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ARC-TRANSITIVE MAPS WITH COPRIME EULER
CHARACTERISTIC AND EDGE NUMBER

C. H. LI AND LU YI LIU

Abstract. This is one of a series of papers which aim towards a classification
of edge-transitive maps of which the Euler characteristic and the edge number
are coprime. This one carries out the classification work for arc-transitive maps
with nonsolvable automorphism groups, which illustrates how the edge number
impacts on the Euler characteristic for maps. The classification is involved with
the construction of some new and interesting arc-regular maps.
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1. Introduction

A map is a 2-cell embedding of a graph into a closed surface. Throughout the
paper, we denote by M = (V,E, F ) a map with vertex set V , edge set E, and face
set F . The underlying graph (V,E) of M is written as Γ, and the supporting surface
of M is denoted by S. We always assume that Γ has no free edges and loops, but
multi-edges are permitted. The Euler characteristic of M is defined to be that of
its supporting surface, so

χ(M) = χ(S) = |V | − |E|+ |F |.

Then a relation between the genus g of S and the Euler characteristic is given by
Euler formula:

χ(S) =

{

2− 2g, if S is orientable;

2− g, if S is nonorientable.

This paper explores relations between Euler characteristic χ(M) and the edge
number |E|. It is easy to see that usually, the bigger |E|, the bigger χ(M). The
result of this paper shows that χ(M) and |E| should have a large common divisor
in general by showing that if gcd(χ(M), |E|) = 1 then M is very restricted.

An arc of M is an incident pair (v, e) of vertex v and edge e, and a flag of M
is an incident triple (v, e, f) of vertex v, edge e and face f . Each edge e = [v, e, v′]
corresponds to two arcs (v, e), (v′, e) and four flags (v, e, f), (v, e, f ′), (v′, e, f) and
(v′, e, f ′) . The arc set and flag set of M are denoted by A and F respectively, so
that |F| = 2|A| = 4|E|.

An automorphism of M is a permutation of flags that preserve incident relations,
and all automorphisms M form the automorphism group Aut(M). An automor-
phism of M fixing a flag must fix all the flags, and so is the identity. Thus AutM
is semiregular on the flags of M. If AutM is transitive on the flags of M, then it
is regular, and M is called a regular map. If AutM is transitive on the arc set of
M and intransitive on the flag set, then AutM is regular on the arc set, called an
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arc-regular map. For an arc-regular map M, the number of arcs equals the order
|AutM|.

The problem of classifying symmetrical maps has been studied for specific pre-
scribed Euler characteristic, see [7] for negative prime Euler characteristic, [3] for
Euler characteristic −3p, and [4] for Euler characteristic being −p2. In this pa-
per, we study arc-transitive maps of Euler characteristic coprime to the number of
edges of the map. In the following theorem, we classify such maps with nonsolvable
automorphism groups.

Theorem 1.1. LetM = (V,E, F ) be an arc-transitive map such that gcd(χ(M), |E|) =
1, and let G = AutM be nonsolvable. Then one of the following holds:

(1) G = PSL(2, 5), M is type 1 (flag regular), and {Gα, Ge, Gf} = {D6,D4,D10}.
(2) G is nonsolvable, M is of type 2∗, and one of the following is true:

(i) G = PSL(2, p), and {Gα, Gf , Gf ′} = {D2p,Dp+1,Dp−1}, where p ≡ 1
(mod 4);

(ii) G = PGL(2, p), and {Gα, Gf , Gf ′} = {D2p,D2(p+1),D2(p−1)};
(iii) G = (Zn × PSL(2, p)).2, and {Gα, Gf , Gf ′} = {D2np,D2(p+1),D2(p−1)},

where n > 1 and p ≡ 3 (mod 4).

Locally finite edge-transitive maps were classified into fourteen types by Graver
and Watkins[9] according to combinations of stabilizers of vertices, edges, faces, and
Petri walks. Among the fourteen types of edge transitive maps, four are arc-regular:
type 2∗, 2∗ex, 2p, and 2pex. The maps satisfying Theorem 1.1 are of type 2∗.

For an integer n, let np be the p-part, which means that n = npm such that np

is a p-power and gcd(p,m) = 1. Let G be a finite group. For a prime divisor p
of |G|, denote by Gp a Sylow p-subgroup, and Gp′ a Hall p′-subgroup of G, where
p′ = π(G) \ {p}. Denote by G(∞) the smallest normal subgroup of G such that
G/G(∞) is solvable. For a subgroupH < G, letNG(H) andCG(H) be the normalizer
and the centralizer of H in G, respectively. By Zn, we mean a cyclic group of order
n, and D2n is a dihedral group of order 2n.

2. The edge number and the Euler characteristic

Let M = (V,E, F ), and let M∗ = (F,E, V ) be the dual map of M. Let Γ =
(V,E), and Γ ∗ = (F,E) be the underlying graph of M and M∗, respectively. For
a vertex α ∈ V , let Γ (α) be the neighborhood of α, namely, the set of vertices of
Γ which are adjacent to α. Let E(α) be the set of edges incident with α. Then
|Γ (α)| 6 |E(α)|, and the size |E(α)| is called the valency of the vertex α. The face
length of a face f in a map M is the number of edges incident with f , which equals
the vertex valency of f in the dual map M∗. A map M is said to be of constant
valency if all of its vertices have equal valency and of constant face length if all of
the faces have equal face length.

For convenience, for a map M = (V,E, F ), let χ = χ(M) = |V | − |E|+ |F |, the
Euler characteristic of M.

Lemma 2.1. Assume that M has constant vertex valency k and constant face length
ℓ, and gcd(χ, |E|) = 1. Then |E| divides kℓ, |V | divides 2ℓ and |F | divides 2k.

Proof. Since each edge is incident with two vertices and each vertex is incident with
k edges, we have that |V |k = |E|2, and |V | = 2

k
|E|. As each edge is incident with
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two faces and each face is incident with ℓ edges, we have that |F |ℓ = |E|2, and
|F | = 2

ℓ
|E|. Thus χ = |V | − |E|+ |F | = 2

k
|E| − |E|+ 2

ℓ
|E| = 2ℓ−kℓ+2k

kℓ
|E|, and so

(kℓ)χ = (2ℓ− kℓ+ 2k)|E|.

Since gcd(χ, |E|) = 1, it follows that E divides kℓ. As |E| = k|V |
2
, we conclude that

|V | divides 2ℓ. Similarly, |F | divides 2k. ✷

This lemma shows that, if gcd(χ, |E|) = 1 then the edge number |E| is small
relative to the valency and the face length. The statements in the next lemma are
well-known for maps.

Lemma 2.2. Let M = (V,E, F ), and let F be the set of flags of M, and let
G 6 AutM. Then the following statements hold.

(1) G is semiregular on F .
(2) |F| = 4|E|, and |G| divides 4|E|.
(3) For a flag (v, e, f) ∈ F , each of the stabilizers Gv and Gf is cyclic or dihedral,

and Ge = 1, Z2 or D4.

The next lemma characterizes Sylow subgroups of the automorphism group of a
map whose Euler characteristic is coprime to the number of edges.

Lemma 2.3. Let M = (V,E, F ), let Ω = V ∪E ∪ F , and let G 6 AutM. Assume
that gcd(χ(M), |E|) = 1. Then the following statements are true:

(1) gcd(χ, |G|) 6= 1 if and only if |E| is odd;
(2) each Sylow subgroup of G is a subgroup of the stabilizer Gω, where ω ∈ Ω;
(3) each Sylow subgroup of G is a cyclic or dihedral subgroup;
(4) |G| = lcm{|Gω| | ω ∈ Ω}.

Proof. Let χ = χ(M). Since |F| = 4|E| and gcd(χ, |E|) = 1, we obtain that

gcd(χ, |F|) = gcd(χ, 4|E|) = gcd(χ, 4).

Since G is semiregular on F , we have that |G| divides |F|. Thus gcd(χ, |G|) divides
gcd(χ, |F|) = gcd(χ, 4|E|), and so gcd(χ, |G|) divides 4. It follows that gcd(χ, |G|) 6=
1 if and only if |E| is odd, as in part (1).

Let V = V1 ∪ · · · ∪ Vr, E = E1 ∪ · · · ∪ Es and F = F1 ∪ · · · ∪ Ft such that

each Vi, Ej and Fk is an orbit of G on V,E, F , respectively. Then |Vi| =
|G|
|Gvi

|
,

|Ej| =
|G|
|Gej

|
, and |Fk| =

|G|
|Gfk

|
, where vi ∈ Vi for 1 6 i 6 r, ej ∈ Ej for 1 6 j 6 s,

and fk ∈ Fk for 1 6 k 6 t. Thus |V | = |V1|+ · · ·+ |Vr|, |E| = |E1|+ · · ·+ |Es|, and
|F | = |F1|+ · · ·+ |Ft|, and by Euler-Poincare formula

χ =

(

|G|

|Gv1|
+ · · ·+

|G|

|Gvr |

)

−

(

|G|

|Ge1|
+ · · ·+

|G|

|Ges|

)

+

(

|G|

|Gf1|
+ · · ·+

|G|

|Gft |

)

.

Let p be a prime divisor of |G|. Assume that p divides χ. Then p = 2, and
gcd(χ, |G|) 6= 1. Thus |E| is odd by part (1), and the 2-part |G|2 divides 4 as |G|
divides |F| = 4|E|. So a Sylow 2-subgroup of G is cyclic or dihedral.

Now assume that p does not divide χ. Then p does not divide |G|
|Gω|

for some

element ω ∈ Ω = V ∪E ∪F . Thus a Sylow p-subgroup of G has order divides |Gω|,
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and is conjugate to a subgroup of Gω, as in part (2). So a Sylow p-subgroup is cyclic
or dihedral by Lemma 2.2, as in part (3).

Finally, since |Gω| divides |G| for any ω ∈ Ω, we have that lcm{|Gω| : ω ∈ Ω}
divides |G|. Conversely, let p1, p2, . . . , pd be the prime divisors of |G|, and without
loss of generality, assume that Gωi

contains a Sylow pi-subgroup Gpi of G for 1 6

i 6 d. Then |G| = |Gp1||Gp2| . . . |Gpd| divides lcm{|Gωi
| | 1 6 i 6 d}. It follows that

|G| = lcm{|Gω| : ω ∈ Ω}, as in part (4). ✷

This lemma tells us that the automorphism group of a map whose Euler charac-
teristic is coprime to the number of edges is so-called an almost Sylow-cyclic group,
namely, all of its odd order Sylow subgroups are cyclic, and Sylow 2-subgroups has
an index 2 cyclic subgroup. A characterization of non-solvable almost Sylow-cyclic
groups in [11] and [13], and see [10] for solvable cases.

An explicit classification of almost Sylow cyclic groups with dihedral Sylow 2-
subgroups is given in the following proposition.

Proposition 2.4. Let G be a finite group of which each Sylow subgroup is cyclic or
dihedral. Then one of the following statements holds:

(i) G = Zm:Zn is metacyclic, where gcd(m,n) = 1 or 2;
(ii) G = (Zm × D2e):Zn, where m is odd and 4 6

∣

∣ n;
(iii) G = Z2

2.D6m × Zn = (Z2
2 × Zm).D6 × Zn, where mn is odd;

(iv) G = (Zm:Zn) × PSL(2, p) or ((Zm:Zn) × PSL(2, p)).2, where m,n, |PSL(2, p)|
are pairwise coprime.

Proof. Assume first that G is solvable. If a Sylow 2-subgroup is cyclic, then G is
metacyclic of the form Zm:Zn, as in part (i). Assume next that a Sylow 2-subgroup
G2 = D2e+1 is dihedral with e > 1. Let F be the Fitting subgroup of G.

(1). Suppose that G/F is abelian. Then, G/F is cyclic since G is almost Sylow
cyclic. Let π be the set of odd prime divisors of |G/F |. Let H be a Hall π-subgroup
of G, and let Fπ′ be a Hall π′-subgroup of F .

If F2 = G2, then Fπ′ = G2 × F2′ , and G = (G2 × F2′):H = (D2d × Zm):Zn, with
d = e, mn odd and gcd(m,n) = 1, as in part (ii).

Suppose that F2 < G2 = D2e+1 . Then, as G/F is abelian, |G/F |2 = |G2/F2| = 2,
and F2 = Z2e or D2e , so that G2 = F2:〈g〉, where g is an involution. If F2 = Z2e , then
Fπ′ = Zm, and G = Zm:Zn, where gcd(m,n) = 2, as in part (i). If F2 = D2e , then
Fπ′ = Zm × D2e, and G = (Zm × D2e):Zn, where the 2-part n2 = 2, as in part (ii).

(2). Suppose that G/F is not abelian. Then Out(F2) is nonabelian, and hence
F2 = D4

∼= Z2
2, G2 = F2.2 = D8, and Out(F2) = D6. All Sylow subgroups of G/F2

are cyclic, and a Sylow 2-subgroup is of order 2. It follows that G/F2 is metacyclic,
and thus G/F2 = D2n′ × Zn. Then, we obtain that

G = F2.(G/F2) = Z2
2.(D2n′ × Zn) = (Z2

2 × Zm).D6 × Zn,

as in part (iii).

Now, assume that G is non-solvable. Let R be the solvable radical of G, the
largest solvable normal subgroup of G. Let N = G(∞) be the solvable residual
of G, the smallest normal subgroup N of G such that G/N is solvable. Since
a Sylow 2-subgroup of G is dihedral, it follows from Gorenstien’s result [8] that
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N is a simple group, namely, N = A7 or PSL(2, q), where q = pf with p odd
prime. As Sylow subgroups of odd orders are cyclic, we obtain N = PSL(2, p).
Thus, RN = R × N ✁ G, R is of odd order, and so R = Zn:Zm by the previous
outcomes of the proof. Therefore, we conclude that G = (Zn:Zm) × PSL(2, p) or
((Zn:Zm)× PSL(2, p)) .2, as in part (iv). ✷

3. Automorphism groups of arc-transitive maps

Let M = (V,E, F ), and let G 6 AutM. Assume that G is transitive on the arc
set of M. Then either M is flag-regular, or G = AutM and M is arc-regular.

Lemma 3.1. Let α, β ∈ V be adjacent by an edge e, and let f, f ′ ∈ F be the two
faces incident with (α, e, β). Then the following hold:

(1) Gα = 〈a〉 or 〈x, y〉, where x, y are involutions, and G = 〈a, z〉 or 〈x, y, z〉 where
z is an involution which interchanges α and β and fixes e;

(2) One of 〈Gα, Gβ〉 or 〈Gf , Gf ′〉 is transitive on the edges of M, and either G is
flag-regular on M, or one of |G : 〈Gα, Gβ〉| and |G : 〈Gf , Gf ′〉| divide 2.

By Lemma 2.3 (3), the group G is almost Sylow cyclic, and thus G satisfies Propo-
sition 2.4.

To analyze the structure of G, we need some information regarding subgroups
of G = PSL(2, p) and PGL(2, p). A list of PGL(2, p) subgroups and PSL(2, p)
subgroups will be frequently referred to in forthcoming contexts, which is known
and listed below, see [2].

Lemma 3.2. Let G = PSL(2, p) or PGL(2, p), where p > 5 is a prime. Write
G = PSL(2, p).Zd, where d = 1 or 2 according to G = PSL(2, p) or PGL(2, p),
respectively. Let C be a cyclic subgroup, D be a dihedral subgroup, and P a Sylow
subgroup of G. Then either Zp

∼= P ∼= C ✁D ∼= D2p, or

(1) C 6 Z d(p+1)
2

or Z d(p−1)
2

, and

(2) D 6 Dd(p+1) or Dd(p−1), and
(3) P 6 Dd(p+1) or Dd(p−1).

Moreover, Dd(p+1) and Dd(p−1) are maximal subgroups of G.

We are ready to provide a more detailed description of automorphism groups of
maps.

Lemma 3.3. Let M = (V,E, F ) with gcd(χ(M), |E|) = 1, and G 6 AutM be
nonsolvable. Assume that G is arc-transitive on M. Then G = PSL(2, p), or
(Zm × PSL(2, p)):2, where gcd(m, |PSL(2, p)|) = 1.

Proof. By Proposition 2.4, the nonsolvable group G = (Zm:Zn) × PSL(2, p) or
((Zm:Zn)× PSL(2, p)).2, where m,n, |PSL(2, p)| are pairwise coprime.

The second statement of Lemma 3.1 shows that 〈Gω, Gω′〉 is an edge-transitive
subgroup, where {ω, ω} = {α, β} or {f.f ′}. Since Gω and Gω′ are cyclic or dihedral,
we discuss the two cases separately.
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(i) Let Gω be a dihedral group. Note that the index [G : 〈Gω, Gω′〉] = 1 or 2. It
follows that involutions generate G.

Assume first that G = (Zm:Zn) × PSL(2, p) with gcd(mn, |PSL(2, p)| = 1.
Then a Sylow 2-subgroup of G is dihedral, which is contained in Gα or Gf for
some α ∈ V and f ∈ F . Since involutions generate G, so m = n = 1. Then
G = PSL(2, p).

Now assume that G = ((Zm:Zn) × PSL(2, p)).2, where m,n, |PSL(2, p)| are
pairwise coprime. Let N be the solvable residual of G. Then G/N = (Zm:Zn).2
is a metacyclic group as all its Sylow subgroups are cyclic. Since G/N is
generated by dihedral subgroups, we conclude that G/N = D2m, and G =
(Zm × PSL(2, p)):2.

(ii) Let Gω be a cyclic group.
Then, Gω is transitive on Γ(ω). Hence, G is transitive on both faces and

vertices. It follows that |G| = lcm{|Gα|, |Gf |, |Ge|} by Lemma 2.3. Again by
Lemma 2.3, there is a Sylow 2-subgroup of G which is contained in Gf . Hence,
there holds the equation that |G| = lcm{|Gα|, |Gf |}. By the list of subgroup of
PSL(2, p) and PGL(2, p), there do not exist candidates of cyclic subgroup Gα

and dihedral subgroup Gf satisfying |G| = lcm{|Gα|, |Gf |}.

Above all, we conclude that Gω is a dihedral subgroup of G, and the group G is as
characterized in (i), which completes the proof. ✷

4. The face-transitive case

In this section, we classify maps M with gcd(χ(M), |AutM|) = 1 which are
arc-transitive and face-transitive.

Proposition 4.1. Let M = (V,E, F ) with gcd(χ(M), |E|) = 1, and let G 6 AutM
be arc-transitive and face-transitive on M. If G is nonsolvable, then G = A5, and
{Gα, Gf} = {D10,D6}, Ge = D4, and M is flag-regular on the projective plane with
underlying graph being the Peterson graph or K6.

Proof. By Lemma 3.3, we have that G = PSL(2, p), or (Zm × PSL(2, p)):2, where
m, |PSL(2, p)| are coprime.

Let (α, e, f) be a flag of M. Without loss of generality, we may assume that p
divides |Gα|. Since gcd(p+ 1, p− 1) = 2 and p− 1 > 2, there exists an odd prime r
which divides p+ ε, where ε = 1 or −1. Since p− ε > 2, it follows that p−ε

2
divides

|Ge|, and thus |Ge| = 4 and p 6 9, so that p = 5 or 7. In particular, M is flag-
regular, and a Sylow 2-subgroup of G is of order 4. If p = 7, then N = PSL(2, 7),
of which a Sylow 2-subgroup is of order 8, which is impossible. Therefore, we have
that p = 5, and N = PSL(2, 5), and

G = Zm × PSL(2, 5),

where gcd(m, |PSL(2, 5)|) = 1. SinceM is flag-regular,G is generated by involutions
by Lemma 3.3, and so does the quotient G/N = Zm. So m = 1, and G = PSL(2, 5).
Now Gα = D10, Ge = D4 and Gf = D6. It follows that M is a map on the projective
plane, with the underlying graph being the Peterson graph or K6. This completes
the proof of the lemma. ✷
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5. The face-intransitive case

In this section, we consider the face-intransitive case. Let M = (V,E, F ) be an
arc-transitive map that is not flag-regular, and let G = AutM. Then G is regular
on the arcs, and M is an arc-regular map. Assume that gcd(χ(M), |E|) = 1.

Lemma 5.1. Let M be an arc-regular and face-intransitive map, and let (v, e, f),
(v, e, f ′) be two flags. Then G is generated by three involutions x, y and z such that
{〈x, y〉, 〈x, z〉, 〈y, z〉} = {Gv, Gf , Gf ′}. In particular, stabilizers of vertices, edges,
and faces are all dihedral.

Proof. Since G is arc-transitive on M, the stabilizer Gv is transitive on the set E(α)
of the edges incident with v. Since G is intransitive on the face set F , the pair of
incident faces f, f ′ lie in different orbits of Gv. It follows that Gv is a dihedral group,
and so Gv = 〈x, y〉, where x, y are involutions, such that x fixes one of the faces
f, f ′, say f , and then y fixes the other f ′.

Since G is regular on the arcs of M, an involution z interchanges the paired
arcs (v, e, v′) and (v′, e, v) exists. Thus Ge

∼= Z2, and G = 〈Gv, z〉 = 〈x, y, z〉 since
Γ = (V,E) is a connected graph.

Moreover, since G is intransitive on the face set F , it implies that z fixes both
faces f and f ′. Now 〈x, z〉 is transitive on all arcs that are incident with f , and as
G is regular on the arcs of M, we conclude that Gf = 〈x, z〉. Similarly, Gf ′ = 〈y, z〉.
This completes the proof. ✷

The triple of involutions (x, y, z) described in Lemma 5.1 is an arc-regular triple
that defines the map M.

5.1. Stabilizers.

Using the notation defined above, each Sylow subgroup G is cyclic or dihedral by
Lemma 2.3 (3). Thus, G is one of the groups given in Proposition 2.4. Assume that
G is a nonsolvable group. By Lemma 3.3 and Lemma 2.3 (4), we have that

G = PSL(2, p) or (Zm × PSL(2, p)):Z2, where gcd(m, |PSL(2, p)|) = 1;
|G| = lcm{|Gv|, |Gf |, |Gf ′|}.

We first establish a useful lemma for determining sets of stabilizers.

Lemma 5.2. Let L = PSL(2, p) and X = PGL(2, p) where p > 5 and p ≡ ǫ
(mod 4), with ε = 1 or −1. For any involutions u, v ∈ X, let D = 〈u, v〉.

(1) If 〈u, v〉 = D2(p+ǫ), then one of u, v lies in L, and the other lies in G \ L.
(2) For 〈u, v〉 = D2p, either u, v ∈ L with p ≡ 1 (mod 4), or u, v /∈ L with p ≡ 3

(mod 4).

Proof. Assume first thatD = 〈u, v〉 = D2(p+ǫ). Then D∩L = Dp+ε, and so one of u, v
does not belong to L. Suppose that none of u, v lies in L. Then D = (D ∩L):〈u〉 =
(D ∩ L):〈v〉. Let D = D/D ∩ L, and let g 7→ g be the homomorphism from D to
D/D∩L. Thus u = v, and so uv ∈ D∩L, which is not possible since D∩L = Dp+ε

does not have an element of order p + ε. Thus one of u, v lies in L, and the other
lies in G \ L.
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Now assume that D = D2p. There exists a maximal subgroup M = 〈a〉:〈b〉 =

Zp:Zp−1 of X that contains D. It follows that u = aib
p−1
2 and v = ajb

p−1
2 , where

i 6= j ∈ {1, ..., p}. The intersection M ∩L = Zp:Z p−1
2
. If p ≡ 3 (mod 4), then M ∩ L

is of odd order, and hence we have that u, v /∈ L. If p ≡ 1 (mod 4), then b
p−1
2 ∈ L,

and therefore, we obtain that u, v ∈ L. ✷

For convenience, denote {ω1, ω2, ω3} by {v, f, f ′}. The next lemma determines
the stabilizer triple {Gv, Gf , Gf ′}.

Lemma 5.3. One of the following holds:

(1) G = PSL(2, p), and {Gv, Gf , Gf ′} = {D2p,Dp+1,Dp−1} with p ≡ 1 (mod 4);
(2) G = PGL(2, p), and either {Gv, Gf , Gf ′} = {D2p,D2(p+1),D2(p−1)};
(3) G = (Zm × PSL(2, p)):Z2, and {Gv, Gf , Gf ′} = {D2mp,D2(p+1),D2(p−1)}, where

m 6= 1, and p ≡ 3 (mod 4).

Proof. (1). First, assume that G = PSL(2, p). Then a maximal dihedral subgroup
of G is conjugate to D2p, Dp+1 or Dp−1. Recall that each Sylow subgroup of G
is a subgroup of Gv, Gf or Gf ′ by Lemma 2.3. Then p divides |Gω1| for some
ω1 ∈ {v, f, f ′}, and so

Gω1 = D2p < Zp:Z p−1
2
.

We thus have that p−1
2

is even, and p ≡ 1 (mod 4). Then a Sylow 2-subgroup
of G is contained in the stabilizer Gω2 for ω2 ∈ {v, f, f ′} \ {ω1}, and hence Gω2 6

Dp−1. Suppose that Gω2 < Dp−1. Since Gω2 contains a Sylow 2-subgroup of Dp−1,
there exists an odd prime r of p − 1 such that |Gω2 |r < |p − 1|r. It follows that
a Sylow r-subgroup of G is contained in Gω3 for ω3 ∈ {v, f, f ′} \ {ω1, ω2}. By
Lemma 3.2, we have that gcd(|Gω3|, p + 1) 6 2. This is not possible since |G| =
lcm{|Gv|, |Gf |, |Gf ′|} = lcm{|Gω1|, |Gω2|, |Gω3|}. Thus

Gω2 = Dp−1.

Since 1
2
p(p− 1)(p+ 1) = |G| = lcm(|Gv|, |Gf |, |Gf ′|) = lcm{|Gω1|, |Gω2|, |Gω3|} as

mentioned above, it follows that |Gω3| is divisible by p+1
2
. As Gω3 is dihedral by

Lemma 5.1, we conclude that
Gω3 = Dp+1,

so that {Gv, Gf , Gf ′} = {|Gω1|, |Gω2|, |Gω3|} = {D2p,Dp+1,Dp−1}, as in part (1).

(2). Assume that G = PGL(2, p). Let D be a maximal dihedral subgroup of G.
Then D is conjugate to D2p, D2(p+1) or D2(p−1). Arguing similarly to Case (1), we
have that

Gω1 = D2p < Zp:Zp−1,

for some element ω1 ∈ {v, f, f ′}.

Let p ≡ ε (mod 4), where ε = 1 or −1. Then a Sylow 2-subgroup G2 of G
is a subgroup of D2(p−ε). Since G2 is a subgroup of the stabilizer Gω2 for some
ω2 ∈ {v, f, f ′} \ {ω1}. Arguing as in Case (1) shows that

Gω2 = D2(p−ε).

Finally, as p(p−1)(p+1) = |G| = lcm(|Gv|, |Gf |, |Gf ′|) = lcm{2p, 2(p−ε), |Gω3|},
we conclude that |Gω3| is divisible by p+ε

2
. Since Gω3 is a dihedral group by
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Lemma 5.1, we obtain that Gω3 = Dp+ε or D2(p+ε). Suppose that Gω3 = Dp+ε.
Then Gω3 < L. If p ≡ 1 (mod 4), then Gω1 < L, and so G = 〈Gω1, Gω3〉 6 L,
which is a contradiction. Thus p ≡ 3 (mod 4), and Gω3 = Dp−1 < L = PSL(2, p).
In this case, Gω1 ∩ L = Zp. However, there exist involutions u, v, w ∈ G such that
Gω1 = 〈u, v〉 and Gω3 = 〈v, w〉. This is not possible. Thus Gω3 = D2(p−1), as listed
in part (2).

(3). Assume that G = (Zm×PSL(2, p)):Z2. Let R = 〈c〉 = Zm, and let G = G/R.
Then G = PGL(2, p), and by part (2),

{Gα, Gf , Gf ′} = {D2p,D2(p+1),D2(p−1)}.

Let Gω1 = 〈u, v〉, Gω2 = 〈u, w〉 and Gω3 = 〈v, w〉, where u, v, w are involutions of
G. Without loss of generality, we assume that Gω1 = 〈u, v〉 is of order divisible by
p. Then Gω1 = 〈u, v〉 = D2m′p where m′|m.

Suppose that p ≡ 1 (mod 4). It follows from Lemma 5.2 that u, v ∈ L = PSL(2, p),
and m′ = 1, namely, Gω1 = 〈u, v〉 = D2p. Since |G| = lcm{|Gω1|, |Gω2|, |Gω3|},
we may assume, without loss of generality, that Gω2 ∩ 〈c〉 = 〈c′〉 6= 1, and so
Gω2 = D2m′(p+ε) with |c′| = m′ and ε = 1 or −1. However, Gω2 = 〈u, w〉 and u
centralizes c, which is a contradiction.

We therefore conclude that p ≡ 3 (mod 4). Then , u, v /∈ L, Gω2 = 〈u, w〉 is of
even order divisible by p + ε and Gω3 = 〈v, w〉 is of even order divisible by p − ε,
where ε = 1 or −1. By Lemma 5.2 that u, v ∈ G \ (〈c〉 × L), and w ∈ L. Thus w
centralizes c. It follows that |c| is coprime to both |Gω2 | and |Gω3|, and so

{Gω2, Gω3} = {D2(p+1),D2(p−1)}.

Since |G| = lcm{|Gω1|, |Gω2|, |Gω3|}, we conclude that Gω1 = D2mp. ✷

5.2. Constructions of arc-regular triples.

In this subsection, we shall determine arc-regular triples (x, y, z) for each of the
candidates (G,Gv, Gf , Gf ′) described in Lemma 5.3. Let

X = PGL(2, p), where p > 5 is a prime.

The conclusion in the following lemma is well-known.

Lemma 5.4. For any involution z ∈ X, there exist involutions u, v ∈ X such that
〈z, u〉 ∼= D2(p+1) and 〈z, v〉 = D2(p−1).

Our constructions of arc-regular triples depend on analyzing the action of X on
the projective space of F2

p.

Let P be the set of projective points of the vector space F
2
p, and we denote

{δ0, ..., δp} by P and write (σ, τ) = (δ0, δ1), for convenience. Then X is a sharply
3-transitive permutation group on P, and

• Xσ = Zp:Zp−1 is sharply 2-transitive on {δ1, ..., δp}, and
• Xστ := Xσ ∩Xτ = Zp−1 is sharply transitive on {δ2, ..., δp}.
• Each cyclic subgroup of X of order p+ 1 is sharply transitive on P.

Lemma 5.5. Let H ∼= Zp+1 be a subgroup of X. For the involution z ∈ H, there
exist δ, δ′ ∈ {δ2, . . . , δp} such that Xδ contains u and Xδ′ contains v satisfy that
〈z, u〉 ∼= D2(p+1) and 〈z, v〉 ∼= D2(p−1).
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Proof. By Lemma 5.2, the involutions u, v appeared in Lemma 5.4 fix some points
δ, δ′ ∈ P \ {σ, τ}, respectively. The proof then follows. ✷

Further to Lemma 5.5, we need to find elements u, v ∈ X such that 〈u, v〉 = D2p.

For an involution z ∈ Xστ and 2 6 i 6 p, let

Si = {w ∈ Xδi | 〈z, w〉
∼= D2(p+1)}, and Tj = {w ∈ Xδj | 〈z, w〉

∼= D2(p−1)}.

Then Lemma 5.5 tells us that Si 6= ∅ and Tj 6= ∅ for some i, j ∈ {2, . . . , p}. The
next lemma shows that we may take i = j.

Lemma 5.6. For each i ∈ {2, . . . , p}, we have that Si 6= ∅ and Ti 6= ∅.

Proof. Since H centralizes z and transitive on P, Lemma 5.5 implies that Si 6= ∅
and Ti 6= ∅ for all i ∈ P. ✷

With the preparations, we may now state our constructions. The first construction
is for PGL(2, p).

Construction 5.7. Let G = PGL(2, p), and

(1) let z be the unique involution of a cyclic subgroup H of order p+ 1,
(2) let xi, yi ∈ Gδi be involutions such that 〈z, xi〉 ∼= D2(p+1) and 〈z, yi〉 ∼= D2(p−1),

where i ∈ P.

Lemma 5.8. Let (xi, yi, z) be a triple of involutions produced in Construction 5.7.
Then (xi, yi, z) is an arc-regular triple for G = PGL(2, p) such that 〈xi, yi〉 ∼= D2p,
and 〈z, xi〉 ∼= D2(p+1) and 〈z, yi〉 ∼= D2(p−1).

Proof. Since xi, yi are two involutions of Gδi , the subgroup 〈xi, yi〉 is a dihedral
subgroup of Gδi

∼= Zp:Zp−1, so that 〈xi, yi〉 ∼= D2p. The other statements then follow
from the construction. ✷

Similarly, we can construct arc-regular triples for the simple group PSL(2, p).

Construction 5.9. Let G = PSL(2, p), with p ≡ 1 (mod 4), and

(1) let z be the unique involution of Gστ = Z p−1
2
,

(2) let xi, yi be two involutions of Gδi such that 〈z, xi〉 ∼= Dp+1 and 〈z, yi〉 ∼= Dp−1,
where i ∈ {2, . . . , p}.

Lemma 5.10. Let (xi, yi, z) be a triple of involutions produced in Construction 5.9.
Then (xi, yi, z) is an arc-regular triple for G = PSL(2, p) such that 〈xi, yi〉 ∼= D2p,
and 〈z, xi〉 ∼= Dp+1 and 〈z, yi〉 ∼= Dp−1.

Proof. The involutions xi, yi of Gδi generate a dihedral subgroup 〈xi, yi〉 of Gδi
∼=

Zp:Z p−1
2
. It follows that 〈xi, yi〉 ∼= D2p. The other statements then follow from

Construction 5.10. ✷
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Finally, we construct arc-regular triples for Zm:PGL(2, p) for certain primes p.

Construction 5.11. Let p ≡ 3 (mod 4) be a prime, and let L = PSL(2, p), and
X = L:〈w〉 = PGL(2, p). Let G = 〈c〉:X = (〈c〉 × L):〈w〉 where |c| = m and
cw = c−1. Furthermore,

(1) fix an involution z ∈ L = PSL(2, p);
(2) let u ∈ Xδ and u′ ∈ Xδ′ such that 〈z, u〉 ∼= D2(p+1) and 〈z, u′〉 ∼= D2(p−1);
(3) let g ∈ CX(z) ∼= D2(p+1) be such that (δ′)g = δ, so that v := (u′)g ∈ Xδ;
(4) let x = cu, and y = v.

Lemma 5.12. Let G = 〈c〉:X, and (x, y, z) a triple as constructed in Construc-
tion 5.11. Then 〈x, y〉 = D2mp, 〈x, z〉 = D2(p+1) and 〈y, z〉 = D2(p−1).

Proof. By Construction 5.11, the triple of involutions u, v, z ∈ X are such that
〈u, v〉 = D2p, 〈u, z〉 = D2(p+1) and 〈v, z〉 = D2(p−1). Since p ≡ 3 (mod 4) and z ∈ L,
we have that u, v ∈ X \L. Thus G = (〈c〉×L):〈u〉 = (〈c〉×L):〈v〉. Let x = cu, and
y = v. Then we have that

〈y, z〉 = 〈v, z〉 = D2(p−1).

As uv ∈ L, we have that |uv| = p, and

〈x, y〉 = 〈cu, v〉 = D2mp.

Further, 〈x, z〉 = 〈cu, z〉 is a dihedral group. Thus z inverts xz = cuz. Since z
centralizes c, it follows that 〈cuz〉 ∩ 〈c〉 = 1. So 〈cu, z〉 ∩ 〈c〉 = 1, and

〈x, z〉 = 〈cu, z〉 ∼= D2(p+1).

This proves the lemma. ✷

6. Proof of Theorem 1.1

We summarize the arguments for the proof of Theorem 1.1.

Let M = (V,E, F ) be an arc-transitive map, and let G = AutM. Assume that
gcd(χ(M), |E|) = 1, and that G is a nonsolvable group. Then each Sylow subgroup
of G is cyclic or dihedral by Lemma 2.3 (3). Thus, by Lemma 3.3,

G = PSL(2, p) or (Zm × PSL(2, p):Z2.

If M is flag-regular, then G = PSL(2, 5), and M is a map on the projective plane
with the underlying graph being the Peterson graph or K6, which are dual to each
other.

Assume that M is not flag-regular. Then, M is an arc-regular map.

First, ifG = PSL(2, p), then p ≡ 1 (mod 4), and {Gv, Gf , Gf ′} = {D2p,Dp+1,Dp−1}
by Lemma 5.3 (1), and the existence of arc-regular triples are confirmed by Construc-
tion 5.9 and Lemma 5.10.

Next, for G = PGL(2, p), we have that {Gv, Gf , Gf ′} = {D2p,D2(p+1),D2(p−1)} by
Lemma 5.3 (2), and the existence of arc-regular triples are confirmed by Construc-
tion 5.7 and Lemma 5.8.
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Finally, for the case where G = Zm:PGL(2, p) with m 6= 1, we have that the prime
p ≡ 3 (mod 4), and {Gv, Gf , Gf ′} = {D2mp,D2(p+1),D2(p−1)} by Lemma 5.3 (3). The
existence of arc-regular triples are justified by Construction 5.11 and Lemma 5.12.

This completes the proof of Theorem 1.1 ✷
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