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Improvements to the theoretical estimates of the

Schwarz preconditioner with ∆-GenEO coarse space for the

indefinite Helmholtz problem

Victorita Dolean∗, Mark Fry†, Ivan G. Graham‡, Matthias Langer†

Abstract

The purpose of this work is to improve the estimates for the ∆-GenEOmethod from the paper
[2] when applied to the indefinite Helmholtz equation. We derive k-dependent estimates of
quantities of interest ensuring the robustness of the method.
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1 Introduction

In this work we focus on the indefinite version of Helmholtz boundary value problems with
highly variable coefficients defined on Ω ⊂ R

d, given by:

− div(A∇u)− k2u = f in Ω,

u = 0 on ∂Ω.
(1.1)

We use the same setting as in [2], namely we work on a computational domain Ω ⊂ R
d

(d = 2, 3) which is supposed to be polygonal or Lipschitz polyhedral. The matrix A is positive
definite, and we assume that (1.1) has a unique weak solution u ∈ H1(Ω) for all f ∈ L2(Ω).

The global domain Ω is covered by a set of overlapping subdomains Ωi, i = 1, . . . , N , and
the classical one-level additive Schwarz preconditioner is built from partial solutions on each
subdomain. Since this preconditioner is, in general, not scalable as the number of subdomains
grows, an additional global coarse solve is usually added to enhance scalability, as well as ro-
bustness with respect to coefficient heterogeneity or the increase in the wavenumber. As in [2]
we use local generalised eigenvalue problems that are obtained by a shift of the left-hand side of
(1.1). After discretisation by finite elements, the linear systems arising from (1.1) are symmetric
but indefinite. For this reason, we use GMRES as the iterative solver, and the convergence
analysis relies on the ‘Elman theory’ [3], which requires an upper bound for the norm of the
preconditioned matrix and a lower bound on the distance of its field of values from the origin.
As a result, the number of GMRES iterations to achieve a given error tolerance is a function of
these two bounds.

The main results of this preprint. Our main theoretical result provides rigorous and
k-explicit upper bounds on the coarse mesh diameter H and on the ‘eigenvalue tolerance’ τ
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(for the local generalised eigenvalue problems) which ensure that GMRES enjoys robust and
mesh-independent convergence when applied to the preconditioned problem. This rigorous ex-
plicit bound for (1.1) follows the methodology from [2] and provides an improvement of the
k-dependent estimates. As a reminder, GenEO coarse spaces are usually based on the mi (dom-
inant) eigenfunctions corresponding to the smallest eigenvalues λi

1 ≤ λi
2 ≤ · · · ≤ λi

mi
of the

generalised eigenvalue problem on the subdomain Ωi. To obtain a robust rate of convergence for
GMRES that depends only on Λ (the maximum number of times any point is overlapped by the
subdomains Ωi), we need some conditions on H and the eigenvalue tolerance τ := minNi=1 λ

i
mi+1,

where N is the number of subdomains. In the estimates Cstab > 0 the stability constant for the
problem (1.1) also appears. The hidden constants usually depend only on Λ.

More explicitly, in [2, Theorem 4.1] it is proved that a robust rate is achieved if

H . k−2 and (1 + Cstab)
2 k8 . τ. (1.2)

In the current paper, we show that the bounds (1.2) can be improved:

H . k−1 and (1 + Cstab)
2k4 . τ. (1.3)

Although, this is a first improvement, these bounds remain quite pessimistic, showing a strong
dependence on the wavenumber k.

2 Useful Background

2.1 Problem formulation and discretisation

The weak formulation of (1.1) is to find u ∈ H1
0 (Ω) such that

b(u, v) = (f, v) for all v ∈ H1
0 (Ω), (2.1)

where f ∈ L2(Ω) and b(·, ·) : H1
0 (Ω)×H1

0 (Ω) → R is defined as

b(u, v) =

∫

Ω
(A∇u · ∇v − k2uv) dx.

We shall be making use of the positive definite bilinear form a(·, ·) : H1
0 (Ω)×H1

0 (Ω) → R.

a(u, v) =

∫

Ω
A∇u · ∇vdx,

If a and b are defined on a subdomain Ω′ of Ω we employ the notations aΩ′ and bΩ′ . The following
weak regularity assumptions are going to be used throughout this work.

Assumption 2.1. The coefficient A in problem (1.1) satisfies the following conditions.

(i) A : Ω → R
d×d is symmetric with 0 < amin ≤ amax s.t.

amin|ξ|2 ≤ A(x)ξ · ξ ≤ amax|ξ|2 for all x ∈ Ω, ξ ∈ R
d. (2.2)

(ii) Without loss of generality, amin = 1 and the diameter, DΩ, of the domain Ω is such that

DΩ ≤ 1. If this is not the case, then the problem can be scaled accordingly.

Notation 2.2. For any subdomain Ω′ ⊂ Ω, we use (·, ·)Ω′ to denote the L2(Ω′) inner product,

with the norm denoted by ‖ · ‖Ω′ . When Ω′ = Ω, the inner product is written as (·, ·) with norm

‖ · ‖. The norm induced by the positive bilinear form a is denoted by ‖u‖a,Ω′ =
√
aΩ′(u, u).

When Ω′ = Ω we abandon the subscript Ω. We see that b(u, v) = a(u, v) − k2(u, v).
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The bilinear form a(·, ·) is positive definite (SPD), whereas b(·, ·) is symmetric, but in general
indefinite. In all what follows, solvability of (2.1) is assumed.

Assumption 2.3. For any f ∈ L2(Ω), it is assumed that the problem 2.1 has a unique solution

u ∈ H1
0 (Ω) and there exists a constant Cstab > 0 such that

‖u‖a ≤ Cstab‖f‖ for all f ∈ L2(Ω). (2.3)

Let Th be any shape regular triangular mesh over the domain, Ω. For the purpose of this
work, 2 or 3-dimensional simplices are being considered, but this could easily be applied to d-
dimensional simplices, where the maximum diameter is h. Let V h ⊂ H1

0 (Ω) be any conforming
finite element space. The Galerkin approximation of (2.1) is to find uh ∈ V h such that

b(uh, v) = (f, v) for all v ∈ V h. (2.4)

If n denotes the dimension of V h, with a basis given by {φi}ni=1, then (2.4) can be represented
by the linear system

Bu = f . (2.5)

The matrix B is defined in terms of the basis functions as (B)ij = b(φj , φi) and (f)i = (f, φi).
It is also possible to define the matrix A using the same basis functions as (A)ij = a(φj , φi).

The solvability of (2.4) is assured by the following Lemma from [5, Theorem 2]. This is
required due to the indefiniteness of (2.4).

Lemma 2.4 (Schatz and Wang, 1996). Let Assumptions 2.1 and 2.3 hold. Then there exists

an h0 > 0 such that, for each h with 0 < h < h0, the problem (2.4) has a unique solution

uh ∈ VH . Moreover, let u be the unique solution of (2.1). Then, for every ε > 0 there exists

h1 = h1(ε) > 0 such that, for every h ∈ (0, h1),

‖u− uh‖ ≤ ε‖u− uh‖H1(Ω) (2.6)

and

‖u− uh‖H1(Ω) ≤ ε‖f‖. (2.7)

Remark 2.5. The introduction of (2.6) differs from [2], allowing for improvements to be made

in later Lemmas.

By combining the Friedrichs inequality [4, Theorem 13.19] with Assumption 2.1, it possible
to state that, for any subdomain Ω′ ⊂ Ω with diameter H, we obtain the estimate

‖u‖Ω′ ≤ H√
2
‖∇u‖Ω′ ≤ H√

2
‖u‖a

Ω′
for all u ∈ H1

0 (Ω
′). (2.8)

This inequality will be used extensively in what follows.

2.2 Domain decomposition

In order to construct the two-level Schwarz preconditioner, the first-level preconditioner needs
to be formulated. This is achieved by first partitioning the global domain, Ω, into a set of N
subdomains, {Ω′

i}Ni=1. It is being assumed that the global mesh, Th, is sufficiently fine to resolve
the subdomains. Then each subdomain, Ω′, is expanded by one or more layers of mesh elements,
in the sense of Definition 2.6, creating the desired overlapping set of N subdomains, {Ωi}Ni=1.

Definition 2.6. Given a subdomain Ω′ ⊂ Ω, which is resolved by the chosen mesh, the extension

of Ω′ by a layer of elements is

Ωe = Int

(
⋃

{ℓ|supp(φℓ)∩Ω′ 6=∅}

supp(φℓ)

)

where Int(·) is the interior of domain. Extension by multiple layers can then be achieved by

applying this recursively.
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For the domains i = 1, . . . , N , it is possible to define the spaces,

Ṽi = {v|Ωi
: v ∈ V h} ⊂ H1(Ωi) and Vi = {v ∈ Ṽi : v|∂Ωi

= 0} ⊂ H1
0 (Ωi). (2.9)

For each subdomain, Ωi, we denote its diameter by Hi, and we set H := max{Hi}. For any
u, v ∈ Ṽi, the local bilinear forms can be defined

aΩi
(u, v) =

∫

Ωi

A∇u · ∇v dx, bΩi
(u, v) =

∫

Ωi

(A∇u · ∇v − k2uv) dx.

Remark 2.7. Although bΩi
(·, ·) is generally indefinite, for small enough H the form restricted

to Vi is positive definite. This is discussed in Lemma 3.8.

For any vi ∈ Vi, let Eivi denote its zero extension to the whole of the domain Ω. Then,

Ei : Vi → V h, i = 1, . . . , N. (2.10)

The L2(Ω) adjoint of the extension operator is called restriction operator,

Ri : V
h → Vi.

By use of the extension operator, the restriction of the bilinear forms to Vi can be given as

aΩi
(u, v) = a(Eiu,Eiv), bΩi

(u, v) = b(Eiu,Eiv), (u, v)Ωi
= (Eiu,Eiv)

for all u, v ∈ Vi. The one-level additive Schwarz preconditioner can now be given in matrix form
as

M−1
AS,1 =

N∑

i=1

EiB
−1
i Ri, where Bi = RiBEi. (2.11)

Here, Ei and Ri denote the matrix representations of Ei and Ri with respect to the basis
functions {φi}ni=1 and some basis in Vi.

In order to improve the effectiveness of the preconditioner, a coarse space is added. This
improves the global exchange of information between the subdomains. Let V0 ⊂ V h be such a
coarse space. Let E0 : V0 → V h be the natural embedding, and let R0 be the L2 adjoint of E0,

(v0, R0w) = (E0v0, w) for all w ∈ V h, v0 ∈ V0.

The two-level additive Schwarz preconditioner can now be given in matrix form as,

M−1
AS,2 =

N∑

i=0

EiB
−1
i Ri, where Bi = RiBEi. (2.12)

The preconditioned linear system from (2.5) reads as,

M−1
AS,2Bu = M−1

AS,2f (2.13)

It is now possible to define the projectors used in the analysis. For each i = 0, . . . , N , the
projectors, Ti : V

h → Vi, are defined by,

bΩi
(Tiu, v) = b(u,Eiv) for all v ∈ Vi, (2.14)

where Ω0 = Ω. The existence of the Ti operators are guaranteed by Lemma 3.8. Given the
operators Ti, the operator T : V h → V h is defined as

T =
N∑

i=0

EiTi. (2.15)

This allows for the two-level additive Schwarz preconditioner to be represented in terms of the
projector operator, T , as follows. We recall here the result from [2].

Proposition 2.8. For any u, v ∈ V h, with corresponding nodal vectors u,v ∈ R
d,

〈M−1
AS,2Bu,v〉A = a(Tu, v), (2.16)

where 〈·, ·〉A is the inner product on R
d, using the matrix A.
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2.3 The ∆-GenEO coarse space

In order to use the ∆-GenEO coarse space, we need to recall some definitions from [6].

Definition 2.9 ([6] Definition 3.2). Given a subdomain Ωi, which is formed from a union of

elements from the whole domain, let

dof(Ωi) :=
{
ℓ | 1 ≤ ℓ ≤ n and supp(φℓ) ∩ Ωi 6= ∅

}

denote the set of degrees of freedom that are active in the subdomain Ωi, including ones on the

boundary. In a similar manner, let

dof(Ωi) :=
{
ℓ | 1 ≤ ℓ ≤ n and supp(φℓ) ⊂ Ωi

}

denote the internal degrees of freedom.

Definition 2.10 (Partition of unity). Let dof(Ωi) be as in Definition 2.9. For any degree of

freedom, j ∈ {1, . . . , n}, let µj denote the number of subdomains for which j is an internal degree

of freedom, i.e.

µj := #
{
i | 1 ≤ i ≤ N, j ∈ dof(Ωi)

}
.

Then, for i ∈ {1, . . . , N}, the local partition of unity operator, Ξi : Ṽi → Vi is defined by

Ξi(v) :=
∑

j∈dof(Ωi)

1

µj
vjφ

i
j for v =

∑

j∈dof(Ωi)

vjφ
i
j ∈ Ṽi.

The local generalised eigenvalue problem that is going to form the basis of the coarse space
can now be introduced.

Definition 2.11 ([2], Definition 2.8). For each j = 1, . . . , N , we define the following generalised

eigenvalue problem. Find (pjℓ , λj) ∈ Ṽj \ {0} × R such that

aΩj
(pjℓ , v) = λjaΩj

(
Ξj(p

j
ℓ),Ξj(v)

)
for all v ∈ Ṽj.

Remark 2.12. As aΩj
(Ξj(·),Ξj(·)) is symmetric positive definite on Vj , the finite eigenvectors,

p
j
ℓ, can be normalised with respect to aΩj

(Ξj(·),Ξj(·)) to satisfy the orthogonality conditions

aΩj

(
Ξj(p

j
m),Ξj(p

j
ℓ)
)
= δℓm and aΩj

(
pjm, p

j
ℓ

)
= λjδ

ℓ
m. (2.17)

For the treatment of the eigenvalue infinity see the discussion in [6].

Definition 2.13 (∆-GenEO Coarse space). For each j ∈ 1, . . . , N , let {pjℓ}
mj

ℓ=1 be the eigenfunc-

tions corresponding to the mj smallest eigenvalues from Definition 2.11. The value of mj is to

be chosen, with more details on this later. The coarse space, V0, is given by

V0 := span{EjΞj(p
j
ℓ) | l = 1, . . . ,mj and j = 1, . . . , N}. (2.18)

We will also need the following notations

Λ := max
T∈Th

(#{Ωj | 1 ≤ j ≤ N,T ⊂ Ωj}) , τ := min
1≤j≤N

λ
j
mj+1.
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3 Statement of the main result and theoretical tools

We start this section with the statement of the main result and continue by providing a few
technical lemmas needed in the proof of this result, which will be given later on. For convenience
we set Θ := 1

τ .

Theorem 3.1 (GMRES convergence of the two-level preconditioned system). Assume that

h ∈ (0, h1), where h1 is as in Lemma 3.11, then select H and τ such that

s := (1 + Λ2Θ)16
√
2k2Λ

3

2Θ
1

2 (1 + Cstab) < 1,

t := 32H2k2(1 + Λ2Θ)Λ < 1.
(3.1)

If GMRES is applied in the 〈·, ·〉A-inner product to solve the preconditioned system given by

(2.13), then after m iterations, the norm of the residual, r(m), is bounded as

‖r(m)‖2A ≤
(
1− c21

c22

)m

‖r(0)‖2A, (3.2)

where c1 and c2 are given by

c1 := bigl(4(1 + Λ2Θ)
)−1(

1−max{t, s}
)
, c2 := 18 + 18Λ2. (3.3)

Corollary 3.2. If (3.1) in Theorem 3.1 are satisfied, then this leads to the conditions

H . k−1 and (1 + Cstab)
2k4 . τ. (3.4)

If these conditions are satisfied, then c1 and c2 are both independent on problem parameters

including the heterogeneity and the wavenumber k, leading to a robust GMRES convergence.

Proof. It is known that Λ ≥ 1; so we have 1 ≤ Λ ≤ Λ3/2 and

16
√
2k2ΛΘ

1

2 (1 + Cstab) ≤ (1 + Λ2Θ)16
√
2k2Λ

3

2Θ
1

2 (1 + Cstab) < 1,

thus leading to the inequality

2k2ΛΘ
1

2 (1 + Cstab) <
1

8
√
2
. (3.5)

If we use the definition of τ , then (3.5) translates into

(1 + Cstab)
2k4 . τ.

Now, using the second inequality from (3.1), we obtain

64H2k2 ≤ 64H2k2(1 + Λ2Θ)Λ < 1,

which leads to the condition H . k−1.

In practice, conditions (3.4) will introduce a constraint in the size of the subdomains, de-
pending on k and on the number of modes to be added in the coarse space.

Remark 3.3. Note that the condition (3.1) is different from the one obtained in [2], and allows

for the improved conditions on H and τ . These results follow from the modifications made to

the later lemmas.
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3.1 Properties of the ∆-GenEO coarse space

The following three lemmas and Proposition 3.7 are also given in [2] and adapted from [6]. The
first gives an error estimate for the local projection operator, which is used to approximate a
function v ∈ Ṽi in the space being spanned by the eigenfunctions from Definition 2.11.

Lemma 3.4 (Projection operator onto the coarse space). Let i ∈ {1, . . . , N} and {(piℓ, λi
ℓ)}

be the eigenpairs of the generalised eigenproblem, given in Definition 2.11. Suppose that mi ∈
{1, . . . ,dim(Vi)− 1} is such that 0 < λi

mi+1 < ∞, and the eigenvalues can be ordered such that

λi
1 ≤ λi

2 ≤ . . . ≤ λi
dim(Ṽi)

. Then the local projector, Πi
mi

, defined by

Πi
mi

v :=

mi∑

l=1

aΩi

(
Ξi(v),Ξi(p

i
ℓ)
)
piℓ, (3.6)

satisfies

‖w‖2aΩi
≤ ‖v‖2aΩi

and ‖Ξ(w)‖2aΩi
≤ 1

λi
mi+1

‖w‖2aΩi
for all v ∈ Ṽi, (3.7)

where w = v −Πi
mi

v.

From these local error estimates it is possible to build a global approximation property.

Lemma 3.5 (Global approximation property). Assume that the conditions in Lemma 3.4 are

satisfied. Let v ∈ V h; then

inf
z∈V0

‖v − z‖2a ≤ ‖v − z0‖2a ≤ Λ2Θ‖v‖2a, (3.8)

where

z0 =

N∑

i=1

EiΞi

(
Πi

mi
v|Ωi

)
and Θ = max

1≤i≤N

1

λi
mi+1

.

The following lemma shows that the GenEO coarse space, in combination with the local
finite element space, allows for a stable decomposition. This property is a key component for
bounding the condition number in the two-level Schwarz preconditioner for positive definite
cases, as used in [6].

Lemma 3.6 (Stable decomposition). Let v ∈ V h. Then the decomposition

z0 =

N∑

i=1

EiΞi

(
Πi

mi
v|Ωi

)
and zi = Ξi

(
v|Ωi

−Πi
mi

v|Ωi

)
for i = 1, . . . , N

satisfies v =
∑N

i=0Eizi and

‖z0‖2a +
N∑

i=1

‖zi‖2aΩi
≤ 4(1 + Λ2Θ)‖v‖2a.

It is convenient at this time to introduce the projection operators Pi : V
h → Vi such that,

for each i = 0, . . . , N ,
aΩi

(Piu, v) = a(u,Eiv)for all v ∈ Vi. (3.9)

In [7, Section 2.2] it is proved that these operators are well defined. Using these operator Pi we
can defines P : V h → V h as

P =

N∑

i=0

EiPi. (3.10)

7



Proposition 3.7. Under the same assumptions as in Lemma 3.6, any u ∈ V h satisfies

‖u‖2a ≤ 4(1 + Λ2Θ)(Pu, u)a (3.11)

and
N∑

i=0

‖Piu‖2aΩi
≤ (Λ + 1)‖u‖2a. (3.12)

3.2 Solvability and stability of Ti, i = 1, . . . , N

The next two lemmas are reformulations of those used in [2] when applied to (1.1), which is
a particular case of the problem from [2]. These lemmas are necessary even if there are no
improvements of the estimates at this stage.

Lemma 3.8 (Ti is well defined for i = 1, . . . , N). If Hk <
√
2, then bΩi

(·, ·) is positive definite

on H1
0 (Ωi) and the operators Ti, i = 1, . . . , N are well defined.

Proof. Using the definition of bΩi
(·, ·) and the Friedrichs inequality we obtain

bΩi
(u, u) = aΩi

(u, u)− k2(u, u)Ωi
≥ 2

H2
‖u‖2Ωi

− k2‖u‖2Ωi
=

2−H2k2

H2
‖u‖2Ωi

.

If the condition Hk <
√
2 is satisfied, then bΩi

(·, ·) is positive definite. By the Lax–Milgram
lemma, this ensures that Ti is well defined.

Remark 3.9. Whilst this a sufficient condition for Ti to be well defined, it is not a necessary

condition. In general, if k2 is not an eigenvalue of the matrix corresponding to aΩi
, then Ti is

well defined.

In order to show the robustness of the two-level method additive Schwarz method, it is
necessary to prove the stability estimates for the Ti operators.

Lemma 3.10 (Stability of Ti, i = 1, . . . , N). Suppose that Hk ≤ 1. Then, for all u ∈ V h,

‖Tiu‖aΩi
≤ 2‖u‖aΩi

+ k
√
2‖u‖Ωi

. (3.13)

Proof. Using the defining relation bΩi
(Tiu, Tiu) = bΩi

(u, Tiu) and the Cauchy–Schwarz inequality
we obtain

‖Tiu‖2aΩi
= aΩi

(Tiu, Tiu) = bΩi
(Tiu, Tiu) + k2(Tiu, Tiu)Ωi

= bΩi
(u, Tiu) + k2(Tiu, Tiu)Ωi

= aΩi
(u, Tiu)− k2(u, Tiu)Ωi

+ k2(Tiu, Tiu)Ωi

≤ ‖u‖aΩi
‖Tiu‖aΩi

+ k2‖u‖Ωi
‖Tiu‖Ωi

+ k2‖Tiu‖2Ωi

≤ ‖u‖aΩi
‖Tiu‖aΩi

+ k2
H√
2
‖u‖Ωi

‖Tiu‖aΩi
+ k2

H2

2
‖Tiu‖2aΩi

.

After simplification, this can be rewritten as

(
1− k2

H2

2

)
‖Tiu‖aΩi

≤ ‖u‖aΩi
+ k2

H√
2
‖u‖Ωi

.

Together with the assumption Hk ≤ 1, this implies the claimed inequality (3.13).

8



3.3 Solvability and stability of T0

In this section we derive sufficient conditions for solvability and stability of the coarse space
operator T0. The conditions obtained from the subsequent Lemmas 3.11 and 3.12 are an im-
provement on those found in their counterparts from [2].

First, to ensure that T0 is well defined, a condition on Θ is required.

Lemma 3.11 (T0 is well defined). Suppose that

2kΛΘ
1

2 (1 + Cstab) < 1. (3.14)

Then there exists h1 > 0 such that, for all h ∈ (0, h1), the operator T0 is well defined.

Proof. Assume that there exists a w0 ∈ V0\{0} such that

b(w0, z) = 0 for all z ∈ V0. (3.15)

Let w ∈ H1
0 (Ω) be the solution of

b(w, v) = (w0, v) for all v ∈ H1
0 (Ω).

Let ε > 0 such that k2ε2 ≤ 1
2 . We shall impose an additional constraint on ε later. Then

Lemma 2.4 implies that there exists h1 > 0 such that, for all h ∈ (0, h1), there exists a solution
wh ∈ V h of

b(wh, v) = (w0, v) for all v ∈ V h,

and (2.6) and (2.7) hold. As w0 ∈ V0\{0}, we can choose v = w0. Then, for all z ∈ V0,

‖w0‖2 = b(wh, w0) = b(wh, w0)− b(z, w0) = b(wh − z, w0)

= a(wh − z, w0)− k2(wh − z, w0) ≤ |a(wh − z, w0)|+ k2|(wh − z, w0)|
≤ ‖wh − z‖a‖w0‖a + k2‖wh − z‖‖w0‖ ≤ ‖wh − z‖a‖w0‖a + k2ε‖wh − z‖H1(Ω)‖w0‖
≤ ‖wh − z‖a‖w0‖a + k2ε2‖w0‖2

≤ ‖wh − z‖a‖w0‖a +
1

2
‖w0‖2

and hence
‖w0‖2 ≤ 2‖wh − z‖a‖w0‖a.

As this is true for all z ∈ V0, it follows that

‖w0‖2 ≤ 2‖w0‖a inf
z∈V0

‖wh − z‖a.

Combined with Lemma 3.5 this yields

‖w0‖2 ≤ 2ΛΘ
1

2 ‖w0‖a‖wh‖a. (3.16)

Choosing z = w0 in (3.15) we have

0 = b(w0, w0) = ‖w0‖2a − k2‖w0‖2 (3.17)

and hence ‖w0‖a = k‖w0‖. Together with (3.16) this gives

‖w0‖2 ≤ 2kΛΘ
1

2 ‖w0‖‖wh‖a. (3.18)

We can combine (2.3) and (2.7) to obtain

‖wh‖a ≤ ‖w‖a + ‖w − wh‖a ≤ ‖w‖a + amax‖w − wh‖H1(Ω)

≤ Cstab‖w0‖+ amaxε‖w0‖ ≤ (Cstab + 1)‖w0‖ (3.19)

if ε is chosen small enough so that amaxε ≤ 1. We now obtain from (3.19) with (3.18) that

‖w0‖2 ≤ 2kΛΘ
1

2 (1 + Cstab)‖w0‖2.
With the assumption (3.14) this leads to a contradiction.
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Another requirement is to find the stability conditions for T0.

Lemma 3.12 (Stability of T0). Suppose that (3.14) is satisfied. Then there exists h1 > 0 such

that, for h ∈ (0, h1),

‖T0u− u‖ ≤ 2ΛΘ
1

2 (1 + Cstab)‖T0u− u‖a for all u ∈ Vh. (3.20)

Suppose, in addition, that

2k2ΛΘ
1

2 (1 + Cstab) ≤
1

2
. (3.21)

Then

‖u− T0u‖ ≤
√
2‖u‖a for all u ∈ V h. (3.22)

Proof. Under condition (3.14), Lemma 3.11 ensures the existence of h1 > 0 such that, for
h ∈ (0, h1), the operator T0 : V

h → V0 is well defined. Consider the auxiliary problem

find wh ∈ V h such that b(wh, v) = (T0u− u, v) for all v ∈ V h, (3.23)

which has a unique solution by Lemma 2.4. The definition of T0 implies that b(T0u− u, z) = 0
for all z ∈ V0. We can choose v = T0u− u in (3.23), which yields

‖T0u− u‖2 = b(wh, T0u− u) = b(wh, T0u− u)− b(z, T0u− u) = b(wh − z, T0u− u)

= a(wh − z, T0u− u)− k2(wh − z, T0u− u)

≤ |a(wh − z, T0u− u)|+ k2|(wh − z, T0u− u)|
≤ ‖wh − z‖a‖T0u− u‖a + k2‖wh − z‖ ‖T0u− u‖
≤ ‖wh − z‖a‖T0u− u‖a + k2ε‖wh − z‖H1(Ω)‖T0u− u‖
≤ ‖wh − z‖a‖T0u− u‖a + k2ε2‖T0u− u‖2,

where we used Lemma 2.4 for the last two inequalities. Choosing ε > 0 such that k2ε2 ≤ 1
2 we

obtain
‖T0u− u‖ ≤ 2‖wh − z‖a‖T0u− u‖a. (3.24)

As this is true for all z ∈ V0, it follows Lemma 3.5 that

‖T0u− u‖2 ≤ 2‖T0u− u‖a inf
z∈V0

‖wh − z‖a ≤ 2ΛΘ
1

2 ‖T0u− u‖a‖wh‖a. (3.25)

If we choose ε small enough so that amaxε ≤ 1, we can use a similar calculation as in (3.19) to
get ‖wh‖a ≤ (1 + Cstab)‖T0u− u‖. Combined with (3.25) this proves (3.20).

We now come to the proof of (3.22). From the definition of P0 in (3.9) we have

a(P0u− u, v) = 0 for all u ∈ V h, v ∈ V0.

Taking v = T0u ∈ V0, we get a(T0u, P0u−u) = 0. Moreover, since P0u−T0u ∈ V0, the definition
of T0 yields

b(u− T0u, P0u− T0u) = 0. (3.26)

Using (3.26), the link between the bilinear forms a and b, and the Cauchy–Schwarz inequality,
we obtain

‖u− T0u‖2a = a(u− T0u, u− T0u) = b(u− T0u, u− T0u)− k2(u− T0u, u− T0u)

= b(u− T0u, u− T0u)− b(u− T0u, P0u− T0u)− k2(u− T0u, u− T0u)

= b(u− T0u, u− P0u)− k2(u− T0u, u− T0u)

= a(u− T0u, u− P0u) + k2(u− T0u, u− P0u)− k2(u− T0u, u− T0u)

= a(u− T0u, u− P0u) + k2(u− T0u, T0u− P0u)

= a(u− T0u, u− P0u) + a(T0u, u− P0u) + k2(u− T0u, T0u− P0u)

= a(u, u− P0u) + k2(u− T0u, T0u− P0u)

≤ ‖u‖a‖u− P0u‖a + k2‖u− T0u‖ ‖P0u− T0u‖. (3.27)
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Since our domain satisfies DΩ ≤ 1, we can use the definition of P0 and the Friedrichs inequality
to get

‖u− P0u‖a ≤ ‖u‖a,

‖P0u− T0u‖ ≤ ‖P0u− T0u‖a ≤ ‖P0(u− T0u)‖a ≤ ‖u− T0u‖a.
These relations, together with (3.27) and (3.20) lead to

‖u− T0u‖2a ≤ ‖u‖2a + k2‖u− T0u‖ ‖u − T0u‖a
≤ ‖u‖2a + k22ΛΘ

1

2 (1 + Cstab) ‖T0u− u‖2a . (3.28)

Rearranging (3.28) we arrive at
(
1− 2k2ΛΘ

1

2 (1 + Cstab)
)
‖T0u− u‖2a ≤ ‖u‖2a.

Using assumption (3.21) we can finish the proof of (3.22).

4 Proof of the main result

Before we can prove Theorem 3.1, we need to state and prove the following lemma.

Lemma 4.1. Suppose that the assumptions in Theorem 3.1 are satisfied. Then, for all u ∈ Vh,

c1‖u‖2a ≤ (Tu, u)a, (4.1)

and

‖Tu‖a ≤ c2‖u‖2a, (4.2)

where c1 and c2 are as in Theorem 3.1.

Proof. To prove (4.1), let u ∈ V h. We proceed in several steps.

Step 1. This is the same procedure as in [2], but adapted for application to (1.1) directly. We
start with (3.11) and then use (3.10), (3.11), and the definition of the Ti projection operators
to get a preliminary estimate:

(
4(1 + Λ2Θ)

)−1‖u‖2a ≤ a(Pu, u) = a

(
N∑

i=0

EiPiu, u

)
=

N∑

i=0

a(EiPiu, u)

=
N∑

i=0

(
b(u,EiPiu) + k2(u,EiPiu)

)

=

N∑

i=0

(
b(EiTiu,EiPiu) + k2(u,EiPiu)

)

=
N∑

i=0

(
a(EiTiu,EiPiu)− k2(EiTiu,EiPiu) + k2(u,EiPiu)

)

=

N∑

i=0

a(EiTiu,EiPiu)− k2
N∑

i=0

(
EiTiu− u,EiPiu

)
.

Since, by definition a(EiTiu,EiPiu) = aΩi
(Tiu, Piu) and aΩi

(Piu, v) = a(u,Eiv) for all v ∈ Vi,
we have a(EiTiu,EiPiu) = aΩi

(Tiu, Piu) = a(EiTiu, u), which, in turn, implies

(
4(1 + Λ2Θ)

)−1‖u‖2a ≤
N∑

i=0

a(EiTiu, u)− k2
N∑

i=0

(EiTiu− u,EiPiu)

= a(Tu, u)− k2
N∑

i=0

(EiTiu− u,EiPiu).
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This can be rewritten as (the sum can be split into terms related to i = 0 and i ≥ 1)

‖u‖2a ≤ 4(1 + Λ2Θ)

(
a(Tu, u) − k2(E0T0u− u,E0P0u)− k2

N∑

i=1

(EiTiu− u,EiPiu)

)
. (4.3)

Step 2. The next stage is to bound the second and third terms inside the bracket of the
preliminary estimate (4.3). It is at this stage that we take advantage of the improved estimates
obtained in Lemmas 3.11 and 3.12. We start with the second term in (4.3), where E0 should be
considered as a natural embedding like the identity operator (EiT0u = T0u and EiP0u = P0u).
We also use (3.20) and (3.22) to get

−k2(E0T0u− u,E0P0u) ≤ k2‖E0T0u− u‖ ‖E0P0u‖ = k2‖T0u− u‖‖P0u‖
≤ k2‖T0u− u‖ ‖P0u‖a ≤ k22ΛΘ

1

2 (1 + Cstab)‖T0u− u‖a‖P0u‖a
≤ k22

√
2ΛΘ

1

2 (1 + Cstab)‖u‖a‖P0u‖a.

With this the second term in (4.3) can be estimated as follows, where s is as in Theorem 3.1,

−4(1 + Λ2Θ)k2
(
E0T0u− u,E0P0u

)
≤ s

2Λ
1

2

‖u‖a‖P0u‖a ≤ s
√
2(Λ + 1)

1

2

‖u‖a‖P0u‖a. (4.4)

Let us now consider the sum in (4.3). Note that, for each i ∈ {1, . . . , N}, the operator Ei is
just an extension by 0 outside the domain (a(u,Eiv) = aΩi

(u, v) for u ∈ V h, v ∈ Vi). Using
Lemma 3.10 we obtain

− k2(EiTiu− u,EiPiu) ≤
∣∣k2(EiTiu− u, Piu)Ωi

∣∣ ≤ k2‖EiTiu− u‖Ωi
‖Piu‖Ωi

≤ k2‖EiTiu− u‖Ωi
‖Piu‖Ωi

≤ k2
(
‖Tiu‖Ωi

+ ‖u‖Ωi

)
‖Piu‖Ωi

≤ k2
(

H√
2
‖Tiu‖aΩi

+ ‖u‖Ωi

)
‖Piu‖Ωi

≤ k2
(
H
√
2‖u‖aΩi

+ kH‖u‖ + ‖u‖Ωi

)
‖Piu‖Ωi

≤ Hk2
(
H
√
2‖u‖aΩi

+ 3‖u‖Ωi

)
‖Piu‖aΩi

≤ Hk2
(
H
√
2‖u‖aΩi

+
3H√
2
‖u‖aΩi

)
‖Piu‖aΩi

< 4H2k2‖u‖aΩi
‖Piu‖aΩi

.

Taking the sum over i and applying the Cauchy–Schwarz inequality and the overlap property,∑N
i=1 ‖u‖2aΩi

≤ Λ‖u‖2a, we obtain

− k2
N∑

i=1

(EiTiu− u,EiPiu) ≤
N∑

i=1

4H2k2‖u‖aΩi
‖Piu‖aΩi

≤ 4H2k2

(
N∑

i=1

‖u‖2aΩi

) 1

2

(
N∑

i=1

‖Piu‖2aΩi

) 1

2

≤ 4H2k2Λ
1

2‖u‖a
(

N∑

i=1

‖Piu‖2aΩi

) 1

2

.

Using assumption (3.1) and t as in Theorem 3.1 we arrive at

−4(1 + Λ2Θ)k2
N∑

i=1

(
EiTiu− u,EiPiu

)
≤ 16(1 + Λ2Θ)H2k2Λ

1

2‖u‖a
(

N∑

i=1

‖Piu‖2aΩi

) 1

2

≤ t

2Λ
1

2

‖u‖a
(

N∑

i=1

‖Piu‖2aΩi

) 1

2

≤ t
√
2(Λ + 1)

1

2

‖u‖a
(

N∑

i=1

‖Piu‖2aΩi

) 1

2

. (4.5)
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Step 3. We are now ready to combine (4.4) and (4.5) in order to get an estimate for the second
and third terms in (4.3) in terms of ‖u‖2a. This again follows the same procedure as used in
[2] with no further refinements (note that we also use the well-known inequality (a + b)2 ≤
2a2 + 2b2 ⇒ a+ b ≤

√
2a2 + 2b2),

− 4(1 + Λ2Θ)

(
k2(E0T0u− u,E0P0u) + k2

N∑

i=1

(EiTiu− u,EiPiu)

)

≤ s
√
2(Λ + 1)

1

2

‖u‖a‖P0u‖a +
t

√
2(Λ + 1)

1

2

‖u‖a
(

N∑

i=1

‖Piu‖2aΩi

) 1

2

≤ max{s, t}√
2(Λ + 1)1/2

‖u‖a
[
‖P0u‖a +

(
N∑

i=1

‖Piu‖2aΩi

) 1

2

]

≤ max{s, t}
(Λ + 1)1/2

‖u‖a
(

N∑

i=0

‖Piu‖2aΩi

) 1

2

≤ max{s, t}
(Λ + 1)1/2

‖u‖a
(
‖u‖2a(Λ + 1)

) 1

2 = max{s, t}‖u‖2a. (4.6)

In the last inequality we used (3.12).

Step 4. Although no further improvements to the results are obtained at this stage, (3.22)
is a direct result of earlier enhancements to the estimations being found. Following the same
procedure as used in [2], we exploit the estimate (4.6) and proceed to the final result. In a first
instance we use (4.6) together with (4.3) to get

‖u‖2a ≤ 4(1 + Λ2Θ)a(Tu, u) + max{s, t}‖u‖2a,

which leads to the desired estimate

c1‖u‖2a =
(
4(1 + Λ2Θ)

)−1(
1−max{s, t}

)
‖u‖2a ≤ a(Tu, u).

We now come to the proof of (4.2). We start with the following relation, where we use
E0T0u = T0u,

‖Tu‖2a =

∥∥∥∥∥T0u+
N∑

i=1

EiTiu

∥∥∥∥∥

2

a

≤ 2‖T0u‖2a + 2

∥∥∥∥∥

N∑

i=1

EiTiu

∥∥∥∥∥

2

a

. (4.7)

Using the Cauchy–Schwarz inequality and (3.22) we find an upper bound for the first term on
the right-hand side of (4.7):

‖T0u‖2a = a(T0u, T0u) = a(T0u, T0u)− a(u, T0u) + a(u, T0u)

≤ a(T0u− u, T0u) + a(u, T0u) ≤ ‖T0u− u‖a‖T0u‖a + ‖u‖a‖T0u‖a
≤ 3‖u‖a‖T0u‖a,

which yields
‖T0u‖2a ≤ 9‖u‖2a. (4.8)
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For the second term on the right-hand side of (4.7) we use Lemma 3.10 to get
∥∥∥∥∥

N∑

i=1

EiTiu

∥∥∥∥∥

2

a

≤ Λ
N∑

i=1

‖Tiu‖2aΩi
≤ Λ

N∑

i=1

(
2‖u‖aΩj

+ k
√
2‖u‖Ωj

)2

≤ Λ

N∑

i=1

(
2‖u‖aΩj

+ kH‖u‖aΩj

)2

≤ 9Λ
N∑

i=1

‖u‖2aΩj
≤ 9Λ2‖u‖2a. (4.9)

Combining (4.8) and (4.9) with (4.7) we arrive at

‖Tu‖a ≤ 2(9‖u‖2a) + 2(9Λ2‖u‖2a) = (18 + 18Λ2)‖u‖2a, (4.10)

which finishes the proof of (4.2).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Using (4.1) with (2.16) we obtain

c1‖u‖2a ≤ a(Tu, u) = 〈M−1
AS,2Bu,u〉A,

which can be written as

c1 ≤
〈M−1

AS,2Bu,u〉A
‖u‖2

A

.

In a similar way we use (4.2), again with (2.16), to get

‖M−1
AS,2Bu‖2A = ‖Tu‖2a ≤ c2‖u‖2a = c2‖u‖2A,

which implies
‖M−1

AS,2B‖2A ≤ c2.

Now the result follows directly from Elman theory [3].
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