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Abstract. Bayesian linear inverse problems aim to recover an unknown signal from
noisy observations, incorporating prior knowledge. This paper analyses a data depen-
dent method to choose the scale parameter of a Gaussian prior. The method we study
arises from early stopping methods, which have been successfully applied to a range of
problems for statistical inverse problems in the frequentist setting. These results are
extended to the Bayesian setting. We study the use of a discrepancy based stopping
rule in the setting of random noise. Our proposed stopping rule results in optimal rates
under certain conditions on the prior covariance operator. We furthermore derive for
which class of signals this method is adaptive. It is also shown that the associated
posterior contracts at the optimal rate and provides a conservative measure of uncer-
tainty. We implement the proposed stopping rule using the continuous-time ensemble
Kalman–Bucy filter (EnKBF). The fictitious time parameter replaces the scale param-
eter, and the ensemble size is appropriately adjusted in order to not lose statistical
optimality of the computed estimator.

1. Introduction

Bayesian inference methods are widely used in statistical inverse problems. A major
challenge is the selection and computational implementation of suitable prior distri-
butions. This problem can be addressed by using hierarchical Bayesian methods and
Bayesian model selection. More recently, however, a frequentist analysis of Bayesian
methods has gained popularity [24], where choosing the prior is synonymous with choos-
ing the amount of regularisation. Furthermore, a frequentist analysis of posterior credible
intervals has also become an active area of research [17, 16, 11]. In this paper, we fol-
low both lines of research and analyse an adaptive choice of the prior. We build on
recent results on adaptive choice of the regularisation parameter for statistical inverse
problems, which have been studied extensively in [4, 5, 23]. In these papers, the regular-
isation parameter is chosen using statistical early stopping. We extend these methods
as an empirical Bayesian method for selecting the scale parameter of the prior covari-
ance. In addition, the ensemble Kalman Filter (EnKF) and its continuous-time ensemble
Kalman-Bucy Filter (EnKBF) have become popular methods for performing Bayesian
inference on high-dimensional inverse problems. See [6] for an overview of EnKF and the
closely related ensemble Kalman inversion (EKI) [14]. The convergence rates of adaptive
EKI have previously been studied for deterministic linear inverse problems in [18]. Here
we combine this work with the Bayesian frequentist perspective [17, 16, 11], statistical
early stopping [4, 5, 23], and continuous-time EnKBF implementations [19].
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2 MAIA TIENSTRA

1.1. Problem Formulation. We will now recall the Bayesian inverse problem setting
of [17, 25]. We are interested in recovering the ground truth signal θ: from the following
observations Y , which we believe to be generated by the following model

(1) Y “ Gθ: ` δΞ,

where δ “ ν?
n

ą 0, and ν is the noise level assumed to be unknown. Here G : H1 Ñ H2

denotes a known linear, compact, continuous operator between two infinite dimensional
Hilbert spaces H1 and H2 with inner products x¨, ¨y1 and x¨, ¨y2, respectively. The norms
of H1 and H2 are denoted by || ¨ ||1 and || ¨ ||2 respectively. We will denote the adjoint of
an operator A between two Hilbert spaces by A˚.

The measurement error Ξ is assumed to be Gaussian white noise and δ denotes the
noise level which we will study in the limit n Ñ 8. The noise Ξ is not an element of H2,
but we can define it as a Gaussian process pΞh : h P H2q with mean 0, and covariance
covpΞh,Ξh1q “ xh, h1y2. The observations are then driven by this process. Thus we
observe a Gaussian process Y “ pYh : h P H2q with mean and covariance given by

(2) EYh “ xGθ:, hy2, covpYh,Yh1q “
1

n
xh,h1y2.

In this paper, we follow a Bayesian perspective and place a Gaussian prior over the
unknown parameter θ, which is conjugate to (1), implying that the posterior will be
Gaussian and analytic up to some normalizing constant. We also further assume that
the true ν “ 1, to simplify the notation. Particularly, we consider a family of Gaussian
priors N p0, τ2nC0q with covariance operator C0 : H1 Ñ H1 and where τn ą 0 is the
scaling parameter of interest.

Proposition 1.1. (Prop. 3.1 in [16]) For given τn ą 0, the prior distribution for θ is
N p0, τ2nC0q and Y given θ is N pGθ, n´1Iq distributed. Then the conditional distribution

of θ given Y , the posterior, is Gaussian N ppθτn , Cτnq on H1 with mean

(3) pθτn :“ KτnY

and covariance operator

(4) Cτn :“ τ2nC0 ´ τ2nKτn

ˆ

GC0G
˚ `

1

nτ2n
I

˙

K˚
τn ,

where the Kalman gain Kτn : H2 Ñ H1 is the linear continuous operator given by

(5) Kτn :“ C0G
˚

ˆ

GC0G
˚ `

1

nτ2n
I

˙´1

.

We remark that a rigorous construction of the Bayesian set up for infinite dimensional

Hilbert space can be found in [10, 11]. We recall that the mean pθτn also arises formally
as the minimizer of the Tikhonov functional

(6) Lpθq “
1

2
}Gθ ´ Y }22 `

1

2nτ2n
||C

´1{2
0 θ||21.

Moreover, we see that the scale parameter τn of the prior becomes the regularisation
parameter and that the estimator crucially depends on the choice of τn. This connection
between the Bayesian inverse problem and Tikhonov regularisation has been extensively
studied in [24]. The question we wish to answer is; can we choose τn depending on
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Y , such that pθτn provides an adaptively optimal frequentist estimator for θ: and Cτn

covers the frequentist uncertainty in the asymptotic limit n Ñ 8. This paper positively
answers this question. To choose the τn, we will use early stopping which is defined as
follows: Suppose that for some given iterative method and for each τn P R` Y t0u we
have a sequence of estimators

ppθτnqτn

such that they minimize,

pθτn “ argmin Lpτnqpθq

and are ordered in decreasing bias and increasing variance. The goal of early stopping
is to stop this iterative method exactly when the bias and variance of the estimator are
balanced. An estimator for the asymptotic bias is given by the residuals, something that
we can always measure. The residuals at time τn are given as

Rτn :“ ||PnpY ´ Gpθτnq||22,(7)

where Pn is an appropriate projection operator onto a finite dimensional subspace of H2.
The projection is necessary since the H2-norm of Y is unbounded. To stop the iterative
process we must define a stopping rule

τdppnq :“ inf tτn ą 0 : Rτn ď κu(8)

for some threshold κ ą 0 that is also a function of the data and is thus depending on n.

Remark 1.1. We will further on drop the dependency on n to simplify the notation,
but we remark that τdp is an estimator that depends on the data Y and is a function of
n.

Formulation (8) is often referred to as discrepancy principle [9, 3] in the case that the
noise level is known and κ is chosen proportional to this noise level. Other choice for κ
have been studied, see Subsection 1.2.

Definition 1.1. (See Chapter 6 in [15]) A scale parameter τn and its associated es-

timator pθτn are called optimal if it achieves the minimax rate as n Ñ 8 for a given
Sobolev regularity of the unknown θ:. We call the estimator adaptive if it does not
require knowledge of the Sobolev regularity. A method is then adaptively optimal if it

produces an estimator pθτn that is both adaptive and optimal.

The challenge then is how to choose Pn and κ such that stopping according to (8)
is adaptively optimal. In the following section, we summarise some of the previous
contributions to solving this problem from a statistical perspective.

1.2. Previous work on early stopping and ensemble Kalman inversion. The
works of Blanchard, Hoffman, and Reiß ([5]) and that of Blanchard and Mathé ([3])
study the discrepancy principle (8) in a frequentist setting. More precisely, in [3], they
consider a variety of regularisation methods, such as Tikhonov, and consider the weighted

residuals ||pG˚Gq1{2pY ´ Gpθτnq||22 instead of the projection operator Pn in (7). In the
case that the true Sobolev regularity is known, this method can achieve optimal rates.
However, no adaptive generalisation is currently available. In [5], they consider the dis-
cretized version of (1), with identity covariance matrix. The discretization is dependent



4 MAIA TIENSTRA

on the estimation of the effective dimension, and is an integral part of their analogue
of (8). In this regime, the method is adaptive for a small range of signals. In [25],
the Bayesian perspective is studied, and they use an empirical Bayesian method which
maximizes the log-likelihood for τn. In this setting they are able to achieve optimal rates
as long as the prior is smooth enough. In this work, we instead extend the discrepancy
principle (8) to Bayesian estimators of the form (3).

The ensemble Kalman filter (EnKF) has become a popular derivative-free method
for approximating posterior distributions. Time-continuous formulations, the so-called
ensemble Kalman-Bucy filter (EnKBF), have been first proposed in [1, 19, 2]. These
formulations become again exact for linear Gaussian problems. A frequentist perspective
on the EnKBF has already been explored in [22, 20]. Moreover in the early work [19], the
issue of stopping time base on the discrepancy principle was posed as an open problem

The EnKF has also been utilised as a derivative-free optimisation method. These
variants of the EnKF are often collected under the notion of ensemble Kalman inversion
(EKI). EKI can be used for finding the minimizer of the cost functional (6) see [14, 7]
and the review paper [6]. Algorithms for selecting the Tikhonov regularisation parameter
within EKI have been discussed, for example, in [26]. Similarly, a discrepancy principle
based stopping rule has been implemented for EKI in [13, 12]. Finally, [18], the paper
closest to this work, examines choosing τn under the known noise regime, but does not
provide a frequentist nor Bayesian analysis.

1.3. Main contributions and paper outline. In this paper, we study the stopping
rule considered in [4] as an empirical method for choosing the scale parameter of the
prior covariance. We provide a Bayesian analysis of this empirical method by extending
the setting of [4] to the Bayesian setting of [16], and then provide an analysis of the
asymptotic behaviour of the posterior stopped at time τdp. Furthermore, we derive
for which ℓ2´Sobelov regularities this method is optimal, and provide an adaptation
interval for this method. We then reformulate the regularisation parameter as a time
parameter, where we sequentially approach the final posterior by studying the time-
continuous ensemble Kalman-Bucy filter. In the linear setting, the associated McKean-
Vlasov evolution equations for mean and covariance are exact and provide an iterative
process to transform the prior distribution.

This paper is structured as follows: In Section 2 we introduce the mathematical as-
sumptions of our model. We provide the details of the projection matrix Pn and the
stopping rule (8). We then formulate the filter function associated with the regularisa-
tion (6), and show that the results of [4] can be applied. We then show that the stopped
posterior contracts optimally and provides a conservative measure of uncertainty. In Sec-
tion 3 we formulate the Bayesian inverse problem of (1) in terms of the time-continuous
ensemble Kalman-Bucy filter and introduce the associated McKean-Vlasov evolution
equations. In this section, we formulate the regularisation parameter as a time parame-
ter. We then show that taking a finite particle finite dimensional approximation of the
posteriors leads to an error that is smaller than the statistical minimax error. In Sec-
tion 4, we provide the discrete-time approximation of the process of the continuous time
EnKBF and give the associated algorithm. The numerical results can then be found in
Section 5. Finally, the conclusions can be found in Section 6.
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1.4. Further notation. We define the following additional notation. For two numbers
a and b we denote the minimum of a and b by a ^ b. For two sequences panqn and pbnqn
in R`, an À bn, respectively an Á bn denote inequalities up to a multiplicative constant.
an — bn denotes that an À bn and an Á bn holds. ℓ2 denotes space of sequences in that
are square summable, and ℓ1 denotes the space of summable sequences both with indices
running through N. For a random variable Y denote the distribution of Y by PY . The
space of bounded linear operators mapping from H1 to H2 is denoted by LpH1, H2q ,
with respective norm denoted by } ¨ }LpH1,H2q. For T a trace class operator with singular

values paiqiPN the trace norm is }T }T “ TrpTT ˚q1{2 “
ř8

i“1 ai. We can then view the
class of trace class operators as sequences in ℓ1 via their associated sequences of singular
values.

2. Theoretical results on adaptive estimation

The results of this section use the fact that G is a linear compact operator. Then, by
the Spectral Theorem, the eigenfunctions pviqiPN, of G

˚G form an orthonormal basis of

H1. Denote the bounded eigenvalues of pG˚Gq1{2 by,

σ1 ě σ2 ě ... ą 0.(9)

The following sequence space model is equivalent to observing (1), see [15], and is written
as

Yi “ σiθ
:

i `
1

?
n
ϵi,(10)

for i ě 1, where θ:

i “ xθ:, viy1 for i P N. Furthermore, all ϵi are i.i.d. N p0, 1q with
respect to the conjugate basis puiqiPN of the range of G in H2 defined by

(11) Gvi “ σiui

and Yi “ xY, uiy2.
In applications, it is necessary to truncate the infinite dimensional inverse problem to

a finite dimensional one. Such a truncation plays a crucial role in previous studies on
discrepancy based inference. See [4, 5, 23]. The truncation is then performed in sequence
space (10) by setting all coefficients, i, larger than an appropriate dimension dn to zero.
That is, the required projection operator Pn : H2 Ñ H2 is defined in sequence space by

(12) xPnY, uiy2 “

"

Yi if i ď dn
0 otherwise

The truncation is chosen to depend on the noise level, so when we consider the asymptotic
limit n Ñ 8 we have that dn Ñ 8. In this way, we are in the non-parametric setting,
and in the no noise limit return to the infinite dimensional setting.

2.1. Structural Assumptions. We assume that the inverse problem is polynomially
ill-posed where the degree of ill-posedness is given by some parameter p ą 0. That is,
the eigenvalues decay as

(13) σi — i´p, i P N.
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We choose an entry-wise Gaussian prior over the coefficients of the variable of interest

θ of the form, θi
iid
„ N p0, τnλiq. For τn ą 0, we assume that the λ1

is decay as

(14) λi — i´2α´1, i P N
for α ą 0. We furthermore assume that the observations are generated given some true
signal that lies in the Sobolev space Sβ where β denotes the regularity of the signal.
More specifically that

θ: P Sβ :“ tθ P H1 : }θ}2β ă 8u(15)

where the norm is defined as

θ “ pθiqiPN ÞÑ }θ}2β :“
ÿ

i

i2βpθiq
2.(16)

Intuitively, these spaces consist of sequences of coefficients, pθiq P ℓ2 that decay faster to
zero than the sequence pi2βq for i P N.

With these assumptions, the posterior is denoted by Πn,τn to indicate the dependence
on both the n and the scale parameter τn. The entry-wise posterior is given as

(17) θi | Yi „ N
ˆ

nτ2nλiσiYi
1 ` nτ2nλiσ2

i

,
τ2nλi

1 ` nτ2nλiσi

˙

.

The estimator (3) is then given in sequence space as

pθi,τn “
nτ2nλiσiYi
1 ` nτ2nλiσ2

i

.(18)

We consider signals in the Sobolev ellipsoid Sβpr, dnq, which is defined as

θ: P Sβpr, dnq :“ tθ P Rdn :
dn
ÿ

i“1

i2βθ2i ă ru.(19)

We recall that the minimax rate of estimation over the unit ball in Sβp1,8q is n´β{p2β`2p`1q.
The effective dimension of our observed signal is given by

(20) deff — n1{p2β`2p`1q.

If we truncate the signal Y to PnY with dn “ deff , then the approximation error we
make is less than the minimax error. As we do not know β, the true smoothness of our
signal, we choose dn ď n to be at least as fine as

(21) dn — n1{p2p`1q.

This is an upper bound for deff , as β ě 0. Our goal is now to recover the first dn
coefficients of the signal θ:.

In deterministic inverse problems it is assumed that the noise level is known. Then it
is possible to implement the discrepancy principle such that we stop at the first iteration
when Rτn À dn{n.

Remark 2.1. In [4], they consider the setting when C0 “ I, the dimension of the
approximation space is dn, with unknown noise δ in (1). They show that for

(22) κ — dnδ
2
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stopping according to (8) is adaptively optimal. The theory holds for slight deviations
of this choice of κ, mainly that κ can be chosen such that |κ ´ dnδ

2| ď cn
?
dnδ [4]

due to estimation of δ. We emphasize that the stopping rule depends on the truncation
dimension dn as also discussed in this paper. However, the choice C0 “ I prevents an
infinite-dimensional Bayesian interpretation of the estimators.

2.2. Theoretical Results. We first state the definition and assumptions of the class
of spectral filters considered in [4].

Assumption 2.1. Denote the regularisation function by gpt, σiq where gpt, σiq : R` ˆ

R` Ñ r0, 1s. Then the following must hold in order for gpt, σiq to be in the class of
regularising functions considered.

(1) The function gpt, σq is non-decreasing in t and σ, continuous in t with gp0, σq “ 0
and limtÑ8gpt, σq “ 1 for any fixed σ ą 0.

(2) For all t ě t1 ě t0. the function λ ÞÑ
1´gpt1,σq

1´gpt,σq
is non-decreasing.

(3) There exist positive constants α, β´, β` such that for all t ě t0, and σ P r0, 1s we
have that

β´ minpptσqρ, 1q ď gpt, σq ď minpβ`ptσqρ, 1q.

Lemma 2.1. Let pσi; vi, uiq be a singular system for G. We also assume that C0 has
the same eigenfunctions as G and further recall that the eigenvalues of C0 are written as
λi for i “ 1, ..., dn. Then the spectral filter for this generalised Tikhonov regularisation

(23) pθτn P argmin||Gθτn ´ Y||2 ` τ´2
n ||C

´1{2
0 θτn ||2

is given by

(24) gpτn, σ̃q “
1

p1 ` τn´2λ´1σ´2q

where σ̃ “ pλ´1{2qσ and n ě 0 n P R and satisfies Assumption 2.1.

Proof. Denote the eigenvalues of GTG by σ2
i and assume C

´1{2
0 has the same eigenfunc-

tions of GTG. Denote also the eigenvalues of C
´1{2
0 by pλ´1{2qi. Then define

gαpσ̃q “
1

σ ` αpλ´1{2q2
(25)
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Then

pθα “

8
ÿ

i“1

1

σ2
i ` α

´

λ
´1{2
i

¯2 xGT y, vnyvn

“

8
ÿ

i“1

1

σ2
i ` α

´

λ
´1{2
i

¯2 xy,Gvnyvn

“

8
ÿ

i“1

1

σ2
i ` α

´

λ
´1{2
i

¯2 xy, σiunyvn

“

8
ÿ

i“1

σi

σ2
i ` α

´

λ
´1{2
i

¯2 xy, unyvn.

With gαpσ̃q “ σ̃2gτn´2pσ̃2q “ gpτn, σ̃q it follows that

(26) gpτn, σ̃q “
1

p1 ` τn´2pλ´1{2q2σ´2q
.

Then, pθτn can be written as

(27) pθτn “ pGTG ` τn
´2pC

´1{2
0 q˚C

´1{2
0 q´1GT y

which is the unique minimiser of

(28) ||Gθ ´ y||2 ` τn
´2||C

´1{2
0 θ||2.

This can be seen by writing the normal equation for θ. Note that λ
´1{2
i ě 1, for i P N.

For, σ P p0, 1s Assumption (2.1) is satisfied with ρ “ 2, β´ “ 0. For the Tikhonov

regularisation with C
´1{2
0 “ I, the spectral filter is gpτn, σq “ 1

p1`τ´2
n σ´2q

, and β` was

computed to be 1. We also have that 1
p1`τ´2

n λ´1σ´2q
ď 1

p1`τ´2
n σ´2q

so β` “ 1. □

We then have that the Bayesian estimator as given by the mean of the stopped posterior
achieves the frequentist minimax rate. We first state the following definition:

Definition 2.1. A sequence pϵnqn of positive numbers is a posterior contraction rate at
the parameter θ: wrt to the semi-metric d if for every sequence pMnqn Ñ 8, it holds
that,

Πnpθ : dpθ, θ:q ě Mnϵn | Y q
P
θ:

ÝÑ 0(29)

as n Ñ 8. Where Πnp¨ | Y q is the posterior given observations Y and given prior Πn.

Intuitively, pϵnqn is the rate at which the dn ball of radius Mnϵn decreases such that
“most” of the posterior mass is inside this ball.

Theorem 2.1. Provided that κn — dn{n in (8), the truncation dimension dn in (7)
satisfies (21), and

(30) β ă 2α ` 2p ` 1,
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it follows that

(31) sup
θ:PSβp1q

E||pθτdp ´ θ:||2 À n´β{p2β`2p`1q

in the limit 1{n Ñ 0, where pθτdp is the estimator (3).

Proof. We have that Eθ:Πnpθ : dpθ, θ:q ě Mnϵn | Y q
P
θ:

ÝÑ 0, for every Mn Ñ 8 where ϵ
is computed as

ϵn “ pnτ2nq´β{p1`2α`2pq^1 ` pnτ2nq´α{p1`2α`2pq

Then from Theorem 4.1 and proof of in [17] the rate can be split into the following cases:

‚ If τn ” 1 the rate is ϵn “ npα^βq{p1`2α`2pq

‚ if β ď 1 ` 2α ` 2p, and τn — npα´βq{p1`2β`2pq, then ϵn “ np´βq{p1`2β`2pq

‚ if β ą 1 ` 2α ` 2p, no matter the scaling of τn we do not get an optimal rate as
ϵn " np´βq{p1`2β`2pq

Note when β ă 1 ` 2p ` 2α, there exists an oracle choice for τn which is

(32) τ˚
n — npα´βq{p2β`2p`1q

such that the minimax rate is achieved. In the case where β ě 1` 2p` 2α, the minimal
τn, such that the true bias equals the variance, returns a rate larger than n´β{p2β`2p`1q.
Moreover ϵn consists of three parts the order of the frequentist basis part, the order
of the frequentist variance part, and the order of the posterior spread. The order of
the posterior speed dominates that of the frequentist variance, so only two terms are
necessary to consider. From this decomposition of ϵn, we can see that the smoothness
condition on the Bayesian setting is necessary also in the frequentist setting. Then as the
filter function (24) satisfies Assumptions 2.1, the rate estimate (31) follows by applying
Corollary 3.7 in [4]. □

Corollary 2.1. If κ — dn{n, then PY pτlo ď τdp ď τupq Ñ 1, where τlo, τup — npα´βq{1`2β`2p,
and the adaptation interval is r0, β`s, such that β ď β` ď 1 ` 2p ` 2α.

Proof. We can further conclude by Theorem 2.1 that PY pτdp ď τupq Ñ 1, as the expected

loss of pθτdp is upper bounded by the expected loss of pθτ˚
n
and the expected ℓ2 loss is strictly

convex. If κ Á dn{n, then PY pτdp ě τloq Ñ 1 as asympototically Rτdp Á κ and by the
monotonicity of the bias. We further conclude that the adaptation interval, is rβ´, β`s

where β´ “ 0, as the estimator for the effective dimension was chosen as ρ´1{p2p`1q

impying β “ 0. We then have, that β` “ 1 ` 2p ` 2α, as only in this case can the prior
for fixed α be rescaled and achieve optimal rates see proof of Theorem 4.1 in [17]. □

We will further show that as the truncation dimension dn Ñ 8, the posterior dependent
on τdp also contracts at the optimal rate. We use the results from Theorem 2.1, and
only need to consider the behaviour of the tails knowing that the mean of the posterior
is moving towards the truth at the optimal rate.

Theorem 2.2. Let G˚G and C0 have the same eigenfunctions. Denote the eigenvalues
of G˚G and C0 by σ2

i and, λi respectively. Recall the structural assumptions,

(33) σi — i´p
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and entry-wise prior

(34) θi „ N p0, τ2nλiq λi — i´1´2α

Let θ: P Sβ, and denote the posterior associated to the estimated stopping time τdp by
Πn,τdpp¨ | Y q. Then

(35) Eθ:Πn,τdp

´

pθτdp : ||pθτdp ´ θ:|| ě Mnϵn

¯

Ñ 0

for every Mn Ñ 8, and with ϵn “ n´β{p2β`2p`1q.

Proof. The proof follows accordingly:

‚ Find and interval I such that τdp P I a.s. where τdp is estimated from the data
(8).

‚ Then find ϵn such that

(36) sup
τnPI

||pθτn ´ θ:|| ď ϵn

as dn Ñ 8.
‚ Show that ϵ2n inf

τnPI
||Cτn ||´1

op Ñ 8.

‚ Then Πn,τdpp¨ | Y q contracts at rate ϵn

We have that

sup
τnPI

||pθτn ´ θ:|| ď ϵn(37)

for ϵn “ n´β{p2β`2p`1q and I “ rτlo, τups, where τlo, τup are of order npα´βq{p2β`2p`1q.
From Theorem (2.1) and Corollary 2.1 when dn Ñ 8 as 1{n Ñ 0 we have that PY pτdp P

Iq Ñ 1. Furthermore, we know that the posterior spread for each time τn is given by

(38) Cτn :“ τ2nC0 ´ τ2nKτn

ˆ

GC0G
˚ `

1

nτ2n
I

˙

K˚
τn

So then

(39) ||Cτn ||´1
op À

1 ` nτ2n
τ2n

as the maximum eigenvalues of G and C0 are 1. Then

(40) ϵ2n inf
τnPI

||Cτn ||´1
op Ñ 8

So

lim
nÑ8

Πn,τnp||pθτn ´ θ:||2H1
ě ϵnq “ 0(41)

So then

sup
τnPI

Πn,τnp||pθτn ´ θ:||2H1
ě ϵnq “ oP:

θ
p1q(42)

where P:

θ is the true distribution of θ: □

The next question we would like to address is if the spread of the stopped posterior
Πn,τdp has good frequentist coverage. First, we define a credible ball.
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Definition 2.2. Denote the mean of the posterior by KY . Then the credible ball centred
at KY is defined as

(43) KY ` Bprn,cq :“ tθ P H1 : ||θ ´ KY ||H1 ă rn,cu

where Bprn,cq is the ball centred at 0 with radius rn,c, c P p0, 1q denotes the desired credible
level of 1 ´ c. The rn,c is chosen such that

(44) Πn,τnpKY ` Bprn,cq | Y q “ 1 ´ c.

We can define the frequentist coverage of the set KY ` Bprn,cq as

(45) Πθ:pθ: P KY ` Bprn,cqq

Corollary 2.2. For fixed α ą 0, if θ:

i “ Cii
´1´2β for all i “ 1, ..., dn, then as n Ñ 8,

Πn,τdp asymptotically has frequentist coverage 1.

Proof. It was assumed that β ă 1` 2p` 2α, and if κ — dn{n, then τdp Á npα´βq{1`2p`2α

see Corollary 2.1, so the result follows from by Theorem 4.2 in [17]. □

Moreover, it can be seen from conditions p1, 2q of Theorem 4.2, where we view τn as
the time parameter, that it is important to not stop prematurely to have the desired
frequentist coverage, and the lower bound of τdp is also of order npα´βq{p1`2p`2βq.

3. Ensemble Kalman–Bucy inversion

In this section, we reformulate the Bayesian inverse problem defined by (1) and the
Gaussian process prior N p0, τnC0q in terms of the time-continuous ensemble Kalman–
Bucy filter [19, 8, 6]. In order to do so, we introduce a new time-like variable t ě 0 and
a H1-valued and time-dependent Gaussian process denoted by Θt. This process satisfies
the McKean–Vlasov evolution equation

(46)
dΘt

dt
“ nΣtG

˚

"

Y ´
1

2
G

´

Θt ` rθt

¯

*

, Θ0 „ N p0, C0q,

where the mean and covariance operator of Θt are denoted by rθt and Σt, respectively.
Despite the fact, that the evolution equation (46) are nonlinear, closed form solutions

in terms of the mean and the covariance operator are available and given by

rθt “ C0G
˚

ˆ

GC0G
˚ `

1

n t
I

˙´1

Y,(47a)

Σt “ C0 ´ C0G
˚

ˆ

GC0G
˚ `

1

n t
I

˙´1

GC0.(47b)

Comparison to the estimator (3) reveals that

(48) rθt “ pθτn

for t “ τ2n. Furthermore, under the same relation between t and τn, it also holds that

(49) Cτn “ tΣt.
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Hence, upon defining dn, Pn, and κ as before, the evolution equations (46) are integrated
in time until

(50) tdp :“ inf
!

t ą 0 : }PnpY ´ Grθtq}22 ď κ
)

.

We next propose an adapted ensemble implementation of the mean-field EnKBF for-
mulation (46). Such an idea has been proposed in [18], where the ensemble size is grown
with each iteration. We will keep our ensemble sized fixed throughout the iterations.
First note that by the Schmidt–Eckhardt–Young–Mirsky theorem for deterministic low
rank approximation of self adjoint trace class operators truncating the SVD of C0 at J
gives us the approximation error of

(51) }VJ´1V
˚
J´1 ´ C0}LpH1,H1q “ J´2α´1.

where VJ´1V
˚
J´1 is the truncated SVD of C0. Let us generate J independent H1-valued

random ensemble members Θ
piq
0 , i “ 1, . . . , J such that their mean is zero and the

covariance of each member is C0. Denote their empirical mean by

(52) rθJ0 “
1

J

J
ÿ

i“1

Θ
piq
0

and their empirical covariance operator by

(53) ΣJ
0 “

1

J

J
ÿ

i“1

pΘ
piq
0 ´ rθJ0 q b pΘ

piq
0 ´ rθJ0 q.

The optimal approximation error of the empirical covariance is given by

(54) }ΣJ
0 ´ C0}LpH1,H1q — J´2α´1.

We can achieve this error by using a truncated singular value decomposition of C0 and
using this in place of the empirical approximation of the true covariance. Alternatively,
the ensemble can be constructed using the Nyström method, in which case (54) holds in
expectation only. See [18] for proof that this method has approximation error J´2α´1.
If we set

(55) J “ dn ` 1

the approximation error (54) becomes smaller than the minimax error provided (30) is
replaced by the smoothing condition

(56) β ď 2α ` 1

on the prior Gaussian distribution. Note that (56) implies (30) since p ą 0.

Corollary 3.1. If θ̃J0 “ pθ0, and for J “ dn ` 1, then }θ̃Jt ´ pθt}1 À J´2α´1 for all t ą 0.

Proof. For t fixed, we have that

}θ̃Jt ´ pθt}1 “

›

›

›

›

›

«

ΣJ
0G

˚

ˆ

GΣJ
0G

˚ `
1

n t
I

˙´1

Y

ff

´

«

C0G
˚

ˆ

GC0G
˚ `

1

n t
I

˙´1

Y

ff›

›

›

›

›

1

(57)
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Then, let

KJ “ ΣJ
0G

˚

ˆ

GΣJ
0G

˚ `
1

n t
I

˙´1

,(58)

K “ C0G
˚

ˆ

GC0G
˚ `

1

n t
I

˙´1

.(59)

We then have that

(60) }KJ ´ K}LpH1,H1q — J´2α´1

by linearity of the norm and the assumption on the approximation error (54). It follows
that

}θ̃Jt ´ pθt}1 “ }Y pKJ ´ Kq}1(61)

À }Y }2}pKJ ´ Kq}LpH1,H1q(62)

À J´2α´1.(63)

Plugging in J “ dn ` 1 we get that J´2α´1 “ n´2α´1{2p`1 ` 1 ď nβ{p2α`2p`1q when (56)
is satisfied. □

The mean-field EnKBF formulation (46) is now replaced by interacting finite particle
EnKBF formulation

(64)
dΘ

piq
t

dt
“ nΣJ

t G
˚

"

Y ´
1

2
G

´

Θ
piq
t ` rθJt

¯

*

for i “ 1, . . . , J .

Corollary 3.2. Denote singular value decomposition of C0 truncated at the J th singular
value by T JpT Jq˚ “ C0, where T J : RJ Ñ H1 is a linear operator. By truncated, we
mean that T JpT Jq˚ “ PJpT8pT8q˚q where PJ is defined in (12). Let QJ be the projector
of H1 onto the RJ subspace of H1, that maps the first J coordinates to RJ . Then, for
all t ą 0 we have that

(65) }QJ θ̃J t ´ pθt} À J´2α´1.

Proof. Fix t. Then we have that

}QJ θ̃
J
t ´ θ̃Jt } “ 0

□

Again plugging in J “ dn ` 1 we get that J´2α´1 “ n´2α´1{2p`1 ` 1 ď nβ{p2α`2p`1q

when (56) is satisfied. So using a finite dimension finite ensemble size does not add error
of order higher than the minimax rate. We can then consider the projected version of
(64) which is given as

(66)
dΘ

piq
t

dt
“ nQJpΣJ

t G
˚q

"

QJpY ´ GrθJt q ´
1

2
QJpG

´

Θ
piq
t ´ rθJt q

¯

*

.

The stopping criterion (50) can be replaced by using the projected residuals

(67) tn :“ inf
!

t ą 0 : }QJpY ´ GrθJt q}22 ď κ
)

.
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It should be noted that (66) effectively constitutes a finite-dimensional system of
ordinary differential equations since

(68) Θ
pjq

t “

J
ÿ

i“1

Θ
piq
0 m

pi,jq

t

for appropriate time-dependent coefficients m
pi,jq

t , i, j “ 1, . . . , J [21].

4. Algorithmic details

We now give the discrete time formulation for implementing (66) which we rewrite as

d

dt
Θt “ ´

1

2
nΣJ

t G
T pGΘt ` Gmt ´ 2Y q .(69a)

with the understanding that here everything has been projected onto RJ . Denote the

ensemble of J parameter values at time tk ě 0 by θ
piq
k . The initial conditions are given

by

(70) θ
piq
0 „ Np0, C0q

for i “ 1, . . . , J . Let us denote the empirical mean of the ensemble by mJ
k and the

empirical covariance matrices by CJ
k . We introduce the empirical covariance matrix

between Θ and GΘ, denoted by CJ
n P Rdnˆdn , as well as the empirical covariance matrix

of GΘ, denoted by SJ
k P Rdnˆdn , which is given by

(71) SJ
k “

1

J ´ 1

J
ÿ

i“1

pGθ
piq
k ´ Gθ̃Jk qpGθ̃Jk ´ Gθ

piq
k qT,

where Gθ̃Jk denotes the empirical mean of Gθ. Similarly,

(72) CJ
k “

1

J ´ 1

J
ÿ

i“1

pθ
piq
k ´ θ̃Jk qpGθ

piq
k q ´ Gθ̃Jk qT.

The resulting deterministic discrete time update formulas, which follow from (69), are
given as

θ
piq
k`1 “ θ

piq
k ´

1

2
Kk

´

Gθ
piq
k ` Gθ̃Jk ´ 2Y

¯

(73a)

with Kalman gain matrix

(74) Kk “ ∆t CJ
k

`

∆tSJ
k ` I

˘´1
.

The standard discrepancy principle, stops the iteration of the EnKBF whenever

(75) kdp “ inf
!

k ě k0 : }Gpθ̃Jk q ´ Y }2 ď κ
)

.

where κ “ Cdn{n and 0 ă C ď 1 is such that |κ ´ dnρ| ď C
?
dn{n and k0 is the initial

time. See Section 2. Combining the deterministic updates, the recalibration of the initial
ensemble, and the discrepancy based stopping criterion, we have the resulting algorithm.
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Algorithm 1 Deterministic EnKF

Require: J ą 0, m0, ∆̃0, Y, G, ρ
Θ0 Ð initializepJ,m0, ∆̃0q Ź Θ P RdnˆJ

Θ0 Ð calibratepJ,m0,Θ0q Ź see (54)

R0 Ð ||Gpθ̃J0 q ´ Y ||2

κdp “ dnδ
2 Ź see (22)

while Rk ă κdp do

Kk Ð ∆t CJ
k

`

∆tSJ
k ` I

˘´1
Ź CJ

k see (72), ΣJ
k see (71)

for i P t1, .., Ju do

θ
piq
k`1 Ð θ

piq
k ´

1

2
Kk

´

Gθ
piq
k ` GmJ

k ´ 2Y
¯

Rk`1 Ð ||G
´

θ̃Jk`1

¯

´ Y ||2

Return Θk

5. Numerical Examples

In this section, we demonstrate the performance of the discrepancy principle based
stopping rule. We choose the forward operator to have p “ 1{2. We choose θ: P

Sβ :“ tθ P H1 :
ř8

i“1 θ
2
i i

2β ă 8u, β ą 0. We initialize the ensemble with entry wise

prior θi
ind
„ N p0, i´1´2αq, where α “ 1{2. We generate noisy observation by setting the

dimension of θ: to 100 and draw independent standard Gaussian noise with noise level
1{n “ 0.001. We set κdp “ Cdn{n, and run the ensemble Kalman filter for 1000 iterations
with ∆tn “ 0.04. For each iteration, we compute the residual and record the first
iteration such that R2

n ď κdp. We consider three different, θ: which are shown in Figure

1 where θ1,i “ 5 sinp0.5iqi´1, θ2,i “ 5 sinp0.5iqi´3{2, θ3,i “ 5expp´iq for i “ 1, ..., 100. We

Fig. 1. Plot of ground truth coefficients with differing decay.

show our results using the deterministic algorithm. We chose the ensemble size to be 90,
which was required to estimate the posterior spread correctly. We note that a smaller
ensemble size can work in practice if one is interested in the mean alone. The results
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are based on 100 simulations. In Figure 2, we see that the posterior, given our choice of
α, p, κ, associated with the stopped ensemble has the correct coverage.

Fig. 2. Plot of MAP estimator versus ground truth and the respec-
tive 95% credible intervals and frequentist coverage resulting from the
stopped ensemble using the discrepancy principle. The estimated τdp
was, 32.48, 35.52, 40 respectively.

To run the algorithm, one must choose α, and additionally, choose κ, which depends
on estimating the noise level. From Section 2 one should choose a relatively smooth prior
so that it can adapt to the true smoothness. Additionally, one should choose a small κ,
to mitigate against stopping too early, as the lower bound on τdp should be satisfied in
order to have the appropriate posterior variance.

6. Conclusion

Prior selection is an important decision to make in Bayesian methods. We have seen
that the scale parameter determines the amount of regularisation the prior introduces
into the problem. We have also seen in the analysis in Section 2 that the scale parameter
strongly influences the posterior variance. Therefore, in order to derive a posterior
that has the desired properties, the correct choice of scale parameter is critical. We
have considered an adaptive empirical method for choosing the scale parameter of the
covariance of a Gaussian prior using early stopping. It was shown in the linear case that
the link between the choice of how much regularisation is needed and the choice of the
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prior is, in effect, the choice of how much to scale the covariance operator. The stopping
rule was dependent on the dimension of the discretisation, which is an upper bound on
the effective dimension of the observations. In addition, the asymptotic behaviour of the
stopped Bayesian estimator and the associated stopped posterior were analysed. It was
explicitly shown that the stopped estimator is minimax optimal and that the posterior
contracts at the optimal rate. We also showed that the stopped posterior’s frequentist
coverage tends to 1. We showed that this method is adaptive if the prior smoothness
α is chosen to be at such that β ă 1 ` 2p ` 2α holds. Finally, we tested our method
numerically using the EnKF. This algorithm allowed us to reformulate our problem in
terms of an iterative process of the evolving Gaussian distributions.

The results of this paper depend on the structural assumptions made in Section 2. In
particular, we point out that the proofs depend on the linearity of the inverse problem.
The ensemble Kalman filter introduced in Section 3 is an exact method only in the linear
setting, but ensemble Kalman methods have achieved success in cases where the forward
operator is non-linear and a Gaussian approximation of the posterior is appropriate.
Early stopping, as a separate field, has considered nonlinear inverse problems in the
deterministic setting, where hence no adaptation can occur. For these reasons, an ex-
tension of these methods to the non-linear setting is of interest. Another open question
is whether there are stopping rules that do not depend on the effective dimension and
are adaptively optimal in the Bayesian setting.
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[3] G. Blanchard and P. Mathé. Discrepancy principle for statistical inverse problems
with application to conjugate gradient iteration. Inverse Problems, 28, 2012. doi:
10.1088/0266-5611/28/11/115011.

[4] G. Blanchard, M. Hoffmann, and M. Reiß. Optimal adaptation for early stopping
in statistical inverse problems. SIAM/ASA J. Uncertain. Quantif., 6(3):1043–1075,
2018. doi: 10.1137/17M1154096.

[5] G. Blanchard, M. Hoffmann, and M. Reiß. Early stopping for statistical inverse
problems via truncated SVD estimation. Electr. J. Stat., 12(2):3204–3231, 2018.
doi: 10.1214/18-EJS1482.

[6] E. Calvello, S. Reich, and A. M. Stuart. Ensemble Kalman methods: A mean-field
perspective. arXiv:2209.11371, 2022.

[7] N. K. Chada, A. M. Stuart, and X. T. Tong. Tikhonov regularization within en-
semble Kalman inversion. SIAM Journal on Numerical Analysis, 58(2):1263–1294,
2020.

[8] C. Cotter and S. Reich. Ensemble filter techniques for intermittent data assimilation.
Radon Ser. Comput. Appl. Math., 13:91–134, 2013. doi: 10.1515/9783110282269.91.

[9] H. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer
Academic Publishers, 1996.

[10] S. Ghosal and A. van der Vaart. Fundamentals of Nonparametric Bayesian Infer-
ence. Cambridge University Press, Cambridge, 2017.
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