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We consider the problem of nonparametric density estimation under privacy con-

straints in an adversarial framework. To this end, we study minimax rates under local

differential privacy over Sobolev spaces. We first obtain a lower bound which allows us

to quantify the impact of privacy compared with the classical framework. Next, we intro-

duce a new Coordinate block privacy mechanism that guarantees local differential privacy,

which, coupled with a projection estimator, achieves the minimax optimal rates.
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1 Introduction

In this paper, we study minimax nonparametric density estimation under local differential
privacy constraints, in an adversarial framework. Let us first present each context.

Minimax nonparametric density estimation. Let X1, . . . ,Xn be n independent and
identically distributed (i.i.d.) random variables with common density f on [0, 1]d with respect
to the Lebesgue measure. We aim at estimating the underlying density f , a classical challenge
in statistics extensively studied in the literature. Early attempts to address this problem
primarily rely on kernel methods, as in [Rosenblatt, 1956, Parzen, 1962, Silverman, 1978].
Projection methods also emerge as a viable approach, built upon the decomposition of f into
orthonormal bases. Notable contributions include [Schwartz, 1967, Kronmal and Tarter, 1968,
Walter, 1977, Efromovich, 1999]. We want to construct optimal estimators in the minimax
sense. More precisely, consider a loss function ℓ and a regularity space F . We say that an
estimator f̂ is optimal in the minimax sense over the class F if there exists a positive sequence
(ρn)n and positive constants c and C such that

sup
f∈F

E

[

ℓ(f̂ , f)
]

≤ Cρn, and inf
f̃

sup
f∈F

E

[

ℓ(f̃ , f)
]

≥ cρn,

where the infimum is taken over all estimators f̃ of f based on (X1, . . . ,Xn). Such sequence
(ρn)n≥1 is called the minimax rate over the class F . The most commonly used loss functions
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are defined from Lp norms. The literature on nonparametric density estimation is abundant.
We can refer to [Tsybakov, 2009] for a review of optimal results in different contexts. This
topic remains widely studied in more intricate contexts such as deconvolution, non independent
observations, and, more recently, data privacy constraints as considered in this paper.

Differential privacy. The collection of a large amount of personal data requires new tools
to protect sensitive information concerning individuals. To guarantee the privacy of each
individual, the development of mechanisms to be applied to daba bases has become crucial.
Differential privacy has been widely adopted, since the seminal papers by [Dwork et al., 2006b,
Dwork et al., 2006a], as it provides rigorous privacy guarantees. The original definition corre-
sponds to the notion of global differential privacy, where the entire original data set (X1, . . . ,Xn)
is privatized into an output that preserves the privacy of the n individuals and is used for
further statistical analyses. This means that the n data holders share confidence with a com-
mon curator who has access to the whole sample (X1, . . . ,Xn). In this paper, we consider
a stronger notion of privacy, that is called local differential privacy, where each individual
generates a private view Zi of its original data Xi independently of the other individuals.
More precisely, Zi is a stochastic transformation of Xi by the channel Qi : given Xi = xi,
Zi ∼ Qi(.|Xi = xi). For a given positive number α, we say that the sequence of channels
(Qi)i=1,...,n provides α-local differentially private (α-LDP) views of (X1, . . . ,Xn) if

∀ 1 ≤ i ≤ n, sup
B∈B,(xi,x′

i)∈X

Qi(B|Xi = xi)

Qi(B|Xi = x′i)
≤ eα, (1)

where (X ,A) and (Z,B) respectively denote the measure spaces of the original data and of the
privatized data. Let us briefly mention the interactive local privacy mechanism where Zi may
depend on the preceding privatized values Z1, . . . , Zi−1, namely Zi ∼ Qi(.|xi, Z1, . . . , Zi−1).
We focus on non interactive local privacy mechanisms satisfying Equation (1).
In statistical inference under privacy constraints, we do not have access to the original data.
Therefore, the statistical performances are necessarily deteriorated. In order to quantify this
gap, the literature is prolific since the early work by [Wasserman and Zhou, 2010, Smith, 2011].
The first minimax rates for estimation problems under differential privacy conditions where
established in [Duchi et al., 2013b, Duchi et al., 2013a, Duchi et al., 2018] and more recently
[Cai et al., 2021]. For instance, [Butucea et al., 2020] estimate density over Besov ellipsoids
with respect to the Lp norm, [Rohde and Steinberger, 2020] deal with the estimation of func-
tionals. [Butucea et al., 2023b] study the effect of interactive versus non interactive pri-
vacy mechanisms on the estimation of quadratic functionals, while [Lam-Weil et al., 2022,
Dubois et al., 2023] consider goodness-of-fit testing problems.
In this paper, we are interested in minimax density estimation under local differential pri-
vacy defined by Equation (1), with respect to adversarial losses. Let us now introduce the
adversarial framework.

Adversarial framework. Beyond density estimation, generative models have seen consid-
erable growth in recent years. Generative models aim to reproduce the sampling behavior
of a target distribution, rather than explicitly fitting a density function. Specifically, ma-
chine learning has made significant empirical progress in generative modeling, using such
tools as generative adversarial networks (GANs) [Goodfellow et al., 2014]. GANs provide a
flexible framework for sampling from unknown distributions, and have become a standard
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tool among practitioners. From a practical point of view, numerous improvements have been
made to GANs, enabling them to achieve state-of-the-art performance in various data gen-
eration tasks. We refer to [Gui et al., 2020] for a review and all references therein. The
empirical success of GANs motivated many researchers to analyze their theoretical properties;
among others, we mention the work of [Biau et al., 2020, Liang, 2021, Schreuder et al., 2021,
Asatryan et al., 2023, Puchkin et al., 2024].
The rise of GANs has brought with it a focus on losses that can drive generative models, such
as integral probability metrics (IPMs) [Müller, 1997, Dziugaite et al., 2015, Liu et al., 2017,
Bottou et al., 2018]. IPMs are types of distance between probability distributions, defined by
the ability of a class of functions to distinguish between two distributions. More precisely,
given a class G of real-valued functions defined on [0, 1]d, we define the distance between two
probability density functions f1 and f2 by

dG(f1, f2) = sup
g∈G

∫

[0,1]d
(f1 − f2)g. (2)

By choosing different sets G, this framework can express a multitude of commonly used mea-
surements. We refer to it as the adversarial framework. The name adversarial comes from the
idea that G can be viewed as a discriminator able to distinguish between the two probability
measures carried by f1 and f2. For example, choosing the 1-Lipschitz functions equipped
with the Wasserstein metric leads to the Wasserstein GANs [Arjovsky et al., 2017], whereas
choosing G as a Sobolev space leads to Sobolev GANs [Mroueh et al., 2018].
In a pre-published version from 2017, [Liang, 2021] was the first to formalize nonparamet-
ric estimation under the adversarial framework, and to prove upper bounds for Sobolev
GANs. Following this work, [Singh et al., 2018] succeeded in improving this upper bound.
Finally, [Liang, 2021] obtained an optimal minimax rate for Sobolev GANs. The study
of the adversarial framework is today a very active field of research, with variations on
the choice of regularity classes, or by generalizing the choice of metric. To name a few,
[Singh and Póczos, 2018, Bai et al., 2019, Weed and Berthet, 2019, Chen et al., 2022] focused
on Wasserstein distance; [Uppal et al., 2019] on Besov spaces; [Luise et al., 2020] on optimal
transport-based loss functions. In this work, we focus on private density estimation using
adversarial losses as defined in Equation (2), where the discriminator G is a Sobolev ball. This
can be seen as a first step towards understanding the performances of Sobolev GANs under
privacy.

Minimax rate in the adversarial framework under privacy constraints In this pa-
per, our aim is to estimate the density of X1, . . . ,Xn under privacy constraints. Hence, the
definition of the minimax rate needs to take into account the choice of the privacy mechanism.
More precisely, let Qα denote the set of all α-local differential private mechanisms, that is
the set of mechanisms Q = (Q1, . . . , Qn) satisfying Equation (1). The minimax rate over the
regularity set F with respect to the adversarial loss dG under α-local differential privacy is
defined by

ρn(F ,G,Qα) = inf
Q∈Qα

inf
f̃

sup
f∈F

E

[

dG
(

f̃ , f
)]

, (3)

where the infimum over f̃ is taken among all estimators of f based on privatized data
(Z1, . . . , Zn) obtained from Q. Consider an α-LDP mechanism Q and an estimator f̂ based
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on data privatized from Q. We say that the couple (Q, f̂) is minimax optimal if there exists
a constant C (w.r.t. n) such that

sup
f∈F

E

[

dG(f̂ , f)
]

≤ Cρn(F ,G,Qα).

In this paper, we consider Sobolev spaces as regularity sets F for the density and G for
the discriminator in the adversarial loss. One of the main contributions of this work is the
introduction of the Coordinate block privacy mechanism which allows to achieve the minimax
optimal rates with projection estimators on the Fourier basis of L2([0, 1]

d).

The structure of this paper is as follows. Section 2 consists of all the results in the isotropic
case. The definition of the Sobolev balls is detailed in Section 2.1. Section 2.2 is devoted
to the lower bound of the minimax rate, whereas Section 2.3 presents the Coordinate block
privacy mechanism together with our private projection estimator which are minimax optimal.
In Section 3, we present results in an anisotropic framework. In Section 4, we demonstrate
the main results. The proofs are detailed in the isotropic case to avoid making the notations
too cumbersome. Complementary proofs can be found in Appendix A.

In the following, ca,b,... and Ca,b,... denote constants depending only on a, b, . . . that may vary
from line to line. Moreover, the notation un ≍ vn indicates that there exist absolute constants
c and C such that c ≤ un/vn ≤ C.

2 Results over isotropic Sobolev balls

Before stating our main results, let us define the regularity spaces considered in this section,
namely isotropic Sobolev balls.

2.1 Fourier basis and Sobolev spaces

Consider the d-dimensional Fourier basis of L2([0, 1]
d) obtained by taking the tensor product

of the one-dimensional Fourier basis. More precisely, recall the one-dimensional Fourier basis
defined for all t in [0, 1] by

ϕ1(t) = 1 and ∀j ∈ N
∗,

{
ϕ2j(t) =

√
2 cos(2πjt)

ϕ2j+1(t) =
√
2 sin(2πjt).

The d-dimensional Fourier basis is defined for all j = (j1, . . . , jd) in (N∗)d and all x =

(x1, . . . , xd) in [0, 1]d by

ϕj(x) =

d∏

m=1

ϕjm(xm).

Then, the family
{

ϕj , j ∈ (N∗)d
}

is an orthonormal basis of L2([0, 1]
d). In particular, any

function f in L2([0, 1]
d) can be uniquely decomposed as

f =
∑

j∈(N∗)d

θj(f)ϕj , where θj(f) =

∫

[0,1]d
f(x)ϕj(x)dx.
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A natural choice for regularity spaces are Sobolev balls since they can be simply character-
ized in terms of the Fourier decomposition. The isotropic Sobolev balls are defined for all
smoothness parameter β > 0 and radius R > 0 by

Wβ(R) =






f ∈ L2([0, 1]

d) ;
∑

j∈(N∗)d

(

j2β1 + . . . + j2βd

)

θ2j(f) ≤ R2






. (4)

Note that if f is a density, then

∑

j∈(N∗)d

(

j2β1 + . . .+ j2βd

)

θ2j(f) ≥ d θ2(1,1,...,1)(f) = d.

Hence the Sobolev ball Wβ(R) may contain densities only if R2 ≥ d. In this section, both
densities and discriminant functions will belong to such isotropic Sobolev balls.

2.2 Lower bound over Sobolev balls

In this section, we bound from below the minimax rate over Sobolev balls in the adversarial
framework under privacy constraints.

Theorem 2.1. Consider a sample size n, a privacy level α in (0, A] such that nα2 ≥ 1, integer

smoothness parameters β and δ in N
∗, and a positive radius R such that R2 > d. Then, the

minimax rate defined in (3) is lower bounded as follows:

ρn(Wβ(R),Wδ(1),Qα) ≥ cmax
{

(nα2)−
β+δ

2β+2d , (nα2)−1/2
}

,

where c = cβ,δ,R,d,A is a positive constant depending on β, δ, R, d, and A.

The proof of Theorem 2.1 is detailed in Section 4.1. Depending on the value of the smoothness
parameter δ for the adversarial distance, the rate is not the same. In particular, if δ > d, we
obtain a near-parametric rate, while for δ < d, we see the influence of the regularity of the
discriminator class G = Wδ(1). Note that these rates are coherent with the ones achieved
by [Liang, 2021] over slightly different Sobolev spaces, with respect to adversarial losses in

dimension d, without privacy constraints, that are n−
β+δ
2β+d ∨ n−1/2. One may notice the effect

of privatization, that replaces n by nα2 and transforms the dimension d in 2d. These effects
can also be observed in [Duchi et al., 2013a], over Sobolev spaces in dimension 1, with respect
to the L2 loss, where the rate n−2β/(2β+1) without confidentiality becomes (nα2)−2β/(2β+2)

under privacy constraints.
The lower bound is proved only for integer regularity parameters β and δ which is standard
in the literature. Indeed, the proof is based on the construction of parametric spaces, namely
Fβ and Dδ, which relies on the characterisation of Sobolev spaces based on the L2 norm of
the partial derivatives (see Lemma A.1).

2.3 Optimal local differential private projection estimator

In the usual non private setting, projection estimators have been widely studied. Over
isotropic Sobolev balls Wβ(R), as considered in this section, where the smoothness param-
eter β is the same for each dimension, the density is approximated by a truncated sum
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∑

j∈{1,2,...,J}d θj(f)ϕj , where each index jm in j is considered up to the same integer J that

needs to be calibrated. If we had access to the original data set (X1, . . . ,Xn), we could then
estimate the density f by

f̂J =
∑

j∈{1,2,...,J}d
θ̂jϕj , where ∀j ∈ {1, 2, . . . , J}d , θ̂j =

1

n

n∑

i=1

ϕj(Xi),

for some J well chosen. Yet, under privacy constraints, we are not allowed to use the original
dataset (Xi)1≤i≤n, only a privatized version of the data. Let us first define a mechanism
that provides α-local differential private data and second, introduce the private projection
estimator and prove that it achieves optimal rates.

Privacy mechanism. This mechanism is strongly inspired by the one proposed by [Duchi et al., 2018]
and adapted by [Butucea et al., 2023a]. The main difference is that, instead of privatizing all
the coefficients at once, as done in the Coordinate global privacy mechanism in [Butucea et al., 2023a],
we privatize independently blocks of coefficients, which we refer to as the Coordinate block pri-

vacy mechanism.

Let us first introduce dyadic coordinate blocks. Define for all ℓ = (ℓ1, . . . , ℓd) ∈ N
d,

Jℓ =

d∏

m=1

{

2ℓm , . . . , 2ℓm+1 − 1
}

,

such that
{
Jℓ

}

ℓ∈{0,...,L}d form a partition of {1, 2, . . . , J}d , where J = 2L+1 − 1. Denote dℓ
the cardinal of Jℓ, that is

dℓ = |Jℓ| =
d∏

m=1

2ℓm .

To each block Jℓ, associate a privacy level αℓ that will be calibrated later, and such that
∑

ℓ∈{0,1,...,L}d αℓ = α.

For all i in {1, 2, . . . , n}, we define the private version Zi of Xi using the following steps.

• Compute for all ℓ in {0, 1, . . . , L}d, the coefficients in the block Jℓ,

vi,[ℓ] =
(

ϕj(Xi)
)

j∈Jℓ

∈ [−B0, B0]
dℓ ,

where B0 = maxj∈(N∗)d

∥
∥
∥ϕj

∥
∥
∥
∞

=
√
2.

• Independently for all ℓ, draw random vectors ṽi,[ℓ] in {−B0, B0}dℓ with coordinates

∀j ∈ Jℓ, ṽi,j =

{

B0 with probability 1
2 +

ϕj(Xi)

2B0

−B0 otherwise,

and set






D+

(
ṽi,[ℓ]

)
=

{

z ∈ {±Bdℓ(αℓ)}dℓ ; 〈z, ṽi,[ℓ]〉 > 0 or

(

〈z, ṽi,[ℓ]〉 = 0 and z1 =
Bdℓ

(αℓ)

B0
ṽi,1

)}

D−
(
ṽi,[ℓ]

)
=

{

z ∈ {±Bdℓ(αℓ)}dℓ ; 〈z, ṽi,[ℓ]〉 < 0 or

(

〈z, ṽi,[ℓ]〉 = 0 and z1 = −
Bdℓ

(αℓ)

B0
ṽi,1

)}

,
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where for all k in N
∗ and positive a,

Bk(a) = B0
ea + 1

ea − 1
Ck, with

1

Ck
=







1

2k−1

(
k − 1
k−1
2

)

if k is odd,

(k − 2)!(k − 2)

2k−1
(
k
2 − 1

)
!k2 !

if k is even.

(5)

• Independently for all ℓ in {0, 1, . . . , L}d, draw at random

Ti,ℓ ∼ B(παℓ
), where παℓ

=
eαℓ

1 + eαℓ
,

and generate

Z̃i,[ℓ] ∼
{

U
(
D+

(
ṽi,[ℓ]

))
if Ti,ℓ=1

U
(
D−

(
ṽi,[ℓ]

))
if Ti,ℓ=0.

• Define the vector Zi =
(
Zi,[ℓ]

)

ℓ∈{0,1,...,L}d , where

– if dℓ is odd, Zi,[ℓ] = Z̃i,[ℓ],

– if dℓ is even, the coordinates of Zi,[ℓ] are

Zi,j =

{
d−2

2(d−1)! × Z̃i,j if j = (2ℓm)1≤m≤d

Z̃i,j otherwise .

Note that in D+

(
ṽi,[ℓ]

)
and D−

(
ṽi,[ℓ]

)
, the second condition is impossible if dℓ is odd, i.e., for

any vectors z̃ in {±Bdℓ(αℓ)}dℓ and ṽ in {±B0}dℓ , 〈z, ṽi,[ℓ]〉 = 0 is impossible. Indeed, since
the scalar product is proportional to the difference between the number of coordinates of same
sign and the number of coordinates of opposite sign, it can be equal to zero only if the number
of coordinates is even. In our case, the only ℓ for which Jℓ is odd is the case ℓ = (0, 0, . . . , 0).

Proposition 2.1. Consider a positive integer J = 2L+1 − 1 for some L ≥ 1, and a privacy

level α in (0, A]. The mechanism described above satisfies the following properties.

1. Z1, . . . , Zn provide α-local differential private views of X1, . . . ,Xn.

2. For all i in {1, 2, . . . , n}, ℓ in {0, . . . , L}d, and j in Jℓ,

E

[

Zi,j

∣
∣
∣Xi

]

= ϕj(Xi), and Var
(

Zi,j

)

≤ CAB
2
0

dℓ

α2
ℓ

,

where CA is a constant depending on A.

The proof is very similar to the one of [Butucea et al., 2023a] and may be found in Ap-
pendix A.3. A first natural idea was to consider the Coordinate global privacy mechanism in
[Duchi et al., 2018, Butucea et al., 2023a]. Yet, one may prove that the variance of each Zi,j

is then of order Jd/α2 and this allows to achieve optimal rates only for δ < d/2.
With this new mechanism, the variance of Zi,j is controlled by the size dℓ of the corresponding
block, and it turns out that it makes it possible to achieve the optimal minimax rate.
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Private projection estimator Given the observation of the private views Z1, . . . , Zn of
X1, . . . ,Xn, we aim at estimating the density f of theXi, 1 ≤ i ≤ n. As done by [Duchi et al., 2013a]
in dimension one, we estimate the coefficients θj(f) in the Fourier expansion of f for all

j ∈ {1, 2, . . . , J}d by

θ̂j =
1

n

n∑

i=1

Zi,j .

Proposition 2.1 implies that for all j, θ̂j is an unbiased estimator of θj(f). Then, we estimate
the density f by

f̂J =
∑

j∈{1,2,...,J}d
θ̂jϕj , (6)

for a well calibrated J .

Theorem 2.2. Consider a sample size n, a privacy level α in (0, A] such that nα2 > 1,
smoothness parameters β and δ in R

∗
+, and a positive radius R. Consider the Coordinate

block privacy mechanism described in Section 2.3, where

αℓ =
α

Sd

d∏

m=1

2ℓm(1−δ/d)/2 and Sd =
∑

ℓ′∈{0,1,...,L}d

d∏

m=1

2ℓ
′

m(1−δ/d)/2.

Then, the projection estimator f̂J defined in Equation (6) satisfies

sup
f∈Wβ(R)

E

[

dWδ(1)

(

f̂J , f
)]

≤







C(nα2)
− β+δ

2β+2d if δ < d and J ≍ (nα2)
1

2β+2d

C
(

nα2

[ln(nα2)]4d

)−1/2
if δ = d and J ≍

(
nα2

[ln(nα2)]4d

) 1
2β+2δ

C(nα2)−1/2 if δ > d and J ≍ (nα2)
1

2β+2δ ,

where C = Cd,A,β,δ,R denotes a constant depending on d, A, β, δ and R.

Unlike the case of the lower bound, the result holds for non-integers parameters β and δ.
One may see with Theorem 2.1 that the private projection estimator with the Coordinate
block privacy mechanism are minimax optimal for all δ 6= d. Moreover, if the discriminator
regularity δ < d, then one needs to consider larger privacy levels (and thus less confidentiality)
for larger blocks, whereas if δ > d, smaller privacy levels (and thus more confidentiality) need
to be taken for larger blocks. One may note that a logarithmic term appears in the limiting
case where δ = d. In that case, αℓ = α/(L + 1)d, and all blocs have the same privacy level.
In this case, we do not know if the lower bound or the upper bound are suboptimal.
Finally, as the choice of the number of considered coefficients J depends on the unknown
regularity β of the density, this procedure is not adaptive in the minimax sense. This is a
topic for future work.

3 Results over anisotropic Sobolev balls

Assume now that the regularity is not the same in each direction. More precisely, consider
the multidimensional parameter β = (β1, . . . , βd) in (R∗

+)
d and define the anisotropic Sobolev

ball
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Wβ(R) =






f ∈ L2([0, 1]

d) ;
∑

j∈(N∗)d

(

j2β1
1 + . . . + j2βd

d

)

θ2j(f) ≤ R2






. (7)

All the results may be easily adapted as soon as one considers discriminators with the same
"anisotropy" as the density regularity, that is anisotropic Sobolev balls Wδ(1), where δ =
(δ1, . . . , δd) is such that the ratio βm/δm is constant.
More precisely, denote

1

β
=

1

d

d∑

m=1

1

βm
and

1

δ
=

1

d

d∑

m=1

1

δm
. (8)

Then, Wβ(R) and Wδ(1) have the same anisotropy if and only if for all 1 ≤ m ≤ d,

β

βm
=

δ

δm
. (9)

In the anisotropic case, the choice of the number of coordinates considered in each dimension
should depend on the corresponding regularity. Hence, for an integer J to be calibrated later,
denote the set of multi-indices that are considered

J =

d∏

m=1

{1, . . . , Jm} where ∀ 1 ≤ m ≤ d, Jm = Jβ/βm = Jδ/δm .

In particular, the number of elements in J equals

#J =
d∏

m=1

Jm = Jd.

Note that in the isotropic case, for all 1 ≤ m ≤ d, βm = β thus Jm = J . Then, one recovers
the set of multi-indices J = {1, 2, . . . , J}d to which the sum relates in the estimator defined
in Equation (6).

Theorem 3.1. Consider a sample size n, a privacy level α in (0, A] such that nα2 ≥ 1,
integer smoothness parameters β ∈ (N∗)d and δ ∈ (N∗)d with same anisotropy as defined in

Equation (9), and a positive radius R such that R2 > d. Then, there exists a positive constant

c = cβ,δ,R,d,A such that

ρn(Wβ(R),Wδ(1),Qα) ≥ cmax
{

(nα2)
− β+δ

2β+2d , (nα2)−1/2
}

,

where β and δ are defined by Equation (8).

For the upper bound, we also need to adapt the privacy mechanism. The only difference
comes from the fact that we do not consider the same number of dyadic blocks in each
dimension. In this case, define

Lm = ⌊ln2
(

Jβ/βm + 1
)

⌋, and Jm = 2Lm+1 − 1,
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such that Jβ/βm ≤ Jm ≤ 3Jβ/βm . We then consider the same dyadic blocs Jℓ for ℓ in

L =
∏d

m=1 {0, 1, . . . , Lm} as in the isotropic case such that

J =
⋃

ℓ∈L
Jℓ.

The privacy mechanism remains unchanged. Finally, we define the private projection estimator
by

f̂J =
∑

j∈J
θ̂jϕj , (10)

for a well calibrated J .

Theorem 3.2. Consider a privacy level α in (0, A], smoothness parameters β ∈ (R∗
+)

d and

δ ∈ (R∗
+)

d with same anisotropy as defined in Equation (9), and a positive radius R. Consider

the Coordinate block privacy mechanism described in Section 2.3, where

αℓ =
α

Sd

d∏

m=1

2ℓm(1−δm/d)/2 and Sd =
∑

ℓ′∈L

d∏

m=1

2ℓ
′

m(1−δm/d)/2.

Then, the projection estimator f̂J defined in Equation (10) satisfies

sup
f∈Wβ(R)

E

[

dWδ(1)

(

f̂J , f
)]

≤







C(nα2)
− β+δ

2β+2d if ∀ m, δm < d and J ≍ (nα2)
1

2β+2d

C
(

nα2

ln(nα2)4d

)−1/2
if ∀ m, δm = d and J ≍

(
nα2

ln(nα2)4d

) 1
2β+2δ

C(nα2)−1/2 if ∀ m, δm > d and J ≍ (nα2)
1

2β+2δ ,

where β and δ are defined in Equation (8), and where C = Cd,A,β,δ,R denotes a constant

depending on d, A, β, δ and R.

One may notice that the upper bounds are obtained only for all δm on the same regime (that is
less than, equal to or greater than d). This condition is due to technical reasons, and appears
naturally in the proof. Without this condition, the minimax optimality remains an open
question. However, given the density smoothness β, one can choose δ with same anisotropy
as β and such that this condition holds. Moreover, as in the isotropic case, the private
projection estimator with the Coordinate block privacy mechanism are minimax optimal for
all δm less than d, or all δm greater than d.

The adaptation of the proofs of Theorems 2.1 and 2.2 to the anisotropic case with the
adjustments defined above is straightforward, and leads to Theorems 3.1 and 3.2. For the
sake of clarity, we decide to present the proofs only in the isotropic case.

4 Main proofs

4.1 Proof of Theorem 2.1

Let n ≥ 1 and α in [1/
√
n,A]. Let β and δ be two positive integer smoothness parameters,

and consider a radius such that R2 > d. Let J ≥ 1 be a positive integer. We define ψ on [0, 1]
by

ψ(t) = exp

( −1

1− (4t− 1)2

)

1t∈(0,1/2) − exp

( −1

1− (4t− 3)2

)

1t∈(1/2,1).
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Note that the function ψ is based on bump functions and often used to prove lower bounds
in nonparametric statistics. In particular, ψ is a periodic function on [0, 1] with continuous
derivatives of all orders, such that all derivatives are uniformly bounded on [0, 1] and periodic,
and satisfies

∫

[0,1] ψ(x)dx = 0.

Denote for all j = (j1, . . . , jd) in {1, 2, . . . , J}d, and all x = (x1, . . . , xd) in [0, 1]d:

Gj(x) =
d∏

m=1

ψ

(

J

(

xm − jm − 1

J

))

.

Note that the support of Gj is
∏d

m=1

[
jm−1
J , jmJ

]

, and for all p > 0,

∫

[0,1]d
Gj = 0, and

∥
∥
∥Gj

∥
∥
∥

p

p
=

(

‖ψ‖pp
)d

Jd
. (11)

Indeed,

∥
∥
∥Gj

∥
∥
∥

p

p
=

∫

[0,1]d

∣
∣
∣Gj(x)

∣
∣
∣

p
dx =

d∏

m=1

[
∫ jm

J

jm−1
J

∣
∣
∣
∣
ψ

(

J

(

xm − jm − 1

J

))∣
∣
∣
∣

p

dxm

]

=

d∏

m=1

[
1

J

∫ 1

0
|ψ (ym)|p dym

]

=
(‖ψ‖pp)d

Jd
.

Let γn, η > 0 and define two parametrized families of functions on [0, 1]d by

Fβ(γn) =







fν = 1[0,1]d +
γn
Jβ

∑

j∈{1,2,...,J}d
νjGj ; ν ∈ {0, 1}Jd







,

and

Dδ(η) =







gλ =
η

Jδ

∑

j∈{1,2,...,J}d
λjGj ; λ ∈ {−1, 1}Jd







.

Lemma 4.1. Let β and δ be two positive integer parameters. Assume R2 > d.

1. All functions fν in Fβ(γn) are densities as soon as γn ≤ ‖ψ‖−d
∞ .

2. One has the inclusions Fβ(γn) ⊂ Wβ(R) and Dδ ⊂ Wδ(1), as soon as

γ2n ≤ R2 − d

d ‖ψ‖2(d−1)
2

[

‖ψ‖22 +
∥
∥ψ(β)

∥
∥2

2

] , and η2 ≤ 1

d ‖ψ‖2(d−1)
2

[

‖ψ‖22 +
∥
∥ψ(δ)

∥
∥2

2

] .

(12)

The proof of Lemma 4.1 is detailed in Section A.2. In the following, consider γn and η such
that γn ≤ ‖ψ‖−d

∞ , and that (12) is satisfied.
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In particular, for all α-LDP privacy mechanisms Q and all estimators f̃ of f based on data
privatized from Q,

sup
f∈Wβ(R)

Ef,Q

[

dWδ(1)

(

f̃ , f
)]

≥ sup
fν∈Fβ(γn)

Efν ,Q

[

dWδ(1)

(

f̃ , fν

)]

= max
ν∈{0,1}Jd

Efν ,Q

[

dWδ(1)

(

f̃ , fν

)]

.

Moreover, for all ν in {0, 1}Jd
, Then,

dWδ(1)

(

f̃ , fν

)

= sup
g∈Wδ(1)

∫

[0,1]d

[(

f̃ − fν

)

g
]

≥ sup
gλ∈Dδ(η)

∫

[0,1]d

[(

f̃ − fν

)

gλ

]

= max
λ∈{−1,1}Jd

η

Jδ

∑

j∈{1,...,J}d
λj

∫

[0,1]d

[(

f̃ − fν

)

Gj

]

≥ η

Jδ

∑

j∈{1,...,J}d

∣
∣
∣
∣
∣

∫

[0,1]d

[(

f̃ − fν

)

Gj

]
∣
∣
∣
∣
∣
, (13)

with the particular choice of λ̃ such that for all j, λ̃j is the sign of the integral
∫

[0,1]d [(f̃−fν)Gj ].

Yet, by definition of fν in Fβ(γn), and since the supports of the functions Gj are disjoint,

∣
∣
∣
∣
∣

∫

[0,1]d

[(

f̃ − fν

)

Gj

]
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫

[0,1]d

[(

f̃ − hj(νj)
)

Gj

]
∣
∣
∣
∣
∣
,

where hj(νj) = 1 + γn
Jβ νjGj . Introduce

ν̃j ∈ argmin
νj∈{0,1}

∣
∣
∣
∣
∣

∫

[0,1]d

[(

f̃ − hj(νj)
)

Gj

]
∣
∣
∣
∣
∣
.

Then by the triangular inequality,
∣
∣
∣
∣
∣

∫

[0,1]d

[(

f̃ − fν

)

Gj

]
∣
∣
∣
∣
∣

≥ 1

2

{∣
∣
∣
∣
∣

∫

[0,1]d

[(

f̃ − hj(ν̃j)
)

Gj

]
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

[0,1]d

[(

f̃ − hj(νj)
)

Gj

]
∣
∣
∣
∣
∣

}

≥ 1

2

∣
∣
∣
∣
∣

∫

[0,1]d

[(

hj(ν̃j)− hj(νj)
)

Gj

]
∣
∣
∣
∣
∣

=
γn
2Jβ

∣
∣
∣ν̃j − νj

∣
∣
∣

∫

[0,1]d
G2

j

=
‖ψ‖2d2

2

γn
Jβ+d

∣
∣
∣ν̃j − νj

∣
∣
∣ . (14)

by Equation (11) for p = 2. Finally, combining (13) and (14) leads to

dWδ(1)

(

f̃ , fν

)

≥ η ‖ψ‖2d2
2

γn
Jβ+δ+d

ρH(ν̃, ν),

12



where ρH(ν̃, ν) =
∑

j |ν̃j − νj | =
∑

j 1ν̃j 6=νj denotes the Hamming distance between ν̃ and ν

in {0, 1}Jd
. Thus,

sup
f∈Wβ(R)

Ef,Q

[

dWδ(1)

(

f̃ , f
)]

≥ η ‖ψ‖2d2
2

γn
Jβ+δ+d

max
ν∈{0,1}Jd

Efν ,Q[ρH(ν̃ , ν)]

≥ η ‖ψ‖2d2
2

γn
Jβ+δ+d

× inf
ν̂

max
ν∈{0,1}Jd

Efν ,Q[ρH(ν̂, ν)] , (15)

where the infimum is taken over all estimators ν̂ based on data from the distribution Pν

with density fν, that have been privatized using a privacy mechanism Q. Denote Mn
ν the

distribution of such privatized data. In order to lower bound this infimum, let us use Theorem
2.12 [Tsybakov, 2009, p. 118] recalled below.

Theorem 4.1 ([Tsybakov, 2009] Theorem 2.12). Let Θ = {0, 1}N , with N ≥ 1 and {Pθ, θ ∈ Θ}
be a set of 2N probability measures on a measurable space (X ,A). Denote Eθ the corresponding

expectations. Assume that there exists ξ > 0 such that for all θ, θ′ ∈ Θ satisfying ρH(θ, θ′) = 1,
the Kullback-Leibler divergence between Pθ and Pθ′ satisfies KL(Pθ, Pθ′) ≤ ξ. Then, it yields

inf
θ̂
max
θ∈Θ

Eθ

[

ρH

(

θ̂, θ
)]

≥ N

2
max

{

e−ξ

2
, 1−

√

ξ

2

}

.

We thus need to upper bound the Kullback-Leibler divergence of the privatized distributions
Mn

ν and Mn
ν′ , where ν and ν ′ belong to {0, 1}Jd

such that ρH(ν, ν ′) = 1. Yet, according to
[Duchi et al., 2013b, Theorem1],

KL(Mn
ν ,M

n
ν′) ≤ 4n (eα − 1)2TV2(Pν , P

′
ν).

Moreover, if ρH(ν, ν ′) = 1, then there exists a unique j0 such that νj0 6= ν ′j0 , and thus

TV(Pν , P
′
ν) =

1

2

∫

[0,1]d
|fν − fν′ | =

γn
2Jβ

∣
∣
∣νj0 − ν ′j0

∣
∣
∣

︸ ︷︷ ︸

=1

∫

[0,1]d

∣
∣
∣Gj0

∣
∣
∣ =

‖ψ‖d1
2

γn
Jβ+d

,

by Equation (11) for p = 1. We deduce that

KL(Mn
ν ,M

n
ν′) ≤ ‖ψ‖2d1

γ2n
J2β+2d

n (eα − 1)2 ≤ e2A ‖ψ‖2d1
γ2n

J2β+2d
nα2,

as one can prove by Taylor Theorem with the Lagrange form of remainder that for all α in

(0, A], eα − 1 ≤ αeA. In particular, if γ2
n

J2β+2dnα
2 =: γ2 is constant, we obtain that

KL(Mn
ν ,M

n
ν′) ≤ ξ, where ξ = γ2e2A ‖ψ‖2d1 .

Applying Theorem 4.1 with N = Jd to the privatized distributions leads to

inf
ν̂

max
ν∈{0,1}Jd

Efν ,Q[ρH (ν̂, ν)] ≥ Jd

2
max

{

e−ξ

2
, 1−

√

ξ

2

}

.
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Finally, from (15), we obtain

sup
f∈Wβ(R)

Ef,Q

[

dWδ(1)

(

f̃ , f
)]

≥ c0
γn
Jβ+δ

,

where c0 =
(

η ‖ψ‖2d2 /4
)

max
{

e−ξ/2, 1 −
√

ξ/2
}

is a constant depending on β, δ,R, d,A.

This being true for all Q ∈ Qα and f̃ , we deduce that

ρn(Wβ(R),Wδ(1),Qα) = inf
Q∈Qα

inf
f̃

sup
f∈Wβ(R)

E

[

dWδ(1)

(

f̃ , f
)]

≥ c0
γn
Jβ+δ

.

In order to obtain both rates in Theorem 2.1, consider

γ = min






‖ψ‖−d

∞ ,
R2 − d

d ‖ψ‖2(d−1)
2

[

‖ψ‖22 +
∥
∥ψ(β)

∥
∥2

2

]






,

so that we may apply Lemma 4.1 for the different choices of γn below.

First, choosing J = (nα2)
1

2β+2d and γn = γ implies that γ2n
nα2

J2β+2d = γ2 is a constant and thus,

ρn(Wβ(R),Wδ(1),Qα) ≥
γc0
Jβ+δ

= c (nα2)
− β+δ

2β+2d .

Second, choosing J = 1 and γn = γ/(α
√
n) ≤ γ (as α ≥ 1/

√
n) also implies that γ2n

nα2

J2β+2d = γ2

is a constant and thus,

ρn(Wβ(R),Wδ(1),Qα) ≥ c0
γ

α
√
n
= c (nα2)−1/2.

This concludes the proof of Theorem 2.1.

4.2 Proof of Theorem 2.2

In this proof, denote for all j = (j1, . . . , jd) in (N∗)d,
∥
∥jβ

∥
∥
2
= j2β1 + j2β2 + . . .+ j2βd , and let f

in Wβ(R), such that
∑

j∈(N∗)d

∥
∥
∥j

β
∥
∥
∥

2
θj(f)

2 ≤ R2.

We aim at upper bounding

E

[

dWδ(1)

(

f̂J , f
)]

= E

[

sup
g∈Wδ(1)

∫

[0,1]d
(f̂J − f)g

]

.

Let g in Wδ(1) and consider its decomposition in the Fourier basis: g =
∑

j∈(N∗)d θj(g)ϕj .

Then,
∫

[0,1]d
(f̂J − f)g =

∑

j∈(N∗)d

[

θ̂j − θj(f)
]

θj(g)

=
∑

j∈{1,...,J}d

[

θ̂j − θj(f)
]

θj(g) +
∑

j /∈{1,...,J}d

[

−θj(f)
]

θj(g).
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In particular,

E

[

dWδ(1)

(

f̂J , f
)]

≤ E



 sup
g∈Wδ(1)

∑

j∈{1,...,J}d

[

θ̂j − θj(f)
]

θj(g)





︸ ︷︷ ︸

E1

+ sup
g∈Wδ(1)

∑

j /∈{1,...,J}d

[

−θj(f)
]

θj(g)

︸ ︷︷ ︸

E2

. (16)

• Let us first upper bound E2.
By the Cauchy-Schwarz inequality,

∑

j /∈{1,...,J}d

[

−θj(f)
]

θj(g) ≤

√
√
√
√
√




∑

j /∈{1,...,J}d
θj(f)2








∑

j /∈{1,...,J}d
θj(g)2



.

Yet, since f belongs to Wβ(R),

∑

j /∈{1,...,J}d
θj(f)

2 =
∑

j /∈{1,...,J}d

∥
∥
∥j

β
∥
∥
∥

2
θj(f)

2 1
∥
∥jβ

∥
∥
2 ≤ R2J−2β,

as for all j /∈ {1, 2, . . . , J}d, there exists m ∈ {1, . . . , d} such that jm > J . Then,

∥
∥
∥j

β
∥
∥
∥

2
≥ j2βm > J2β.

In the same way, since g belongs to Wδ(1),
∑

j /∈{1,...,J}d θj(g)
2 ≤ J−2δ. Hence,

∑

j /∈{1,...,J}d

[

−θj(f)
]

θj(g) ≤
√
R2J−2βJ−2δ.

This being true for any g in Wδ(1), we deduce that

E2 ≤ RJ−(β+δ). (17)

• Let us now upper bound E1.
As the blocks Jℓ form a partition of {1, . . . , J}d, and by the Cauchy-Schwarz inequality for
all ℓ,

∑

j∈{1,...,J}d

[

θ̂j − θj(f)
]

θj(g) =
∑

ℓ∈{0,1,...,L}d

∑

j∈Jℓ

[

θ̂j − θj(f)
] 1
∥
∥jδ
∥
∥
×
∥
∥
∥j

δ
∥
∥
∥ θj(g)

≤
∑

ℓ∈{0,1,...,L}d

√
√
√
√
√




∑

j∈Jℓ

[

θ̂j − θj(f)
]2 1
∥
∥jδ
∥
∥
2








∑

j∈Jℓ

∥
∥jδ
∥
∥
2
θj(g)2





≤
∑

ℓ∈{0,1,...,L}d

√
√
√
√

∑

j∈Jℓ

[

θ̂j − θj(f)
]2 1
∥
∥jδ
∥
∥
2 ,
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and this for all g in Wδ(1). Since the upper bound does not depend on g, we deduce that

E1 ≤
∑

ℓ∈{0,1,...,L}d
E






√
√
√
√

∑

j∈Jℓ

[

θ̂j − θj(f)
]2 1
∥
∥jδ
∥
∥
2






≤
∑

ℓ∈{0,1,...,L}d

√
√
√
√

∑

j∈Jℓ

E

[(

θ̂j − θj(f)
)2
]

1
∥
∥jδ
∥
∥
2 ,

by Jensen’s inequality.
Yet, for any ℓ in {0, 1, . . . , L}d and any j ∈ Jℓ, by Proposition 2.1, for all 1 ≤ i ≤ n,

E

[

Zi,j

∣
∣
∣Xi

]

= ϕj(Xi), thus

E

[

θ̂j

]

=
1

n

n∑

i=1

E

[

Zi,j

]

=
1

n

n∑

i=1

E

[

ϕj(Xi)
]

= θj(f).

Therefore, using once again Proposition 2.1, as the dimension of the block Jℓ equals dℓ =
∏d

m=1 2
ℓm , and B0 =

√
2,

E

[(

θ̂j − θj(f)
)2
]

= Var
(

θ̂j

)

=
1

n2

n∑

i=1

Var
(

Zi,j

)

≤ CA

∏d
m=1 2

ℓm

nα2
ℓ

,

where CA only depends on A. This upper bound no longer depends on j.
Moreover, recall the inequality of arithmetic and geometric means that is, for all a1, . . . , ad
positive numbers,

1

d

d∑

m=1

am ≥
(

d∏

m=1

am

)1/d

.

It is a direct application of Jensen’s inequality for the logarithmic function which is concave.

Then, we obtain that for all j in Jℓ,

∥
∥
∥j

δ
∥
∥
∥

2
=

d∑

m=1

j2δm ≥ d

d∏

m=1

j2δ/dm ≥ d

d∏

m=1

2ℓm2δ/d,

where the last inequality comes from the definition of Jℓ.
Therefore,

∑

j∈Jℓ

E

[(

θ̂j − θj(f)
)2
]

1
∥
∥jδ
∥
∥
2 ≤ Cd,A

nα2
ℓ

∑

j∈Jℓ

[
d∏

m=1

2ℓm(1−2δ/d)

]

=
Cd,A

nα2
ℓ

d∏

m=1

22ℓm(1−δ/d)

as the cardinal of Jℓ equals
∏d

m=1 2
ℓm .

We deduce that

E1 ≤
Cd,A√
n

∑

ℓ∈{0,1,...,L}d

[

1

αℓ

d∏

m=1

2ℓm(1−δ/d)

]

.
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Then, solving the constrained-optimization problem which consists in

min
(αℓ)ℓ







∑

ℓ∈{0,1,...,L}d

[

1

αℓ

d∏

m=1

2ℓm(1−δ/d)

]





subject to

∑

ℓ∈{0,1,...,L}d
αℓ = α,

by the method of Lagrangian multipliers leads to the choice of the privacy levels

αℓ =
α

Sd

d∏

m=1

2ℓm(1−δ/d)/2, where Sd =
∑

ℓ′∈{0,1,...,L}d

d∏

m=1

2ℓ
′

m(1−δ/d)/2,

as defined in Theorem 2.2.
For this particular choice of privacy levels, we obtain

E1 ≤
Cd,A√
n

Sd
α

∑

ℓ∈{0,1,...,L}d

[
d∏

m=1

2ℓm(1−δ/d)/2

]

=
Cd,A

α
√
n
S2
d .

Note that if δ 6= d, then,

S2
d =

(
L∑

l=0

[

2(1−δ/d)/2
]l
)2d

=

(

2(1−δ/d)(L+1)/2 − 1

2(1−δ/d)/2 − 1

)2d

=
1

[
2(1−δ/d)/2 − 1

]2d

(

(J + 1)(1−δ/d)/2 − 1
)2d

.

From here, we distinguish three cases.

Case 1: If δ < d, then S2
d ≤ Cd,A,δJ

d−δ and E1 ≤ Cd,A,δ

α
√
n
Jd−δ. Thus, E1 and E2 are of the

same order if J−(β+δ) ≍ 1
α
√
n
Jd−δ , that is if J ≍

(
nα2

) 1
2β+2d . In that case, we obtain

E

[

dWδ(1)

(

f̂J , f
)]

≤ Cd,A,δ,R

(
nα2

)−(β+δ)
2β+2d .

Case 2: If δ > d, then S2
d ≤ Cd,A,δ and E1 ≤ Cd,A,δ

α
√
n
. Thus, E1 and E2 are of the same order

if J−(β+δ) ≍ 1
α
√
n
, that is if J ≍

(
nα2

) 1
2β+2δ . In that case, we obtain

E

[

dWδ(1)

(

f̂J , f
)]

≤ Cd,A,δ,R

(
nα2

)−1/2
.

Case 3: If δ = d, then S2
d = (L+ 1)2d ≤ Cd,A ln(J)2d, as J = 2L+1 − 1. Then, setting

J ≍
(

nα2

ln(nα2)4d

) 1
2β+2d

,

leads to

E1 ≤
Cd,A

α
√
n
ln(J)2d ≤ Cd,A,β

α
√
n

ln(nα2)2d,

since ln(J) = 1
2β+2d

[
ln(nα2)− 4d ln(nα2)

]
≤ Cd,A,β ln(nα

2). In that case, we obtain

E

[

dWδ(1)

(

f̂J , f
)]

≤ Cd,A,β,R

(
nα2

ln(nα2)4d

)−1/2

.
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A Complementary proofs

A.1 Characterization of Sobolev balls using partial derivatives

Lemma A.1. Let β = (β1, . . . , βd) be a regularity parameter with integer coordinates. Con-

sider f a function in L2([0, 1]
d) such that

∫

[0,1]d f
2(x)dx ≤ C2

1 and for all 1 ≤ m ≤ d, f is

βm-differentiable w.r.t. the m-th variable, and satisfies,

∫

[0,1]d

[
∂βmf

∂xβm
m

(x)

]2

dx ≤ C2
2 .

Assume also that f and all its partial derivatives are periodic, namely for all m = 1, . . . , d,
for all 0 ≤ lm ≤ βm, for all (x1, . . . , xm−1, xm+1, . . . , xd) in [0, 1]d−1,

∂lmf

∂xlmm
(x1, . . . , xm−1, 0, . . . , xd) =

∂lmf

∂xlmm
(x1, . . . , xm−1, 1, . . . , xd).

Then,
∑

(j1,...,jd)∈(N∗)d

(

j2β1
1 + . . . + j2βd

d

)

θ2(j1,...,jd)(f) ≤ L2,

where L2 = d
(
C2
1 + C2

2

)
. In particular, f belongs to the Sobolev ball Wβ (R) as defined in

(4), as soon as

d
(
C2
1 +C2

2

)
≤ R2.

First note that, by Parseval’s equality,

∑

j∈(N∗)d

θ2j (f) =

∫

[0,1]d
f2(x)dx ≤ C2

1 , (18)

and
∑

j∈(N∗)d

θ2j

(
∂βmf

∂xβm
m

)

=

∫

[0,1]d

[
∂βmf

∂xβm
m

(x)

]2

dx ≤ C2
2 . (19)

By integrations by parts, and using the periodicity of f and all its partial derivatives, we have

θj

(
∂βmf

∂xβm
m

)

=

∫

[0,1]d

∂βmf

∂xβm
m

ϕj

= ±
∫

[0,1]d
f
∂βmϕj

∂xβm
m

.

Recalling that for all j = (j1, . . . , jd) in (N∗)d and all x = (x1, . . . , xd) in [0, 1]d ϕj(x) =
∏d

l=1 ϕjl(xl), we have

∂βmϕj

∂xβm
m

(x) =
d∏

l 6=m=1

ϕjl(xl)ϕ
(βm)
jm

(xm).

Moreover, by definition of the Fourier basis, if β is even, for all j ∈ N
∗, ϕ(β)

2j = ±(2πj)βϕ2j

and ϕ
(β)
2j+1 = ±(2πj)βϕ2j+1, if β is odd, for all j ∈ N

∗, ϕ(β)
2j = ±(2πj)βϕ2j+1 and ϕ

(β)
2j+1 =

18



±(2πj)βϕ2j .
Hence, if βm is even and jm ≥ 2,

θj

(
∂βmf

∂xβm
m

)

=







±
(
2πjm
2

)βm

θj(f) if jm is even

±
(
2π(jm−1)

2

)βm

θj(f) if jm is odd.

Since for all jm ≥ 2, jm ≤ 2(jm − 1), we deduce from (19) that

∑

j∈(N∗)d, jm≥2

j2βm
m θ2j(f) ≤

∑

j∈(N∗)d, jm≥2

(
πjm
2

)2βm

θ2j(f) ≤ C2
2 . (20)

If βm is odd and jm ≥ 2,

θj

(
∂βmf

∂xβm
m

)

=







±
(
2πjm
2

)βm

θj1...jm+1...jd(f) if jm is even

±
(
2π(jm−1)

2

)βm

θj1...jm−1...jd(f) if jm is odd,

and we also obtain (20). Finally, using (18), we get

∑

j∈(N∗)d

jm
2βmθ2j(f) ≤ C2

1 + C2
2 ,

which concludes the proof of Lemma A.1.

A.2 Proof of Lemma 4.1

1. Let fν belong to Fβ(γn), and let x in [0, 1]d. Then, there exists a unique j0 such that

x belongs to the support of Gj0 . In particular, if γn ≤ ‖ψ‖−d
∞ ≤ Jβ ‖ψ‖−d

∞ , then

fν(x) = 1 +
γn
Jβ
νj0Gj0(x) ≥ 1− γn

Jβ

∣
∣
∣Gj0(x)

∣
∣
∣ ≥ 1− γn

Jβ
‖ψ‖d∞ ≥ 0.

Moreover, using the left hand side equation in (11) directly leads to

∫

[0,1]d
fν(x)dx = 1 +

γn
Jβ

∑

j∈{1,...,J}d
νj

∫

[0,1]d
Gj(x)dx

︸ ︷︷ ︸

=0

= 1.

2. To prove this point, we shall use Lemma A.1.

Consider ν = (νj)j∈{1,...,J}d in {0, 1}Jd
and consider fν : [0, 1]d → R in Fβ(γn), defined

for all x in [0, 1]d by

fν(x) = 1 +
γn
Jβ

∑

j∈{1,...,J}d
νjGj(x).
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Let us first upper bound the L2 norm of fν . As the supports of the Gj are disjoint, by
both Equations in (11)

∫

[0,1]d
fν(x)

2dx = 1 +
γ2n
J2β

∑

j∈{1,...,J}d
ν2j

∫

[0,1]d
Gj(x)

2dx.

≤ 1 +
γ2n
J2β

‖ψ‖2d2
≤ 1 + γ2n ‖ψ‖2d2 .

Let m in {1, . . . , d}. Then for all x ∈ [0, 1]d,

∂β

∂xβm
fν(x) =

γn
Jβ

∑

j∈{1,...,J}d
νj

[
∂β

∂xβm
Gj(x)

]

.

Since the supports of the Gj for j ∈ {1, . . . , J}d are disjoint,

[
∂β

∂xβm
fν(x)

]2

=
γ2n
J2β

∑

j∈{1,...,J}d
ν2j

[
∂β

∂xβm
Gj(x)

]2

,

and in particular,

∫

[0,1]d

[
∂β

∂xβm
fν(x)

]2

dx =
γ2n
J2β

∑

j∈{1,...,J}d
ν2j

∫

[0,1]d

[
∂β

∂xβm
Gj(x)

]2

dx.

Yet, by definition of Gj ,

∣
∣
∣
∣

∂β

∂xβm
Gj(x)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

Jβψ(β)

(

J

(

xm − jm − 1

J

))

×




∏

m′ 6=m

ψ

(

J

(

xm′ − jm′ − 1

J

))




∣
∣
∣
∣
∣
∣

Therefore,

∫

[0,1]d

[
∂β

∂xβm
Gj(x)

]2

dx ≤ J2β

∫ jm
J

jm−1
J

[

ψ(β)

(

J

(

xm − jm − 1

J

))]2

dxm

×
∏

m′ 6=m

∫ j
m′

J

j
m′−1

J

[

ψ

(

J

(

xm′ − jm′ − 1

J

))]2

dxm′

≤
J2β

(∥
∥ψ(β)

∥
∥
2
‖ψ‖(d−1)

2

)2

Jd

We deduce that, as ν2j ≤ 1 for all j,

∫

[0,1]d

[
∂β

∂xβm
fν(x)

]2

dx ≤ γ2n
J2β

× Jd ×
J2β

(∥
∥ψ(β)

∥
∥
2
‖ψ‖d−1

2

)2

Jd
= γ2n

(∥
∥
∥ψ(β)

∥
∥
∥
2
‖ψ‖d−1

2

)2
.
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This result being true for all 1 ≤ m ≤ d, we deduce from Lemma A.1 that fν belongs to
the isotropic Sobolev ball Wβ(R) as soon as

d×
{

1 + γ2n ‖ψ‖
2(d−1)
2

[

‖ψ‖22 +
∥
∥
∥ψ(β)

∥
∥
∥

2

2

]}

≤ R2,

i.e.

γ2n ≤ R2 − d

d ‖ψ‖2(d−1)
2

[

‖ψ‖22 +
∥
∥ψ(β)

∥
∥2

2

] .

The proof is similar for the inclusion Dδ(η) ⊂ Wδ(1), as soon as

d× η2 ‖ψ‖2(d−1)
2

[

‖ψ‖22 +
∥
∥
∥ψ(δ)

∥
∥
∥

2

2

]

≤ 1,

which ends the proof.

A.3 Proof of Proposition 2.1

1. To prove the α-local differential privacy, we use the independence between the blocks.
Indeed, according to [Butucea et al., 2023a, Proposition 3.1], on each block Jℓ, we obtain

that for all xi and x′i, for all z[ℓ] in
{

−Bdℓ(αℓ), Bdℓ(αℓ)
}dℓ

,

P
(
Zi,[ℓ] = z[ℓ]

∣
∣Xi = x

)

P
(
Zi,[ℓ] = z[ℓ]

∣
∣Xi = x′

) ≤ eαℓ .

Then, by independence between the blocks, for all x, x′ in [0, 1]d and all

z = (z[ℓ])ℓ∈{0,1,...,L}d ∈
∏

ℓ∈{0,1,...,L}d

{

−Bdℓ(αℓ), Bdℓ(αℓ)
}dℓ

,

we obtain that

P(Zi = z|Xi = x)

P(Zi = z|Xi = x′)
=

∏

ℓ∈{0,1,...,L}d

P
(
Zi,[ℓ] = z[ℓ]

∣
∣Xi = x

)

P
(
Zi,[ℓ] = z[ℓ]

∣
∣Xi = x′

)

≤
∏

ℓ∈{0,1,...,L}d
eαℓ = eα,

since
∑

ℓ∈{0,1,...,L}d αℓ = α.

2. Fix i in {1, 2, . . . , n} and, j in Jℓ. As the conditional expectation of the privatized coef-
ficients does not depend on the blocks, one directly obtains from [Butucea et al., 2023a,

Proposition 3.2] that E

[

Zi,j

∣
∣
∣Xi

]

= ϕj(Xi).

For the variance, by definition of each privatized coordinate,

Var
(

Zi,j

)

≤ E

[

Z2
i,j

]

≤ E

[

Z̃2
i,j

]

≤ Bdℓ(αℓ)
2, (21)
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where for all a ∈ (0, A] and all integer k,

Bk(a) = B0
ea + 1

ea − 1
Ck,

with Ck as defined in Equation (5). In order to control Bk(a), one may first note that

ea + 1

ea − 1
≤ eA + 1

a
.

Then, using Stirling’s approximation, that is p! ∼ √
2πp(p/e)p, one may recover that

Ck ∼ √
πp, where k = 2p − 1 if k si odd, and k = 2p if k is even. Indeed, on the one

hand, if k = 2p+ 1 is odd,

Ck = 22p
(p!)2

(2p)!
∼ 22p

2πp(p/e)2p√
4πp(2p/e)2p

=
√
πp.

On the other hand, if k = 2p is even,

Ck = 22p−1 (p − 1)!p!

[2(p − 1)]!2(p − 1)

∼ 22p−1

√

2π(p − 1)[(p− 1)/e]p−1 ×√
2πp(p/e)p

√

4π(p − 1)[2(p − 1)/e]2p−2 × 2(p − 1)
=

√
πp

(
p

p− 1

)p 1

e
∼ √

πp.

In particular, there exists a constant c such that Ck ≤ c
√
k. We deduce that

Bk(a) ≤ B0CA

√
k,

where CA is a constant only depending on A. Finally, from Equation (21) one deduces
that

Var
(

Zi,j

)

≤ CAB
2
0

dℓ

α2
ℓ

,

which ends the proof of Proposition 2.1.
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