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Abstract

Recent advancements in Large Language Mod-
els (LLMs) have facilitated the development
of Multimodal LLMs (MLLMs). Despite their
impressive capabilities, MLLMs often suffer
from an over-reliance on unimodal biases (e.g.,
language bias and vision bias), leading to in-
correct answers in complex multimodal tasks.
To investigate this issue, we propose a causal
framework to interpret the biases in Visual
Question Answering (VQA) problems. Within
our framework, we devise a causal graph to
elucidate the predictions of MLLMs on VQA
problems, and assess the causal effect of bi-
ases through an in-depth causal analysis. Moti-
vated by the causal graph, we introduce a novel
MORE dataset, consisting of 12,000 VQA in-
stances. This dataset is designed to challenge
MLLMs’ abilities, necessitating multi-hop rea-
soning and the surmounting of unimodal biases.
Furthermore, we propose two strategies to mit-
igate unimodal biases and enhance MLLMs’
reasoning capabilities, including a Decompose-
Verify-Answer (DeVA) framework for limited-
access MLLMs and the refinement of open-
source MLLMs through fine-tuning. Exten-
sive quantitative and qualitative experiments
offer valuable insights for future research. Our
project page is at https://opencausalab.
github.io/MORE.

1 Introduction

Following the success of Large Language Mod-
els (LLMs) (Ouyang et al., 2022; Touvron et al.,
2023b), Multimodal LLMs (MLLMs) (OpenAI,
2023; Team et al., 2023) have been proposed for
various vision-language tasks (Fu et al., 2023; Liu
et al., 2023b). Despite their promising results, it
remains unclear if they truly understand images
and text in the context of multi-modal reasoning.

*This work was done during her internship at Shanghai AI
Laboratory.

†Corresponding author.

(a) Language Bias

Question: Which country is hosting
the next World Cup after this venue?

🤖
The next World Cup is the 2022 
FIFA World Cup, which will be 
held in Qatar.

Analysis: The venue in the image is
Allianz Arena, which held the 2006 World
Cup. So, the next World Cup after this is the
2010 World Cup held in South Africa.

(b) Vision Bias

Question: What is the representative 
building of the designer of this 
building in Berlin?

🤖
The representative building is
The Shard.

Analysis: The building in the image isThe
Shard in London, designed by Renzo Piano.
His representative work in Berlin is
Potsdamer Platz master plan.

Figure 1: Examples of over-reliance on unimodal biases.
MLLMs (e.g., LLaVA) erroneously generate answers
due to language bias (indicated by the underlined text
below the left image) and vision bias (the right image).

As shown in the knowledge-based Visual Ques-
tion Answering (VQA) problems of Figure 1, when
prompted with “Which country is hosting the next
World Cup after this venue?” MLLMs such as
GPT-4V (OpenAI, 2023) and LLaVA (Liu et al.,
2023a) may capture the language bias of “the next
World Cup” and think that the next World Cup
will be “the 2022 FIFA World Cup held in Qatar”
(which is also outdated knowledge), while ignoring
the exact venue presented in the image. Similarly,
when presented with an image of “The Shard” in
London, MLLM directly identifies “The represen-
tative building is The Shard” influenced by vision
bias, overlooking the specific constraint “in Berlin”
mentioned in the question. These inherent issues
pose significant challenges to the reasoning capa-
bilities of MLLMs, particularly when faced with
more complex questions.

In order to investigate the issue of MLLMs’
Over-REliance (MORE) on such unimodal biases,
we propose a causal framework to interpret and
quantify language and vision biases. Specifically,
we first define the causal graph of MLLM’s pre-
diction on VQA problems. The causal graph is
constructed based on a variety of causal factors
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Datasets Knowledge-
based

Multi-hop
Reasoning Answer Type Unimodal Biases

Evaluation Rationale # Size

Visual7W (Zhu et al., 2016) ✗ ✗ Open-ended ✗ ✗ 327.9K
VQA (v2) (Goyal et al., 2017) ✗ ✗ Open-ended ✗ ✗ 1.1M

FVQA (Wang et al., 2017) ✓ ✗ Open-ended ✗ ✓ 5.8K
OKVQA (Marino et al., 2019) ✓ ✗ Open-ended ✗ ✗ 14K
S3VQA (Jain et al., 2021) ✓ ✗ Open-ended ✗ ✗ 7.5K
A-OKVQA (Schwenk et al., 2022) ✓ ✗ Multi-choice ✗ ✓ 23.7K
INFOSEEK (Chen et al., 2023) ✓ ✗ Open-ended ✗ ✗ 1.4M

MORE (Ours) ✓ ✓ Multi-choice ✓ ✓ 12K

Table 1: Comparison of MORE with other VQA datasets, highlighting its incorporation of external knowledge,
multi-hop reasoning, unimodal bias evaluation, and rationale for interpretability.

that are integral to the prediction process, such as
image and question text. Then, we identify a set
of interventions in the context of VQA problems,
thereby ascertaining the causal effect of unimodal
biases on the prediction capabilities of MLLMs
via do-calculus (Pearl, 1995). By quantifying such
causal effects, we can evaluate MLLM’s sensitivity
and robustness against unimodal biases.

Based on the above causal analysis, we curate
a novel dataset termed MORE, comprising 12,000
VQA instances. This dataset advances existing
VQA datasets by introducing a dedicated evalua-
tion of unimodal biases. To facilitate the evaluation,
we adopt a Multiple Choice Question (MCQ) for-
mat, where each instance consists of an image, a
question, and four candidate options. The image
is sourced from an existing VQA dataset (Chen
et al., 2023). For question and option curation, we
incorporate a knowledge graph (KG) (Wang et al.,
2021), allowing us to better simulate MLLMs to
navigate the corresponding spurious paths within
the causal graph. Specifically, the options consist of
one correct answer, and three distractors targeting
language bias, vision bias, and multi-hop reasoning,
respectively. We also provide the reasoning path,
designated as causal rationale, in the KG for each
instance, offering interpretability for evaluation.
As summarized in Table 1, compared to existing
VQA datasets, MORE features external knowledge,
multi-hop reasoning, unimodal bias evaluation, and
rationale, showing better comprehensiveness. Ex-
perimental results on six leading MLLMs reveal
that: 1) most MLLMs perform much poorly on
MORE, showing an obvious tendency to rely on uni-
modal biases. 2) MLLMs still struggle to achieve
precise semantic understanding when dealing with
multimodal reasoning.

Furthermore, to mitigate the unimodal biases
and enhance MLLM’s reasoning abilities, we also

propose two strategies. The basic idea is to lever-
age step-by-step multimodal reasoning to mitigate
spurious paths. The first strategy involves prompt
engineering, featuring limited-access MLLMs (e.g.,
GPT-4V (OpenAI, 2023)) through a Decompose-
Verify-Answer (DeVA) framework to explicitly
guide MLLMs to extract information from mul-
tiple modals comprehensively. The second strategy
requires fine-tuning open-source MLLMs such as
LLaVA (Liu et al., 2023a) based on our dataset, in-
structing them with the generated causal rationale.

Overall, our main contributions are as follows:

• We propose a causal framework with a well-
defined causal graph to interpret and quantify
the biases in VQA problems.

• We construct a new MORE dataset, designed to
challenge MLLMs to overcome reliance on uni-
modal biases via multi-hop causal reasoning,
demonstrating superior comprehensiveness com-
pared to existing VQA datasets.

• We propose two strategies to mitigate the uni-
modal biases and enhance the reasoning ability
of current MLLMs, including prompting and fine-
tuning ways.

2 A Causal Framework

In this section, inspired by Stolfo et al. (2022), we
first introduce the causal graph of MLLM’s pre-
diction on VQA problems. Then, we leverage the
causal graph to elucidate the biases inherent in
VQA, especially vision and language biases. Fi-
nally, we assess the causal effects of such biases
on MLLMs’ prediction by performing controlled
interventions (Pearl, 1995).

2.1 Problem Setup
We consider an entity-centric VQA problem, de-
noted by M , consisting of a question Q and an
image I . The image depicts a specific entity and
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VQA Problem
M

Image
I

Question
Q

GroundTruth
G

Model’s Answer
A

Core Semantics
S

IrrelevantText
Surface Form

T

Intervention

DCE(
T→A)

DCE(C→A)

DCE(G→A)

TCE(I on A)

TCE(Q onA)

𝑮𝒉: 𝐂𝐚𝐮𝐬𝐚𝐥	𝐠𝐫𝐚𝐩𝐡	𝐨𝐟	
𝐃𝐞𝐬𝐢𝐫𝐞𝐝	𝐂𝐚𝐮𝐬𝐚𝐥	𝐌𝐞𝐜𝐡𝐚𝐧𝐢𝐬𝐦𝐬

DCE(S→A)

Intervention
PinkArrows Vision Bias
OrangeArrows Language Bias
BlueArrows Desired Effect

Core Entity
E

Irrelevant
Visual Context

C
DCE(E→A)

Figure 2: Causal graph of MLLM’s Prediction on VQA problems. We use the green subgraph Gh to represent the
desired causal mechanisms and compare it with the undesired effects of unimodal biases. We quantify the causal
effects of each factor by performing controlled interventions of the images (I, E,C) and of the questions (Q,T ).

the question is related to the entity. The question
Q := (S, T ) is composed of two distinct elements:
the core semantic content S, which conveys the
genuine intent of the question, and the textual sur-
face form T , which is irrelevant to the question’s
core meaning. The image I := (E,C), instead,
contains the core entity of interest E and the ir-
relevant visual context C. The model’s final an-
swer/prediction is represented by A. In this paper,
we use lowercase letters to represent an instance of
its corresponding capital variable.

2.2 Causal Graph of MLLMs’ Prediction
Inspired by the intuitive reasoning mechanisms ob-
served in human cognition (Zellers et al., 2019;
Fei et al., 2022; Stolfo et al., 2022), we formulate
the causal mechanisms underlying human problem-
solving in a VQA problem m:

s = fc1(q), e = fc2(i), g = fc3(s, e), (1)

where the cognitive process fc1 is employed to de-
cipher the core semantic meaning s of the question
q, and fc2 is employed to extract the core entity
e from the image i. Then, the function fc3 is uti-
lized to combine s and e, yielding the final result g.
These mechanisms are depicted within the green
subgraph Gh of Figure 2.

In contrast, the process of a model to tackle
the same VQA problem m involves the following
causal mechanisms:

a = fb(q, i), (2)

where a represents the model’s prediction. The
function fb operates as a black box, leaving un-
certainty regarding which aspects of q and i are
considered by the model and how they interact
with each other.

To further analyze how a model tackles the VQA
problem, we draw all possible causal mechanisms
that might take place in the complete causal graph
in Figure 2. Notable causal mechanisms include:

Language Bias The model may directly process
the question Q in two ways: by focusing on the
core semantics S via the causal path Q → S → A,
or on the irrelevant part T via the causal path Q →
T → A. Both pathways lead to language bias, e.g.,
the focus on “the next World Cup ” in Figure 1 (a).

Vision Bias The model may attend directly to the
entity E of the image I via I → E → A, or to the
irrelevant part C via I → C → A. Both pathways
lead to the emergence of vision bias, e.g., the focus
on the “The Shard” entity in Figure 1 (b).

Desired Causal Mechanisms The essence of cor-
rect reasoning lies in the model’s grasp of the un-
derlying causal mechanisms necessary for solving
a VQA problem. As illustrated in Figure 2), the
green subgraph Gh embodies this comprehension.
It implies an understanding of how both the im-
age and the question jointly influence the ground-
truth result G (via E → G and S → G). Con-
sequently, the model’s predictions should exhibit
sensitivity and robustness to changes in the ground
truth (Stolfo et al., 2022), namely G → A. No
spurious correlations should directly affect A un-
less it goes through the mediator G. Based on the
above analyses, we articulate the concept of model
sensitivity and robustness on VQA problems:

• Sensitivity, which assesses if the model adjusts
its predictions properly when the correct answer
changes, i.e., A responds to changes in G.

• Robustness, which assesses the undesired direct

3



causal effect of unimodal biases, e.g., C → A
and T → A, where lower effects indicate greater
robustness to input changes that do not alter the
correct answer.

2.3 Causal Analysis of VQA Biases
Once the desired causal mechanism is formulated
and the path of unimodal biases is defined, we are
able to quantify the causal effects of each causal
factor on another by performing controlled inter-
ventions (Pearl, 1995).

Causal Interventions In the context of VQA,
we adopt the following interventions to quantify
the causal effects of images and questions on the
model’s predictions:

1). Interventions on Q. The question Q can be
modified in two ways: (i) altering both S and
T , or (ii) altering T but keeping S unaffected.

2). Interventions on I . The image I can be re-
placed with an alternative image I ′ in three
ways: (i) altering both E and C , or (ii) al-
tering C but keeping E unaffected, or (iii)
altering E but keeping C unaffected.

Note that we do not solely alter S within Q, be-
cause it is not feasible to intervene on the core
semantics S of a question without affecting the
surface text T of it.

Formulation of Causal Effects Next, we explain
how we can obtain the causal effect from the inter-
ventions. Consider an intervention formulated as
do (X : x → x′), where X ∈ {I, E,C,Q, T} is a
factor in the context of the VQA problem defined
by M = {I,Q}. For simplicity, the probability
distribution prior to the intervention, P(A | I,Q),
is denoted by P , while the distribution following
the intervention is represented as P ′. Following
Pearl (1995), we measure the causal effect of each
factor in our causal graph by employing the dis-
tance metric δ to gauge the divergence between
distributions P and P ′:

CE = δ
(
P, P ′) . (3)

It is important to note that CE denotes the causal
effect, which can refer to either of the two forms:
the total causal effect (TCE), signifying the joint
effect across all causal paths from one variable to
another; and the direct causal effect (DCE), indi-
cating the effect of the directed causal path devoid
of intermediary variables (Pearl, 2022).

Following Stolfo et al. (2022), we quantify the
causal effect of factor X on the model’s answer A
by assessing the change in the predicted result:

δcp
(
P, P ′) := I

(
a ̸= a′

)
(4)

where a = argmaxx P (x), and a′ =
argmaxx P

′(x), I denotes an indicator of
the “change answer” event.

Causal Effects of the Questions For the total
causal effect of the question on the answer, we can
quantify it by intervening on Q:

TCE(Q on A) := Eq′∼P(Q)

[
δ
(
P, P ′)] ,

where P ′ = P
(
A | I, do

(
Q = q′

))
.

(5)

Note that, this TCE contains two different types
of paths that show how Q affects A, as illustrated
in Figure 2:

• The desired decision-making route we aim for
the model to adopt ( the Q → S → G → A
path), where the model responds accordingly to
alterations in the ground truth answer.

• The spurious correlation that the model might
have learned (e.g., the Q → T → A path, where
the model depends on certain linguistic contexts
potentially linked to their prevalence in the train-
ing corpus).

Instead of changing the core semantic meaning,
maintaining S constant will enable us to derive the
DCE of the textual surface form T on A:

DCE(T → A) := Eq′∼P(Q|S)
[
δ
(
P, P ′)] ,

where P ′ = P
(
A | I, do

(
Q = q′

))
.

(6)

It should be noted that the DCE(T → A)
equates to the TCE of T on A, due to there
is no mediator between T and A. Besides, as
discussed in “Causal Interventions”, solely inter-
vening on S without influencing the textual sur-
face T is unattainable. However, comprehending
the causal impact of S on A becomes feasible
through the comparison of two known quantities:
TCE(Q on A) and DCE(T → A).

Causal Effects of the Images It is evident from
Figure 2 that the causal structure of images is ex-
actly the same as that of questions. Therefore, the
total causal effect of the image I on the answer can
be directly obtained in a similar manner, i.e.,

TCE(I on A) := Ei′∼P(I)
[
δ
(
P, P ′)] ,

where P ′ = P
(
A | Q,do

(
I = i′

))
.

(7)
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Image & KG
Collection

Chrysler PT Cruiser

KG

…

Subgraph Sampling

Chrysler PT Cruiser

Fiat 500X

Fiat Automobiles 
S.p.A.

The Chrysler 
Corporation

Brand

Brand

Same
relation

Followed
By

Step 1 Step 2

Multiple-Choice
Question Construction

Step 3

Question: 
What brand follows this vehicle 
in its product line?

"this vehicle"

Original question

Associated
entity

Language Bias Option:
Tesla

Vision Bias Option:
Chrysler PT Cruiser

🤖
?

Semantic Misleading Option:
The Chrysler Corporation

Ground Truth Option:
Fiat Automobiles S.p.A.

🤖
Entity-relation
path

"What equipment or engine is used by 
this vehicle to provide power?”

To answer the question, first, We need to identify what this vehicle is. From the image, this vehicle is Chrysler PT Cruiser.
Then, we need to infer which vehicle follows Chrysler PT Cruiser, which is Fiat 500X.
Then, we need to infer the brand of Fiat 500X, which is Fiat Automobiles S.p.A.
Therefore, the answer is: Fiat Automobiles S.p.A.

Causal Rationale
Generation

Figure 3: Our framework for generating data of MORE. We first prepare the image source and link the visual entity in
a knowledge graph. Then, motivated by the visual and language bias analysis through the causal lens, we construct
multiple-choice questions that require MLLMs to overcome unimodal biases and conduct multi-hop reasoning in a
sampled subgraph. We also generate the causal (reasoning) rationale for each instance to provide interpretability.

Likewise, maintaining E constant during each
intervention on I allows us to quantify the DCE of
the irrelevant visual context C on A, which refers
to the strength of the path C → A:

DCE(C → A) := Ei′∼P(I|E)

[
δ
(
P, P ′)] ,

where P ′ = P
(
A | Q,do

(
I = i′

))
.

(8)

Maintaining C and G constant during each
intervention on I instead allows us to quantify
DCE(E → A):

DCE(E → A) := Ei′∼P(I|C,G)

[
δ
(
P, P ′)] ,

where P ′ = P
(
A | Q,do

(
I = i′

))
.

(9)

Note that in practical situations, it is significantly
challenging to intervene on the core entity E while
simutaniously controlling for the irrelevant visual
context C, the ground truth answer G, and the
question Q. Therefore, this type of intervention
will not be considered in subsequent experiments.

Overall, calculating TCE helps us assess a
model’s sensitivity (response to changes in ground
truth), while DCE evaluates its robustness (stabil-
ity of predictions against spurious correlations with
fixed ground truth).

3 Constructing the MORE Dataset

Based on the causal analysis in Section 2, we
construct a novel MORE dataset that necessitates

MLLMs to transcend unimodal biases and thor-
oughly integrate information from both text and
images to select the correct answer. To ensure qual-
ity, we employ various evaluations to analyze the
quality of the generated data. The data generation
process is illustrated in Figure 3.

3.1 Images and Knowledge Graph Collection

We begin with an existing VQA dataset, INFOS-
EEK (Chen et al., 2023), which links entities
depicted in images to information sourced from
Wikipedia, requiring a VQA model to answer a
question about the associated entity. For instance
in Figure 3, the entity associated with the show-
cased vehicle is “Chrysler PT Cruiser”, with the
question being “What equipment or engine is used
by this vehicle to provide power?” In this example,
terms such as “Chrysler PT Cruiser”, “this vehi-
cle”, and the relevant region in the image all refer
to the same entity.

Based on the images and corresponding entity
information, we identify all n-order neighbors
(n ∈ {1, 2}) related to the associated entity in a
knowledge graph (KG) - Wikidata5M (Wang et al.,
2021), which is built upon Wikipedia data.

3.2 Subgraph Sampling

Motivated by the causal analysis discussed in Sec-
tion 2, we aim to construct multi-hop queries
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that require overcoming unimodal biases to be an-
swered correctly. To this end, we first identify a
subgraph of an entity and its n-order neighbors in
the KG. We then filter paths in this subgraph that
meet two criteria: 1) Uniqueness of Paths: the path
from the associated entity to the selected neigh-
bor is unique, and 2) Shared-Type Relations: they
share a same-type relation pointing to a unique en-
tity, and these two pointed entities are not the same.
The first criterion guarantees the uniqueness of the
correct answer, while the second introduces inter-
ference and challenges MLLM’s reasoning ability.

For instance, in the subgraph of Figure 3, “Fiat
500X” is a first-order neighbor of “Chrysler PT
Cruiser”, uniquely linked by the “followed by” re-
lation. These two entities are linked to different
entities “The Chrysler Corporation” and “Fiat Au-
tomobiles S.p.A” through the same type of relations
“brand”. Meeting these criteria, we form the multi-

hop query: “Chrysler PT Cruiser
followed by−→ Fiat

500X brand−→ Fiat Automobiles S.p.A”, with “Chrysler
PT Cruiser” as the start and “Fiat Automobiles
S.p.A” as the answer. In this way, other entities of
the filtered subgraph may serve as distractors to
challenge MLLMs’ reasoning ability, which will
be discussed in the next section.

3.3 Multiple-Choice Question Construction

In this subsection, we detail the process of con-
structing multiple-choice questions with four can-
didate options.

Question Generation After obtaining the sub-
graph that meets the criteria, we generate questions
using the entity-relation path in it. Specifically, to
obtain fluent and coherent questions, we feed the
path into an LLM to produce the target question
text. Our inputs include the names of start entity
and all relations within the path. We adopt the
in-context learning (ICL) technique (Brown et al.,
2020) and provide several examples to LLMs. The
prompt template is in Appendix A.1. Comparing
various LLMs with adjusted instructions, we find
ChatGPT generates the highest-quality multi-hop
questions, hence choosing its results for subsequent
human evaluation. Finally, to prevent information
leakage, entity names in the question are replaced
with “this <OBJECT_NAME>”.

Language Bias Option As discussed in Sec-
tion 2.2, language bias refers to the model overly at-
tending to the information from questions through

468101214
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Figure 4: Question quality of MORE compared to other
VQA datasets in terms of lexical diversity and fluency.

the undesired path Q → S → A or Q → T → A.
To simulate such a situation, we query an MLLM
with the generated question in a text-only setup. To
ensure that the final options are identical for all
MLLMs, we uniformly use the answers obtained
from querying GPT-4V. The output for the men-
tioned example in Figure 3 is “Tesla”. The prompt
template we use can be seen in Appendix A.2.

Vision Bias Option To explore vision bias along
the path I → A, we include the visually associated
entity name (e.g., “Chrysler PT Cruiser”) as an op-
tion. This allows us to observe whether the model
directly selects it upon encountering an option that
aligns with the visual information.

Semantic Misleading Option Moreover, we in-
troduce a semantic misleading option, such as “The
Chrysler Corporation”, to challenge the multi-hop
reasoning of MLLMs in KG. This option refers to
the entity that is pointed by the relation commonly
owned by both the associated entity and its sampled
neighbor. For example in Figure 3, upon encoun-
tering a question about “brand” and “Chrysler PT
Cruiser”, MLLMs might simply output a direct an-
swer (e.g., “The Chrysler Corporation”), ignoring
other constraints in the question (e.g., “followed
by”), hence struggling to choose the correct answer
(e.g., “Fiat Automobiles S.p.A.”).

Ground Truth Option Corresponding to the
causal path via I → G and S → G, this option is
the end entity of the entity-relation path (e.g., “Fiat
Automobiles S.p.A.”). Finally, we check and ensure
that each option is distinct from the remaining three
to eliminate any potential overlap in samples.

3.4 Causal Rationale Generation
Furthermore, the entity-relation paths can assist
in generating the reasoning rationale, termed as

6



causal rationale, tailored to the question at hand.
In this context, we have employed a heuristic rule-
based approach, starting from the associated entity
and generating a causal rationale step by step un-
til reaching the ground truth answer. Templates
of generation can be found in the Appendix A.3.
These generated causal rationales can be utilized
to verify whether the reasoning process of MLLMs
is correct, thereby providing interpretability. They
can also be used to fine-tune specialized MLLMs
to enhance their multi-hop reasoning capabilities,
with experimental results available in Section 5.3.
The causal rationales could further be polished and
refined through LLMs such as ChatGPT, and we
leave this for future work.

3.5 Dataset Statistics

Statistics of Different Hops Using the aforemen-
tioned construction approach, we automatically
generate training data from the train set of INFOS-
EEK, and development/test data from the validation
set of INFOSEEK. Table 4 in Appendix shows the
statistics of our curated dataset MORE. For the pur-
pose of generating questions with depths of 2-hop
and 3-hop, we set n = 1, 2, respectively. We do
not include longer-hop queries here due to concerns
that their complexity will render the generated ques-
tions ambiguous or difficult to comprehend.

Question Distribution We categorize the gen-
erated questions into distinct types based on their
starting n-grams in Figure 17 in the Appendix. The
MORE dataset showcases an extensive lexical diver-
sity in the questions generated.

3.6 Quality Analysis

Question Quality To ensure the quality of the
comprising datasets, we analyze the lexical diver-
sity and the fluency of the generated questions. The
considered baselines and metrics are detailed in Ap-
pendix C.1. From Figure 4, MORE shows superi-
ority in terms of lexical diversity and fluency, even
in comparison to datasets created through human
annotator-based question generation.

Human Evaluation We also conduct a human
evaluation to validate and assess the quality of the
generated questions. Results in Appendix C.2 show
that 90.6% of the generated questions are classified
as valid by the annotators, further demonstrating
the quality of our datasets.

4 Evaluating MLLMs on MORE

4.1 Experimental Setup

Datasets We use all the test data of MORE for
evaluation. We adopt two different settings: 1)
Open-ended. Ask the MLLM to generate answers
based on the input image and question, or 2) Multi-
choice. Provide MLLM with four options and let
it choose the correct answer from them. The latter
setting has a random baseline (accuracy of 25%).

Baselines We evaluate various leading MLLMs
on our MORE dataset in a zero-shot fashion, includ-
ing two limited-access MLLMs: GPT-4V (Ope-
nAI, 2023) and Gemini Pro (Team et al., 2023),
and four open-source MLLMs: BLIP-2 (6.7B) (Li
et al., 2023), InstructBLIP (13B) (Dai et al., 2023),
mPLUG-Owl (7B) (Ye et al., 2023), and LLaVA
(v1.5, 13B) (Liu et al., 2023a), detailed in Ap-
pendix D.1. As for evaluation metrics, we adopt
the VQA accuracy (Antol et al., 2015) for all mod-
els for a fair comparison. We also quantify the
causal effects of images and questions on models’
predictions in Section 4.3.

4.2 Evaluation Results

We present the results of MLLMs separately on
two-hop, three-hop, and all data of MORE in Ta-
ble 2. Examples of model prediction can be found
in Appendix H. We observe that: 1) The perfor-
mance of all baselines on MORE is poor (e.g., under
the “Multi-choice” setting, only Gemini Pro ex-
ceeded the random baseline at 28.9% accuracy),
indicating MLLMs’ vulnerability to language and
vision biases. 2) There is still a gap between open-
source and limited-access models on MORE, espe-
cially under the “Open-ended” setting. 3) Most
models perform better on two-hop data than on
three-hop data (Gemini Pro is particularly outstand-
ing on two-hop data, achieving 33.5% accuracy),
suggesting that MLLMs’ reasoning capabilities are
challenged when the problems become more com-
plex. 4) GPT-4V performs best under the “Open-
ended” setting, but falls short under the “Multi-
choice” setting versus Gemini Pro, possibly due to
that we use homologous ChatGPT-generated dis-
tractors when constructing the language bias option
in Section 3.3, which poses a greater challenge to
GPT-4V’s judgment. This point is also verified in
the following analyses in Section 4.3.
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Model LLM # Params MORE (Two-Hop, acc (%)) MORE (Three-Hop), acc (%) MORE (Overall, acc (%))

Open-ended Multi-choice Open-ended Multi-choice Open-ended Multi-choice

Random / / / 25.0 / 25.0 / 25.0

BLIP-2 OPT 6.7B 4.0 16.4 1.4 15.4 2.7 15.9
InstructBlip Vicuna 13B 3.0 17.0 1.6 16.2 2.3 16.6
mPLUG-Owl Llama 7B 4.0 12.4 8.2 11.4 6.1 11.9
LLaVA Llama 13B 8.0 20.8 6.8 13.6 7.4 17.5

GPT-4V - - 15.8 25.6 15.3 23.2 15.6 24.4
Gemini Pro - - 14.2 33.5 10.1 24.4 12.2 28.9

Table 2: MLLMs’ results on the test set of MORE. We report the VQA accuracy (%) under the open-ended generation
and the multi-choice settings on two-hop, three-hop, and all data, respectively.“-” denotes not released information.

BLIP2

InstructBlip

mPLUG-Owl
LLaVA

GPT-4
Gemini

0%

20%

40%

60%

80%

100% Language Bias Option
Vision Bias Option
Semantic Misleading Option
Ground Truth Option

Figure 5: Option distribution of MLLMs.

4.3 Causal Analysis of VQA Biases

In this subsection, we analyze the performance of
MLLMs through a causal lens.

Option Distribution In Figrue 5, we show the
distribution of options under the “Multi-choice” set-
ting across various MLLMs. We observe that: 1)
BLIP2 and GPT-4V often incorrectly choose op-
tions indicating language bias, aligning with our
prior analysis on GPT-4V. 2) The proportion of ei-
ther language or vision bias exceeded 40% across
all the models, demonstrating the significant im-
pact of unimodal biases on their predictions. 3) To
some extent, models’ selection of semantically mis-
leading options indicates some ability to combine
visual and textual information, though not fully
grasping the problem. This highlights the chal-
lenge our MORE dataset poses to current MLLMs.
Please note that discrepancies may exist between
the proportions of ground truth options presented
here and the accuracy values reported in Table 2,
as some models’ outputs (e.g., mPLUG-Owl) may
not align with the provided options, thus affecting
the count of valid answers.

Figure 6: Comparison of direct and total effects of im-
age and question on prediction for MLLMs.

Causal Effects of Images and Questions To fur-
ther analyze the impact of vision bias and language
bias on the model’s prediction, we assess the causal
effects based on the definitions provided in Sec-
tion 2.3. Specifically, we randomly select 100 sam-
ples for intervention and then measure the average
of the effects over all instances to calculate TCE
(corresponds to model’s sensitivity) and DCE (cor-
responds to models’ robustness). We implement
two straightforward and natural intervention ways
separately for questions and images. For questions:
(i) we change both the core semantics and the tex-
tual form, or (ii) we only change the textual form
while controlling to keep the core semantics un-
changed. For images: (i) we change both the en-
tities of interest and the visual context, or (ii) we
only change the visual context while keeping the
core entities unchanged. As discussed below Equa-
tion (9), we do not conduct sole interventions on the
core entity while concurrently controlling for the
irrelevant visual context, the ground truth answer,
and the question. This is because it is extremely
difficult to find such qualified samples to calculate
DCE(E → A) in practical scenarios. Overall, a
higher TCE is desirable, indicating better sensitiv-
ity, while a lower DCE indicates better robustness.
Implementation details of the intervention can be
found in Appendix E.

From Figure 6: 1) Current MLLMs exhibit high
sensitivity (high TCE), a possible reason is that
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Model / Acc (%) OK-VQA INFOSEEK MORE

Open-ended. Multi-choice.

GPT-4V 70.4 38.0 15.6 24.4
Gemini Pro 64.9 37.8 12.2 28.9
LLaVA 72.8 16.0 7.4 17.5

GPT-4V (w. the DeVA framework) 74.8 50.6 24.2 30.3
Gemini Pro (w. the DeVA framework) 68.3 50.3 19.5 32.1

LLaVA (trained on INFOSEEK) 72.1 19.7 3.1 13.9
LLaVA (trained on MORE) 73.6 20.2 16.4 28.9

Table 3: Results comparison after employing our strategies on OK-VQA, INFOSEEK, and MORE.

instruction tuning makes models sensitive to varia-
tions in input (Stolfo et al., 2022). 2) However, the
robustness is relatively low (high DCE), showing
predictions change with variations in input even
when the ground truth is fixed, suggesting the re-
liance on spurious paths over genuine causal fea-
tures. 3) The relationship between MLLMs’ uti-
lization of biases and their performance is intricate,
with GPT-4V performing well even amid strong
language and vision biases.

5 Mitigating VQA Biases for MLLMs

In this section, we explore two strategies to mitigate
the unimodal biases of MLLMs.

5.1 Experimental Setup

Dataset We conduct experiments on three
knowledge-based VQA datasets OK-VQA (Marino
et al., 2019), INFOSEEK (Chen et al., 2023), and
our curated MORE, where relying solely on image
content proved insufficient for answering questions.
We randomly select 1,000 instances from the valida-
tion set of INFOSEEK and OK-VQA, respectively,
and report results on the test data of MORE, to en-
sure a consistent number of samples for evaluation.
Since INFOSEEK and OK-VQA do not provide
multiple options, we only report the results of them
under the “Open-ended” settings.

Baselines We focus on three models that have
shown superior performance in Table 2: LLaVA,
GPT-4V, and Gemini Pro. For limited-access
models GPT-4V and Gemini Pro, we propose
a prompting-based Decompose-Verify-Answer
(DeVA) framework. For the open-source model
LLaVA, we conduct fine-tuning on various datasets
and compare the results. We do not apply the DeVA
framework to LLaVA based on findings from our
pilot study that LLaVA’s performance in compre-
hending and responding to our instructions is not
on par with that of GPT-4V and Gemini Pro.

5.2 A Decompose-Verify-Answer Framework

For a given instance, DeVA begins with a question
decomposer to break down the complex question
into several easier ones step-by-step, so as to ex-
plicitly avoid the model simply taking a spurious
path to give the answer. For each subquestion, after
providing an answer, DeVA employs a verifier to
confirm the accuracy of the answer. The verifier
strategizes the utilization of external tools and in-
vestigates their outputs, thereby acquiring the nec-
essary context or information needed to provide a
precise answer, such as image retrieval and text re-
trieval. This iterative process of answering and veri-
fying will continue until all subquestions have been
resolved. By incorporating external knowledge, the
final verified output comprehensively integrated the
information of the whole reasoning process to give
a correct answer. A detailed illustration of DeVA
and the prompt template is in Appendix F.

Results From Table 3, we can see that: 1) the
DeVA framework significantly enhances the per-
formance of GPT-4V and Gemini Pro across all
three datasets. 2) Notably, the improvement on
the INFOSEEK dataset is more pronounced than
on MORE. This is because INFOSEEK is a dataset
focused on information-seeking, and once we pro-
vide the models with relevant external knowledge,
they can quickly extract the necessary information
and output a correct answer. However, the limited
results on MORE suggest that even when models
are allowed access to additional information, they
may still be impeded by language and vision bi-
ases. Therefore, how to disentangle and address
this issue remains a challenging problem, which
we leave for future work.

5.3 Fine-tuning LLaVA

We fine-tune LLaVA using the LoRA (Hu et al.,
2022) technique on the training sets of INFOSEEK
and MORE, respectively. For MORE, we incorporate
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the generated causal rationale into the instruction
of some samples, so as to enhance the models’ rea-
soning ability. Other implementation details are in
Appendix G. From Table 3, we can see: 1) After
fine-tuning, LLaVA shows a significant improve-
ment in performance on OK-VQA, INFOSEEK,
and MORE, particularly LLaVA (trained on MORE)
outperforms the vanilla GPT-4V on OK-VQA and
MORE. 2) While LLaVA (trained on INFOSEEK)
does improve its performance on INFOSEEK, it
significantly reduces its effectiveness on MORE. In
contrast, LLaVA (trained on MORE) demonstrates
better generalizability, confirming the effectiveness
of incorporating rationales into instructions.

6 Related Work

Multimodal Large Language Models Recent
advancements in LLMs have facilitated the devel-
opment of powerful MLLMs. Pioneer work has
demonstrated their impressive capability on multi-
modal tasks (OpenAI, 2023; Team et al., 2023; Liu
et al., 2023a). Despite the substantial success, the
current evaluation of MLLMs mainly focuses on
basic visual tasks (Liu et al., 2023b; Fu et al., 2023;
Lu et al., 2024), and their reasoning ability has not
been investigated in detail.

Knowledge-based VQA Datasets Several pre-
vious works have studied knowledge-based VQA
problems (Wang et al., 2017; Marino et al., 2019;
Chen et al., 2023). While these datasets do require
knowledge to answer questions, they have the fol-
lowing limitations: 1) They often focus solely on
image-related information without requiring the
model to perform multi-hop reasoning. 2) The an-
swer types are typically open-ended and do not
provide reasoning rationales, making it difficult to
evaluate the model’s output. 3) They cannot assess
the degree of reliance on language or visual biases
by models. As initially introduced in Section 1, Ta-
ble 1 provides a comparative summary of various
datasets alongside our MORE dataset, underscoring
its enhanced comprehensiveness.

Language and Vision Biases in VQA Studies
have found that some VQA models tend to rely
on statistical priors present in the training data,
rather than truly understanding the content of im-
ages (Agrawal et al., 2018). This issue manifests
in two primary forms: language bias and vision
bias. The former emerges from strong correlations
between specific questions and their answers (Ab-

basnejad et al., 2020; Zhu et al., 2020), and the
latter stems from the frequent co-occurrence of
certain textual and visual elements in the training
dataset (Si et al., 2022; Gupta et al., 2022). Re-
cent strategies to mitigate such biases mainly focus
on employing data augmentation techniques (Niu
et al., 2021). Although the concerns are simi-
lar, all the aforementioned methods focus on the
statistical bias under the pre-train and fine-tune
paradigm, while we focus on the reasoning ability
of MLLMs.

7 Conclusion

This paper presents a comprehensive approach to
quantifying and mitigating the unimodal biases in
MLLMs. Through our causal inference framework,
we provide an in-depth analysis to assess the causal
effects of such biases on the model’s prediction
in VQA problems. The introduced MORE dataset
challenges MLLMs to engage in multi-hop reason-
ing and to overcome language and vision biases,
thereby pushing the boundaries of their reasoning
capabilities. Our proposed solutions, including the
DeVA framework and the fine-tuned LLaVA mod-
els, demonstrate significant potential in enhancing
the reasoning abilities of MLLMs.

8 Limitations

Our current generation of rationales is based on
heuristic rules. Experiments in Section 5.3 have
demonstrated the effectiveness of incorporating ra-
tionales into instructions. Therefore, we believe
that refining and polishing these rationales with an
LLM (e.g., ChatGPT) could be beneficial. Besides,
the Wikidata5M dataset we employed was released
in 2021, and some information in the knowledge
graph may be outdated. Although we have made
efforts to manually verify the test set and try to
ensure it does not contain incorrect information, it
is still inevitable that errors may occur within the
extensive training data.
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Question Generation
Task Description:
Provide a question according to the starting entity and path (relations split by ‘,’) in a knowledge graph.

Template:
Starting entity: <HEAD_ENTITY>
Path: <RELATION_PATH_IN_KG>

Examples:

Starting entity: Coca-Cola
Path: discoverer or inventor, place of birth
Generated Question: Which city is the birthplace of the inventor of Coca-Cola?

Starting entity: James Berkeley
Path: place of birth, owned by
Generated Question: Who is the owner of the building where James Berkeley was born?

Starting entity: Conwy Castle
Path: country, highest point, material used
Generated Question: What material is used in the highest point of the country where Conwy Castle is located?

Figure 7: Prompt template of multi-hop question generation.

Language Bias Option Generation
Task Description:
Given a question, provide a specific answer.

Examples:

Question: What is the parent taxon of the main food source of this animal?
Answer: Animalia

Question: What is the heritage designation of the burial place of the person who commissioned this building?
Answer: UNESCO World Heritage Site.

Figure 8: Prompt template of language bias option generation.

Dataset #I, Q, A Len of Q / A # Ent

MORE-train 10K 14.3 / 2.1 1,261
- 2-hop 4,134 11.6 / 2.0 886
- 3-hop 5,866 16.1 / 2.2 686

MORE-dev 1K 13.8 / 2.3 118
- 2-hop 548 12.2 / 2.2 71
- 3-hop 452 15.8 / 2.5 73

MORE-test 1K 13.9 / 2.4 251
- 2-hop 500 12.3 / 2.2 153
- 3-hop 500 15.6 / 2.6 143

Table 4: Dataset statistics of different hops.

A Prompt Templates

A.1 Question Generation

We present the prompt template for generating lan-
guage bias options in Section 3.3 in Figure 7.

A.2 Language Bias Option Generation

We present the prompt template for generating lan-
guage bias options in Section 3.3 in Figure 8.

A.3 Training Instance with Causal Rationale

An example of the training instance in MORE is
shown in Figure 9.

B Question Distribution

In Figure 17, we categorize the generated questions
into distinct types, based on their starting n-grams.
The dataset MORE showcases an extensive lexical
diversity in the questions generated. This diversity
is evidenced by variations in the introductory in-
terrogative words (e.g., “what”, “who”, “where”,
etc.), exemplified by phrases like “What is the...”,
“In which country...”, and more. Such lexical rich-
ness is crucial for mitigating the vulnerability of
MLLMs to linguistic variations.

C Quality Analysis Details

C.1 Question Quality

To ensure the quality of the comprising datasets,
we analyze the lexical diversity and the fluency
of the generated questions, which are useful for
conducting a robust evaluation using questions that
are linguistically diverse and coherent.
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Training Instance with Causal Rationale
Image:

Question:
Who owns the company that owns this building?

Rationale:
To answer the question, first, we need to identify what this building is. From the image, this building is
York railway station.

Then, we need to infer the owner of York railway station, which is High Level Output Specification.

Then, we need to infer the owner of High Level Output Specification, which is uk government.

Therefore, the answer is: uk government.

Figure 9: Prompt template of the training instance in MORE.

90.6%

5.7%3.3%
0.4% Valid

Alternative
Unclear
Not Match

Loading [MathJax]/extensions/MathMenu.js

Figure 10: Human evaluation results of MORE.

Baselines We select extensive VQA datasets for
comparison, including Visual7W (Zhu et al., 2016),
VQA (v2) (Goyal et al., 2017), FVQA (Wang
et al., 2017), OK-VQA (Marino et al., 2019),
S3VQA (Jain et al., 2021), A-OKVQA (Schwenk
et al., 2022), and INFOSEEK (Chen et al., 2023)
(contains both automated generation version and
human-annotated version).

Evaluation Metrics For lexical diversity, we uti-
lize three metrics that are not dependent on length:
moving average type-token ratio (MATTR) (Cov-
ington and McFall, 2010), measure of textual lexi-
cal diversity (MTLD) (McCarthy, 2005), and hyper-
geometric distribution diversity (HDD) (McCarthy
and Jarvis, 2010). We average these three metrics
for a unified assessment and employ the Lexical-
Richness package (Shen, 2022) (version 0.5.03) for

calculation. For fluency, we employ a pre-trained
language model GPT2-large (Radford et al., 2019)
with 774M parameters to compute the perplexity
of the questions, which is often used as a measure
by previous work (Wang et al., 2019; Cahyawijaya
et al., 2021).

C.2 Human Evaluation
We conduct a human evaluation of 100 questions
randomly chosen from the MORE dataset to validate
and assess the quality of the generated questions.
This evaluation is carried out by three human anno-
tators, who are provided with detailed guidelines
and illustrative examples before starting the evalu-
ation process. For each question, given the visual
context and ground truth answer, the annotators are
asked to determine whether: 1) the question is valid,
2) the question has a possible answer alternative,
3) the question does not match the answer, or 4)
the question is unclear or confusing. For each sam-
ple, we ask three human annotators to judge each
generated question into one of the four options.

The outcomes of this human evaluation are sum-
marized in Figure 10. The results are encouraging,
with 90.6% of the generated questions being classi-
fied as valid by the annotators, further demonstrat-
ing the quality of our datasets.

D Baselines and Datasets Details

D.1 Baselines
For open-source MLLMs, we consider the follow-
ing baselines:
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1) BLIP2 (Li et al., 2023), which utilizes a
scalable multimodal pre-training method to enable
LLMs to understand images. We employ its BLIP2-
OPT (Zhang et al., 2022)-6.7B variant.

2) InstructBLIP (Dai et al., 2023), an instruction-
tuned version of BLIP-2 on various tasks including
VQA. We employ its InstructBLIP-Vicuna (Chiang
et al., 2023)-13B variant.

3) mPLUG-Owl (Ye et al., 2023), which pro-
poses a new two-stage training method for align-
ing images and text. We employ its mPLUG-Owl-
Llama (Touvron et al., 2023a)-7B variant.

4) LLaVA (Liu et al., 2023a), which translates
images into texts of captions and bounding boxes,
and prompts GPT-4 to generate a multimodal
instruct-tuning dataset in the context of seed ex-
amples. We employ its LLaVA-Llama (Touvron
et al., 2023a)-13B variant.

D.2 Datasets

OK-VQA (Marino et al., 2019) is a VQA dataset
that necessitates external knowledge beyond the
visible content in images. It is crafted by crowd-
sourced participants who form complex ques-
tions based on extensive information available on
Wikipedia.

INFOSEEK (Chen et al., 2023) is another VQA
dataset aimed at information-seeking questions that
require more than just commonsense knowledge. It
combines human-annotated questions with visual
entity recognition datasets and Wikidata to generate
complex question-answer pairs.

E Implementation Details of Intervention

In this section, we introduce the implementation
details of interventions on questions and images.
Given the impracticality of enumerating all pos-
sible perturbations of T and R, practical results
within a specific subset of T and R could be at-
tained by intervening on Q while leaving S un-
affected, and intervening on I while leaving E
unaffected, respectively (Stolfo et al., 2022).

For questions, in the analysis of TCE, the im-
age stays the same while the question is altered
to a different one from the dataset that relates to
the same entity, ensuring a ground truth shift post-
intervention. In the analysis of DCE, we similarly
keep the image constant and let ChatGPT rephrase
the question, altering its textual form but preserving
its semantic meaning (verified through manual eval-
uation), thereby maintaining an unchanged ground

truth after the intervention.
For images, in the analysis of TCE, we maintain

a constant question while replacing the image with
another from the dataset that corresponds to the
same question but features different entities, ensur-
ing a change in the ground truth post-intervention.
In the analysis of DCE, the question remains un-
changed, but the image is replaced with one of the
same entity from an alternative source, specifically
using Google Lens’s API*) to keep the ground truth
consistent after the intervention.

F The DeVA Framework

In this section, we first present the overall frame-
work, then we will go over each part of it in detail.

F.1 Overall Framework

Given a question Q and an image I , the VQA task
demands the system to return an output A that con-
cisely answers the question. As shown in Figure 11,
we first initialize a question decomposer D to an-
alyze Q and break it down into manageable sub-
questions. Then, we employ a verifier V to con-
firm the accuracy of the original answer to each
decomposed subquestion. The generation verifier
typically involves active information-seeking and
answer-verification, which acquires the necessary
context or information needed to investigate and
revise the answers. This includes two optional op-
erations: image retrieval to seek images similar to
I and determine their titles, or text retrieval with
a specific query to fetch pertinent documents and
summarize their content. This iterative process of
answering and verifying will continue until we re-
solve each subquestion. Finally, the verified answer
A is output following the aforementioned reason-
ing process and retrieved information.

F.2 Question Decomposer

For a given VQA problem, MLLMs often simply
exploit a spurious path to make predictions due to
the inherent language and vision biases. In order to
alleviate this issue, motivated by Chain-of-Thought
reasoning (Wei et al., 2022), we encourage MLLMs
to decompose the question Q before outputting the
answer, so as to gradually solve a complex question
that requires multi-hop reasoning. As shown in Fig-
ure 11, for the question “Which country hosted the
next World Cup after this venue?”, our decomposer
breaks it down into two subquestions :

*Web interface available at https://images.google.com.
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1. “What this venue is?

2. “Which country hosted the next World Cup
after Allianz Arena?

Such decomposition will explicitly constrain the
model to comprehend and extract the truth seman-
tics of the question, thus avoiding simply exploring
a spurious path to give the answer.

F.3 Verifier

Some works have found that vision illusion and
language hallucination may appear in the pro-
cess of MLLMs’ response generation (Guan et al.,
2023; Yang et al., 2023). To alleviate this issue,
we adopt the retrieval-augmented generation ap-
proaches (Khandelwal et al., 2020; Chen et al.,
2022). Specifically, we consider two different re-
trieval ways for the verifier to choose during each
verification step: image retrieval and text retrieval.

Image Retrieval Although our framework is ap-
plicable to any image retrieval method, in this pa-
per, we mainly utilize Google Image Search to
obtain a broad range of information related to the
image as provided by Google Lens API. This in-
formation encompasses various details, such as
knowledge graph entities and captions of analo-
gous or identical images. The availability of these
details can vary based on the image input provided
to Google Image Search. Then, the verifier gleans
relevant information from captions associated with
visually similar images, so as to verify the original
answer and conduct the next round of reasoning.

Text Retrieval Similarly, our framework is ap-
plicable to any text retrieval method, we explore a
simple, off-the-shelf dense retriever for Wikipedia,
GTR (Karpukhin et al., 2020), as our text retriever.
First, the verifier constructs a query to perform
text retrieval according to the currently generated
context, and then the query is input into a GTR
model to get related document titles and contents.
Finally, the verifier will fetch pertinent documents
and summarize their content to verify the immedi-
ate answer.

F.4 Final Verified Answer

Finally, the improved response that takes verifica-
tion into account is generated. This is executed by
a final prompt where the context takes into account
all of the previous reasoning steps, the baseline re-
sponse, and the verification question-answer pairs,

so that the corrections can take place. The prompt
template is shown in Figure 12.

G Implementation Details of Fine-tuning
LLaVA

We adopt LLaVA-13B-v1.5 as the base model and
employ the LoRA (Hu et al., 2022) technique. Dur-
ing pre-training, only LoRA parameters are opti-
mized. We set the rank of LoRA modules to 128.
Our model is optimized with a learning rate of 2e-4
and a linear warm-up for the first 3% steps. The
batch size is 16 and the number of epochs is 1. All
the LoRA parameters are trained on 8 NVIDIA
A100 GPUs with 80GB memory. We fine-tune
LLaVA on the training sets of INFOSEEK and
MORE, respectively. For MORE, we incorporate the
generated rationale into the instructions of some
samples, so as to enhance the models’ reasoning
ability. The template of a training instance can be
found in Figure 9.

H Case Study

We conduct a case study on the development set of
MORE in Figure 13∼16, including both the “Open-
ended” and “Multi-Choice” settings.
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Question: Which country is 
hosting the next World Cup 
after this venue?

Input

To answer the question, first, we need to identify what this 
venue is.

Question Decomposition

Image Retrieval: Original Image.

Verification

Based on the information provided, the venue is Allianz
Arena. Due to the Allianz Arena hosted the 2006 World Cup,
the question becomes which country hosted the next
World Cup after Allianz Arena.

Question Decomposition

Text Retrieval: Which country hosted the 2010 World Cup?

Verification

Based on the information provided, SouthAfrica hosted
the 2010 World Cup.

Final Output

Image Retrieval

Captions of retrieved images:
[1] Image of Allianz Arena.
[2] Allianz Arena Muenchen
[3] Allianz Arena Munich
Germany

…

Text Retrieval

Contents of retrieved documents:
[1](Title: 2010 FIFA World Cup): 2010 FIFA World Cup The 2010 
FIFA World Cup was the 19th FIFA World Cup, the world 
championship for men's national association football teams. 
It took place in South Africa from 11 June to 11 July 2010.
[2](Title: 2010 FIFA World Cup): that he and the other 
members of FIFA's executive committee were bribed in order 
to promote the South African 1998 and 2010 World Cup bids. 
Blazer stated, "I and others on the Fifa executive committee 
agreed to accept bribes in conjunction with the selection of 
South Africa as the host nation for the 2010 World Cup.

…

Figure 11: An overview of our proposed Decompose-Verify-Answer (DeVA) Framework.

Decompose-Verify-Answer Prompting
Task Description:
Write an accurate, engaging, and concise answer for the given question. Use an unbiased and journalistic tone. Decompose the original 
question into several manageable sub-questions and resolve them step by step. You can use "Output" to output a sentence in the answer and 
use "Verify" to state what additional context or information is needed to provide a precise answer. In the "Verify" step, you are provided 
snippets of the search results. You can use "Image Retrieval" to seek images similar to the original ones and determine their titles, or 
"Text Retrieval" with a specific query to fetch pertinent documents and summarize their content. Use "End" to end the generation.

Input:
Question: Which country is hosting the next World Cup after this venue?

<Question Decomposition>
Output: To answer the question, first, we need to identify what this venue is.

<Verification>
Verify: Image Retrieval.

<Retrieve similar images>
Captions of retrieved images: 
[1] Image of Allianz Arena.
[2] …

<Question Decomposition>
Output: Based on the information provided, the venue is Allianz Arena. Due to the Allianz Arena hosted the 2006 World Cup, the question 
becomes which country hosted the next World Cup after Allianz Arena.

<Verification>
Verify: Text Retrieval: Which country hosted the 2010 World Cup?

<Retrieve relevant documents>
Contents of retrieved documents:
[1](Title: 2010 FIFA World Cup): …
[2] …

<Question Decomposition>
Output: Based on the information provided, South Africa hosted the 2010 World Cup.

<End Generation>
End.

Figure 12: Prompt template of DeVA framework.
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2-hop case

The vehicle in the image is a Chrysler PT Cruiser Convertible. The Chrysler PT Cruiser is a 
model from the Chrysler brand, which is part of Stellantis, a multinational automotive 
manufacturing corporation.

GPT-4

Gemini Pro

The Chrysler PT Cruiser is a front-wheel drive, four-passenger convertible that was 
produced by Chrysler from 2001 to 2010. The PT Cruiser was based on the Chrysler Neon 
platform and was available in two trim levels: the base model and the GT. The PT Cruiser 
was powered by a 2.4-liter four-cylinder engine that produced 150 horsepower and 165 
lb-ft of torque. The PT Cruiser was discontinued after the 2010 model year.

Question: What brand follows this vehicle in its product line?

LLaVA

Followed By

Brand

Chrysler PT Cruiser Fiat 500X

Fiat Automobiles S.p.A.

The Chrysler Corporation

Brand

The chrysler pt cruiser
BLIP2

chrysler
InstructBLIP

mPLUG-Owl

The vehicle follows the brand BMW in its product line.

Fiat

Vision Bias

Vision Bias

Visual Illusion

Ground Truth

Semantic Misleading

Semantic Misleading

Figure 13: Two-hop case in the dev set of MORE. The wrong answers are marked in red and the correct is in green.
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2-hop case (Option)

Question: What brand follows this vehicle in its product line?
Choose from the following four options:
A. Chrysler PT Cruiser B. Tesla
C. The Chrysler Corporation D. Fiat Automobiles S.p.A.

The vehicle in the image is a Chrysler PT Cruiser, which is a model produced by Chrysler. 
Therefore, the brand that follows the model which this vehicle follows is Chrysler.

GPT-4

Gemini Pro

Chrysler PT Cruiser

LLaVA

The Chrysler PT Cruiser
BLIP2

Chrysler PT Cruiser
InstructBLIP

mPLUG-Owl

Chrysler PT Cruiser
The brand of the car that follows the model which this vehicle follows is Chrysler PT 
Cruiser. This is the correct answer.

Chrysler PT Cruiser

Vision Bias

Vision Bias

Vision Bias

Vision Bias

Vision Bias

Followed By

Brand

Chrysler PT Cruiser Fiat 500X

Fiat Automobiles S.p.A.

The Chrysler Corporation

Brand

Semantic Misleading

Figure 14: Two-hop case (multi-choice setting) in the dev set of MORE. The wrong answers are marked in red and
the correct is in green.
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3-hop case

Question: What is the mountain range of the highest point on the continent 
where this mountain is located?

The mountain in the image is the Salève. The Salève is a mountain located in the 
Prealps, near Geneva, Switzerland, and France. 

GPT-4

Gemini Pro

The mountain range is the Chugach Mountains, which are part of the larger Coast 
Mountains.

LLaVA

The alaska range
BLIP

rocky
InstructBLIP

mPLUG-Owl

The mountain of Mount McKinley, also known as Denali, is located in Alaska, USA. It is 
the tallest mountain in North America and the tallest mountain in the world when 
measured from the base of its sea-level summit. The mountain range that Mount 
McKinley is a part of is the Alaska Range.

The highest mountain range is the Alps, the highest peak is Mont Blanc. 

Visual Illusion

Visual Illusion

Visual Illusion

Visual Illusion

Language Bias

Continent
Salève Europa

Caucasus MajorFrench Prealpes

Mountain
range

Elbrus

Mountain
range

Highest point

Semantic Misleading

Figure 15: Three-hop case in the dev set of MORE. The wrong answers are marked in red.
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3-hop case (Option)

Question: What is the mountain range of the highest point on the continent 
where this mountain is located?
Choose from the following four options:
A. Salève B. the Himalayas
C. French Prealps D. Caucasus Major

The highest point of the mountain range is Mont Blanc, which is located in the French 
Prealps. The French Prealps are located in Europe.

GPT-4

Gemini Pro

Based on the options provided, the highest point on the continent where the Salève
mountain is located would be Mount Everest, as Salève is part of the Prealps, a region in 
Europe, and Mount Everest is the highest point on the Asian continent. The Greater 
Caucasus Mountains are also in Asia but are not as high as Mount Everest. Therefore, the 
correct answer from the options given is the Himalayas.

LLaVA

The Himalayas
BLIP2

French Prealps
InstructBLIP

mPLUG-Owl

The mountain range of the highest point on the continent where this mountain is 
located is Salève.
Salève, which is located in the Rhône-Alpes region of France, is a small mountain range 
that extends from the city of Geneva to the city of Annecy. The summit of this range, 
Mont Salève, is the highest point on the continent where this mountain is located.
Salève is a popular destination for hiking and skiing, and it offers spectacular views of 
the surrounding Alps, including the Mont Blanc massif and the Swiss Alps. It is also a 
popular destination for rock climbing, and the steep cliffs and rocky faces of Salève
provide a challenging climbing experience.

Caucasus Major

Vision Bias

Semantic Misleading

Ground Truth

Language Bias

Language Bias

Continent
Salève Europa

Caucasus MajorFrench Prealpes

Mountain
range

Elbrus

Mountain
range

Highest point

Semantic Misleading

Figure 16: Three-hop case (multi-choice setting) in the dev set of MORE. The wrong answers are marked in red and
the correct is in green. 22



Figure 17: Question prefix distribution in MORE. The arc length is proportional to the number of questions containing
the word.
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