMSE with
WUHSCN — 0.5, ONASDAQ100 = 20 and different . When o < 1
and ¢ are large enough, the accuracy of TOPA-AAW is not
sensitive to the choice of these parameters.

We first research the effects of different choices of a and ¢
in (T4). Fig. [ shows the average NRMSE of the proposed
TOPA-AAW algorithm with different values of parameters
¢ and o. Regarding Fig. [ (a), we can see that the best
¢ of USHCN and NASDAQI100 datasets are 0.2 and 20,
respectively. For both two datasets, the prediction performance
is unsatisfactory when ¢ is relatively small, which manifests
the necessity of regularization. For stable TTS, small ¢ makes
the regularization term close to 0 with sufficiently accurate
joint Tucker decomposition, hence the objective function in
is dominated by the first term, which leads to inaccurate
joint decomposition with online prediction continuing. Fur-
thermore, when ¢ is large enough, the accuracy of TOPA-
AAW is improved to a stable level. From Fig. [ (b), the best
« for USHCN and NASDAQ100 datasets is close to 1, which
illustrates the effectiveness of reducing the weight of stale data.
The prediction performance is extremely poor when « is set as
1, since the regularization in with @ = 1 only retains the
last term with time ¢ = 7'+ 1. In brief, when o < 1 and ¢ are

large enough, the accuracy of TOPA-AAW is not very sensitive
to the choice of these parameters, which allows us to choose
the parameter more flexibly. In the following experiments, we
configure the regularization parameters for TOPA-AAW as:
¢ = 0.5 and o = 0.98 for USHCN, and ¢ = 20 and o = 0.99
for NASDAQ100. Moreover, as discussed in Remark [2] we set
8 =0.5.
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Fig. 5: Performance of different sizes of core tensors for
TOPA-AAW algorithm on USHCN dataset.

TABLE III: Average time costs of different sizes of core
tensors for TOPA-AAW algorithm on USHCN dataset

Small scale
4.8

Medium scale
5.1

Large scale
8.7

Time(ms)

Fig. 5] and Table [[I] show the average NRMSE and time
costs of the proposed TOPA-AAW algorithm with different
scales of core tensors, respectively. We implement the experi-
ments with three different sizes of the core tensors: large scale
with dimensions of 80 x 4 x 4, medium scale with dimensions
of 12 x 4 x 4, and small scale with dimensions of 3 x 3 x 3.
The results show that a larger scale of core tensors leads to
higher prediction accuracy with more time costs. Therefore,
choosing the right size of core tensor is a trade-off between
prediction accuracy and time costs.

Next we focus on the impact of the length of the time sliding
window on the prediction performance of TOPA-AAW. As
shown in Fig. [6] a longer sliding time window (with 7 = 5
and 7 = 10) leads to better prediction performance. On the
other side, the complexity analysis in Section proposes
that the computational complexity of TOPA-AAW is positively
proportional to the time window length 7. With the trade-
off between prediction accuracy and time costs, we choose
the length of time sliding window 7 = 20 in the following
experiments.

Fig. [7| depicts the comparison results of prediction per-
formance. TOPA reveals nearly the same accuracy for two
real-world datasets as offline methods, though it runs much
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Fig. 6: Performance of different sliding time window lengths
for TOPA-AAW algorithm on USHCN dataset.

| |
40 45 50 55 60 65 70 75
Prediction Time

01r

0.08 |
2 0.06 -
% 004t

0.02 -

60

Prediction Time

—+—BHT-ARIMA £ MCAR —9—TOPA @~ TOPA-AAW —#—LSTM % GMRL
Fig. 7: Performance of different prediction methods on two
real-world datasets: (a) USHCN, and (b) NASDAQ100. TOPA-

AAW shows the best performance owing to AAW.

TABLE IV: Average time costs of different algorithms on
USHCN and NASDAQ100 datasets

Time(ms) TOPA TOPA-AAW MCAR BHT-ARIMA GMRL LSTM
USHCN 59.2 5.1 328.7 1583.1 15.0 34.6
NASDAQI00  53.5 114 263.0 419.2 6.9 26.2

fewer iterations than MCAR in each prediction. TOPA-AAW
can further improve the accuracy of TOPA by tracking the
latest statistical patterns in TTS. In the NASDAQ100 dataset,
the prediction accuracy of TOPA-AAW is nearly 20% better
than TOPA and MCAR, while three methods show significant
advantages over BHT-ARIMA and two neural-network-based
methods. Table [[V] presents the average time costs of six pre-

diction methods. Owing to the online manner, TOPA/TOPA-
AAW can provide prediction results efficiently and accurately.

VI. CONCLUSION

In this paper, we present a joint-tensor-factorization-based
online prediction algorithm for streaming tensor time series.
By leveraging tensor factorization, our algorithm effectively
compresses the streaming data while capturing the underlying
intrinsic correlations. The proposed online updating scheme
significantly enhances the speed of predictor updating and
can maintain high prediction accuracy. We also analyze the
convergence of the proposed algorithm. Additionally, we intro-
duce automatically adaptive weights to address the challenge
of data staleness in streaming data. Through the numerical
experiments in various scenarios, we observe promising results
that validate the effectiveness and efficiency of our approach.

APPENDIX A
DERIVATION OF THE ALTERNATIVE ITERATIONS IN TOPA

The derivation of Algorithm [I] relies on the alternative
manner and proximal term added in each subproblem. In
each iteration, Algorithm [I] alternatively updates only one of
P(To) 9 (To) and %[( O(i) at a time. In each subproblem during
alternatlve updatmg, we add a proximal term to ensure the
convergence of the algorithm. Since the process of Algorithm
] is similar to Algorithm [T, we only need to present the
derivation of Algorithm m For the sake of convenience, we
take the AR model (@) for f as an example to illustrate the
derivation process.

o Update regression parameters: For AR model,
the subproblem of updating 2(T0) = {a(T0) =
[agTO), . ,a(T‘J)]} with proximal term and step size A
is formulated as

A
a,(ffl) = argminFTo ( ;;‘i)k, {a}, %(TO ) + §||oz - a(TO %
A
“argmin 3 161 - Zazgfo’ I+ Gl = o™
t=p+1
2
The closed-form solution to 1)) is
A\ A
o) = (R+ 2Ip> ( + 2a”ﬁ’> )
where
To
Ri;= Y (a™,.6),) 1<ij<p @3
t=p+1
and
To
ri= Y (6, 0) 1<i<n @4

t=p+1

Remark 3. When Ty is large enough, the entries of R

and r can be seemed as approximations of the autocor-
. . (To) .

relation function of g[ToL K

r(j— 1) =E(Gt,Gitj—i) -



Then, we have

Riyj ~ T‘(i — j), T, 7“(2)

With these approximations, when X = 0, 22) is the
solution to the known Yule-Walker equation [21]].

Update joint projection matrices % ("t1): For m =
1 to M, the subproblem of updating U,(n °) with pr0x1ma1
term and step size A is formulated as

(To)
UnL (I)s-&-l
= argmin Fr, (%gc]’)k, ?,gol),
UEUIm xR
(T To)
Ul U U UYL, )

+f||U Ull|2,

A
= argmin @ZHQ(TU) H, meH||%—|—§||U U(TO)%FTO

UeUImXxERm —
To )\ U?é
£ argmax Rtrace [ UX (H0) () (G4 )y + o=
g max. ( (; Hom G Jom) + 50
(25)
where Hy = X [[,,, ¥ (Uffﬁl) | P xj(Ujgi(]))H

and = utilizes the orthogonal constraints U”U = I
With orthogonal constraints, we have

m*

U(To)

m,k+1 (26)

H
Lm,k+1Rm,k+17
where Lm¢k+1 c Uim>xRm and Rm,k+1 c UBmXBm gre
the left and right singular matrices of

To

S (Ha) oy (G + fof?

t=1

27)

As m traverses [M], @/k(TO) is updated to ?/k(ﬁ) =

To)
{U( k+1}me M]-

Update core tensor series %[T] For t =1 to Ty, the

subproblem of updating Uy(nTO) with proximal term and

step size A is formulated as

QET,SH = arggmin Fr, (g[iTol) 1 U{G U

t

T T T
{g< NI ) T
f||gt - g3 (28)

Since (28) is a quadratic optimization problem, when
the gradient of the objective function with respect to G,
vanishes, we can obtain the solution to (28):

PPN [pX, H Xm 7(nT(;c+1 + g(TO)]’
2
1 (To)
gg,llz)-‘y)-l W [fgz'(TO) (G 1r)t
X H xm (USSR + g '

As t traverses [T+1], %[( o) i is updated to g(T" bl =

T,
{gg,koJ)rl}tE[T]'

APPENDIX B
PROOF OF THEOREM [I]

Denote W(TO) = {ggo)k, 2, (To) U, TD)} In terms of the
alternative manner of Algorlthm |I|, we have

T T T
To (g[(nﬁ,w 2™ 0))

b To) (T, T (T, T
2 Fr, (950, 2L, 2) + SN 25 — 2|
¢ To) (T (To)
>k, (g[(To? &z k+01) ' 02/k+(i )
A T T T T
N7 = 2 + —||%<+3> %1%

To) T T T T
(G500 P 2T + 2 I~ W,
(29)

c d
,>,> are due to the optimization subproblem (1)),
, respectively. Therefore, via recursion, we have

Pr, (G0 28 ™)

b

[To],0°

k
A
>Pr, (9500 28 ) + 37 ST - W
=1

(30)
For any k and ¢ < Tj, with the boundedness of X’; and
Ur(nT?c)’ we have
(T, T
IG5 1% <lgi — & H <m (U + 2] 213
To) (T, (T,
<2Fy, (%[;Oq,w R 0>) + 20|23
T T T
<2Fy, (G500, 28 U™ + 201X
3D

Hence {% k}k is bounded. Therefore, {W 0)} is bounded
and has at least one limit point.

With (30), we have

+oo

||W-(T0) _
§ : i
=1

(TO)HF < o0,

(32)
which implies

Wit — Wi 0. (33)

For any limit point W™ = (% %‘i)*, e@iTO),%*(TO)) of
{W(T")} there exists a subsequence {W TD)}i that converges
to W With (33), we have Wk o WiTO).
¢ Bop any ¢ and i, since gt i 11 is the solution to 28) with
index kl, we have

OFr, . (10 (To)
8g(T2 (gt ki1 9AGe kU

¢ 490!

T+1

To) To) (T To)
T 2 ) (600, - 6)) o

(34)



Let i — +o00, (34) converges to
OFr, (WiTo))

=0.
6g§T0)

(33)

Similarly, we have

dFr, (WiT(’))

Then, (12) is proved.
For any m and i, since Um k) 41 is the solution to 23) with
index k;, with [16, Theorem 8. 15] we have
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We list the computational complexity of each 1teration  [17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
during online prediction by TOPA in Table Denote [ = computation, vol. 9, no. 8, pp. 1735-1780, 1997.
1/M D o 1/M _ [18] J. Deng, J. Deng, R. Jiang, and X. Song, “Learning gaussian mix-
(HWG[M ] In) and R (HmE[M ] Ron) as the geo ture representations for tensor time series forecasting,” arXiv preprint
metric average of the scale of TTS data and core tensors, arXiv:2306.00390, 2023.
respectively. Here we denote the total order of autoregressive  [19] Y. Sun, Y. Guo, C. Luo, J. Tropp, and M. Udell, “Low-rank tucker
m 1 fi hich i med much 1 han th le of approximation of a tensor from streaming data,” SIAM Journal on
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tensor data. [20] S. Jaeckel, L. Raschkowski, K. Borner, and L. Thiele, “QuaDRiGa: A

TABLE V: Computational Complexity of Stage II in TOPA

Step Computational Complexity
Line 4 of TOPA-Stage 1I O (MIR)
Computing 2, O (p*RM)

O (MT((M — 1)IMR + RMT))

@) O (T(MIMR + pRM))

Total O (MPTIMR + MTRMI)

Owing to the time sliding window, TOPA-AAW reduces the
computational complexity to 7/7" times that of TOPA, with
O (M?*7IMR + MTRMT).
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