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Stragglers-Aware Low-Latency Synchronous
Federated Learning via Layer-Wise Model Updates

Natalie Lang, Alejandro Cohen, and Nir Shlezinger

Abstract—Synchronous federated learning (FL) is a popular
paradigm for collaborative edge learning. It typically involves
a set of heterogeneous devices locally training neural network
(NN) models in parallel with periodic centralized aggregations.
As some of the devices may have limited computational resources
and varying availability, FL latency is highly sensitive to strag-
glers. Conventional approaches discard incomplete intra-model
updates done by stragglers, alter the amount of local workload
and architecture, or resort to asynchronous settings; which all
affect the trained model performance under tight training latency
constraints. In this work, we propose straggler-aware layer-
wise federated learning (SALF) that leverages the optimization
procedure of NNs via backpropagation to update the global model
in a layer-wise fashion. SALF allows stragglers to synchronously
convey partial gradients, having each layer of the global model
be updated independently with a different contributing set of
users. We provide a theoretical analysis, establishing convergence
guarantees for the global model under mild assumptions on the
distribution of the participating devices, revealing that SALF
converges at the same asymptotic rate as FL with no timing
limitations. This insight is matched with empirical observations,
demonstrating the performance gains of SALF compared to
alternative mechanisms mitigating the device heterogeneity gap
in FL.

I. INTRODUCTION

DEEP learning algorithms require large volumes of data.
In practice, data is often gathered by edge devices such

as mobile phones, sensors, and vehicles, which may be limited
in their ability to share this data, due to, e.g., privacy or
regulation constraints [1]. Federated learning (FL) [2]–[5] is
an emerging paradigm that allows multiple devices to learn
a model collaboratively. To avoid data sharing, FL exploits
the local computational capabilities of edge users [6], training
locally with periodic aggregations orchestrated by a server.

Prevalent FL protocols are synchronous, operating in mul-
tiple rounds. In each round, the server transmits the latest
update of the global model to all participating clients. Each
client then locally trains the model using its local compute
power and data set, and subsequently sends the updated
version back to the server for aggregation. This distributed
operation of FL inherently induces several core challenges
that are not encountered in conventional centralized learning
[4], [5]. A notable challenge is associated with the latency of
learning in a federated manner, which is a dominant factor,
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particularly in FL applications that operate continuously in
dynamic environments and must thus learn rapidly. Such ap-
plications include, e.g., intelligent transportation systems [7],
and wireless networks adaptation [8]–[10].

The excessive latency of FL is mainly due to two main
factors: (i) the time it takes to communicate the model
updates between the users and the server; and (ii) the local
computation time at the users’ side. The former is typically
addressed by different forms of sparsification [11]–[14] and
compression [15]–[18]. Thus, the dominant factor is often the
latter, i.e., the time it takes each user to update the local model.
This issue is most significant in FL settings operating under
system heterogeneity, arising from the existence of devices
with low computational capabilities [19], [20], which may
even be temporally unavailable while the local training takes
place [21]. The heterogeneous nature of edge devices induces
possibly substantial variations between different clients in their
local update latency. This in turn affects the time it takes the
server to update the global model on each round. As a result,
FL is sensitive to stragglers, as each round takes as long as the
local training time of the slowest user, dictating latency and
throughput implications [3]. The presence of heterogeneous
users thus makes synchronous FL abortive for applications
with tight latency constraints.

Various schemes were proposed to provide robustness
against stragglers in FL [22]–[28], see also survey [20].
Conventional synchronous FL limits local computation latency
by imposing a deadline, while discarding a fixed-size set of
delayed stragglers and their contributions [29], [30]. This can
be extended to support varying deadlines via user selection,
where only a subset of the users participate in each round [31],
by identifying and grouping potential stragglers [22], [23].
Deadline-based synchronous FL facilitates the incorporation of
latency constraints without altering the learning procedure, and
can be combined with additional FL latency reduction tech-
niques based on scheduling [8] and resource allocation [10].
However, the fact that stragglers are discarded affects perfor-
mance when operating under low latency requirements, where
a large portion of the users may not meet the local computation
deadline.

Alternative approaches to handle stragglers involve deviat-
ing from the conventional operation of FL by either altering
the learning procedure, or by switching to an asynchronous
operation [20]. Several examples for the former are dedicated
aggregation [26]; introducing redundancy on the devices’ data
via distributed codes [24], [32]; and altering the amount of
local workload and architecture [19], [25]. However, these
approaches assume a limited portion of straggling users and
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are thus unsuitable for low-latency settings, where many users
might struggle to locally compute sufficient local training
iterations in time. The asynchronous approach operates FL
without requiring participating users to aggregate on each
round [27], [28], [33]. For instance, TimelyFL proposed in
[34] was experimentally shown to mitigate stragglers in asyn-
chronous settings by having the server and the clients share
calculation times to dictate a latency and local workload while
utilizing layer-wise aggregations. Whereas asynchronous FL
allows slower clients to continue the local training and con-
tribute to future aggregation rounds, it also requires the number
of slow computing users to be small for stable learning [20],
limiting its applicability under tight latency constraints. More-
over, having different nodes operate on different versions of
the global model leads to staleness [35], complicating the
orchestration of the FL procedure compared to synchronous
FL, while often ending up with an inferior performance.

In this work, we propose straggler-aware layer-wise fed-
erated learning (SALF), for FL with time varying sys-
tem heterogeneity, that enables synchronous deadline-based
high-performance low-latency operation. SALF is particularly
geared for learning deep neural networks (DNNs), being the
common family of machine learning models considered in FL,
while exploiting their gradient-based training operation. We
leverage the inherent recursive nature in which DNN are being
optimized, i.e., the fact that the empirical risk gradient with
respect to the model weights is computed from the last layer
to the first via backpropagation [36], and that gradient com-
putation typically induces a dominant portion of the latency.
This operation indicates that stragglers may still compute last-
layers gradients that can be utilized rather than discarded
under strict deadlines. SALF is thus based on this layer-wise
approach, allowing users to convey (possibly partial) gradients
when local training expires. Then, to update the global model,
SALF averages the local updates per layer, while preserving
the simplicity of conventional federated averaging (FedAvg)
[2], and having different contributing devices for each.

To capture the realistic dynamic heterogeneity of the users,
we analyze SALF assuming a probabilistic model on the
straggling clients IDs per round. Specifically, in each round,
the stragglers’ set ranges from being empty to contain all
FL users, neither limiting its cardinality nor its items. In
our analysis we rigorously prove that SALF converges to the
optimal model in the same asymptotic rate as local stochastic
gradient descent (SGD) [30], while characterizing an upper
bound on the gap in its learning objective value compared to
the optimal model in the non-asymptotic regime.

We extensively evaluate SALF for the federated training of
different DNN architectures, considering various latency con-
straints. Our numerical results show that SALF allows reliable
training under tight latency constraints where a large bulk of
the users become stragglers, while achieving similar accuracy
to conventional FedAvg with no latency requirements.

The rest of this paper is organized as follows: Section II
briefly reviews the FL system and the heterogeneity models.
Section III presents SALF along with its convergence analysis.
We numerically evaluate SALF in Section IV, and provide
concluding remarks in Section V.

Throughout this paper, we use boldface lower-case letters
for vectors, e.g., x, and calligraphic letters for sets, e.g., X ,
with |X | being the cardinality of X . The stochastic expecta-
tion, probability operator, and ℓ2 norms are denoted by E[·],
P[·], and ∥ ·∥, respectively, while R is the set of real numbers.

II. SYSTEM MODEL

In this section, we set the ground for the derivation of
SALF. We commence by presenting the system model of
synchronous FL in Subsection II-A. Then, we provide a
description of the system heterogeneity model and its effects
on local computation latency in Subsection II-B.

A. Federated Learning

We consider a central server training a model with param-
eters w ∈ Rm using data available at U users, where each is
indexed by u ∈ {1, . . . , U}. Unlike conventional centralized
learning, these datasets, denoted D1, . . . ,DU , cannot be shared
with the server. Thus, by letting Fu(w) be the empirical risk
of a model w evaluated with dataset Du, FL aims to recover
the m× 1 optimal weights vector, wopt, satisfying

wopt = argmin
w

{
F (w) ≜

U∑
u=1

1

U
Fu (w)

}
, (1)

where it is implicitly assumed that the local datasets are of
balanced (equal) cardinality.

Generally speaking, FL operates in rounds where for each
time step t, the server distributes the global model wt to
the users, who each locally trains it, and sends back the
model updates [5]. In conventional synchronous FL, the server
collects the model updates from all the participating users,
aggregates the models into an updated global model, and the
overall procedure repeats iteratively.

We focus on settings where w represents a DNN with
gradient-based local training. Here, each user of index u
computes the stochastic gradient of its local empirical risk
Fu evaluated on the global model at time t ≥ 1, wt; i.e.,
∇Fu (wt; i

u
t ), where iut denotes the data sample index, chosen

uniformly from Du. Then, for a step-size ηt, the user shares
its local update (gradients), i.e,

wu,t ≜ wt − ηt∇Fu (wt; i
u
t ) , (2)

with the server who updates the global model. Conventional
aggregation of the local updates is based on FedAvg [2], in
which the server sets the global model to be

wt+1 ≜
U∑

u=1

1

U
wu,t = wt − ηt

U∑
u=1

1

U
∇Fu (wt; i

u
t ) . (3)

The updated global model is again distributed to the users, and
the learning procedure continues until convergence is reached.

FL of DNNs involves edge users training, where each user
obtains its local gradients in (3) using its local computational
capabilities. The users’ devices can notably vary in their com-
putational resources based on their hardware and instantaneous
operation. This property gives rise to the core challenge of
device heterogeneity gap, discussed next.
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Fig. 1. A device-heterogeneous FL-aided system learning object recognition that is expected to operate under tight latency and edge power constraints. Note
that wt and wu,t denote the global and local models, respectively; where Tu

t it the local computational time of user u in FL round t.

B. System Heterogeneity

Edge devices participating in FL can widely differ in their
computational powers, leading to varying processing times for
calculating gradients [23]. Specifically, let Tu

t denote the time
it takes the uth user to compute the gradient at the tth round,
i.e., ∇Fu (wt; i

u
t ). Higher values of Tu

t are attributed with
clients who are slower at the tth round due to, e.g., limited
hardware or additional external computations being carried
out. These slower users are termed stragglers. Hence, the local
computation latency of the tth FL round is given by maxu T

u
t ,

as the server has to wait for the slowest user. This limits
FL applications with tight latency constraints, e.g., intelligent
transportation systems [37], as illustrated in Fig. 1.

A requirement for executing an FL round with a fixed
latency is satisfied by setting a deadline Tmax. Deadline-based
synchronous FL typically discards the stragglers at round t for
which Tu

t > Tmax, i.e., those not meeting the threshold [29].
In such cases, denoting the set of users meeting the deadline
at round t as Ut ≜ {u : Tu

t ≤ Tmax}, the aggregation rule in
(3) is replaced with

wt+1 = wt − ηt
∑
u∈Ut

1

|Ut|
∇Fu (wt; i

u
t ) . (4)

Aggregation via (4) guarantees that each round does not
surpass the desired deadline. However, for low-latency, i.e.,
small Tmax, this could result in a few users participating in
each round, degrading the training procedure. Such a scenario
motivates the deriviation of a scheme which allows FL to
operate with small Tmax without fully discarding stragglers,
as proposed next.

III. STRAGGLER-AWARE LAYER-WISE FL

In this section, we introduce SALF, formulating its op-
eration in Subsection III-A. Then, in Subsection III-B we
analyze the convergence properties of DNNs trained in a
federated manner using SALF, and provide a discussion in
Subsection III-C. For clarity, we summarize the symbols and
notations used throughout this section in Table I.

A. SALF Algorithm

Consider the gradient-based federated training of an L-
layered DNN with layer-wise parameters

wt =
[
w1

t , . . . ,w
L
t

]T
, (5)

where layers 1 and L correspond to the input and output layers,
respectively. The local gradients ∇Fu are typically computed
using backpropagation [36]. Namely, gradients are recursively
calculated from the last-to-first layer, constructing[

∇F 1
u(wt; i

u
t ), . . . ,∇F l

u(wt; i
u
t ), . . .∇FL

u (wt; i
u
t )
]T

, (6)

each component at a time, where F l
u(wt; i

u
t ) denotes the

(stochastic) gradient computed with respect to the parameters
of the lth layer. This operation suggests that when Tmax

expires, stragglers are likely to evaluate partial gradients,
corresponding to the last DNN layers.

To exploit this expected behavior, we design SALF not
to discard stragglers, but to have them contribute to the
aggregation of these intermediate layers. This is done by
aggregating via FedAvg in (3) over each layer separately. Since
a device’s computational power availability for an FL round
is assumed to diverse along the training, the depth reached
in backpropagation when the deadline expires is expected to
vary between users and rounds. In our analysis provided in the
sequel, it is modeled as a discrete random variable obeying a
uniform distribution.

SALF, illustrated in Fig. 2 and summarized as Algorithm 1,
affects two aspects of conventional synchronous FL: (i) local
training at the users side; and (ii) aggregation of the model
updates by the server. The resulting operation is formalized
below.

1) Users Local Training: As in conventional DNN train-
ing, each user computes ∇Fu (wt; i

u
t ) via backpropagation,

sequentially, from the last layer to the first. When the deadline
Tmax expires, the uth user calculates the gradients up to layer
dut ∈ {1, . . . , L, L + 1}, denoting its associated depth; where
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Users local training within time Server's global aggregation
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Fig. 2. Illustrative overview of SALF for training a deep CNN. The left dashed-box represents local training, where colored layers correspond to gradients
calculated within Tmax; the left dashed-box shows the layer-wise aggregation with updated colored global model layers.

Algorithm 1: SALF at round t

1 Initialization: FL round running time Tmax;
2 Users side:
3 do in parallel for each u, until deadline Tmax:
4 Compute ∇Fu (wt, i

u
t ) up to layer dut ;

5 Convey partial gradients to server;

6 Server side:
7 for 1 ≤ l ≤ L do
8 Recover U l

t ; ▷ the users updating the lth layer
9 Compute w̃l

t+1 via (9); ▷ layer-wise update

Result: The updated global model, w̃t+1;

dut = L+ 1 stands for a straggler that does not compute any
layer gradient.

Accordingly, if dut ≤ L, the uth user conveys to the server
the L − dut + 1 sub-vectors of its empirical risk stochastic
gradient evaluated on wt, i.e.,[

∇F
du
t

u (wt; i
u
t ), . . . ,∇FL

u (wt; i
u
t )
]T

. (7)

This operation implies that users that are typically viewed as
stragglers also convey (partial) model updates to the server.

2) Server Aggregation: Let U l
t ⊆ {1, . . . , U} be the set of

users that managed to compute the lth layer gradient on round
t. Using the above notations, this set is given by

U l
t ≜ {u : dut ≤ l}, (8)

where U1
t ⊆ · · · ⊆ U l

t ⊆ · · · ⊆ UL
t . This follows by the

backpropagation operation, as if a gradient was calculated up
to layer dut < L, so do all the gradients of layers dut +1, . . . , L.

The server recovers {U l
t}

L

l=1 from the received gradients,
which are then aggregated via a form of layer-wise FedAvg.
Rather than using FedAvg over the full DNN as in (3), the
model updates obtained by SALF, denoted by w̃t+1, are
aggregated in a layer-wise fashion. Specifically, the lth layer
of the global model, according to the decomposition in (5), is
updated via

w̃l
t+1 =

{
wl

t |U l
t | = 0,

1
1−pl

(∑
u∈Ul

t

1
|Ul

t |
wl

u,t − plw
l
t

)
|U l

t | > 0;
(9)

TABLE I
SUMMERY OF NOTATIONS

Symbol Description
U, u index of the clients
L, l index of DNN layer
t FL global iteration (round) index
ηt learning rate at time t

Tmax latency constraint per round
U l
t set of clients indices updating the lth layer at time t

iut data sample index of the uth client at time t
∇Fu (wt; iut ) stochastic gradient of the uth client at time t

dut depth reached in backpropagation by client u at time t
wt,wl

t FedAvg full and lth sub vectors at time t
wt,u uth client local model at time t
w̃t SALF global model at time t
pl a hyperparameter assuring the unbiaesness of SALF

ρs, ρc smoothness and convexity constants
σ2
u, G

2 stochastic gradient related constants

where pl ∈ [0, 1) is a hyperparameter set such that w̃l
t+1

is an unbiased estimator of the corresponding stragglers-free
FedAvg update wl

t+1. For instance, when the {dut } are i.i.d
with the uniform distribution, pl is given by

pl =

(
1− l

L+ 1

)U

, (10)

see further details in Subsection III-B.
Note that in (9), as opposed to conventional FedAvg (3),

the set of participating users can vary between layers. This is
because, when operating under a deadline that imposes a fixed
latency, different users compute their gradients up to different
layers (see Fig. 2), depending on their computational resources
and availability at that round, encapsulated in the stochastic
dut . As each layer of the global model is updated by different
users at different rounds, the convergence analysis of SALF
deviates from traditional FL [30]. Yet, due to the formulation
of the model updates in (9), we are still able to rigorously
prove convergence under conventional modelling assumptions,
as reviewed next.

B. Analysis

As described in the previous subsection, SALF tackles
system heterogeneity using a layer-wise aggregation rule to
update the global model in each iteration. Here, we theoreti-
cally characterize the convergence profile of SALF. Note that
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the layer-wise operation of SALF and the non-zero probability
of having the first layers not updated in given rounds indicate
that existing FL analysis with partial device participation, e.g.,
[30, Thm. 3], do not apply here. We first elaborate bellow
the assumptions introduced in our analysis as well as the
chosen statistical characteristics of the stragglers; from which
the convergence bound is subsequently derived.

1) Analysis Assumptions: We carry out our analysis of
SALF subject to the following assumptions, that are commonly
employed in FL convergence studies [15], [18], [38], [39]:
AS1 The local objectives {Fu(·)}Uu=1 are ρc strongly convex

and ρs-smooth. That is, for all w1,w2 ∈ Rm, it holds
that

(w1 −w2)
T∇Fu(w2) +

1

2
ρc∥w1 −w2∥2

≤ Fu(w1)− Fu(w2) ≤

(w1 −w2)
T∇Fu(w2) +

1

2
ρs∥w1 −w2∥2.

AS2 For each user u and round index t, the variance of the
stochastic gradients ∇Fu(w; iut ) is bounded by some σ2

u

for all w ∈ Rm, i.e.,

E
[
∥∇Fu(w; iut )−∇Fu(w)∥2

]
≤ σ2

u.

AS3 For each user u and round index t, the expected squared
ℓ2 norm of the stochastic gradients ∇Fu(w; iut ) is uni-
formly bounded by some G2 for all w ∈ Rm, i.e.,

E
[
∥∇Fu(w; iut )∥

2
]
≤ G2.

AS4 For each user u and round index t, the depth reached in
backpropagation, denoted dut , is i.i.d. (in t and u), and
uniformly distributed over the set {1, . . . , L+ 1}.

Notice that smoothness, as assumed in AS1, holds for a
range of objective functions used in FL, including ℓ2-norm
regularized linear/logistic regression [15]. The heterogeneity
between the users is also reflected in AS2 via the dependence
on u, which implies that the local objectives differ between
users, as different datasets can be statistically heterogeneous,
i.e., arise from different distributions. Accordingly, we follow
[30] and define the (datasets) heterogeneity gap as

Γ ≜ F (wopt)−
1

U

U∑
u=1

min
w

Fu(w), (11)

where wopt is given in (1).
2) Stragglers Statistical Modelling: The dynamic nature of

the system’s devices heterogeneity (see Subsection II-B) is
statistically modelled in AS4, as the set of random variables
{dut } in AS4 form the stragglers sets {U l

t} (8). This formu-
lation subsumes the extreme cases of both |U l

t | = 0 (a layer
which is not updated by any user) and |U l

t | = U (a layer that
is updated by all users). In particular, the marginal distribution
of |U l

t | is obtained in the following lemma:

Lemma 1. When AS4 holds, then for every FL round t and
DNN layer l, and the cardinality of the set U l

t is distributed
as

|U l
t | ∼ Bin

(
U,

l

L+ 1

)
, (12)

where Bin denotes the Binomial distribution.

Proof: Eq. (12) follows from the definition of U l
t in (8),

which implies that for every M ∈ {0, . . . , U}, it holds that

P[|U l
t | = M ] = P[|{u : dut ≤ l}| = M ]

= P

[(
U∑

u=1

1du
t ≤l

)
= M

]
,

where 1{·} is the indicator function. By AS4, it follows
that {1du

t ≤l}Uu=1 are i.i.d. Bernoulli random variables with
parameter P[1du

t ≤l = 1] = l
L+1 , proving (12) by the definition

of the binomial distribution [40, Ch. 4].
According to Lemma 1, for a given global iteration, the

chance that a particular layer would not be updated at all
decreases for either deeper layers or growing number of total
users U . Lemma 1 is thereby used to establish two auxiliary
lemmas: The first identifies that the SALF update rule, which
yields a random vector due to the stochastic nature of the
stragglers set, is an unbiased estimate of the full FedAvg rule,
as stated next:

Lemma 2 (Unbiasedness). When AS4 holds, for every FL
round of index t and a given set of training data samples
{iut }, the global model aggregated via SALF (9) with (10) is
an unbiased estimator of the one obtained via vanilla FedAvg
(3), namely,

E[w̃t+1] = wt+1 (13)

Proof: The proof is given in Appendix A.

The second auxiliary lemma which follows from Lemma 1
bounds the variance of the SALF DNN parameters.

Lemma 3 (Bounded variance). Consider SALF where AS4
holds and pl is set via (10), and for every FL round t and a
given set of training data samples {iut }, the learning rate ηt
is set to be non-increasing and satisfying ηt ≤ 2ηt+1. Then,
the expected difference between w̃t+1 and wt+1, which is the
variance of w̃t+1, is bounded by

E[∥w̃t+1 −wt+1∥2] ≤ η2t
4ULG2

(U − 1)

1 +
(
1− 1

L+1

)U
1−

(
1− 1

L+1

)U . (14)

Proof: The proof is given in Appendix B.

3) Convergence Bound: The characterization of the DNN
parameters produced by SALF as a bounded-variance unbi-
ased stochastic estimate of the parameters produced with full
FedAvg, allows to characterize the convergence of the learning
algorithm. Using the above notations, the following theorem
establishes the convergence bound of SALF.

Theorem III.1. Consider SALF-aided FL with (10) satisfying
AS1-AS4; define κ = ρs

ρc
, γ = max{8κ, 1}, and set the

learning rate to ηt =
2

ρc(γ+t) . Then, it holds that

E [F (w̃t)]− F (wopt) ≤
κ

γ + t− 1
×(

2(B + C)

ρc
+

ρcγ

2
E
[
∥w1 −wopt∥2

])
, (15)
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where

B =

U∑
u=1

1

U2
σ2
u + 6ρsΓ; (16a)

C =
4ULG2

(U − 1)

1 +
(
1− 1

L+1

)U
1−

(
1− 1

L+1

)U . (16b)

Proof: The proof is given in Appendix C.

Theorem III.1 rigorously bounds the difference between
the objective value of a model learned by SALF at round
t to the optimal model wopt. By setting the step size ηt to
decrease gradually, which is also known to contribute to the
convergence of FL [30], [38], Theorem III.1 indicates that
SALF converges at a rate of O(1/t). This asymptotic rate is
identical to FL schemes with no latency limitations [30], [38],
stressing the ability of SALF to carry out low latency FL in
the presence of dynamic system heterogeneity while mitigating
its harmful effects with hardly affecting the learning procedure
compared to conventional FL.

Nonetheless, in the non-asymptotic regime, the integration
of a latency deadline influences model convergence. This is
revealed in (15) by the constant C in (16), that depends on
(growing at least linearly in) the number of layers L, resulting
from SALF’s layers-wise aggregation technique. This implies
that synchronous FL with deadline Tmax, whose values results
in some of the users being occasionally stragglers, is expected
to converge slower for deeper architectures; for which C is
larger compared with shallower DNNs.

Such behaviour is also experimentally demonstrated in
Section IV, stemming from the fact that for DNNs with
many layers, the first few layers will be trained by a small
portion of the participating users when operating under a
fixed deadline compared with shallow layer. This is in line
with DNN typical behaviour, as deeper model architectures
aim to learn more complex mappings, often require lengthy
learning and are slower to converge [41], [42]. It is emphasized
though that under conventional (non layer-wise) synchronous
FL, training deep DNNs under similar low latency constraints
is expected to often be infeasible, as effectively all users
become stragglers.

C. Discussion

SALF is particularly designed for FL systems that are
constrained to operate with low latency while learning over
networks comprised of heterogeneous edge devices. It allows
synchronous FL operation with small deadline Tmax, which
typically results in a large number of stragglers. This is
achieved without notably affecting the conventional FedAvg-
based FL flow by exploiting the recursive nature of the
backpropagation to leverage partial gradients for updating the
global model. Due to its simple layer-wise aggregation, SALF
asymptotically converges at the same rate as unconstrained
FedAvg, for a random set of stragglers, while supporting
extremely low-latency FL. For instance, we numerically show
in Section IV that SALF can learn accurate models in settings

where as much as 90% of the users are stragglers that cannot
finish computing their gradients in time.

Our convergence analysis of SALF assumes that the local
computations of each user behave randomly. The distribution
imposed in AS4 accounts for the fact that a device can become
a straggler in a given round not only due to its fundamental
hardware, but also due to its availability on that particular
round, as edge devices may be occupied also for other tasks
than FL. Conversely, if we were to utilize SALF’s layer-wise
aggregation using deterministic sets of stragglers in which the
same users update the same layers in each training round, an
inevitable bias is expected to arise as some of the overall data
would not affect all the layers. In that sense, the stochastic
nature of system heterogeneity is leveraged as a contributing
factor, eliminating the probability of such a scenario to occur.

The outline of SALF is based on a generic formulation of
synchronous gradient-based FL. It only requires the learned
model to be a DNN trained using backpropagation. While
this form of gradient-based learning by far dominates DNN
training methods to-date, alternative ones such as Kalman-
based learning [43] and zero-order optimization [44] were
also proposed in the literature, for which SALF would require
a dedicated adaptation. Additionally, SALF operates without
increasing the complexity at the clients and/or the server
compared to conventional FedAvg. Hence, its methodology
can be combined with other schemes for decreasing FL latency
via model update compression [15], [18], [39]. While our
design considers a single local iteration, being tailored to
tight deadlines, it can be extended to multiple iterations and
possibly combined with proximal-aided aggregation to account
for user-varying iterations, e.g., [26], on a layer-wise basis.
These extensions of SALF are left for future study.

IV. EXPERIMENTAL STUDY

In this section we numerically evaluate SALF, and compare
it to existing approaches [2], [19], [20], [29] tackling system
heterogeneity in low-latency FL1. Our aim is to experimentally
validate that the layer-wise approach of SALF allows to
learn reliable DNN models for various architectures in a
synchronous low-latency manner. We focus on the training of
DNNs for image processing tasks, where we first consider a
simple handwritten digit recognition task (Subsection IV-A),
which allows us to evaluate SALF in different terms of per-
formance as convergence, accuracy, and latency; in controlled
settings. Then, we proceed to a more challenging image
classification task (Subsection IV-B), where we evaluate per-
formance as well as suitability for different deep architectures.

A. Handwritten Digit Recognition

1) Setup: We first consider the federated training of a hand-
written digit classification model using the MNIST dataset
[45]. The data, comprised of 28×28 gray-scale images divided
into 60, 000 training examples and 10, 000 test examples, is
uniformly distributed among U = 30 users.

1The source code used in our experimental study, including all the hyper-
parameters, is available online at https://github.com/langnatalie/SALF.

https://github.com/langnatalie/SALF
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Fig. 3. FL convergence profile, MLP trained on MNIST.

Architectures: We train two different DNN architectures:
• A multi-layer perceptron (MLP) with two hidden layers,

intermediate ReLU activations and a softmax output layer.
• A CNN composed of two convolutional layers and two

fully-connected ones, with intermediate ReLU activa-
tions, max-pooling layers, and a softmax output layer.

FL Training: In each FL iteration, the users train the
MLP/CNN model using local mini-batch SGD (3) with learn-
ing rate 0.05/0.1; and the global model is learned using
250/150 FL iterations, respectively. To simulate controllable
latency-constrained system heterogeneity for different dead-
lines in a hardware-invariant manner, in each iteration we
randomly set a predefined ratio of the users to be stragglers,
where for each straggler the depth reached in backpropagation
is randomized uniformly (in line with the distribution assumed
in AS4).

FL Algorithms: We evaluate the following FL methods:
• Vanilla FL, which implements full FedAvg without la-

tency constraints [2] and thus without any stragglers.
This approach constitutes the desired performance for the
methods that operate in the presence of stragglers.

• Drop-stragglers FedAvg, that discards stragglers [29].
• HetroFL [19] which addresses heterogeneous clients by

equipping them with corresponding heterogeneous lo-
cal models with varying computational complexities. To
guarantee fair comparison with SALF in the sense of
average number of gradient computations, we set the
straggling users to shrink their local models with ratio
0.5. Comparison to HetroFL is considered only for the
CNN, as this architecture was covered in [19].

• AsyncFL [20] which has the stragglers participate in the
FedAvg once they finish the local training rather than at
each round. Here, to achieve comparable computations to
synchronous settings, a straggler that finished the update
up to the lth layer within Tmax, is set to asynchronously
participate in the FedAvg every 2l global iterations.

• Our proposed SALF (Algorithm 1).
2) Results: We compare the performance of the above FL

methods for the considered task in their convergence profile
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Fig. 4. FL convergence profile, CNN trained on MNIST

(namely, during training); the accuracy of the trained model
(i.e., after training is concluded); and their overall latency.

Convergence Results: We begin by evaluating the con-
vergence profiles of the learning methods, i.e., the resulting
validation accuracy achieved over the training procedure. To
emphasize the gains of SALF compared with conventional
drop-stragglers in facilitating federated training under tight
latency constraints, we focus on the extreme case in which
90% of the users are stragglers. This exemplifies a tight
deadline-based FL application, where the major bulk of the
users effectively become stragglers that do not complete the
whole model update. Fig. 3-4 illustrate the convergence profile
of the methods for the MLP and CNN models, respectively.
There, it is systematically demonstrated that SALF is the
closet to vanilla FL, whereas AsyncFL is the second best
(while requiring an asynchronous operation). For comparison,
drop-stragglers and HetroFL show an inferior performance, as
a result of ignoring stragglers contributions for the former,
and having the majority of local architectures differ from the
archietcture of the global model for the latter.

Accuracy Results: We proceed with examining the perfor-
mance of the trained models in terms of their test accuracy.
Table II summarizes the test accuracy result for both the MLP
and CNN models trained on the MNIST datasets for either
30/50/70/90 percent of the users being stragglers. Table II
reveals that for all the considered techniques, as expected, the
higher the percentage of stragglers, the lower the test accuracy
is. This monotonic behaviour results with dramatic degradation
for growing percentages (corresponding to tight deadlines) for
the synchronous drop-stragglers and HetroFL. Despite that,
the degradation of SALF is notably lower compared to all
other baselines, maintaining a minor gap from vanilla FL
(which operates without latency constraint), and consistently
achieving the best performance of the trained model among
all stragglers-constrained methods.

Latency Results: As discussed in Subsection II-B, for
timing-based FL deployments, the deadline Tmax determines
the latency. To translate the improved resilancy to stragglers
of FL reported above into concrete timings, we evaluate the
overall test performance of all considered FL methods under
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TABLE II
TEST ACCURACY RESULTS FOR DIFFERENT STRAGGLERS’ PERCENTS, MNIST DATASET.

Vanilla FL Drop-stragglers SALF HetroFL AsyncFL
Straggler % N/A 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9

MLP 0.9 0.87 0.84 0.77 0.49 0.88 0.85 0.85 0.81 N/A N/A N/A N/A 0.86 0.84 0.82 0.73
CNN 0.95 0.93 0.9 0.83 0.28 0.94 0.93 0.92 0.90 0.88 0.84 0.61 0.43 0.94 0.92 0.91 0.86

1 2 3 4 5 6 7 8 9
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Fig. 5. Test set accuracy vs. latency constrains, CNN trained on MNIST.

different timing constraints Tmax. We focus on the 2-layer
CNN model, for which the full backward pass for a single
user was empirically evaluated as taking the maximal value
of 7.5 microseconds (µsec), when computed using a Quadro
RTX 6000 GPU. The resulting test accuracy versus Tmax in
the range of [1, 9]µsec are reported in Fig. 5 for the considered
FL methods, in comparison with vanilla FL (which operates
without latency constraints and is thus invariant of Tmax).

We first clearly observe in Fig. 5 that, as expected, all
FL methods coincide with full FedAvg when the deadline
surpasses the maximal local computation latency of 7.5 µsec.
This follows since in such latency regimes, none of the users
are stragglers. However, in the more interesting regimes of
Tmax < 7.5 µsec, we observe that SALF yields a minor deseg-
regation in performance which hardly grows when the latency
is decreased; and outperforms the (asynchronous) AsyncFL
counterpart. This is in contrast to either drop-stragglers, which
is left with hardly any devices updating the global model under
tight latency constraints, or HetroFL, where in this case tighter
latency implies that the majority of the users train a different
model than the global one. Specifically, for low Tmax, i.e.,
below 1.5 µsec, which also corresponds to high percentages
of straggling clients, HetroFL is superior to drop-stragglers in
performance (where the opposite holds for moderate values of
Tmax, i.e., for 1.5 < Tmax < 7 µsec), and AsyncFL is superior
to both; aligned with similar findings in Fig. 4 and Table II.

Finally, as evidenced in Fig. 5, for the tightest latency value,
SALF realizes a drop of merely 5% from the accuracy of
vanilla FL, compared to 15%, 70% and 90% in the case of the
AsyncFL, HetroFL, and drop-stragglers, respectively. Conse-
quently, the gains of SALF in performance are persistent, and
most dominant in the low-latency regime, where stragglers

mostly fail to meet the deadline calculation time Tmax and
their partial updates are harnessed for modifying the global
model by the layer-wise approach of SALF.

B. Image Classification

1) Setup: We proceed to evaluating SALF in tasks typ-
ically requiring deeper DNNs compared to the ones used
in the previous subsection. Here, FL is implemented for
the distributed training of natural image classification model
using the CIFAR-10 dataset [46]. This set is comprised of
32 × 32 RGB images divided into 50, 000 training examples
and 10, 000 test examples.

Architecture: We explore whether the learning profile of a
model trained via the layer-wise aggregation of SALF changes
with varying the depth of its given architecture. To that aim, we
use the VGG model architecture [47] with four depths, namely,
number of convolutional layers, that are 11, 13, 16, and 19.
FL training is similar to the one described in Subsection IV-A,
while using a learning rate of 0.05 and set the amount of global
iterations to be 1, 500 for each architecture.

2) Results: We first evaluate SALF for different timing
constraints. Fig. 6 shows the convergence profile of the
VGG models for vanilla FL and SALF operating with either
30/50/70 percents of straggling clients. It can be generally
observed that, SALF converges for all considered architec-
tures and amount of stragglers. However, as discussed in
Subsection III-C, the training of deeper architectures exhibit
different profiles compared with shallower ones, which are
consistent for all considered stragglers percentages. A notable
phenomenon is observed when training the deepest model of
VGG19; There, SALF with 70% or 50% stragglers yields an
improved learning procedure compared with 30%. This can
be associated with the fact that when training deep models,
adding minor levels of distortion, which in our case result
from the growth in the variance of the stochastic estimate
in Lemma 3 for deeper networks, can lead to improving the
converged model, in accordance with similar findings in [48],
[49].

To better highlight the interplay between our layer-wise
FL and the overall DNN depth, we conclude our study by
focusing merely on a challenging setup with tight deadlines.
In Fig. 7, we depict SALF and drop-stragglers for 90%
straggles. The results in Fig. 7 stress the power of SALF in
mitigating their harmful effect significantly better than drop-
stragglers, also for various deep architectures, similarly to
the findings evidenced in Subsection IV-A. In addition, the
convergence profiles of Fig. 7, once observed in comparison
with Fig. 3-4, numerically support Theorem III.1 under the
non-asymptotic regime; indeed indicating that low-latency FL
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Fig. 6. Convergence profile of FL schemes training VGG models using the CIFAR-10 dataset for different stragglers percentages.

converges slower with deeper DNNs, while systematically ex-
ceeding drop-stragglers and still approaching the performance
achieved with stragglers-free full FedAvg.

V. CONCLUSIONS

In this work we proposed SALF, which is an FL algorithm
that implements layer-wise global aggregation to incorporate
stochastically determined straggling users in tight timings syn-
chronous settings. SALF utilizes the last-to-first layer update
policy of backpropagation-based DNN training to exploit par-
tial gradients and update each of the model layers separately,
with possibly different amount of users in each. We analyzed
the convergence profile of SALF accompanied by numerical
evaluations, demonstrating that it operates reliably under tight
latency constraints and approaches the performance achieved
by FL with no stragglers.
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APPENDIX

A. Proof of Lemma 2

In order to show that w̃t+1 (9) is an unbiased estimator of
wt+1 (3), it suffices to show that this holds for the lth sub-
vector of both, according to the decomposition of a vector
into its L sub-vectors in (5). Assuming that the random data
sample indexes {iut } are given, the only source of randomness
in wl

t+1 is encapsulated in U l
t . Yet, instead of calculating

the expectation of w̃l
t+1 with respect to U l

t , we leverage the
observation that |U l

t | is a binomial random variable (12), and
utilize the law of total expectation, yielding

E[w̃l
t+1] = E

[
E
[
w̃l

t+1

∣∣|U l
t |
]]

=

U∑
K=0

P
[
|U l

t | = K
]
· E
[
w̃l

t+1

∣∣|U l
t | = K

]
= P

[
|U l

t | = 0
]
· E
[
w̃l

t+1

∣∣|U l
t | = 0

]
+

U∑
K=1

P
[
|U l

t | = K
]
· E
[
w̃l

t

∣∣|U l
t | = K

]
. (A.1)
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Fig. 7. Convergence profile of FL schemes training VGG models using the CIFAR-10 dataset at 90% stragglers percentage.

Next, we note that for the distribution of |U l
t | in Lemma 1,

the definition of pl in (10) holds that

pl = P
[
|U l

t | = 0
]
. (A.2)

Substituting (A.2) combined with SALF’s aggregation rule in
(9) into (A.1) results in

E[w̃l
t+1] = pl ·wl

t +

U∑
K=1

P
[
|U l

t | = K
] 1

1− pl
× 1

K
E

∑
u∈Ul

t

wl
u,t

∣∣∣∣∣∣|U l
t | = K

− plw
l
t

 . (A.3)

Notice that, according to AS4, the distribution of U l
t given

that |U l
t | = K is uniform over all size-K-out-of-size-U

subsets. In [30, Lem. 4], the authors proved that FedAvg with
partial device participation, such that a fixed-size amount of
users are sampled uniformly in a without replacement fash-
ion, is an unbiased estimator of the full device participation

alternative. Equivalently,

1

K
E

∑
u∈Ul

t

wl
u,t

∣∣∣∣∣∣|U l
t | = K

 =
1

K
K

U∑
u=1

1

U
wl

u,t = wl
t+1.

(A.4)

Plugging (A.4) into (A.3) and the fact that

U∑
K=1

P
[
|U l

t | = K
]
= 1− P

[
|U l

t | = 0
]
= 1− pl,

results with

E[w̃l
t+1] = pl ·wl

t +
(
wl

t+1 − pl ·wl
t

) 1

1− pl
(1− pl)

= wl
t+1,

thus proving (13).

B. Proof of Lemma 3

By the definition of the ℓ2 norm, it follows that the variance
of w̃t+1 is the sum over all its 1, . . . , L sub vectors (layers)



11

variances; and, similarly to Appendix A, we have that

E
[
∥w̃l

t+1 −wl
t+1∥2

]
= E

[
E
[
∥w̃l

t+1 −wl
t+1∥2

∣∣|U l
t |
]]

= P
[
|U l

t | = 0
]
E
[
∥w̃l

t+1 −wl
t+1∥2

∣∣|U l
t | = 0

]
+

U∑
K=1

P
[
|U l

t | = K
]
· E
[
∥w̃l

t+1 −wl
t+1∥2

∣∣|U l
t | = K

]
. (B.1)

For the first summoned, it holds that

E
[
∥w̃l

t+1 −wl
t+1∥2

∣∣|U l
t | = 0

]
=

E
[∥∥wl

t −wl
t+1

∥∥2] (a)

≤
U∑

u=1

1

U
E
[∥∥(wl

u,t −wl
t

)∥∥2] =
U∑

u=1

1

U
E
[
∥ηt∇Fu(wt, i

u
t )∥

2
]

(b)
= η2tG

2, (B.2)

where (a) follows by the convexity of ∥ · ∥2 and (b) stems
from the bounded norm assumed by AS3.

As for the second summoned (B.1), it can be written as

E
[∥∥w̃l

t+1 −wl
t+1

∥∥2∣∣∣|U l
t | = K

]
=

E


∥∥∥∥∥∥ 1

1− pl

∑
u∈Ul

t

1

|U l
t |

wl
u,t − plw

l
t

−wl
t+1

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣|U l

t | = K


=

1

(1− pl)2
×

E


∥∥∥∥∥∥
∑
u∈Ul

t

1

|U l
t |
wl

u,t −wl
t+1 − pl(w

l
t −wl

t+1)

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣|U l

t | = K


=

1

(1− pl)2
×

(
E


∥∥∥∥∥∥
∑
u∈Ul

t

1

|U l
t |
wl

u,t −wl
t+1

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣|U l

t | = K

+ (B.3)

p2lE
[∥∥wl

t −wl
t+1

∥∥2∣∣∣|U l
t | = K

]
+ (B.4)

− pl(w
l
t −wl

t+1)
TE

∑
u∈Ul

t

1

|U l
t |
wl

u,t −wl
t+1

∣∣∣∣∣∣|U l
t | = K

).
(B.5)

Now, (B.5) = 0 by (A.4); (B.4) ≤ p2l η
2
tG

2 by AS3; and finally,
(B.3) can be bounded using the result obtained in [30, Lem.
5] due to the same reasons mentioned in Appendix A. That
is, by [30, Lem. 5] it holds that

E


∥∥∥∥∥∥
∑
u∈Ul

t

1

|U l
t |
wl

u,t −wl
t+1

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣|U l

t | = K

 ≤

U

K(U − 1)

(
1− K

U

)
4η2tG

2.

Overall, (B.1) is thus given by

(B.1) ≤ 1

(1− pl)2

U∑
K=1

P
[
|U l

t | = K
]
×(

U

K(U − 1)

(
1− K

U

)
4η2tG

2 + p2l η
2
tG

2

)
≤ 1

(1− pl)2

U∑
K=1

P
[
|U l

t | = K
]
·
(

U

(U − 1)
4η2tG

2 + p2l η
2
tG

2

)

= η2t

G2
(

4U
(U−1) + p2l

)
1− pl

. (B.6)

Adding both bounds of (B.2) and (B.6) while summing over
all L layers results with

E[∥w̃t+1 −wt+1∥2] =
L∑

l=1

E
[
∥w̃l

t+1 −wl
t+1∥2

]
≤

L∑
l=1

η2t

G2
(

4U
(U−1) + pl

)
1− pl

≤ η2tG
2 4U

(U − 1)

L∑
l=1

1 + pl
1− pl

≤ η2tG
2 4U

(U − 1)
L
1 +

(
1− 1

L+1

)U
1−

(
1− 1

L+1

)U ,

where the last inequality follows by bounding each fraction in
the summation with the one obtained from setting the largest
numerator and the smallest denominator; proving (14).

C. Proof of Theorem III.1

By modelling the model updates of SALF as unbiased
stochastic estimates of FedAvg (Lemma 2) with bounded
variance (Lemma 3), we recast our setting of FL with random
layer-wise computations as FL with random partial participa-
tion as considered in [30, Thm. 3]. Accordingly, by replacing
Lemmas 4, 5 of [30] with our Lemmas 2, 3, respectively, we
obtain that the derivation of [30, Thm. 3] applies for our
setting of SALF with the corresponding coefficients in (16),
thus proving the theorem.

REFERENCES

[1] E. Horvitz and D. Mulligan, “Data, privacy, and the greater good,”
Science, vol. 349, no. 6245, pp. 253–255, 2015.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[3] P. Kairouz et al., “Advances and open problems in federated learning,”
Foundations and Trends® in Machine Learning, vol. 14, no. 1–2, pp.
1–210, 2021.

[4] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, 2020.

[5] T. Gafni, N. Shlezinger, K. Cohen, Y. C. Eldar, and H. V. Poor,
“Federated learning: A signal processing perspective,” IEEE Signal
Process. Mag., vol. 39, no. 3, pp. 14–41, 2022.

[6] J. Chen and X. Ran, “Deep learning with edge computing: A review.”
Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[7] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Distributed fed-
erated learning for ultra-reliable low-latency vehicular communications,”
IEEE Trans. Commun., vol. 68, no. 2, pp. 1146–1159, 2019.



12

[8] W. Xia, W. Wen, K.-K. Wong, T. Q. Quek, J. Zhang, and H. Zhu,
“Federated-learning-based client scheduling for low-latency wireless
communications,” IEEE Wireless Commun. Lett., vol. 28, no. 2, pp. 32–
38, 2021.

[9] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency
federated learning and blockchain for edge association in digital twin
empowered 6G networks,” IEEE Trans. Ind. Informat., vol. 17, no. 7,
pp. 5098–5107, 2020.

[10] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint device schedul-
ing and resource allocation for latency constrained wireless federated
learning,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 453–467,
2020.

[11] P. Han, S. Wang, and K. K. Leung, “Adaptive gradient sparsification
for efficient federated learning: An online learning approach,” in IEEE
International Conference on Distributed Computing Systems (ICDCS),
2020, pp. 300–310.

[12] C. Hardy, E. Le Merrer, and B. Sericola, “Distributed deep learning
on edge-devices in the parameter server model,” in Workshop on
Decentralized Machine Learning, Optimization and Privacy, 2017.

[13] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” arXiv preprint arXiv:1704.05021, 2017.

[14] D. Alistarh et al., “The convergence of sparsified gradient methods,”
Advances in Neural Information Processing Systems, vol. 31, 2018.

[15] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “UVeQFed:
Universal vector quantization for federated learning,” IEEE Trans. Signal
Process., vol. 69, pp. 500–514, 2020.

[16] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
Advances in Neural Information Processing Systems, vol. 30, pp. 1709–
1720, 2017.

[17] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“Fedpaq: A communication-efficient federated learning method with
periodic averaging and quantization,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2020, pp. 2021–2031.

[18] N. Lang, N. Shlezinger, R. G. D’Oliveira, and S. E. Rouayheb, “Com-
pressed private aggregation for scalable and robust federated learning
over massive networks,” arXiv preprint arXiv:2308.00540, 2023.

[19] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and com-
munication efficient federated learning for heterogeneous clients,” in
International Conference on Learning Representations, 2020.

[20] K. Pfeiffer, M. Rapp, R. Khalili, and J. Henkel, “Federated learning
for computationally-constrained heterogeneous devices: A survey,” ACM
Computing Surveys, 2023.

[21] S. Vahidian, S. Kadaveru, W. Baek, W. Wang, V. Kungurtsev, C. Chen,
M. Shah, and B. Lin, “When do curricula work in federated learning?”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 5084–5094.

[22] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in IEEE international
conference on communications (ICC), 2019.

[23] A. Reisizadeh, I. Tziotis, H. Hassani, A. Mokhtari, and R. Pedarsani,
“Straggler-resilient federated learning: Leveraging the interplay between
statistical accuracy and system heterogeneity,” IEEE J. Sel. Areas Inf.
Theory, vol. 3, no. 2, pp. 197–205, 2022.

[24] R. Schlegel, S. Kumar, E. Rosnes, and A. G. i Amat, “CodedPaddedFL
and CodedSecAgg: Straggler mitigation and secure aggregation in
federated learning,” IEEE Trans. Commun., 2023.

[25] I. Wang, P. J. Nair, and D. Mahajan, “Fluid: Mitigating stragglers in
federated learning using invariant dropout,” in Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

[26] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Machine Learning
and Systems (MLSys), vol. 2, pp. 429–450, 2020.

[27] J. Park, D.-J. Han, M. Choi, and J. Moon, “Sageflow: Robust federated
learning against both stragglers and adversaries,” Advances in neural
information processing systems, vol. 34, pp. 840–851, 2021.

[28] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous
online federated learning for edge devices with non-iid data,” in IEEE
International Conference on Big Data, 2020, pp. 15–24.

[29] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
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