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Abstract

The detection and analysis of the solar coronal holes (CHs) is an important field of study in the
domain of solar physics. Mainly, it is required for the proper prediction of the geomagnetic storms
which directly or indirectly affect various space and ground-based systems. For the detection of
CHs till date, the solar scientist depends on manual hand-drawn approaches. However, with the
advancement of image processing technologies, some automated image segmentation methods have
been used for the detection of CHs. In-spite of this, fast and accurate detection of CHs are till
a major issues. Here in this work, a novel quantum computing-based fast fuzzy c-mean technique
has been developed for fast detection of the CHs region. The task has been carried out in two
stages, in first stage the solar image has been segmented using a quantum computing based fast
fuzzy c-mean (QCFFCM) and in the later stage the CHs has been extracted out from the segmented
image based on image morphological operation. In the work, quantum computing has been used to
optimize the cost function of the fast fuzzy c-mean (FFCM) algorithm, where quantum approximate
optimization algorithm (QAOA) has been used to optimize the quadratic part of the cost function.
The proposed method has been tested for 193 Å SDO/AIA full-disk solar image datasets and has
been compared with the existing techniques. The outcome shows the comparable performance of the
proposed method with the existing one within a very lesser time.

Keywords— Solar Coronal Holes, Geomagnetic Storms, Space Weather, Quantum Computing, Fast Fuzzy
c-mean.

1 Introduction

The detection of solar coronal holes (CHs) is an important problem in space weather analysis. CHs are the
visible dark region of extreme-ultra violet (EUV) and X-ray images of solar corona. CHs are one of the major

source of high-speed solar wind streams (HSSS) which results in severe geomagnetic storms. Geomagnetic storms
have an acute impact on ground infrastructures such as communication devices, and the electrical power supply
at the polar region as-well-as space-based infrastructure like low earth-orbiting, communication and navigation
satellites, .

As a consequence, there rise the demand for proper analysis of the solar CHs for prediction of the geomagnetic
storm and its related phenomenon. These CHs regions on the Sun surface can be visualized as a dark region
only in space based extreme-ultra violet (EUV) and X-ray images; that cannot be visible by the ground based
observatories as these wavelengths are blocked by the Earth atmosphere. The regions are open unipolar magnetic
field on the solar surface, having lower temperature compared to surrounding region of the solar corona and
appear dark due to the low density of plasma in contrast to the surrounding corona region. The study of CHs
has been expedite with the launch of space-based solar observatories such as SOlar and Heliospheric Observatory
(SOHO), SOLar Orbiter (SOLO), Solar Dynamics Observatory (SDO), Solar Terrestrial Relations Observatory
(STEREO). With the introduction of these solar observatories, there has been a huge increase in the volume,
velocity, variety, value and veracity of the solar data that has induced the epoch of Big Data in the domain of
solar studies. These data will increase more in number in coming future with the introduction of Aditya-L1,
India’s first solar observational satellite. The solar images captured using these observatories are characterized
by multi-scale, multi-wavelength and multi-source.

In the midst of these solar observatories, SDO launched in 2010, provides detailed solar view that was never
possible before. It provides ultra-high-definition images of the Sun in 13 various wavelengths by means of two
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on-board image capturing devices, namely; Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic
Imager (HMI) [34]. Each of the wavelengths takes after a particular locale of the heliosphere, which covers the
parcels from the Sun’s surface to the upper comes of the solar corona 1. SDO is one of the biggest and wealthiest
Sun’s image information storehouses, which capture approximately 70000 Sun’s images per day [33]. The solar
image seizing rate also varies for these observatories. SDO seizes 1 image each second. SDO contains images of
10 diverse wavelengths, measured in angstroms Å, seized with its AIA device module at an interim of each ten
to twelve seconds [33]. AIA by and large take images in multiple ultraviolet (UV) and EUV pass bands [32].
SDO’s AIA instrument (SDO/AIA) has image resolution of resolution of 4096× 4096, which is twice the image
resolution of STEREO (i.e., 2048× 2048) and 4 times larger imaging resolution than SOHO (i.e., 1024× 1024).

To cope up these big incoming solar data and to perform real-time analysis of the solar CHs, there rise the
necessity for the development of proper and fast image segmentation algorithm. With the development of image
processing techniques some of the image segmentation methodologies such as; region-growing based strategy [27],
convolution neural network (CNN) [1, 2, 24], intensity thresholding [29], spatial possibilistic clustering algorithm
(SPoCA) [25], Chan-Vese active contour model (C-VACM) [22, 23], parameterized online region-based active
contour method (POR-ACM) [20,21], fast fuzzy c-mean followed by static contour model (FFCM-SCM) ) [15,21],
fuzzy energy-based dual contour model (FEDCM) [31] have been introduced. But none of the technique is capable
to produce CHs segmentation results within real-time.

Thus to overcome the mentioned drawbacks, in this paper, we proposed a quantum computing based fast
fuzzy c-mean (QCFFCM) methodology, where quantum optimization is used to optimize the energy function of
the fast fuzzy c-mean (FFCM) model to segment out the solar image. We used quantum inspired alternating
direction method of multipliers (ADMM) for the energy function minimization purpose. Later, area based image
morphological operation has been used for extracting out the CHs region from the segmented image. The proposed
algorithm is seen to work faster even for simulated quantum environment as compared to the traditional methods
of CHs detection. The main contribution of the work can be summarized as

• A novel technique of Quantum-FFCM for CHs detection. ADMM is used for quantum optimization with
the FFCM algorithm. To our best knowledge this is the first approach to bring quantum algorithmic
technique for solar CHs detection problem.

• Demonstrating the applicability of the technique on large number of solar CHs images, specifically 365
images from the year 2017, with quantitative analysis.

The paper is organized as follows: Section 3 highlight the details about the proposed methodology. Experi-
ments and results are reported in Section 4. Finally, Section 5 provides the conclusions with discussions.

2 Related Work

National Oceanic and Atmospheric Administration’s Space Weather Prediction Center (NOAA/SWPC) provides
hand-drawn (HD) synoptic maps indicating broad outline of the solar CHs regions for each day2. Harvey and
Recely [4] had generated daily computer-assisted HD CHs images using He I 10830 Å spectroheliograms (from the
Kitt Peak Vacuum Telescope (KPVT)) and photospheric magnetograms. With the development of first automated
CHs detection technique utilizing morphological image analysis, thresholding and smoothing by Henney and
Harvey [3], few more image segmentation methodologies have been introduced for CHs detection. Segmentation
technique such as intensity thresholding method had been applied for the CHs detection task in solar image [29].
In spite of success in detection of CHs region in solar image, the method fail to attend the accuracy level
of the segmentation results due to incorrect boundary selection [29]. Region growing and histogram based
segmentation technique had been applied for solar image feature extraction and afterward combination of both
region based and edge based techniques had been introduced for extraction of RoI from the corresponding
images [28]. The algorithm requires visually varient features for CHs detection more accurately. Caplan et
al. [27] had too introduced region-growing based strategy for CHs extraction. Accuracy of the output generated
using this method relies on proper selection of the seed points in images. Watershed segmentation method had
been used by Ciecholewski [26] for the detection of CHs in solar image. Although the method succeeded in
segmenting out the CHs from the solar image, however the method often results in over-segment the image.
Modified SPoCA suite for detection of active region (AR), coronal hole (CH) and quiet Sun (QS) regions in solar
image had been implemented by Verbeeck et al. [25]. Due to the utilization of three separate fuzzy clustering
algorithms, the method is having numerical complexity. Illarionov and Tlatov [24] had implemented CNN based
method for solar CHs detection. Though the technique is capable of detecting CHs, however, it requires a large
database of solar images to train and validate the network. Thus, the time requirement for generation of first
result is quite high for a single image. To reduce the time complexity the original size of the solar image had been
down sampled to 256× 256 resolution. C-VACM [23] had been used by Boucheron et al. [22] for the extraction
of CHs from the solar image. The contour initialization is a major issue in this type of segmentation model.
Moreover during the process of CHs extraction the technique also extract out the solar filament channels. To
overcome the presence of these region additional HMI magnetogram data has been used.

1https://www.nasa.gov/mission_pages/sdo/spacecraft/index.html
2https://www.swpc.noaa.gov/products/solar-synoptic-map
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Alongside, these segmentation methods alone are not sufficient to carry forward the task of solar CHs de-
tection. The techniques require additional preprocessing algorithm to remove the solar limbs before segmenting
the solar image [21, 31]. For this purpose the algorithms need additional information from the metadata of the
solar image, specially the information about solar disk radius length and co-ordinate points of solar disk center
for elimination of solar limbs. As such, most of these stated techniques are supervised one.

Bandyopadhyay et al. [20,21,31] had introduced fully automated contour-based CHs segmentation technique,
where no metadata had been used to eliminate the limbs regions from the solar image. Basically, in the introduced
techniques CHT [19] has been used to initialize contour for the contour-based technique which eliminate the solar
limbs during the segmentation process. In [21] and [20], POR-ACM had been used for solar CHs segmentation.
Although the method does not require extra information from the metadata of solar image for CHs segmentation,
but, the execution time is little bit higher than the other existing technique. To reduce the execution time for
detection of CHs a FFCM-SCM had been introduced by Bandyopadhyay et al. [15, 21]. In the work, first fast
fuzzy c-mean algorithm [14] had been used for solar image segmentation, then CHT inspired static contour model
had been used to extract out the CHs regions from the segmented image [21]. However, both POR-ACM and
FFCM-SCM have the limitation that they detect the redundant filament regions during CHs segmentation. To
eliminate these filament regions image morphological opening and closing operation had been used, which bypass
the use of HMI solar data to eliminate the redundant filament region as used in [22]. However, the methods
unable to eliminate all the filament regions from the image. Alongside, it eliminate the filament regions at the
cost of total CHs area. To overcome this drawback and to combine the advantage of two methods namely; POR-
ACM and FFCM-SCM, in [31], FEDCM had been developed, where fuzzy energy-based active contour model
(FEACM) had been used for the segmentation of solar disk image later fuzzy energy-based static contour model
had been implemented to extract out CHs regions from the segmented image. In the work morphological area
operation had been used to eliminate the redundant filament region [31].

3 Proposed Work

In order to speed up the detection of the CHs regions in a solar image in this work a quantum computing inspired
FFCM has been proposed. The proposed model mainly composed of two algorithms these are: FFCM, that has
been used to fasten the clustering of the solar image, while the quantum computing technique has been used to
find the optimal clusters center. FFCM introduced by Semechko [14] uses the histogram of the image intensities
instead of using individual pixel’s intensities of the raw image data during the clustering process as done in
classical fuzzy c-means clustering (FCM). Thus, this in turn help in achieving the computational efficiency. The
overall energy function for the classical FCM algorithm is given by equation (1) [13];

JE =

N∑
j=1

c∑
i=1

µij
m∥xj − υi∥2. (1)

Where, µij denotes the membership function of the jth pixel in ith cluster with intensity level of xj . The total
number of pixels in the image and total cluster number are represented by N and c respectively. The term m in
equation (1) represent the fuzziness constant and the term υi indicate the ith cluster center, which is represented
by the equation (2) as follow:

υi =

∑N
j=1 µij

mxj∑N
j=1 µij

m
; (2)

where the membership function µij is recalculated using,

µij =

[
c∑

k=1

(
∥xj − υi∥
∥xj − υk∥

)]− 1
m−1

, (3)

which is initially randomly assigned.
Now in this case the number of image pixels, N will be quite large when dealing with solar disk image of size

4096×4096. As a consequence, the convergent rate of the calculation will be quite slow [11,12]. Thus to overcome
the drawback of the classical FCM, in FFCM, the raw data term xj has been replaced by the histogram space
nLL. Here the term nL denotes the frequency of the occurrence of pixels with intensity value L represented by;

nL =

N∑
j=0

δ[xj − L],

L ∈ {0, 1, ..., 255},

δ[xj − L] =

{
1 xj = L

0 xj ̸= L.

(4)
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Thus, the overall energy function for FFCM is given by;

JE =

255∑
L=0

c∑
i=1

µiL
mL∥nL − υi∥2. (5)

As such, equations (2) and (3) can be rewritten as equations (6) and (7);

υi =

∑255
L=0 µiL

mnlL∑255
L=0 µiL

m
; (6)

where, µiL represents the modified membership value for Lth intensity pixel in ith which is denoted by,

µiL =

[
c∑

k=1

(
∥L− υi∥
∥L− υk∥

)]− 1
m−1

. (7)

So, the searching space reduced to 255 instead of N , which in turn will fasten the clustering process. However,
in both the cases FCM converges when;

∥µ̂k+1 − µ̂k∥ < ϵ, (8)

where, k denotes the step of iteration and ϵ represents the threshold value which generally lies between 0 and 1.
As such, the accuracy of the clustering depends on specification of the ϵ value. Moreover, lower the ϵ value the
better clustering result can be achieved but at the cost of more numbers of iteration.

So to surpass this issue and to find the optimal clusters center in this work the energy function given in
equation (5) have been optimized using quantum driven multiblock ADMM heuristic (M-ADMM-H) algorithm.
M-ADMM-H has the ability to solve “quadratic plus convex” mixed binary optimization (MBO) problems on
classical computers as-well-as on current noisy quantum devices whenever a quadratic unconstrained binary
optimization (QUBO) solver is available [9]. Here in the work a three-block implementation of ADMM heuristic
(3-ADMM-H) has been used for the optimization purpose as it is capable to finds solutions of higher quality in
case the continuous decision variables as-well-as guaranteed to converges to feasible and optimal solutions [9].
The model optimize equation (1) in the form,

minimize
µ

N∑
j=1

c∑
i=1

µij
m∥xj − υi∥2 (9a)

subject to:

N∑
j=1

c∑
i=1

µij
m∥xj − υi∥2 ≥ 1

υi ≥ 0, i = 1, ..., c
c∑

i=1

υi ≥ 1.

(9b)

Thus the optimized value of the equation (9) will be presented by,

p∗ = inf
{ N∑

j=1

c∑
i=1

µij
m∥xj − υi∥2|JE ≥ 1, υ ∈ Υ

}
. (10)

However, the equations (9) and (10) have multiple sets of constraints including inequalities. As such directly
applying ADMM optimization technique to solve the cost function will rise the mathematical complexity [8]. So,
to solve optimization problem (10), it has been reformulated as a three-block separable form with linear equality
constraints [7]:

p
∗
= inf

{ N∑
j=1

c∑
i=1

µij
m∥xj − υi∥2|JE − z = 1,

υ ∈ Υ, z ∈ R+
n
}
,

(11)

where, z ∈ R+
n denotes an auxiliary variables. Now, unlike the method of multipliers, here in the work the

scaled augmented Lagrangian is formed as shown in equation (12):

Lρ(µ, z, y, υ, λ, η) =

N∑
j=1

c∑
i=1

µij
m∥xj − υi∥2

+ ρ
∑
i,j

λi,j

( N∑
j=1

c∑
i=1

µij
m∥xj − υi∥2 − z − 1

)

+ (ρ/2)
∑
i,j

( N∑
j=1

c∑
i=1

µij
m∥xj − υi∥2 − z − 1

)2

+ τρη
( c∑

i=1

υi − y − 1
)
+ τ(ρ/2)

( c∑
i=1

υi − y − 1
)2

.

(12)
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Here in equation (12), τ denotes the penalty parameter and the term ρ used for balancing the cost function and
augmented Lagrangians.

The 3-ADMM-H optimizer split the problem (12) into QUBO and convex optimization problems. Later
the first block of 3-ADMM-H is used for processing QUBO part of the equation. The second and third block
of 3-ADMM-H is used to update the convex and combination of convex and quadratic problems respectively.
Here in this work the QUBO subproblem have been solved on the quantum device via Quantum Approximate
Optimization Algorithm (QAOA). The QAOA is a variational quantum algorithms (VQA) use for solving the
combinatorial optimization problems [10]. QAOA with k bit input basically depends on the integer parameter
P . The quantum algorithm find string z for which the cost function C(z) resembling the sum of M local terms,
is approximately equivalent to C’s global optimum. In general, for each call quantum computer utilize a set of
2P angles (γ, β) and produce the state as,

|γ, β⟩ = U(B, βP )U(C, γP )...U(B, β1)U(C, γ1)|s⟩; (13)

where U(C, γ) is a unitary operator depends on angle γ and is represented by:

U(C, γ) = e−iγC =

M∏
α=1

e−iγCα , (14)

and the term U(B, β) is given by,

U(B, β) = e−iβB =

k∏
t=1

e−iβσX
t . (15)

summarized Here in equations (14) and (15) the term γ and β lies between 0 and 2π, and 0 and π respectively.
The term B represent the sum of all single bit σX operators denoted by,

B =

k∑
t

σX
t . (16)

The notion |s⟩ denotes the initial state which will be uniform superposition over computational basis states [10]:

|s⟩ = 1√
2k

∑
z

|z⟩. (17)

The QAOA has shown its capability in terms of performance with respect to the classical Goemans-Williamson
limit [6]. Alongside, the combination of multi-start strategies and hyperparametrization in QAOA has shown
promising results in escaping local optima [5].

After the clustering image based on the optimal cluster center obtained using quantum-FFCM, into two
regions, namely, foreground regions consisting of CHs regions and solar image background, and background
regions consisting of non-CHs regions. A static contour is initialized using circular Hough transform based on
the original solar disk image. The contour has been initialized with a motive to extract out the CHs regions from
the segmented solar image and to separate out the redundant solar limb. Based on three conditions as specified
underneath the proposed model can effectively distinguish the CHs.

• In the event that the foreground region is present exterior of the circular contour, set as background.

• Background region is present interior of the contour, set as background.

• The foreground region is exists interior of the circular contour, set as foreground CHs regions.

The overall block diagram of the proposed technique of QFFCM based CHs detection has been shown in Fig. 1.

4 Results and Discussions

For experimental purpose in this work one EUV band pass image of 193Å, per day for the year 2017 are used
to detect CHs. These solar images had been captured using Atmospheric Imaging Assembly on-board Solar
Dynamics Observatory (SDO/AIA) centered on the specific line of 193 Å [34]. These SDO/AIA images have
been collected from both Joint Science Operations (JSOC) and Solar Dynamics Observatory (SDO) portal.
However, in this work all the experiment have been carried out based on the images collected from JSOC and
the images collected from SDO portal is only for the visualization purpose.

The experiment has been carried out by setting fuzziness parameter, m equal to 2 (>1), as for 1 ← m,
the model will become equivalent to classical k-means clustering technique, whereas for higher value of m all
pixels will have identical membership to each cluster. Here, the performance of the proposed method, QFFCM
have been analyze in terms of quality, quantity and execution time requirement with the results obtained from
both existing supervised and unsupervised methods such as ACWE, SPoCA, CNN, POR-ACM, FFCM-SCM,
FEDCM and coronal hole identification via multi-thermal emission recognition algorithm (CHIMERA) methods.
The outcomes have been tally with two ground-truth images generated based on the synoptic map image provided
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Figure 1: Block-diagram of the proposed FFCM-SCM based coronal holes detection in solar disk image.

by NOAA\SWPC (SM-GT) and region-growing based CHs segmentation map 3 (RG-GT). The performance of
the QFFCM have been analyze in terms of quality, quantity and execution time requirement.

4.1 Visual Analysis

Based on visual analysis, it can be concluded that the proposed QFFCM approach for detecting CHs exhibits
comparable performance to other existing methods of CHs detection. When visually comparing the outcomes
obtained using the SPoCA, CHIMERA, and ACWE methods, shown in the first column of Figs. 2v - 2vii
respectively, it can be inferred that the proposed QFFCM-based approach for CHs detection has identified the
CHs region more accurately than these methods, similar to SM-GT. It is evident that the existing SPoCA,
CHIMERA, and ACWE methods have incorrectly classified non-CHs regions as CHs regions for the solar image
captured in January 2017. However, when comparing the outcomes of the proposed method with RG-GT, it can
be noted that the proposed method has misclassified some regions as non-CHs, which are not present in RG-GT.
It is noteworthy that RG-GT has been generated using a region-growing based method, whose accuracy depends
entirely on the proper selection of initial seed points in the image. Additionally, when comparing the outcomes
of the proposed method with those of CNN Seg shown in the first column of Fig. 2iv, it can be observed that
the QFFCM-based approach outperforms CNN Seg. In comparison with POR-ACM, FFCM-SCM, and FEDCM,
the QFFCM-based approach shows near-similar performance.

For the case of Fig. 2b, it has been observed that the QFFCM-based approach of CHs detection is capable
of identifying most of the curvatures associated with the CHs boundary, as can be seen in the second column
of Fig. 2iii. In the same case, other compared techniques are unable to identify these curvatures. It is also
worth mentioning that the proposed technique is not as suitable when compared with SM-GT, as SM-GT is a
hand-drawn generated ground-truth where locating every change in curvature associated with the CHs region is
quite a difficult task.

For the solar image captured in March 2017, shown in Fig. 2c, it can be visually observed that the methods
CNN Seg, SPoCA, CHIMERA, and ACWE are unable to locate the CHs regions properly. However, for the
case of POR-ACM, it can be seen that the method has misclassified redundant regions as CHs regions. When
comparing the outcome of FFCM-SCM with that of QFFCM, it can be concluded that the proposed method is
capable of providing similar results to FFCM-SCM, as both methods are based on fuzzy c-mean techniques.

Throughout the visual analysis, it has been noticed that in most cases, the proposed technique has detected
the actual CHs regions in the solar images, but it has also misclassified some redundant regions as CHs regions.
The main reason behind this performance of the proposed method is that the QFFCM method used in the initial
stage of CHs detection essentially aims to segment the solar image into two parts based on the intensity level
of image pixels: darker regions and non-darker regions. Throughout the experiment, it has been observed that
the method is efficient in extracting all darker regions from the images. However, the next step of the proposed
work depends on area-based image morphological operations, where redundant regions in the segmented image
are removed based on the area of the segmented part. This means that if the area of the segmented regions is
greater than a certain threshold value, it should be considered as CHs regions; otherwise, they are considered
non-CHs regions. Choosing this area threshold value is a vital task in this work. Selecting a higher value for
the area threshold may lead to the elimination of the region of interest, whereas the opposite may lead to the
selection of redundant regions. Therefore, one must be optimal in choosing this value. In the future, it will be a
focus to choose the optimal value of the area threshold for more proper and accurate detection of CHs regions.

3https://github.com/observethesun/coronal_holes/tree/master/data
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Figure 2: A pictorial summarization showing (i) Original Image followed by ground-truth images in (ii)
and (iii), and result obtained using model like, CNN Seg, SPoCA, CHIMERA, ACWE, FFCM-SCM,
POR-ACM, FEDCM and the proposed method in (iv)-(xi) respectively.

7



Figure 3: CHs area detected for the year 2017, using existing methods and proposed method QFFCM.

Figure 4: Skewness value detected for a carrington rotation in the year 2017, using existing methods and
proposed method QFFCM.

4.2 Quantitative Analysis

For quantitative analysis F1 score (shown in Table 1) given by,

F1 score =
2|A

⋂
B|

|A|+ |B| , (18)

accuracy rate (shown in Table 2) denoted by,

Accuracy rate =
|A|
|B| ; (19)

total area covered (plotted in Fig. 3) and magnetic skewness value (plotted in Fig. 4) have been considered.
Where, in equations (18) and (19), the term A denotes output image or region inside the final curve and B

8



represents the ground-truth of solar image. This F1 score and accuracy rate have been calculated based on the
values of confusion matrix shown in Figs. 5 and 6. Now, comparing the outcome of the QFFCM with other
existing methodologies and two ground-truth images, it can be stated that the performance of the method is
comparable with that of CHIMERA and SPoCA. For the solar image captured on Feb shown in Fig. 2b, while
compared with the RG-GT, the proposed QFFCM detect CHs with heighest F1 score of 91.99%, as can be seen
in Table 1. Since, in this case the QFFCM hasn’t detected the northern polar coronal hole region similar to
RG-GT. However, comparing with SM-GT and RG-GT it can be stated that, in rest of the the cases the QFFCM
have detected some non-CHs regions. This may be due to the improper selection of parameter in redundant
pixel removal algorithm or improper assignment of the pixel value while transforming the solar FITS file image of
32-bit to 8-bit values. Also, it should be noted that the degradation in the F1 score and Accuracy Measure values
for the outcomes obtained using the proposed QFFCM-based approach for CHs detection might be attributed
to the calculation of these values based on an improper ground-truth dataset. Upon visual comparison between
the outcomes obtained using the proposed technique and the utilized ground-truth, it can be observed that the
proposed technique has detected very subtle changes in the curvature of CH boundaries that were not identified in
the provided ground-truth. Additionally, the QFFCM-based approach for CH detection has identified many tiny
non-CHs regions that were not indicated in the ground-truth dataset. Now, while comparing the performance of
QFFCM in terms of total area covered by the detected CHs and magnetic skewness of the extracted CHs, it has
been found that the line graph for the proposed method follow the similar trends as that of the existing one.

4.3 Execution Time Analysis

All the algorithms have been executed on a system having configured with 4GB RAM and Intel(R) Core(TM)i5-
8250U CPU, having the base speed of 1.8GHz, along-with Windows 10, 64-bit operating system. Based on this
the execution time requirement of all the algorithms have been summarized in the Table 3, and it has been found
that the QFFCM generates the CHs segmentation results within 12 sec, which is near to real-time. This is due
to the incorporation of the quantum computing based optimization technique which provide very faster output
compared to classical computing methods.

Table 1: Coronal Holes’ F1 Score based on SM-GT and RG-GT.

Methods
Ground-
truth
Used

Solar Image Captured on

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ACWE Seg
SM-GT 0.7020 0.6550 0.5047 0.3895 0.6770 0.5658 0.6665 0.6100 0.7066 0.4603 0.6493 0.5636

RG-GT 0.8899 0.8672 0.7637 0.7237 0.7909 0.5655 0.5689 0.7363 0.7409 0.6542 0.6903 0.6141

CNN Seg
SM-GT 0.6768 0.5901 0.4150 0.2929 0.6279 0.6786 0.6700 0.6009 0.7245 0.3693 0.6425 0.4947

RG-GT 0.7806 0.8400 0.6174 0.6782 0.7881 0.7140 0.7543 0.8296 0.8195 0.7296 0.6722 0.6184

SPoCA
SM-GT 0.7070 0.6043 0.2550 0.3212 0.5648 0.3960 0.4675 0.5902 0.6752 0.3869 0.6473 0.5725

RG-GT 0.8949 0.8583 0.4484 0.5529 0.6811 0.3771 0.3660 0.7235 0.6916 0.4215 0.6527 0.5750

CHIMERA
SM-GT 0.8010 0.7377 0.5195 0.4509 0.7820 0.7694 0.6483 0.6360 0.8625 0.5386 0.8661 0.6932

RG-GT 0.8473 0.8332 0.6788 0.7160 0.8188 0.7706 0.7004 0.7744 0.8737 0.6802 0.8064 0.7948

FFCM-
SCM

SM-GT 0.7473 0.6489 0.5308 0.3828 0.6135 0.7004 0.6004 0.5568 0.7199 0.4510 0.6293 0.5804

RG-GT 0.8249 0.7788 0.6248 0.6802 0.6169 0.8078 0.7945 0.7925 0.7950 0.6539 0.6942 0.7431

POR-ACM
SM-GT 0.7471 0.6384 0.5890 0.3186 0.5377 0.5712 0.4526 0.4502 0.7966 0.4001 0.5112 0.5094

RG-GT 0.8411 0.8914 0.7677 0.5828 0.5040 0.6160 0.6430 0.6003 0.8848 0.5503 0.5403 0.6073

FEDCM
SM-GT 0.8247 0.5905 0.6029 0.3810 0.8137 0.7850 0.6873 0.6569 0.8671 0.3719 0.7063 0.6470

RG-GT 0.8024 0.8133 0.7760 0.8518 0.8616 0.8747 0.5846 0.7304 0.8338 0.6524 0.6431 0.5309

QFFCM
SM-GT 0.7418 0.6759 0.5512 0.3444 0.6755 0.7228 0.5481 0.5576 0.6986 0.4620 0.7122 0.5869

RG-GT 0.8555 0.9199 0.6517 0.7292 0.7128 0.8022 0.7704 0.7777 0.7767 0.7008 0.7663 0.7572

5 Conclusion

Here in the work quantum computing based fast fuzzy c-means (QFFCM) algorithm has been implemented for
the fast detection of the solar CHs region. In the work quantum optimization methods have been applied to
to obtained the optimal fuzzy cluster center for CHs detection. From the experiment it has been found that
the method is capable of producing comparable output within near real-time execution period. In future proper
measure to be taken in setting the pixels range of solar image and parameter of redundant pixels removal algorithm
for obtain more accurate output.
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Table 2: Coronal Holes’ Accuracy Measure based on SM-GT and RG-GT.

Methods
Ground-
truth
Used

Solar Image Captured on

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ACWE Seg
SM-GT 0.9599 0.9514 0.9714 0.9385 0.9732 0.9635 0.9689 0.9621 0.9746 0.9542 0.9703 0.9551

RG-GT 0.9821 0.9834 0.9892 0.9795 0.9865 0.9639 0.9504 0.9713 0.9766 0.9737 0.9754 0.9621

CNN Seg
SM-GT 0.9521 0.9470 0.9709 0.9347 0.9735 0.9721 0.9652 0.9593 0.9769 0.9462 0.9715 0.9537

RG-GT 0.9768 0.9823 0.9855 0.9779 0.9884 0.9743 0.9679 0.9806 0.9847 0.9778 0.9748 0.9651

SPoCA
SM-GT 0.9554 0.9457 0.9655 0.9402 0.9682 0.9574 0.9601 0.9624 0.9730 0.9561 0.9717 0.9588

RG-GT 0.9843 0.9828 0.9815 0.9725 0.9820 0.9564 0.9393 0.9712 0.9743 0.9639 0.9740 0.9612

CHIMERA
SM-GT 0.9641 0.9579 0.9735 0.9362 0.9807 0.9726 0.9471 0.9493 0.9848 0.9462 0.9870 0.9623

RG-GT 0.9730 0.9758 0.9864 0.9743 0.9865 0.9725 0.9484 0.9660 0.9858 0.9651 0.9817 0.9752

FFCM-
SCM

SM-GT 0.9534 0.9370 0.9598 0.9100 0.9511 0.9637 0.9419 0.9392 0.9672 0.9207 0.9522 0.9347

RG-GT 0.9684 0.9638 0.9726 0.9616 0.9569 0.9765 0.9656 0.9691 0.9756 0.9526 0.9615 0.9605

POR-ACM
SM-GT 0.9604 0.9486 0.9735 0.8849 0.9291 0.9248 0.8832 0.8888 0.9793 0.9007 0.9150 0.9017

RG-GT 0.9757 0.9862 0.9880 0.9402 0.9309 0.9323 0.9160 0.9145 0.9881 0.9290 0.9214 0.9220

FEDCM
SM-GT 0.9706 0.9472 0.9744 0.9280 0.9822 0.9778 0.9707 0.9674 0.9868 0.9498 0.9753 0.9640

RG-GT 0.9663 0.9791 0.9883 0.9865 0.9897 0.9869 0.9527 0.9711 0.9828 0.9751 0.9723 0.9551

QFFCM
SM-GT 0.9577 0.9528 0.9624 0.9097 0.9644 0.9654 0.9254 0.9353 0.9615 0.9293 0.9652 0.9360

RG-GT 0.9769 0.9896 0.9752 0.9697 0.9725 0.9751 0.9571 0.9649 0.97105 0.9629 0.9725 0.9628

Table 3: Time Period and Iteration Required for Execution of Coronal Segmentation Technique.

Images

Methods

ACWE Seg FFCM-SCM POR-ACM CNN Seg SPoCA CHIMERA FEDCM QFFCM

(on Image size
512× 512)

(on Image size
1024× 1024)

(on Image size
1024× 1024)

(on Image size
256× 256)

(on Image size
4096× 4096)

(on Image size
1024× 1024)

(on Image size
1024× 1024)

(on Image size
1024× 1024)

Time (sec) Iteration Time (sec) Iteration Time (sec) Iteration Time (sec) Iteration Time (sec) Iteration Time (sec) Iteration Time (sec) Iteration Time (sec) Iteration

(a) Jan 141.7941 3 57.9049 - 71.9788 5 239.7257 357 52.2209 100 117.4300 25 58.290141 10 12.0000 19

(b) Feb 140.5847 3 47.6665 - 80.1936 6 241.6426 357 53.5869 100 89.1225 25 60.653845 10 12.5647 19

(c) Mar 141.6941 3 45.6274 - 98.7736 6 238.7274 357 41.9048 100 108.0168 25 59.345424 10 12.1238 19

(d) Apr 139.8022 3 56.8507 - 82.5312 5 239.0552 357 53.7006 100 68.5132 25 62.319634 10 12.8547 19

(e) May 140.1534 3 49.4531 - 86.7731 5 238.5822 357 49.4854 100 85.3057 25 55.057306 10 11.9861 19

(f) Jun 139.7707 3 45.7722 - 80.7622 5 238.5443 357 41.4631 100 114.9441 25 56.739033 10 12.3697 19

(g) Jul 141.8857 3 56.5732 - 96.1077 7 241.4772 357 44.1775 100 107.5324 25 59.356644 10 11.9921 19

(h) Aug 139.2533 3 57.6962 - 79.8691 5 240.3188 357 48.2032 100 117.5695 25 55.420662 10 12.4407 19

(i) Sep 141.7132 3 51.9919 - 99.1384 7 240.1994 357 54.3626 100 99.3444 25 54.804513 10 12.2533 19

(j) Oct 141.6061 3 49.5830 - 80.6480 6 238.5798 357 54.4733 100 62.1427 25 54.321401 10 12.1274 19

(k) Nov 139.0139 3 44.6668 - 79.2677 5 241.4121 357 42.3642 100 110.9478 25 58.301716 10 12.1135 19

(l) Dec 140.1993 3 46.8701 - 85.8925 6 240.4882 357 54.5589 100 116.0396 25 54.065932 10 12.5132 19
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