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Abstract 

In multicomponent lattice problems, e.g., in alloys, and at crystalline surfaces and interfaces, 

atomic arrangements exhibit spatial correlations that dictate the kinetic and thermodynamic 

phase behavior. These correlations emerge from interparticle interactions and are frequently 

reported in terms of the short-range order (SRO) parameter. Expressed usually in terms of 

pair distributions and other cluster probabilities, the SRO parameter gives the likelihood of 

finding atoms/molecules of a particular type in the vicinity of others atoms. This study focuses 

on fundamental constraints involving the SRO parameters that are imposed by the underlying 

lattice topology. Using a data-driven approach, we uncover the interrelationships between 

different SRO parameters (e.g., pairs, triplets, quadruplets, etc.) on a lattice. The main finding 

is that while some SRO parameters are independent, the remaining are collinear, i.e., the 

latter are dictated by the independent ones through linear relationships. A kinetic and 

thermodynamic modeling framework based on these constraints is introduced. 
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1. Introduction 

The Metropolis Monte Carlo (MMC) method [1] has been a popular choice for studying 

molecular arrangements in condensed matter systems. While the applications of MMC are 

quite widespread, the topic of this paper is the study of configurational disorder in crystalline 

systems. Solid materials containing two and more components are commonly encountered 

in fields of catalysis [2–5], ionic conductors [6], alloys [7,8], separations, and many 

others [9,10]. Although the material has a well-defined crystal structure, it often possesses 

configurational disorder (see Figure 1a). Depending on the interactions, the local particle 

arrangement can be anywhere between perfectly-random to perfectly-ordered. The 

configurational disorder is quantified in terms of short-range order (SRO) parameters, such as 

the radial distribution function (rdf). Such quantities are used for interpreting atomistic 

configurations from MMC [11–13], predicting, designing, and optimizing material properties, 

and even for accelerating MMC [14]. 

In liquids, historically, several analytical treatments of configurational disorder have been 

attempted. A hierarchy of correlation functions is obtained by integrating-out phase space 

coordinates [15]. Solving for the exact two-particle distribution can be elusive, since 

information about other particle distributions, which are also unknown, is required. To 

address this problem, physically-motivated closure relations are often invoked. For instance, 

one may write the three-particle distribution as a product of three two-particle distributions. 

However, such approximations also introduce inaccuracies. Clearly there is a need to 

understand the relationships between various 𝑁-particle distributions. Here we employ a 

data-driven approach to explore some fundamental properties of SRO parameters. We 
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restrict ourselves to a lattice system, where the distributions are sharply-peaked/discrete in 

space. 

 

 

Figure 1. (a) A lattice configuration with a partially ordered structure. Short-range order 

(SRO) statistics are based on many-particle clusters. (b) Corresponding detailed schematic 

showing binding sites and particle clusters. The substrate, here a metal (100) surface, is 

shown for clarity. Particles are allowed to adsorb only at the hollow sites.  

 

Consider a binary 𝐴𝑥𝐵1−𝑥 lattice system involving a single type of site that can be occupied 

by either 𝐴 or 𝐵. The simplest SRO parameter is the pair probability. Given that a site has an 

𝐴 particle, the probability of finding an 𝐴 particle at the 𝑛𝑡ℎ neighbor site is specified. 

Probabilities involving the 𝐴 − 𝐵 and 𝐵 − 𝐵 pairs are related to the 𝐴 − 𝐴 pair [14,16], and 

are not discussed. Suppose it is stated that the first nearest neighbor (1nn) pairs are absent – 

this conveys a lot about the possible configurations the system can adopt. Figure 1a gives an 

example of such a configuration. The rdf gives the pair probability over several coordination 
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shells. One may also specify SRO parameters involving clusters of 3, 4 and more sites (triplets, 

quadruplets and so on). 

Figure 1b shows examples of particle clusters on a 2D square lattice, which are used to define 

the SRO-based correlations. These are clusters within a 4nn position cutoff. Red circles denote 

𝐴 particles. The vacant species correspond to species 𝐵 here. The SRO parameter is defined 

as 

 
𝑧𝑐 =

𝑁𝑐

𝑏𝑁𝐴
,   0 < 𝑁𝐴 < 𝑁𝑡. 

(1) 

The subscript 𝑐 refers to a particular cluster in Figure 1b, 𝑁𝑐 is the cluster population in a 

configuration, 𝑁𝐴 is the 𝐴 population, 𝑏 is a geometric term such that the probability 𝑧𝑐 ∈

[0,1] and 𝑁𝑡 is the number of sites. See Ref. [17] for the value of 𝑏 in context of Figure 1. Note 

that 𝑧𝑐 is a property of a lattice configuration. In the canonical ensemble, the probability of a 

configuration 𝑋 depends on the composition, interactions 𝑤 and temperature 𝑇, i.e.,  

 𝑝(𝑋; 𝑁𝐴, 𝑁𝑡, 𝑤, 𝑇) = 𝑄−1 exp(−𝛽𝐸(𝑋)). (2) 

Here 𝐸 is the energy, 𝛽 = (𝑘𝐵𝑇)−1, 𝑘𝐵 is the Boltzmann constant and 𝑄 is a normalization 

factor. The average short-range order 〈𝑧𝑐〉 is also a function of 𝑁𝐴, 𝑁𝑡, 𝑤 and 𝑇.  

Of particular interest is the mapping: lattice configuration ⇄ SRO parameters at a single 

configuration level. We shall show that some SRO parameters are independent and the 

remaining are collinear. For example, clusters highlighted in Figure 1b (shown in red-font) are 

independent. To emphasize this aspect of dependence/independence we use a tilde/caret 

symbol. The caret symbol is used for the independent ones, e.g., 𝑧̂3𝑛𝑛, and the tilde symbol 

for the dependent ones, e.g., 𝑧̃2𝑛𝑛. Thus, for any configuration 𝑋 we shall show that 
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 𝑧̃ = 𝜙(𝑥, 𝑧̂). (3) 

Here 𝑥 = 𝑁𝐴/𝑁𝑡. Such fundamental relations arise from topological constraints on the lattice. 

An expression for 𝜙, if available, can be used to develop low-dimensional descriptions for the 

lattice dynamics and equilibrium. Here, 〈𝑧̃〉 is expressed directly in terms 𝑥 and 〈𝑧̂〉, whereas, 

〈𝑧̂〉 is dictated by 𝑥, 𝑤 and 𝑇. An analytical expression for 𝜙 cannot be derived because of the 

complex lattice topology. The problem becomes one of exploratory data analysis, where a 

large number of configurations for given 𝑥, 𝑤 and 𝑇 need to be examined to determine 𝜙, 𝑧̃ 

and 𝑧̂.  

The basis for this investigation lies in our previous studies (see Supplementary Material of 

Ref.  [16]), where it was shown that in the solid solution forming Ag-Au alloy, the entire rdf 

can be generated from the 1nn pair probability. Thus, the second peak of the rdf, third peak 

and so on are related to the first one. 𝑧1𝑛𝑛 describes for the local Ag-Au arrangement. On the 

other hand, in Ni-Pt, which forms ordered structure, the first three neighbor pair probabilities 

are required to generate the rdf. Thus, the full rdf contains redundant information. The 

hypothesis is that once 1nn, 2nn, 3nn pair probabilities are specified, there are only certain 

ways 𝐴 and 𝐵 particles can be arranged in subsequent neighbor positions while still satisfying 

the 1nn, 2nn, 3nn constraints. In effect, other SRO parameters depend on these constraints. 

The present study attempts to systematically find relationships of the form given by Equation 

(3).  

In section 2, our methodology is described using a thermodynamic 𝐴𝑥𝐵1−𝑥 system on a 2D 

square lattice. Results are discussed in section 3. Finally, conclusions are presented in section 

4.  

2. Methodology  
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The present study is of direct relevance to problems in catalysis, adsorption and surface 

science. Consider the situation where a single strongly binding species, such O, CO, halide or 

OH, is chemisorbed on a fcc(100) metal surface, such as, Pt, Pd or Cu (see Figure 1). The 

overlayer often exhibits interesting phase behavior, which arises out of adsorbate-adsorbate 

interactions. When the interactions are repulsive at the 1nn position, it causes the first 

neighbors to be absent. Therefore, we choose 𝑧1𝑛𝑛 = 0 in the present study (see Figure 1a). 

A lattice gas cluster expansion model of the form [18,19] 

 𝐸(𝑋) = ∑ 𝑤𝑐

𝑐

𝑁𝑐 (4) 

is used here to capture the effect of adsorbate-adsorbate interactions. Here 𝐸 denotes the 

energy, 𝑤𝑐 is the cluster interaction for cluster 𝑐. See Section A4 in Supplementary Material 

regarding the origin of such an expression.  

 

Table 1. Models for adsorbate-adsorbate interactions (in eV) studied (see Figure 1b and 

Supplementary Material for more details). In all models, the 1nn interaction 𝒘𝟏𝒏𝒏 → ∞. 

Models 1-4 behave like model 0 at high temperatures. 

Cluster 
interaction 

Model 0 Model 1 Model 2 Model 3 
(Cl/Cu(100)) 

Model 4 
(Br/Cu(100)) 

𝑤2𝑛𝑛 0 -0.1 0.1 0.0167 0.0237 

𝑤3𝑛𝑛 0 0 0 0.0018 -0.0148 

𝑤4𝑛𝑛 0 0 0 0.0002 0.002 

𝑤𝐼 0 0 0 0.0163 0.0383 

𝑤𝐿 0 0 0 0.0107 0.0243 

𝑤𝑉 0 0 0 0.0091 0.0143 

𝑤𝛥 0 0 0 -0.0042 -0.0097 

𝑤𝑄1 0 0 0 0.0014 0.0077 

𝑤𝑄2 0 0 0 0.0004 0.0002 

𝑤𝑄3  0 0 0 -0.0039 -0.0051 
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Five different interaction models are studied. In all models, 𝑤1𝑁𝑁 is set to infinity. Other 

interactions are listed in Table 1. Interactions strengths of up to 0.1 𝑒𝑉 are quite common. 

Model 1 involves attractive interactions that promote clustering at the 2nn position. Models 

2-4 contain repulsive 2nn interactions. In models 3 and 4, the interactions involving all site 

clusters in Figure 1b are present. These interactions were obtained using density theory 

functional (DFT) calculations and correspond to the adsorbate interactions in Cl/Cu(100) and 

Br/Cu(100) system, respectively. The interested reader can refer to Ref. [20] for more details. 

Both the Cl and Br overlayers form an ordered c(2×2) structure in the high coverage limit. At 

high temperatures, models 1-4 behave like model 0. 

Results are presented in the canonical ensemble, i.e., fixed 𝑁𝐴, 𝑁𝑡 and 𝑇. Suppose one 

partitions the lattice into smaller equal-sized domains. Consider a domain 𝑑 where 𝑁𝐴
𝑑, 𝑁𝑡

𝑑 

and 𝑁𝑐
𝑑 are the local particle, site and cluster populations. We require 

 𝑁𝐴 = ∑ 𝑁𝐴
𝑑

𝑑

, (5) 

 𝑁𝑡 = ∑ 𝑁𝑡
𝑑

𝑑

, (6) 

and 

 𝑁𝑐 = ∑ 𝑁𝑐
𝑑

𝑑

. (7) 

Anticipating a scale-invariant relation between 𝑧̂ and 𝑧̃ at both the full-lattice and domain 

level, the right-hand side of Equation (7) becomes 

 𝑁̃𝑙 = ∑ 𝜓(𝑁̂𝑑)

𝑑

 (8) 
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where 𝜓 is related to 𝜙; the former is used with cluster populations. For large domains where 

size effect is negligible, this relation can be satisfied for arbitrary domains only when 𝜓 is a 

linear function. Thus, at the domain level 

 𝑁̃𝑙
𝑑 = 𝑎0 𝑁𝐴

𝑑 + ∑ 𝑎𝑘 𝑁̂𝑘
𝑑

𝑘

. (9) 

𝑎𝑘 is the associated coefficient. The point cluster is excluded in the sum. From Equation (9) 

 𝑧̃𝑙
𝑑 = 𝑎0𝑏𝑙

−1 + ∑ 𝑎𝑘𝑏𝑙
−1𝑏𝑘𝑧̂𝑘

𝑑

𝑘

. (10) 

A similar expression is obtained at the lattice configuration level 

 𝑧̃𝑙 = 𝑎0𝑏𝑙
−1 + ∑ 𝑎𝑘𝑏𝑙

−1𝑏𝑘𝑧̂𝑘

𝑘

. (11) 

A computational workflow is needed to uncover these underlying patterns, if they exist. One 

could sample cluster populations using MMC. For large lattices, the cluster population 

distribution is narrow and the sampled configurations may lack the diversity needed to 

properly identify 𝑧̃ and 𝑧̂. Sampling of rare configurations in MMC is an issue. The approach 

used here involves small periodic lattices where all configurations are directly enumerated 

without MMC. This ensures that low probability configurations are included. A common 

problem in data analysis is that the conclusion reached is as good as the data. Such an issue 

does not arise here since the entire configurational space is sampled. The effect of lattice size 

can be also systematically probed. Once 𝑧̃ and 𝑧̂ are identified, the coefficients in Equation 

(9)-(11) are determined for large lattices using MMC simulations.  

3. Results and discussion 

3.1 Direct enumeration of lattice configurations 
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Figure 2. Left: Periodic c(2×2) overlayer (red circles) on a substrate (blue). Middle: 

Corresponding 𝒑 × 𝒒 lattice. Right: Number of distinct configurations on the lattice. Rows: 

(a) 𝒑 = 𝒒 = 𝟔, (b) 𝒑 = 𝟖, 𝒒 = 𝟔 and (c) 𝒑 = 𝒒 = 𝟖.  

 

The left panels in Figure 2 show a c(2×2) overlayer. Black lines denote the boundaries of the 

periodic box. The corresponding lattice in middle panels contains black and white cells. The 

black cells are the top sites on fcc(100). These sites are ignored. The white (hollow sites) cells 

are occupied for the c(2×2) overlayer. A periodic 𝑝 × 𝑞 lattice contains 𝑁𝑡 = 𝑝𝑞/2 adsorption 

sites. 𝑝 and 𝑞 are chosen to be even integers for a commensurate overlayer to exist. Since 

1nn pairs are absent, fewer configurations are possible, e.g., 473,862 out of 2𝑁𝑡 =4.3 billion 

configurations for 𝑁𝑡 = 32. A brute-force approach is pursued, wherein all configurations 

with 𝑁𝐴 ∈ [1,
𝑁𝑡

2
− 1] are generated. From Equation (4), configurations having the same 

cluster population are associated with the same 𝐸. These configurations are grouped as a 
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single configuration 𝑋. There are Ω𝑋 such configurations. The multiplicity Ω𝑋 can reach 1000 

for 8 × 8 lattice (Figure 3). The number of unique/distinct configurations (unique in terms of 

cluster populations) with the 8 × 8 lattice is 2057. The right panels in Figure 2 show the 

breakup for the different lattices. In the canonical ensemble, the probability of a configuration 

𝑋 is 

 
𝑝(𝑋; 𝑁𝐴, 𝑁𝑡, 𝑤, 𝑇) =

Ω𝑋 exp(−𝛽𝐸(𝑋))

∑ Ω𝑋′ exp(−𝛽𝐸(𝑋′))𝑋′
. 

(12) 

The sum in the denominator is performed over all configurations with fixed 𝑁𝐴.  

 

Figure 3. Multiplicity for distinct lattice configurations on a 8x8 lattice where 1nn pairs are 

disallowed. 

 

Figure 4 shows the configurational space in terms of the cluster population 𝑁𝑐 plotted against 

𝑁𝐴. Results for different interaction models are shown at 100 K. Recall that the same set of 

configurations is considered with all interaction models. The cluster population for each 

configuration is plotted in circles. The relative probability of a configuration 𝑝𝑟(𝑋) calculated 

with respect to the most likely configuration with same 𝑁𝐴 depends on the interaction and 
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temperature. This aspect is highlighted in Figure 4 in terms of the size of the circle symbol, 

which is related to ln 𝑝𝑟 (𝑋). Low probability configurations appear as a dot. A general feature 

is that 𝑁𝑐 increases with 𝑁𝐴 indicating a positive correlation between the two variables. In 

fact, 𝑁𝐴 appears to capture most of the variation in 𝑁𝑐. The Supplementary Material contains 

plots for all clusters and different lattice sizes at temperatures of 100-700 K. At 700 K, the 

configuration probabilities for models 1-4 approach the ones for model 0. Here we mainly 

discuss results for 100 K where a greater effect of particle interactions is visible. 

 

Figure 4. Cluster population obtained with the different interaction models on an 𝟖 × 𝟖 

lattice at 𝑻 = 𝟏𝟎𝟎 𝑲. See Table 1 for the interaction models. 

 

For model 0,  
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𝑝(𝑋; 𝑁𝐴, 𝑁𝑡, 𝛽𝑤 = 0) =

Ω𝑋

∑ Ω𝑋′𝑋′
. 

(13) 

A large vertical spread in the cluster population is observed especially for intermediate values 

of 𝑁𝐴 (see 2nn, 3nn, I and L clusters). At a single configuration level, 𝑁𝑐 cannot be uniquely 

determined from 𝑁𝐴 alone. The behavior changes in models 1-4. In the case of attractive 2nn 

interactions (model 1), configurations with large value of 𝑁2𝑛𝑛 are preferred. Since other 

cluster interactions are absent, it is natural to expect a spread in other cluster populations 

analogous to model 1. However, this is not seen and other clusters also have characteristic 

populations. Certain aspects can be explained. For example, the presence of 4nn pairs 

prevents a 2nn pair from forming. Models 2-4 involve repulsive interactions at the 2nn 

position, therefore, smaller values of 𝑁2𝑛𝑛 are preferred. The overall characteristics of the 

cluster populations in models 2-4 are similar. A spread in 𝑁3𝑛𝑛 and 𝑁4𝑛𝑛 is observed.  

3.2 Principal component analysis 

There are 11 𝑁-particle clusters (𝑁 = 1 − 4) feasible with a cutoff of 4nn, such that 1nn pair 

are not involved. These are shown in Figure 1b. Assuming linear relations involving these 11 

variables (equations (9)-(11)), then the principal component analysis (PCA) can be used to 

identify an orthonormal basis. PCA is a linear dimensionality reduction technique. The 

resulting directions, i.e., the principal components, provide a transformed coordinate system. 

Most of the variation in the data is captured with few principal components. The number of 

such directions provides the number of independent SRO parameters.  
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Figure 5. (a) Principal component analysis of cluster populations on a 𝒑 × 𝒒 lattice with 

model 0, i.e., particles disallowed at 1nn position. Results for random arrangement with 

particles allowed at 1nn position are also shown in panel (a) and the corresponding cluster 

populations in panels (b)-(e). Clusters in Figure 1 other than 1nn pair are analyzed. 

 

Figure 5a shows the percentage variance explained by the top few principal components. 

Results are shown for three different lattices. The number of distinct configurations in the 

6×6, 8×6 and 8×8 lattice is 40, 307 and 2057, respectively. The overall behavior for the three 

lattice sizes is similar. More than 98% of the total variance is captured using 5 principal 

components. The horizontal dashed line corresponds to 98%. The variation in the remaining 

six principle components is small. The species/point-cluster population 𝑁𝐴 is a natural choice 
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as an independent variable. Unfortunately, since the principal components are linear 

combinations of the 11 cluster populations, they do not reveal which SRO parameters are 

independent, or whether an arbitrary choice can be made.  

Before we proceed to determine the four independent SRO clusters, we discuss the origin of 

the reduced dimensionality. It is clear that disallowing particles in the 1nn position spatial 

introduces spatial correlations. To assess whether these spatial correlations are responsible 

for dimensionality reduction, consider the case when 1nn positions are allowed to be filled. 

Since there are no restrictions placed on the configurations, spatial correlations are 

completely absent. Figure 5(b)-(e) shows the cluster populations from such configurations. 

Note that the circle symbol size here is related to the absolute probability. 𝑁𝑐 has a wide 

distribution for intermediate value of 𝑁𝐴. Thus, the absolute probability of each configuration 

is small, and hence the small circle. The ensemble-averaged cluster population 〈𝑁𝑐〉, which is 

shown in plus symbols. Analytical expression for 〈𝑁𝑐〉 are available. For instance, 〈𝑁2𝑛𝑛〉 =

2𝑁𝐴(𝑁𝐴−1)

(𝑁𝑡−1)
, 〈𝑁𝐼〉 =

2𝑁𝐴(𝑁𝐴−1)(𝑁𝐴−2)

(𝑁𝑡−1)(𝑁𝑡−2)
 and 〈𝑁𝑄3〉 =

𝑁𝐴(𝑁𝐴−1)(𝑁𝐴−2)(𝑁𝐴−3)

(𝑁𝑡−1)(𝑁𝑡−2)(𝑁𝑡−3)
. PCA of the cluster 

population reveals that the variation in the data can be captured by three principal 

components (see blue filled circles in Figure 5a labelled as 1nn pairs allowed). Once again the 

interpretation is that as more cluster populations are specified, the lattice topology imposes 

constraints on other cluster populations. This a fundamental property of the 2D square lattice. 

3.3 Identifying the independent SRO parameters 

As already witnessed in Figure 4, the high probability configurations in interaction models 1-

4 can be different from model 0. The ordering behavior is dictated by interactions between 

the particles. Intuitively, one would expect the independent SRO parameters for model 2 to 

be different from model 0 and 1. Next, we discuss a procedure to analyze this aspect. 
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Consider configurations having a relative probability (calculated with respect to the most 

likely configuration with the same 𝑁𝐴) greater than 10−3. The collection of such high-

probability configurations is denoted as 𝑉. First, we need to define 𝑧̂ for the given interactions 

and temperature. For this purpose, different combinations of SRO parameters are chosen as 

a putative 𝑧̂. This is done by exploring tuples of 𝑚 different SRO parameters. To achieve 

dimensionality reduction, 𝑚 should be less than 10. Ideally, small values of 𝑚 are preferred 

for reasons of compactness. When 𝑚 = 1, the tuples of interest are {𝑧2𝑛𝑛}, {𝑧3𝑛𝑛}, …, {𝑧𝑄3
}. 

For 𝑚 = 2, the tuples {𝑧2𝑛𝑛, 𝑧3𝑛𝑛}, {𝑧2𝑛𝑛, 𝑧4𝑛𝑛}, … are explored, and so on.  

Table 2. Number of SRO parameters combinations explored in order to identify 𝒛̂. The 

species population is also specified by default and is not regarded as an SRO parameter. 

Number of SRO parameters Combinations 
1 10 
2 45 
3 120 
4 210 
5 252 
6 210 
7 120 
8 45 
9 10 

 

Out of the 1022 combinations possible (see Table 2), the quality of 𝑧̂ as an independent 

parameter is assessed in terms of two quantities, the mean squared error (MSE) and the 

entropy, as discussed next. These quantities measure the variability in the remaining SRO 

parameters. A low value of MSE and entropy (preferably close to zero) is desirable. Recall that 

Figure 3 exhibits a large multiplicity (>1000) for intermediate values 𝑁𝐴. A particular 

combination of 𝑁𝐴 and 𝑧̂ will be associated with smaller multiplicity.  
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For a configuration 𝑋 ∈ 𝑉, both 𝑧̂ and 𝑧̃ are known to us. The particle and the respective 

cluster populations are 𝑁𝐴(𝑋), 𝑁̂(𝑋) and 𝑁̃(𝑋). Suppose a configuration 𝑋𝑟 is to be 

reconstructed with the constraint 𝑁𝐴(𝑋𝑟)= 𝑁𝐴(𝑋) and 𝑁̂(𝑋𝑟) = 𝑁̂(𝑋). The superscript 𝑟 

denotes the reconstructed configuration/quantity. 𝑋𝑟 is picked from the configurations 

available for model 0 with a probability that is analogous to Equation (13) while incorporating 

the constraint 𝑁̂(𝑋𝑟) = 𝑁̂(𝑋). We use the notation 𝑝(𝑋𝑟; 𝑁𝐴, 𝑁̂) to denote this probability. 

The corresponding cluster population is 𝑁̃𝑟(𝑋𝑟; 𝑁𝐴, 𝑁̂). Next, anticipating a large variability 

in 𝑁̃𝑟, consider the working collection of reconstructed configurations 𝑊(𝑁𝐴, 𝑁̂) with the 

specified constraint, such that 𝑋𝑟 ∈ 𝑊. The average cluster population in 𝑊 is 

 〈𝑁̃𝑟(𝑁𝐴, 𝑁̂)〉𝑊 = ∑ 𝑝(𝑋𝑟; 𝑁𝐴, 𝑁̂)𝑁̃𝑟(𝑋𝑟; 𝑁𝐴, 𝑁̂)

𝑋𝑟∈𝑊(𝑁𝐴,𝑁̂)

. (14) 

The squared error for the average cluster population with respect to 𝑋 ∈ 𝑉 using the putative 

𝑧̂ is 

 𝑆𝐸(𝑋, 𝑧̂) = ‖〈𝑁̃𝑟(𝑁𝐴, 𝑁̂)〉𝑊 − 𝑁̃(𝑋)‖
2

. (15) 

The mean-squared error for 𝑉 is defined as 

 
𝑀𝑆𝐸(𝑉, 𝑧̂) =

1

dim (𝑉)
∑ 𝑆𝐸(𝑋, 𝑧̂)

𝑋∈𝑉

 
(16) 

where dim (𝑉) is the size of 𝑉, i.e., the number of high-probability configurations. In equation 

(16), notice that the number of particles 𝑁𝐴 in 𝑉 is allowed to be variable.  

The information entropy for the configuration 𝑋 using the putative 𝑧̂ is defined as 

 𝑆(𝑋, 𝑧̂) = − ∑ 𝑝(𝑋𝑟; 𝑁𝐴, 𝑁̂) ln 𝑝(𝑋𝑟; 𝑁𝐴, 𝑁̂)

𝑋𝑟∈𝑊(𝑁𝐴,𝑁̂)

. (17) 

This equation measures the spread in 𝑝(𝑋𝑟; 𝑁𝐴, 𝑁̂). Finally, the total information entropy is 
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 𝑆(𝑉, 𝑧̂) = ∑ 𝑆(𝑋, 𝑧̂)

𝑋∈𝑉

. (18) 

Notice that all configurations 𝑋 ∈ 𝑉 contribute with the same weight to the MSE and 

information entropy. From Figure 4, configurations with extreme values of 𝑁𝐴 tend to have 

low variability in the cluster populations. Therefore, 𝑆𝐸(𝑋, 𝑧̂) and 𝑆(𝑋, 𝑧̂) should be low for 

these contributions. On the other hand, intermediate values of 𝑁𝐴 typically result in greater 

variability and are expected to contribute more. Next, we analyze the behavior of 𝑀𝑆𝐸(𝑉, 𝑧̂) 

and 𝑆(𝑉, 𝑧̂).  

 

Figure 6. Mean squared error as more SRO parameters are treated as being independent. 

Results are shown for model 3 (Cl/Cu(100)) on 𝟖 × 𝟖 lattice at a temperature of 100 K. 

 

The general trends for the MSE and entropy are qualitatively similar for all interaction models, 

lattices and temperatures considered here. The complete analysis can be found in the 

Supplementary Material. Here we focus mainly on the results for model 3 with a 8×8 lattice. 

Recall that in model 3 all clusters contribute to the energy of the configuration (see Table 1). 
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Figure 6 shows the MSE when 𝑚 SRO parameters are specified. The horizontal axis does not 

exactly specify which SRO parameters are involved in 𝑧̂. However, the minimum and 

maximum values of MSE are shown by the cross symbol. For small 𝑚, there is a large gap 

between the maximum and minimum highlighting an important observation that certain SRO 

parameters are better descriptors for the local arrangement. This aspect was not evident from 

the principal component analysis. The average MSE for a given 𝑚 is shown in the open circle 

and the corresponding standard deviation is shown as bar. The MSE decreases with 𝑚. In 

Figure 6, for 𝑚 = 4 the MSE is least (0.34) when 𝑧̂ ≡ {𝑧2𝑛𝑛, 𝑧3𝑛𝑛, 𝑧4𝑛𝑛, 𝑧Δ}. The MSE can be 

further lowered by specifying more SRO parameters. For instance, {𝑧2𝑛𝑛, 𝑧3𝑛𝑛, 𝑧4𝑛𝑛, 𝑧𝑉, 𝑧Δ} 

has an MSE of 0.22 (see Supplementary Material). 
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Figure 7. Entropy and mean squared error for 1022 different combinations of SRO 

parameters. Conditions are identical to Figure 6. Inset in panel (b) shows a zoomed version 

of the dashed rectangle. 

Figure 7a, which shows the MSE and entropy for the SRO combinations/tuples, provides some 

more insights. 𝑚 increases to the right along the horizontal axis. For this reason, the gray 

shaded bands are shown. The thickness of the band is related to Table 2. Suppose only one 

SRO parameter is specified, then the resulting entropy (open circles) and the MSE (cross) is 

high. The spread in 𝑝(𝑋𝑟; 𝑁𝐴, 𝑁̂) measured in terms of the entropy is significant. The MSE can 

be as large as 20 suggesting that it is a more sensitive quantity for assessing the optimal SRO 

combination. As seen in Figure 6, specifying additional SRO parameters lowers both the 

entropy and MSE. Figure 7b shows the MSE plotted against the information entropy. Since a 

large spread in 𝑝(𝑋𝑟; 𝑁𝐴, 𝑁̂) would also result in a large MSE, the MSE is directly related to 

the information entropy at least in the limit where 𝑆 → 0 (see inset in Figure 7b). 
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Figure 8. Linear models derived for populations of dependent clusters in terms of the 

populations of independent ones. 

 

Note that the analysis of Figures 6 and 7 only assesses the quality of the assumed 𝑧̂. It does 

not assume any linear relationship. However, if a linear model of the form given by Equations 

(9)-(11) were to be written, the coefficients 𝑎𝑘 can be determined via linear regression using 

the cluster population data in the high-probability configurations. Figure 8a shows one result 

from such an exercise. The parity plot gives the predicted-versus-actual population for cluster 

L at 100 K. At 700 K, the combination 𝑧̂ ≡ {𝑧3𝑛𝑛, 𝑧4𝑛𝑛, 𝑧𝐼 , 𝑧𝐿} gives the least MSE. Typically, at 

any given temperature other SRO combinations may also result in low MSE and entropy, and 

these can be selected as descriptors. Accordingly, a dynamic/thermodynamic model can be 

formulated (see Section 4). SRO combinations with high MSE and entropy should be avoided.  
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Extending the analysis to model 0, such that all configurations are included in 𝑉, MSE and 

information entropy are determined for different SRO parameter combinations. The results 

are provided in Section B of the Supplementary Material. Similar to behavior for model 3 at 

700 K, the SRO parameters {𝑧3𝑛𝑛, 𝑧4𝑛𝑛, 𝑧𝐼 , 𝑧𝐿} has the lowest MSE. At high temperatures, the 

local arrangements in other models 1, 2 and 4 are also best described by the same SRO 

parameters. 

The data analysis supports the hypothesis given in the introduction section that spatial 

correlations introduce relationship between different SRO parameters (at least in context of 

models 0-4). The approach discussed so far may not be as feasible for much larger lattice sizes 

due to the sheer number of configurations possible. Nonetheless, our understanding can be 

extended to this situation. Consider a small region of the lattice for which the local 𝑧̂ has been 

specified. This provides adequate enough information about the local ordering behavior. 

Because the same definition of 𝑧̂ can be used for all local compositions, it becomes possible 

to write equations (9)-(11). 

The coefficients in equations (9)-(11) can be obtained for large lattices by using an importance 

sampling approach. Here we perform grand-canonical Monte Carlo simulations at different Cl 

gas phase chemical potentials and a temperature of 77 K. The simulations are analogous to 

the ones reported in Ref. [20] except that for periodic lattice has a size 200 × 100. One 

equilibrium configuration is taken from each chemical potential and the cluster populations 

are noted. Using the low temperature descriptor from the 8×8 lattice, i.e., the SRO parameter 

combination {𝑧2𝑛𝑛, 𝑧3𝑛𝑛, 𝑧4𝑛𝑛, 𝑧Δ}, a linear model is fitted and the coefficients 𝑎𝑘 in equations 

(9)-(11) are obtained: 

 𝑁𝐼 = 0.775𝑁2𝑛𝑛 + 0.063𝑁3𝑛𝑛 − 0.882𝑁4𝑛𝑛 + 1.33 𝑁Δ;  𝑅2 =   1, (19) 
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𝑁𝐿 = 1.62𝑁2𝑛𝑛 + 0.13𝑁3𝑛𝑛 − 1.88𝑁4𝑛𝑛 + 2.93𝑁Δ;  𝑅2 =   1, 

𝑁𝑉 = 0.394𝑁2𝑛𝑛 − 0.154𝑁3𝑛𝑛 + 1.58𝑁4𝑛𝑛 − 3.34𝑁Δ;  𝑅2 =   1, 

𝑁𝑄1 = 0.277𝑁2𝑛𝑛 + 0.052𝑁3𝑛𝑛 − 0.68𝑁4𝑛𝑛 + 1.26𝑁Δ;  𝑅2 =   0.99. 

Equation (19) provides a list of topological constraints for the 2D square lattice. Figure 8b 

shows a parity plot confirming the quality of the model. The Pearson correlation coefficient 

𝑅2 ≈ 1 for all models constructed. A lower-quality model is obtained when the SRO 

combination {𝑧2𝑛𝑛, 𝑧3𝑛𝑛, 𝑧4𝑛𝑛} is used as the low temperature as one of the models generated 

has 𝑅2 = 0.93. Similarly, suppose the high temperature descriptor from the 8×8 lattice, i.e., 

{𝑧3𝑛𝑛, 𝑧4𝑛𝑛, 𝑧𝐼 , 𝑧𝐿}, is used, the performance is suboptimal.  

4. Implications 

The species balance equation is a fundamental conservation equation used to understand 

physical systems. A modeling framework is required that can incorporate particle 

interactions, topological constraints and ordering behavior as building blocks to understand 

the macroscopic emergent behavior. Recall that the relative probability of 10−3 used earlier. 

This ensures that rare configurations have been included in the analysis and away from 

equilibrium situations can be handled. The species balance equation is written as 

 𝑑𝑁𝐴

𝑑𝑡
= 𝑓(𝑁𝐴, 𝑁̂, 𝑁̃). 

(20) 

The idea behind Equation (20) is that the rates of elementary processes can be expressed in 

terms of the local chemical environment and the interactions. The cluster populations are 

bound to change in time. Therefore, Equation (20) is augmented with an evolution equation 

for cluster population 
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 𝑑𝑁̂

𝑑𝑡
= 𝑔(𝑁𝐴, 𝑁̂, 𝑁̃). 

(21) 

Additionally, the lattice topological constraints are included, i.e., 𝑁̃ and 𝑁̂ are related through 

equations (8)-(11). These equations embed the atomistic structural details into the continuum 

model (Equations (20) and (21)). Note that cluster populations are non-conserved. The right-

hand side contains growth rate for the species and cluster populations, which typically contain 

rate parameters for elementary physical/chemical processes, such as adsorption, desorption, 

diffusion, reaction, etc.  

Equation (21) describes the SRO evolution (see equation (1) for relation between 𝑁̂ and 𝑧̂). 

Such a non-equilibrium modeling framework has been recently proposed in Ref. [21]. The 

main limitation of the earlier work was that 𝑧̂ was chosen using intuition. Now a systematic 

procedure is available. Although Equations (20) and (21) are continuum models, a 2D or 3D 

atomistic configuration can be reconstructed using the reverse Monte Carlo method [22,23].  

A thermodynamic model can be arrived at simply by setting the time-derivative in Equations 

(20) and (21) to zero. The equilibrium populations 𝑁𝐴
𝑒𝑞 and 𝑁̂𝑒𝑞 are determined using a 

numerical technique solves for the roots of the right-hand side of Equations (20) and (21). The 

equilibrium phase behavior and properties are obtained from 𝑁𝐴
𝑒𝑞 and 𝑁̂𝑒𝑞 [24]. Such an 

approach has been discussed in Ref. [20].  

The present study also enables the development of a hierarchy of lattice models by deciding 

which SRO parameters to include. From our earlier discussion, a high-accuracy model should 

contain at least four SRO parameters, e.g., 𝑁̂ = {𝑁2𝑛𝑛, 𝑁3𝑛𝑛, 𝑁4𝑛𝑛, 𝑁Δ} at low temperatures. 

Models of higher accuracy can be created by including those SRO parameters that add most 

information. Figure 7 provides the guidelines for the selection of optimal SRO parameters. A 
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model treating all SRO parameters as independent is unnecessary and certain combinations 

of cluster populations may not be even physically realizable.  

5. Conclusions 

Short-range order (SRO) parameters are used extensively in literature to quantify spatial 

correlations in condensed matter. SRO parameters have traditionally served as building blocks 

to piece together the many-particle distribution and to help understand the emergent 

macroscopic behavior. This paper discusses the nature of SRO parameters in lattice-based 

interacting particle systems. It is well known that the ordering behavior, e.g., the radial 

distribution function, arises from particle interactions. However, the fact that topological 

constraints imposed by the lattice may have an effect on the SRO parameters is somewhat 

underappreciated.  

A fundamental property of lattice systems is that only certain SRO parameters (these could 

be combinations of pairs, triplets and so on) are truly independent and the remaining (other 

pairs, triplets, etc.) are intricately linked to the independent ones. For the 2D square lattice, 

four SRO parameters act as descriptors for the local particle arrangements. Other SRO 

parameters can be determined from these four. This property is observed at a single lattice 

configuration level itself and it arises because of topological constraints in the underlying 

lattice. Remarkably, the property holds even when spatial correlations are absent.  

A procedure to systematically identify the independent SRO parameters and determine the 

topological constraints is introduced. A descriptor having relatively few SRO parameters and 

low information entropy/mean squared error is optimal. The same descriptor can successfully 

explain the complexity in a variety of lattice configurations, interactions and temperature. 

However, if the combination of SRO parameters with the lowest entropy/mean squared error 
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is sought, then it is possible that the combination may change with temperature and particle 

interactions. For the different interaction models investigated here, a linear relationship 

between the SRO parameters is discovered. 

An important question arises about how these topological constraints can be incorporated 

into physical models. To answer this question, a reduced-dimensionality (dynamical and 

thermodynamic) modeling framework has been proposed that is written in terms of the 

independent SRO parameters. The work provides the essential building blocks needed to 

study complex systems where the local atomic arrangements lead to emergent macroscopic 

behavior. 
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