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JOINT DISTRIBUTION OF L-VALUES AND ORDERS OF SHA GROUPS OF

QUADRATIC TWISTS OF ELLIPTIC CURVES

PENG-JIE WONG

To my parents and in loving memory of my grandparents

Abstract. We study the joint distribution of central L-values and orders of Tate-Shafarevich

groups of quadratic twists of elliptic curves. In particular, adapting Radziwiłł and Soundararajan’s

principles of establishing upper and lower bounds for the distribution of central values in families

of L-functions, we obtain conditional upper and lower bounds for such a joint distribution for rank

zero twists. These lead us to a conjecture on the full asymptotic for the joint distribution.

1. Introduction

As the central L-values of quadratic twists of elliptic curves encode deep arithmetic information

(most profoundly, via the Birch and Swinnerton-Dyer conjecture), the study of these L-values has

attracted many researchers (see, e.g., [7, 12, 14, 15, 20] and references therein). Notably, as an

analogue of Selberg’s central limit theorem on the normality of the distribution of log |ζ(12 + it)|, a

conjecture of Keating and Snaith predicts that the distribution of the logarithm of central L-values

of certain quadratic twists of elliptic curves is normal (see [11]). Magnificent progress towards this

conjecture has been made by Radziwiłł and Soundararajan [14, 15]. In order to discuss these more

precisely, we shall recall some facts for L-functions of elliptic curves as follows.

For an elliptic curve E defined over Q of conductor N = NE, the associated (normalised) Hasse-

Weil L-function is defined by

L(s,E) =

∞
∑

n=1

λE(n)

ns
,

for Re(s) > 1, which extends to an entire function (by the modularity theorem of Wiles, Wiles-

Taylor, and Breuil-Conrad-Diamond-Taylor). Here, the coefficients are normalised so that |λE(n)| ≤
d2(n) for all n, and the centre of the critical strip is 1

2 . Moreover, setting

Λ(s,E) =

(

√
N

2π

)s

Γ(s+ 1
2)L(s,E),

one has the functional equation

Λ(s,E) = ǫEΛ(1− s,E),

where ǫE = ±1 denotes the root number of E.
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Throughout our discussion, we will let d denote a fundamental discriminant coprime to 2N , and

χd = (d· ) be the associated primitive quadratic (Dirichelt) character. In addition, we let Ed stand

for the quadratic twist of E by d, and recall the associated twisted L-function is

L(s,Ed) =

∞
∑

n=1

λE(n)χd(n)

ns
.

As (d,N) = 1, the conductor of Ed is Nd2, and the completed L-function

Λ(s,Ed) =

(

√
N |d|
2π

)s

Γ(s+ 1
2 )L(s,Ed)

extends to an entire function and satisfies

Λ(s,Ed) = ǫE(d)Λ(1 − s,Ed)

with ǫE(d) = ǫEχd(−N). Famously, Waldspurger’s theorem implies that the central values L(12 , Ed)

are always non-negative. Recalling that L(12 , Ed) = 0 if ǫE(d) = −1, one would therefore often

restrict their attention to the following subset of fundamental discriminants:

E = {d : d is a fundamental discriminant with (d, 2N) = 1 and ǫE(d) = 1}.

A conjecture of Keating-Snaith for L(12 , Ed) predicts that as d ranges, logL(12 , Ed) behaves like a

normal random variable with mean −1
2 log log |d| and variance log log |d|. (Here, as later, logL(12 , Ed)

is interpreted as −∞ if L(12 , Ed) = 0.) More precisely, for any fixed interval (α, β), as X → ∞,

#

{

d ∈ E,X < |d| ≤ 2X :
logL(12 , Ed) +

1
2 log log |d|

√

log log |d|
∈ (α, β)

}

= (Ψ(α, β) + o(1))#{d ∈ E : X < |d| ≤ 2X},

where

Ψ(α, β) =

∫ β

α

1√
2π

e−t2/2dt,

and the kernel of the integral is the probability density function of a standard normal random

variable (i.e., with mean 0 and variance 1). In [14], Radziwiłł and Soundararajan showed that

unconditionally, for any fixed V ∈ R, as X → ∞,

#

{

d ∈ E, 20 < |d| ≤ X :
logL(12 , Ed) +

1
2 log log |d|

√

log log |d|
≥ V

}

≤ (Ψ(V,∞) + o(1))#{d ∈ E : |d| ≤ X}.

More recently, Radziwiłł and Soundararajan [15] further proved the following conditional lower

bound towards the Keating-Snaith conjecture for L(12 , Ed).

Theorem 1.1 (Radziwiłł-Soundararajan). Assume the generalised Riemann hypothesis (GRH) for

all twisted L-functions L(s,E⊗χ) with Dirichlet characters χ. Then for any fixed (α, β), as X → ∞,

#

{

d ∈ E,X < |d| ≤ 2X :
logL(12 , Ed) +

1
2 log log |d|

√

log log |d|
∈ (α, β)

}

≥ 1

4
(Ψ(α, β) + o(1))#{d ∈ E : X < |d| ≤ 2X}.

(1.1)
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It is worth noting that the factor 1
4 appearing in (1.1) coincides with the proportion of non-

vanishing L(12 , Ed) established by Heath-Brown [7] under GRH. Furthermore, recently, Smith [17]

established several remarkable unconditional results towards Goldfeld’s conjecture. Notably, in [17,

Corollary 1.3], Smith proved that for E, with full rational 2-torsion, such that E has no rational cyclic

subgroup of order four, if the Birch and Swinnerton-Dyer conjecture holds for all the quadratic twists

of E, then Goldfeld’s conjecture holds for E, (i.e., 50% of the quadratic twists of E have analytic

rank 0, 50% of the twists have analytic rank 1, and 0% have higher analytic rank); consequently,

100% of the quadratic twists of E by d ∈ E have non-vanishing central values L(12 , Ed).

As remarked in [15], compared to Smith’s algebraic approach, the analytic principle of Radziwiłł-

Soundararajan is capable of establishing that certain proportion of central values are of the typical

size predicted by Keating-Snaith’s conjecture under GRH. Unfortunately, it seems hard to combine

these two approaches to prove Keating-Snaith’s conjecture or remove the assumption of GRH.

Nonetheless, the recent work of Bui, Evans, Lester, and Pratt [2] proved analogues of Keating-

Snaith’s conjecture (for mollified central values) with a full asymptotic. As noted in [15], the

vanishing central values are assigned a weight equal to zero in [2], which results in a side effect of

little control over the weight.

In a slightly different vein, based on the above-mentioned Keating-Snaith conjecture, Radziwiłł

and Soundararajan [15, Conjecture 1] formulated the following conjecture regarding the distribution

of orders of Tate-Shafarevich groups X(Ed) of Ed.

Conjecture 1 (Radziwiłł-Soundararajan). Let E be given in Weierstrass form y2 = f(x) for a

monic cubic integral polynomial f , and let K denote the splitting field of f over Q. Define c(g) ∈ N

so that c(g) − 1 is the number of fixed points of g ∈ Gal(K/Q), and set

µ(E) = −1

2
− 1

|G|
∑

g∈G

log c(g) and σ(E) = 1 +
1

|G|
∑

g∈G

(log c(g))2.

Then, as d ranges over E, the distribution of log(|X(Ed)|/
√

|d|) is approximately Gaussian, with

mean µ(E) log log |d| and variance σ(E)2 log log |d|. Note that denoting nK the degree of K, one

has the following table of explicit values of µ(E) and σ(E)2.

nK 1 2 3 6

µ(E) −1
2 − 2 log 2 −1

2 − 3
2 log 2 −1

2 − 2
3 log 2 −1

2 − 5
6 log 2

σ(E)2 1 + 4(log 2)2 1 + 5
2(log 2)

2 1 + 4
3(log 2)

2 1 + 7
6(log 2)

2

When L(12 , Ed) 6= 0, there is a nature analytic correspondence of |X(Ed)| defined by

(1.2) S(Ed) = L(12 , Ed)
|Ed(Q)tors|2

Ω(Ed)Tam(Ed)
,

where |Ed(Q)tors| denotes the order of the rational torsion group of Ed, Ω(Ed) is the real period

of a minimal model for Ed, and Tam(Ed) =
∏

p Tp(d) is the product of the Tamagawa numbers.

(Note that when L(12 , Ed) = 0, one may set S(Ed) = 0 so that (1.2) is still valid.) As a support of
3



their conjecture, Radziwiłł and Soundararajan [14, Theorem 3] established an upper bound for the

distribution of log(S(Ed)/
√

|d|) as follows. For any fixed V ∈ R, as X → ∞,

#

{

d ∈ E, 20 < |d| ≤ X :
log(S(Ed)/

√

|d|)− µ(E) log log |d|
√

σ(E)2 log log |d|
> V

}

is bounded above by

(Ψ(V,∞) + o(1))#{d ∈ E : |d| ≤ X}.
Moreover, if the Birch and Swinnerton-Dyer conjecture holds for elliptic curves with analytic rank

zero, then the quantity above is also an upper bound for

#

{

d ∈ E, 20 < |d| ≤ X : L(12 , Ed) 6= 0,
log(|X(Ed)|/

√

|d|)− µ(E) log log |d|
√

σ(E)2 log log |d|
> V

}

.

In light of the work of Radziwiłł and Soundararajan [14, 15] mentioned earlier, we shall prove

the following theorem that provides a conditional lower bound for the joint distribution of central

values and orders of Tate-Shafarevich groups of quadratic twists of E.

Theorem 1.2. Assume GRH for the family of twisted L-functions L(s,E ⊗ χ) with all Dirichlet

characters χ. For any fixed α = (α1, α2) and β = (β1, β2), as X → ∞,

#

{

d ∈ E,X < |d| ≤ 2X :
logL(12 , Ed) +

1
2 log log |d|

√

log log |d|
∈ (α1, β1),

log(S(Ed)/
√

|d|)− µ(E) log log |d|
√

σ(E)2 log log |d|
∈ (α2, β2)

}

is greater or equal to
1

4
(ΞE(α, β) + o(1))#{d ∈ E : X < |d| ≤ 2X},

where

(1.3) ΞE(α, β) =

∫

(α1,β1)×(α2,β2)

1

2π
√

det(KE)
e−

1
2
v
T
K
−1
E vdv with KE =

(

1 σ(E)−1

σ(E)−1 1

)

.

Here, as later, σ(E) is chosen to be
√

σ(E)2, which is always greater than one (see Conjecture 1).

Furthermore, suppose the Birch and Swinnerton-Dyer conjecture holds for elliptic curves with

analytic rank zero. Then the above assertion is true with S(Ed) being replaced by |X(Ed)|.

Remarks. (i) It is worth noting that the kernel of the integral in (1.3) is the probability density

function of a bivariate normal distribution (Q1,Q2) such that each Qi is standard normal, and

the correlation between Q1 and Q2 equals σ(E)−1. In particular, when (α2, β2) = R, ΞE(α, β) =

Ψ(α1, β2). Therefore, our result recovers Theorem 1.1 for such an instance.

(ii) Our proof of Theorem 1.2 is a combination of the works of Radziwiłł and Soundararajan [14, 15].

A crucial step is to calculate a “weighted” moments of real combinations of P(d;x) and P(d;x) −
C(d;x) (see Proposition 2.2). This led us to refine [15, Proposition 3] as in Proposition 2.1, which

particularly gives us the flexibility to introduce a sieve parameter v for d (cf. [14, Proposition 1]).
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(iii) A key new input of this article is to invoke the Cramér-Wold device (see Proposition 2.5),

which allows us to derive the desired bivariate normal distribution by studying weighted moments

of real combinations of P(d;x) and P(d;x)−C(d;x). This idea has its root in the joint work [9] with

Hsu, where the Cramér-Wold device was used inexplicitly to establish a “log-independence” between

Dirichlet L-functions (over the critical line). We shall present a detailed argument in Lemma 3.2.

(iv) Last but not least, we note that in [2, Theorem 1.4], a log-independence result for weighted

central L-values of Dirichlet twists of two distinct newforms was established under GRH. As dis-

cussed in [2, Sec. 1.4], the authors directly computed an asymptotic formula for the involving joint

distribution, which requires a more complicated calculation in contrast to our argument.

A direct consequence of this theorem is the following corollary that yields conditional support

towards Conjecture 1.

Corollary 1.3. Assume GRH for the family of twisted L-functions L(s,E ⊗ χ) with all Dirichlet

characters χ. For any fixed interval (α, β), as X → ∞,

#

{

d ∈ E,X < |d| ≤ 2X :
log(S(Ed)/

√

|d|)− µ(E) log log |d|
√

σ(E)2 log log |d|
∈ (α, β)

}

is greater or equal to
1

4
(Ψ(α, β) + o(1))#{d ∈ E : X < |d| ≤ 2X}.

Furthermore, if the Birch and Swinnerton-Dyer conjecture holds for elliptic curves with analytic

rank zero, then the quantity above is also a lower bound for

#

{

d ∈ E,X < |d| ≤ 2X : L(12 , Ed) 6= 0,
log(|X(Ed)|/

√

|d|)− µ(E) log log |d|
√

σ(E)2 log log |d|
∈ (α, β)

}

.

We note that Corollary 1.3 has an interesting application to “large values” of |X(Ed)| as follows.

In [13, Theorem 2], assuming the Birch and Swinnerton-Dyer conjecture holds for elliptic curves

with analytic rank zero, Mai and Murty showed that there are infinitely many (square-free) d such

that L(12 , Ed) 6= 0 and

|X(Ed)| ≫ε d
1
2
−ε

(cf. the last two displayed estimates in the proof of [13, Theorem 1]). Under the further assumption

of GRH, applying Theorem 1.2 with (α, β) = (0,∞), for example, one can strengthen the work of

Mai and Murty to have at least 1
8 of d ∈ E such that L(12 , Ed) 6= 0 and

|X(Ed)| ≥ |d| 12 (log |d|)µ(E).

To end the introduction, in light of Theorem 1.2, we impose the following conjecture that presents

a common generalisation of Keating-Snaith’s conjecture and Radziwiłł-Soundararajan’s conjecture

mentioned earlier.

Conjecture 2. In the notation of Conjecture 1, let ΞE(α, β) and KE be as in Theorem 1.3. Then

as d ranges over E, the joint distribution of logL(12 , Ed) and log(|X(Ed)|/
√

|d|) is approximately
5



bivariate with mean 02 and covariance matrix KE. More precisely, as X → ∞,

#

{

d ∈ E, 20 < |d| ≤ X :
logL(12 , Ed) +

1
2 log log |d|

√

log log |d|
∈ (α1, β1),

log(X(Ed)/
√

|d|)− µ(E) log log |d|
√

σ(E)2 log log |d|
∈ (α2, β2)

}

is asymptotic to (ΞE(α, β) + o(1))#{d ∈ E : 20 < |d| ≤ X}.

In addition, by slightly modifying an argument of Radziwiłł-Soundararajan in [14], we have the

following result supporting this conjecture “from above”.

Theorem 1.4. In the notation as above, for any V1, V2 ∈ R, as X → ∞,

#

{

d ∈ E, 20 < |d| ≤ X :
logL(12 , Ed) +

1
2 log log |d|

√

log log |d|
> V1,

log(S(Ed)/
√

|d|)− µ(E) log log |d|
√

σ(E)2 log log |d|
> V2

}

is bounded above by

(ΞE((V1, V2), (∞,∞)) + o(1))#{d ∈ E : 20 < |d| ≤ X}.

Furthermore, if the Birch and Swinnerton-Dyer conjecture holds for elliptic curves with analytic

rank zero, then the above assertion is valid with S(Ed) being replaced by |X(Ed)|.

This article is arranged as follows. We will devote Section 2 to collect the necessary notation

and key propositions required for proving Theorem 1.2. The proof of Theorem 1.2 will be given

in Section 3. Two key propositions, Propositions 2.1 and 2.2, will be proved in Sections 4 and 5,

respectively. Derivation of Theorem 1.4 will be discussed in Section 6. In Section 7, we will provide

a sufficient condition on certain zero sums that implies Conjecture 2.

2. Notation and the key propositions

Following [14], we let N0 denote the lcm of 8 and N . Set κ = ±1, and let a (modN0) denote

a residue class with a ≡ 1 or 5 (mod 8). In addition, we shall assume that κ and a are such

that for any fundamental discriminant d with sign κ, satisfying d ≡ a (modN0), the root number

ǫE(d) = ǫEχd(−N) is equal to 1. For these κ and a, we set

E(κ, a) = {d ∈ E : κd > 0, d ≡ a (modN0)}

so that E is the union of E(κ, a). In addition, we note that the imposed congruence condition on d

forces d ≡ 1 (mod 4), and thus d ∈ E(κ, a) must be square-free as d is a fundamental discriminant.

For Re(s) > 1, we write

−L′

L
(s,E) =

∞
∑

n=1

ΛE(n)

ns

6



with |ΛE(n)| ≤ 2Λ(n) (so ΛE(n) is supported only on prime powers). Also, for each fundamental

discriminant d ∈ E and a parameter x ≥ 3, we define

P(d;x) =
∑

p≤x
p∤N0

λE(p)√
p

χd(p).

Recall that E is given by the model y2 = f(z), where f is a monic cubic integral polynomial.

Denoting 1 plus the number of solutions of f(z) ≡ 0 (mod p) by c(p), one knows c(p) = 1, 2, or 4;

for p not dividing the discriminant disc(f) of f , one has

Tp(d) =







c(p) if p | d;
1 if p ∤ d.

In light of this, one may consider

C(d;x) =
∑

logX≤p≤x

Cp(d) =
∑

logX≤p≤x

(

log Tp(d) −
1

p+ 1
log c(p)

)

,

for x > logX > max{N0, |disc(f)|}, where

Cp(d) =







p
p+1 log c(p) if p | d;
− 1

p+1 log c(p) if p ∤ d.

We also recall the following Mertens type estimates, involving c(p), from [14, Lemma 4] (which is a

consequence of the Chebotarev density theorem):

(2.1)
∑

p≤y

log c(p)

p
=
(

−µ(E)− 1
2

)

log log y +O(1)

and

(2.2)
∑

p≤y

(log c(p))2

p
=
(

σ(E)2 − 1
)

log log y +O(1).

Let h be a smooth function with compactly supported Fourier transform ph(ξ) =
∫

R h(t)e−2πiξtdt,

and satisfy |h(t)| ≪ 1/(1 + t2) for all real t. In particular, one may take h(t) = ( sin(πt)πt )2, the

Fejér kernel, so that ph(ξ) = max(1 − |ξ|, 0). In addition, let Φ be a smooth non-negative function

compactly supported in [12 ,
5
2 ] such that Φ(t) = 1 on [1, 2]. We set qΦ(s) =

∫∞
0 Φ(t)tsdt. It was shown

in [14, Proposition 1] that for n, v ∈ N coprime to N0, with (n, v) = 1 and v being square-free, such

that v
√
n ≤ X

1
2
−ε, one has

(2.3)
∑

d∈E(κ,a)
v|d

χd(n)Φ

(

κd

X

)

= δ(n = �)
X

vN0

∏

p|nv

(

1 +
1

p

)−1
∏

p∤N0

(

1− 1

p2

)

qΦ(0) +O(X
1
2
+εn

1
2 ),

where δ(n = �) = 1 if n is a square, and δ(n = �) = 0 otherwise. In light of Radziwiłł and

Soundararajan’s principle and their work [14], we shall prove the following proposition that refines

[15, Proposition 2].
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Proposition 2.1. Let h be a smooth function such that h(t) ≪ (1+t2)−1, and its Fourier transform

is compactly supported in [−1, 1]. Let L ≥ 1 be real, and let ℓ and v be positive integers coprime

to N0 such that v is square-free and (ℓ, v) = 1. Assume further that e
L
4 ℓ

1
2 ≤ X

1
2
−3ε and v ≤ Xε.

Under GRH for all L(s,Ed ⊗ χ) with d ∈ E(κ, a) and Dirichlet characters χ modulo N0, we let
1
2 + iγd range over the non-trivial zeros of L(s,Ed), and set

Sκ,a,v =
∑

d∈E(κ,a)
v|d

∑

γd

h

(

γdL

2π

)

χd(ℓ)Φ

(

κd

X

)

.

If ℓ is not a square nor a prime times a square, then

Sκ,a,v ≪ X
1
2
+3εℓ

1
2 e

L
4 .

If ℓ is a square, then

Sκ,a,v =
X

vN0

∏

p|ℓv

(

1 +
1

p

)−1
∏

p∤N0

(

1− 1

p2

)

qΦ(0)

(

2 logX

L
ph(0) +

h(0)

2
+O(L−1)

)

+O(X
1
2
+3εℓ

1
2 e

L
4 ).

Lastly, if ℓ is a prime q times a square, then

Sκ,a,v ≪ X

vLN0

log q√
q

∏

p|ℓv

(

1 +
1

p

)−1

+X
1
2
+3εℓ

1
2 e

L
4 .

The proof of Theorem 1.2 relies on the “method of moments” asserting roughly that normal

random variables are uniquely determined by their moments (see, e.g. [4]). To proceed, we collect

some related facts and moment calculations as follows. Let N be a normal random variable with

mean 0 and variance σ2. The k-th moment Mk of N is

Mk = E[Nk] =







0 if n is odd;

k!
2k/2(k/2)!

σk if k is even,

where E[Nk] denotes the mean of Nk. In [15, Proposition 7], Radziwiłł and Soundararajan showed

that for any given k ∈ Z+ and large X,

(2.4)
∑

d∈E(κ,a)

(P(d;x) − C(d;x))kΦ

(

κd

X

)

=
∑

d∈E(κ,a)

Φ

(

κd

X

)

(

σ(E)2 log logX
)

k
2 (Mk + o(1)),

with x = z = X1/(log logX)2 . Moreover, by virtue of the proof of [14, Proposition 7], one can also

take x = X1/ log log logX , which will be our choice throughout our discussion, as well as proving the

following generalisation of (2.4):

∑

d∈E(κ,a)

(bP(d;x) + c(P(d;x) − C(d;x)))kΦ

(

κd

X

)

=
∑

d∈E(κ,a)

Φ

(

κd

X

)

(

(b2 + 2bc+ c2σ(E)2) log logX
)

k
2 (Mk + o(1)),

(2.5)
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for any fixed b, c ∈ R.1

Furthermore, we prove the following proposition regarding the “weighted” moments of real linear

combinations of P(d;x) and P(d;x)− C(d;x).

Proposition 2.2. Fix b, c ∈ R. Then for any L ≥ 1 such that eL ≤ X2−10ε, we have

∑

d∈E(κ,a)

(bP(d;x) + c(P(d;x) − C(d;x)))k
∑

γd

h

(

γdL

2π

)

Φ

(

κd

X

)

=
X

N0

∏

p∤N0

(

1− 1

p2

)

qΦ(0)

(

2 logX

L
ph(0) +

h(0)

2
+O(L−1)

)

×
(

(b2 + 2bc+ c2σ(E)2) log logX
)

k
2 (Mk + o(1)) +O(X

1
2
+εe

L
4 ),

(2.6)

where the implied constants depend on b, c.

In the remaining part of this section, we shall recall some probability theory for the convenience

of the reader. For random variables X and Y, the covariance Cov(X,Y) between X and Y is defined

as Cov(X,Y) = E[(X − E(X))(Y − E(Y))]. The correlation coefficient ρ(X,Y) between X and Y is

defined by

ρ(X,Y) = Cov(X,Y)/
√

Var(X)Var(Y),(2.7)

and the variance Var(X+ Y) of X+ Y is given by

Var(X+ Y) = Var(X) + Var(Y) + 2Cov(X,Y).(2.8)

Let X = (X1, . . . ,XN ) be a random vector in RN . For each j, we set σ2
j = Var(Xj). The random

vector X is called a bivariate normal distribution with mean 0N and covariance matrix K if its

probability density function fX(v) satisfies

fX(v) =
1

2π
√

det(K)
e−

1
2
v
T
K
−1

v,

where the vector v
T denotes the transpose of v, and K = (σij) is a real N ×N symmetric positive

definite matrix with σii = σ2
i and σij = ρ(Xi,Xj)σiσj. Also, the characteristic function φX(v) of

X, with mean 0N and covariance matrix K, is

φX(v) = exp
(

−1
2vKv

T
)

.(2.9)

We shall require the following results for bivariate normal distributions.

Proposition 2.3 ([8, Theorem 2.1]). Let K be a 2 × 2 non-singular symmetric positive definite

matrix. Then there exists a bivariate normal distribution X with mean 02 and covariance matrix K.

We also recall the following properties regarding normal random variables.

1Indeed, the presence of b and c would add the factor cj(b+ c)k−j to the sum in [14, Eq. (15)]. Nonetheless, it can be
easily checked that such an extra factor does not affect the proof but appears in the first displayed asymptotics in [14, p.

1051]. This leads to the change of the corresponding terms of log logX from ((σ(E)2−1) log logX)j/2(log logX)(k−j)/2

to (c2(σ(E)2− 1) log logX)j/2((b+ c)2 log logX)(k−j)/2 (note that both j and k− j are even here). From which (and
applying the binomial theorem), one obtains the claimed generalisation.
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Proposition 2.4 ([3, Theorem 5.5.32]). Let (X1,X2) be a pair of normal distributions. Then

(X1,X2) is a bivariate normal distribution if and only if any real linear combination of X1 and X2

is a normal distribution.

Also, we invoke the following important necessary and sufficient condition regarding the conver-

gence in distribution for random vectors, the Cramér-Wold device (see, e.g., [1, Theorem 29.4]).

Proposition 2.5 (Cramér-Wold device). Let XT = (X1,T ,X2,T ) and X = (X1,X2) be random vector

vectors in R2. Then XT converges to X in distribution, as T → ∞, if and only if
∑2

j=1 ajXj,T

converges to
∑2

j=1 ajXj in distribution, as T → ∞, for every (a1, a2) ∈ R2.

Last but not least, we shall state precisely the method of moments as follows.

Proposition 2.6 (Fréchet and Shohat). Suppose that the distribution of a random variable X is

determined by its moments and that each Xn has moments of all orders. If E(Xk) = E(Xk
n) +

o(E(Xk
n)), as n → ∞, for all k ∈ N, then Xn converges to X in distribution.

3. Proof of the main theorem

To prove our main theorem, we shall adapt the strategy of Radziwiłł and Soundararajan as in

[15], which requires the following proposition.

Proposition 3.1 ([15, Proposition 1]). Let d ∈ E, and let 3 ≤ x ≤ |d|. Assume GRH for L(s,Ed),

and let 1
2 + iγd run over the non-trivial zeros of L(s,Ed). If L(12 , Ed) is non-vanishing, then

logL(12 , Ed) = P(d;x) − 1
2 log log x+O

(

log |d|
log x

+
∑

γd

log

(

1 +
1

(γd log x)2

))

.

Recalling the definition of S(Ed) in (1.2), since Ω(Ed) ≍ 1/
√

|d|, and |Ed(Q)tors| is bounded, we

derive

(3.1) log S(Ed) = logL(12 , Ed) + log
√

|d| − log Tam(Ed) +O(1).

Moreover, as shown in [15, pp. 1047-1048], one has
∑

d∈E
X/ logX≤|d|≤X

| log Tam(Ed) + (µ(E) + 1
2) log logX − C(d;x)|

≪ X log log logX +X
∑

p<logX

log c(p)

p
+X

∑

x<p≤X

log c(p)

p

≪ X log log logX +X log log log logX,

where the last estimate follows from (2.1). Thus, the number of d ∈ E, with X/ logX ≤ |d| ≤ X,

such that

(3.2) | log Tam(Ed) + (µ(E) + 1
2) log logX − C(d;x)| ≥ (log log logX)2

is at most ≪ X/ log log logX. Therefore, the number of d ∈ E with 20 ≤ |d| ≤ X (and thus

X ≤ |d| ≤ 2X) satisfying (3.2) is ≪ X/ log log logX. Hence, except for at most ≪ X/ log log logX
10



d ∈ E with X ≤ |d| ≤ 2X, we have

log S(Ed) = logL(12 , Ed) + log
√

|d|+ (µ(E) + 1
2) log logX − C(d;x) +O((log log logX)2).

Moreover, by Proposition 3.1, for every d ∈ E with X ≤ |d| ≤ 2X, one has

logL(12 , Ed) = P(d;x) − 1
2 log logX +O

(

log log logX +
∑

γd

log

(

1 +
1

(γd log x)2

))

,

and thus

log(S(Ed)/
√

|d|)− µ(E) log log |d|

= P(d;x)− C(d;x) +O

(

(log log logX)2 +
∑

γd

log

(

1 +
1

(γd log x)2

))

(3.3)

for all but at most ≪ X/ log log logX d ∈ E with X ≤ |d| ≤ 2X.

Similar to [15, Lemma 1], we prove the following lemma regarding a lower bound for the joint

distribution of P(d;x) and P(d;x) − C(d;x).

Lemma 3.2. Let αi < βi be real numbers, and set α = (α1, α2) and β = (β1, β2). Let HX(α, β) be

the set of discriminants d ∈ E, with X ≤ |d| ≤ 2X, such that

Q1(d;X) =
P(d;x)√
log logX

∈ (α1, β1) and Q2(d;X) =
P(d;x) − C(d;x)
√

σ(E)2 log logX
∈ (α2, β2),

while L(s,Ed) has no zeros 1
2 + γd with |γd| ≤ ((logX)(log logX))−1. Then for any δ > 0, we have

HX(α, β) ≥
(

1

4
− δ

)

(ΞE(α, β) + o(1))#{d ∈ E : X ≤ |d| ≤ 2X},

where ΞE(α, β) is defined as in (1.3).

Proof. Let Φ be a smooth approximation to the indicator function of [1, 2], and let κ and a (modN0)

be as in Section 2. It follows from (2.5) and the method of moments (more precisely, Proposition

2.6) that for any a1, a2 ∈ R, a1Q1(d;X)+a2Q2(d;X) converges to a normal random variable Za1,a2 ,

with mean 0 and variance a21 + 2a1a2σ(E)−1 + a22, in distribution. (Here, as later, we choose

σ(E) =
√

σ(E)2 > 0.) Note that by (2.9), the characteristic function of Za1,a2 is

φZa1,a2
(u) = exp

(

−1
2

(

a21 + 2a1a2σ(E)−1 + a22
)

u2
)

.(3.4)

On the other hand, as 0 < σ(E)−1 < 1, Sylvester’s criterion (see, e.g., [5]) tells us that the matrix

(3.5) KE =

(

1 σ(E)−1

σ(E)−1 1

)

is always positive definite. Hence, by Proposition 2.3, there is a bivariate normal distribution

(Q1,Q2) such that each Qi is standard normal, and the correlation between Q1 and Q2 equals

σ(E)−1. Therefore, by Proposition 2.4, for any a1, a2 ∈ R, a1Q1 + a2Q2 is a normal distribution. In

addition, as Var(Qi) = 1 for each i, (2.7) implies that Cov(Q1,Q2) = σ(E)−1, and thus (2.8) gives

Var(a1Q1 + a2Q2) = a21 Var(Q1) + a22 Var(Q2) + 2a1a2 Cov(Q1,Q2) = a21 + 2a1a2σ(E)−1 + a22.
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From which, we derive that the characteristic function of a1Q1 + a2Q2 is the same as the right of

(3.4), i.e., the characteristic function of Za1,a2 . Recalling that the characteristic function uniquely

determines the distribution (see, e.g., [16, Theorem 9.5.1]), we then conclude that

Za1,a2 = a1Q1 + a2Q2

in distribution. Consequently, a1Q1(d;X) + a2Q2(d;X) converges to a1Q1 + a2Q2 in distribution

for any real ai. From this and Proposition (2.5), it follows that (Q1(d;X),Q2(d;X)) converges to

(Q1,Q2), in distribution, whose joint probability distribution is given by 1

2π
√

det(KE)
e−

1
2
v
T
K
−1
E v, with

KE defined in (3.5). In other words, we have shown that

(3.6)
∑

d∈E(κ,a)
Qi(d;X)∈(αi,βi)∀i

Φ

(

κd

X

)

= (ΞE(α, β) + o(1))
∑

d∈E(κ,a)

Φ

(

κd

X

)

.

Now, following [15], we choose h to be the Fejér kernel while taking L = (2 − η) logX. By

Proposition 2.2 and an analogous argument as above, we have

∑

d∈E(κ,a)
Qi(d;X)∈(αi ,βi)∀i

∑

γd

h

(

γdL

2π

)

Φ

(

κd

X

)

= (ΞE(α, β) + o(1))
∑

d∈E(κ,a)

∑

γd

h

(

γdL

2π

)

Φ

(

κd

X

)

= (ΞE(α, β) + o(1))

(

1

1− η
2

+
1

2
+ o(1)

)

∑

d∈E(κ,a)

Φ

(

κd

X

)

.

(3.7)

As noted in [15, Proof of Lemma 1], the “weight”
∑

γd
h(γdL2π ) is ≥ 0, and if L(s,Ed) has a zero

with |γd| ≤ ((logX)(log logX))−1 then such a weight has to be ≥ 2+ o(1) (since there would either

be a complex conjugate pair of such zeros, or a double zero at s = 1
2 as Λ′(s,Ed) = −Λ′(1 − s,Ed)

for d ∈ E). Denote Z the set of fundamental discriminants d ∈ E such that L(s,Ed) has no zeros

with |γd| ≤ ((logX)(log logX))−1. Using (3.6) and (3.7), we then deduce that
(

1

1− η
2

+
1

2
+ o(1)

)

∑

d∈E(κ,a)
Qi(d;X)∈(αi,βi)∀i

Φ

(

κd

X

)

=
∑

d∈E(κ,a)
Qi(d;X)∈(αi ,βi)∀i

∑

γd

h

(

γdL

2π

)

Φ

(

κd

X

)

is greater or equal to

0 + 2
∑

d∈E(κ,a)\Z
Qi(d;X)∈(αi,βi)∀i

Φ

(

κd

X

)

= 2
∑

d∈E(κ,a)
Qi(d;X)∈(αi,βi)∀i

Φ

(

κd

X

)

− 2
∑

d∈E(κ,a)∩Z
Qi(d;X)∈(αi,βi) ∀i

Φ

(

κd

X

)

as E(κ, a) is the disjoint union of E(κ, a) ∩ Z and E(κ, a)\Z. Therefore, we arrive at

∑

d∈E(κ,a)∩Z
Qi(d;X)∈(αi ,βi)∀i

Φ

(

κd

X

)

≥
(

1− 1

2− η
− 1

4
+ o(1)

)

∑

d∈E(κ,a)
Qi(d;X)∈(αi,βi)∀i

Φ

(

κd

X

)

,

which completes the proof upon summing over all possible pairs (κ, a). �
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Remarks. By (2.4) and (2.5), with (b, c) = (0, 1), as established in [15], each Qi(d;X) → Qi in

distribution as X → ∞. However, it should be noted that in general, these convergence do not

imply that the random vector (Q1(d;X),Q2(d;X)) converges to (Q1,Q2) in distribution. Moreover,

each Qi being standard normal does not imply that Qi(d;X) → Qi forms a Gaussian random vector.

These technical issues are the very reason why we invoked the existence theorem of bivariate normal

random variables as well as the Cramér-Wold device.

To continue, we recall the following result from [15, Lemma 2].

Lemma 3.3 (Radziwiłł-Soundararajan). The number of discriminants d ∈ E, with X ≤ |d| ≤ 2X,

such that
∑

|γd|≥((logX)(log logX))−1

log

(

1 +
1

(γd log x)2

)

≥ (log log logX)3

is ≪ X/ log log logX.

Now, we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. For d ∈ HX(α, β), Lemma 3.2 allows us to make the arrangement

P(d;x)√
log logX

∈ (α1, β1) and
P(d;x) − C(d;x)
√

σ(E)2 log logX
∈ (α2, β2),

while L(s,Ed) has no zeros with |γd| ≤ ((logX)(log logX))−1. Furthermore, applying Lemma 3.3,

we can discard ≪ X/ log log logX elements from HX(α, β) so that the contribution of zeros with

|γd| ≥ ((logX)(log logX))−1 to the last sum in (3.3) is < (log log logX)3. Consequently, there are

at least
(

1

4
− δ

)

(ΞE(α, β) + o(1))#{d ∈ E : X ≤ |d| ≤ 2X}

fundamental discriminants d ∈ E with X ≤ |d| ≤ 2X such that

logL(12 , Ed) +
1
2 log logX√

log logX
=

P(d;x)√
log logX

+O

(

(log log logX)3√
log logX

)

∈ (α1, β1).

and

log(S(Ed)/
√

|d|)− µ(E) log log |d|
√

σ(E)2 log logX
=

P(d;x) − C(d;x)
√

σ(E)2 log logX
+O

(

(log log logX)3√
log logX

)

∈ (α2, β2).

Combined with X ≤ |d| ≤ 2X, these complete the proof. �

4. Proof of Proposition 2.1

Recall that the explicit formula [15, Eq. (16)] states

∑

γd

h

(

γdL

2π

)

=
1

2π

∫ ∞

−∞
h

(

tL

2π

)(

log
Nd2

(2π)2
+ 2Re

Γ′

Γ
(1 + it)

)

dt

− 1

L

∞
∑

n=1

ΛE(n)√
n

χd(n)

(

ph

(

log n

L

)

+ ph

(

− log n

L

))

.
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This allows us to write

Sκ,a,v =
∑

d∈E(κ,a)
v|d

∑

γd

h

(

γdL

2π

)

χd(ℓ)Φ

(

κd

X

)

= S1 − S2,

where

S1 =
1

2π

∫ ∞

−∞
h

(

tL

2π

)

∑

d∈E(κ,a)
v|d

(

log
Nd2

(2π)2
+ 2Re

Γ′

Γ
(1 + it)

)

χd(ℓ)Φ

(

κd

X

)

dt

and

S2 =
1

L

∞
∑

n=1

ΛE(n)√
n

(

ph

(

log n

L

)

+ ph

(

− log n

L

))

∑

d∈E(κ,a)
v|d

χd(ℓn)Φ

(

κd

X

)

.

As remarked in [15], it is relatively easy to calculate S1 by using (2.3), which yields

S1 = δ(ℓ = �)
X

vN0

∏

p|ℓv

(

1 +
1

p

)−1
∏

p∤N0

(

1− 1

p2

)

qΦ(0)(2 logX +O(1))
ph(0)

L
+O(X

1
2
+εℓ

1
2 ).

Now, we turn our attention to S2. We start by noting that as v | d, χd(ℓn) = 0 if (n, v) > 1.

Hence, we may assume (n, v) = 1 throughout our argument (especially, for n appearing in S2).

Moreover, as argued in the paragraph leading to [15, Eq. (22)], since d is fixed in a residue class

(modN0), if n is a prime power dividing N0, then χd(n) is determined by the congruence condition

on d. Consequently, as v
√
ℓ ≤ X

1
2
−2ε by our assumption, it follows from (2.3) that adding the

condition (n,N0) = 1 to the involving sum in S2 contributes an error at most

≪ 1

L

∑

(n,N0)>1

Λ(n)√
n

∣

∣

∣

∣

∣

∑

d∈E(κ,a)
v|d

χd(ℓ)Φ

(

κd

X

)

∣

∣

∣

∣

∣

≪ δ(ℓ = �)
X

vL
+X

1
2
+εℓ

1
2 .

Recall that d ∈ E(κ, a) has to be square-free. So, for d coprime to N0 such that v | d, since v is

also square-free and coprime to N0, one has

∑

β|(v,d/v)

µ(β)
∑

(α,vN0)=1
α2|d/v

µ(α) =







1 if d is square-free and v | d;
0 otherwise.

From this, as in [14, Eq. (20)], writing d = kvβα2, one then obtains

∑

d∈E(κ,a)
v|d

χd(ℓn)Φ

(

κd

X

)

=
∑

β|v

∑

(α,ℓnvN0)=1

µ(β)µ(α)

(

vβα2

ℓn

)

∑

k≡avβα2(modN0)

(

k

ℓn

)

Φ

(

κkvβα2

X

)

.

For a positive parameter A ≤ X to be chosen later, bounding the sum over k trivially, one can see

that the contribution of the terms in the expression with α > A is

≪
∑

β|v

∑

α>A

X

vβα2
≪ Xvε

vA
.
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Therefore, under GRH, we know the terms with α > A in S2 the contributes an error at most

(4.1) ≪ 1

L

∞
∑

n=1

ΛE(n)√
n

(

ph

(

log n

L

)

+ ph

(

− log n

L

))

Xvε

vA
≪ XLvε

vA
≪ X logX

v1−εA
.

To handle remaining terms in S2, setting

H(ξ) = ph(ξ) + ph(−ξ),

we can write the terms with α ≤ A in S2 as

1

L

∞
∑

n=1

ΛE(n)√
n

H

(

log n

L

)

∑

β|v

∑

(α,ℓnvN0)=1
α≤A

µ(β)µ(α)

(

vβα2

ℓn

)

∑

k≡avβα2(modN0)

(

k

ℓn

)

Φ

(

κkvβα2

X

)

.

(4.2)

Applying the Poisson summation, as stated in [14, Lemma 7], one can express the inner sum over

k in (4.2) as

(4.3)
X

ℓnN0vβα2

(

κN0

ℓn

)

∑

m

qΦ

(

Xm

ℓnN0vβα2

)

e

(

mavβα2ℓn

N0

)

τm(ℓn),

where τm(ℓn) is a Gauss sum defined by

τm(ℓn) =
∑

b(mod ℓn)

(

b

ℓn

)

e

(

mb

ℓn

)

=

(

1 + i

2
+

(−1

ℓn

)

1− i

2

)

Gm(ℓn),

and

Gm(ℓn) =

(

1− i

2
+

(−1

ℓn

)

1 + i

2

)

∑

b(mod ℓn)

(

b

ℓn

)

e

(

mb

ℓn

)

.

We first consider the terms with m 6= 0, and note that we may assume n ≤ eL as ph is compactly

supported in [−1, 1] (and so is H). In addition, since qΦ(s) ≪K
1

|s|K
for any K > 0, the terms with

|m| > B in (4.3) contributes at most

≪K
X

ℓnN0vβα2

∑

|m|>B

(

ℓnN0vβα
2

Xm

)K

(ℓn) ≪ ℓn

(

ℓnN0vβα
2

X

)K−1
1

BK−1
≪ ℓnX−(K−1)ε

where we used the trivial bound |τm(ℓn)| ≤ ℓn, provided that B ≥ ℓeLA2X−1+3ε and K > 1.

Hence, choosing K to be sufficiently large (depending on ε > 0), the contribution of the terms with

|m| > ℓeLA2X−1+3ε from (4.3) to S2 is ≪ 1.

So, remaining terms (with 0 < |m| ≤ ℓeLA2X−1+3ε) in S2 becomes

1

L

∞
∑

n=1

ΛE(n)√
n

H

(

log n

L

)

∑

β|v

∑

(α,ℓnvN0)=1
α≤A

µ(β)µ(α)

(

vβα2

ℓn

)

× X

ℓnN0vβα2

(

κN0

ℓn

)

∑

0<|m|≤ℓeLA2X−1+3ε

qΦ

(

Xm

ℓnN0vβα2

)

e

(

mavβα2ℓn

N0

)

τm(ℓn).
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Upon a rearrangement, it is

X

ℓLN0

∑

0<|m|≤ℓeLA2X−1+3ε

∑

β|v

∑

(α,ℓvN0)=1
α≤A

µ(β)µ(α)

vβα2

∑

(n,αN0)=1

ΛE(n)

n
√
n

H

(

log n

L

)

×
(

κvβN0

ℓn

)

qΦ

(

Xm

ℓnN0vβα2

)

e

(

mavβα2ℓn

N0

)

τm(ℓn).

(4.4)

In light of relation between τm(ℓn) and Gm(ℓn), to handle the sum over n, we shall bound

(4.5)
∑

(n,αvN0)=1

ΛE(n)

n
√
n

H

(

log n

L

)(±κvβN0

ℓn

)

qΦ

(

Xm

ℓnN0vβα2

)

e

(

mavβα2ℓn

N0

)

Gm(ℓn),

and we therefore require the following explicit calculation for Gm(ℓn) from [18, Lemma 2.3].

Lemma 4.1. If ℓ and n are coprime and odd, then Gm(ℓn) = Gm(ℓ)Gm(n). Moreover, if pα is the

largest prime power of p that divides m (when m = 0, setting α = ∞), then

Gm(pβ) =















φ(pβ) if β ≤ α is even;

−pα if β = α+ 1 is even;

(mp−α

p )pα+
1
2 if β = α+ 1 is odd;

and Gm(pβ) = 0 if β ≤ α is odd, or β ≥ α+ 2.

As discussed in [15, p. 12], if n is a prime power such that (n,m) = 1, then Gm(ℓn) = 0 unless n

is a prime p ∤ ℓ (for such in instance, Gm(ℓp) = (mp )p
1
2Gm(ℓ)). The contribution of these terms to

(4.5) is

Gm(ℓ)

(±κvβN0

ℓ

)

∑

(p,αℓmvN0)=1

ΛE(p)

p

(±κmvβN0

p

)

e

(

mavβα2ℓp

N0

)

H

(

log p

L

)

qΦ

(

Xm

ℓpN0vβα2

)

.

Also, as qΦ(s) decays rapidly, we may further consider

(4.6) p >
X1−ε|m|
ℓN0vβα2

.

(Otherwise, we have X|m|
ℓpN0vβα2 ≥ Xε. This forces qΦ

(

Xm
ℓpN0vβα2

)

≪K X−Kε for any K > 0, which

gives a negligible error.) By splitting p into arithmetic progressions modulo N0, it suffices to estimate

Gm(ℓ)
∑

(p,αℓmvN0)=1
p≡c(modN0)

ΛE(p)

p

(

p

q

)

H

(

log p

L

)

qΦ

(

Xm

ℓpN0vβα2

)

,

for c coprime to N0 and q | mvβ, where the sum runs over p satisfying (4.6). Under GRH for L(s,E)

and its twists by quadratic characters and Dirichlet characters modulo N0, Abel’s summation then

yields the bound

≪ |Gm(ℓ)|
(

ℓN0vβα
2

X1−ε|m|

)

1
2

log2 X ≪ Xεℓ
3
2 (vβ)

1
2α

√

X|m|
.
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For the case that n is a power of a prime dividing m. As Gm(ℓn) = 0 for n ∤ m2, we may assume

n | m2. Again, by the rapid decay of qΦ(s), we may assume

n >
X1−ε|m|
ℓN0vβα2

.

Since |Gm(ℓn)| ≤ (|m|ℓn) 1
2 , the contribution of these terms to (4.5) is

≪
∑

n|m2

Λ(n)
(|m|ℓ) 1

2

(X1−ε|m|)/(ℓN0vβα2)
≪ (logm)Xε ℓ

3
2 vβα2

X|m| 12
≪ X2εℓ

3
2 (vβ)

1
2α

√

X|m|
,

as logm ≪ logX, provided that α ≤ A ≤
√
X .

Thus, (4.4) becomes

≪ X

ℓLN0

∑

0<|m|≤ℓeLA2X−1+3ε

∑

β|v

∑

α≤A

1

vβα2
· X

2εℓ
3
2 (vβ)

1
2α

√

X|m|
≪ X

1
2
+3εℓ

1
2

∑

0<|m|≤ℓeLA2X−1+3ε

logA
√

|m|
,

which is

≪ ℓe
L
2 AX5ε,

provided that A ≤
√
X. Balancing this with (4.1), we shall choose

(4.7) A = X
1
2
−2εℓ−

1
2 e−

L
4 ,

which gives the both error is at most O(X
1
2
+3εℓ

1
2 e

L
4 ).

Finally, we focus on the main term of S2 arising from terms with m = 0. Recall that τ0(ℓn) =

φ(ℓn) if ℓn is a square, and τ0(ℓn) = 0 otherwise. From (4.2) and (4.3), combined with the above

discussion for errors, it follows that the main term of S2 is

X

vLN0

qΦ(0)
∑

β|v

µ(β)

β

∑

(n,vN0)=1
ℓn=�

∑

(α,ℓnvN0)=1
α≤A

µ(α)

α2

ΛE(n)√
n

φ(ℓn)

ℓn

(

ph

(

log n

L

)

+ ph

(

− log n

L

))

,
(4.8)

where we used the condition (ℓ, v) = 1.

Observe that as n in the sum of S2 must be a prime power, to have nℓ = �, ℓ can only be a

square, or a prime times a square. Firstly, when ℓ is a square, writing n = r2, by a direct calculation,

we can express the inner triple sum in (4.8) as

∑

(r,vN0)=1

ΛE(r
2)

r

(

∏

p|rℓv

(

1 +
1

p

)−1
∏

p∤N0

(

1− 1

p2

)

+O

(

vε

A

)

)

(

ph

(

log r2

L

)

+ ph

(

− log r2

L

))

.

Recalling that the theory of Rankin-Selberg L-functions gives

∑

p≤y
(p,N0)=1

ΛE(p
2)

p
= − log y +O(1),
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and applying Abel’s summation, we then establish that (4.8) equals

− X

vLN0

qΦ(0)

(

∏

p|ℓv

(

1 +
1

p

)−1
∏

p∤N0

(

1− 1

p2

)

+O

(

vε

A

)

)

×
(
∫ ∞

1

(

ph

(

2 log y

L

)

+ ph

(

−2 log y

L

))

dy

y
+O(1)

)

= − X

vN0

qΦ(0)
∏

p|ℓv

(

1 +
1

p

)−1
∏

p∤N0

(

1− 1

p2

)

h(0)

2
+O

(

Xvε

vA
+

X

vL

)

,

(cf. [15, Eq. (30)]), where the error term involving A is acceptable by our choice of A in (4.7).

Lastly, if ℓ is q times a square, with a (unique) prime q, we must have n = qr2 for some r.

However, as n has to be a prime power in S2, it can only be an odd power of q. Therefore, we can

bound (4.8), the main term of S2, by

≪ X

vLN0

log q√
q

∏

p|ℓv

(

1 +
1

p

)−1
∏

p∤N0

(

1− 1

p2

)

(cf. [15, Eq. (31)]), which concludes the proof.

5. Proof of Proposition 2.2

In this section, we shall prove Proposition 2.2. To begin, opening the sum, we see that the left

of (2.6) is

(5.1)
k
∑

j=0

(

k

j

)

(−c)j(b+ c)k−j
∑

d∈E(κ,a)

∑

logX≤p1,...,pj≤x

Cp1(d) · · ·Cpj(d)P(d;x)
k−j

∑

γd

h

(

γdL

2π

)

Φ

(

κd

X

)

.

As noted in [14, pp. 1048-1049], if q1 < q2 < · · · < qu are the distinct primes appearing in p1, . . . , pj ,

denoting the multiplicity of qi by mi, one has

Cp1(d) · · ·Cpj(d) =

u
∏

i=1

Cqi(d)
mi =

∑

v|(d,q1···qu)

∑

rs=v

µ(r)

u
∏

i=1

Cqi(s)
mi .

Hence, the inner sum (over d) of (5.1) can be written as

(5.2)
∑

logX≤p1,...,pj≤x

∑

v|q1···qu

∑

rs=v

µ(r)
u
∏

i=1

Cqi(s)
mi

∑

d∈E(κ,a)
v|d

P(d;x)k−j
∑

γd

h

(

γdL

2π

)

Φ

(

κd

X

)

.

(Note that v ≤ xk = Xk/ log log logX for v appearing in (5.2); we shall use this repeatedly in the

remaining discussion.) Expanding out P(d;x)k−j , we see that the last double sum becomes

(5.3)
∑

pj+1,...,pk≤x
pi∤vN0

λE(pj+1) · · · λE(pk)√
pj+1 · · · pk

∑

d∈E(κ,a)
v|d

∑

γd

h

(

γdL

2π

)

χd(pj+1 · · · pk)Φ
(

κd

X

)

,

where we used the fact that χd(pj+1 · · · pk) = 0 if pi | v for some i, as v | d.
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From the first part of Proposition 2.1, it follows that the contribution of the terms, arising from

pj+1 · · · pk that is not a square nor a prime times a square, to (5.3) is

(5.4) ≪
∑

pj+1,...,pk≤x

|λE(pj+1) · · · λE(pk)|√
pj+1 · · · pk

X
1
2
+ε(pj+1 · · · pk)

1
2 e

L
4 ≪k xkX

1
2
+εe

L
4

as |λE(p)| ≤ 2.

For the case that pj+1 · · · pk is a square (when this happens, k − j must be even), by the second

part of Proposition 2.1, we see that the main term of (5.3) is

X

vN0

∏

p∤N0

(

1− 1

p2

)

∏

p|v

(

1 +
1

p

)−1
qΦ(0)

(

2 logX

L
ph(0) +

h(0)

2
+O(L−1)

)

×
∑

pj+1,...,pk≤x
pi∤vN0

pj+1···pk=�

λE(pj+1) · · ·λE(pk)√
pj+1 · · · pk

∏

p|pj+1···pk

(

1 +
1

p

)−1(5.5)

(while the error is still ≪k xkX
1
2
+εe

L
4 as argued above). Observe that the terms above with some

pi dividing v contribute at most

≪ X(logX)(log logX)k

vL logX

as every prime factor of v is larger than logX. Therefore, removing the condition pi ∤ v for

j + 1 ≤ i ≤ k results in an error ≪ X(logX)(log logX)k/(vL logX). Now, we further denote the

distinct primes appearing in pj+1 · · · pk by q′1, . . . , q
′
u′ with multiplicity m′

1, . . . ,m
′
u′ , respectively.

Note that as each m′
i ≥ 2 and

∑u′

i=1 m
′
i = k − j, we know u ≤ k−j

2 . The contribution of q′1, . . . , q
′
u′

with u′ < k−j
2 (which forces u′ ≤ k−j

2 − 1) to (5.5) is

≪ X

v

∏

p|v

(

1 +
1

p

)−1 logX

L

(

∑

p≤x
p∤N0

λE(p)
2

p

)
k−j
2

−1

≪ X logX

vL
(log logX)

k−j
2

−1,

which is negligible. Lastly, for u′ = k−j
2 , we know that each mi must equal 2, and thus the

contribution of q′1, . . . , q
′
(k−j)/2 (to the sum over pi in (5.5)) is

(k − j)!

2(k−j)/2((k − j)/2)!

∑

q′1,...,q
′

(k−j)/2
≤x

q′i∤N0

∏(k−j)/2
i=1 λE(q

′
i)
2

(q′1 + 1) · · · (q′(k−j)/2 + 1)
.

(A justification of the factor (k−j)!

2(k−j)/2((k−j)/2)!
can be found in [6, p. 5, especially Eq. (4.2)].) As

∑

q≤y
q∤N0

λE(q)
2

q + 1
=
∑

q≤y
q∤N0

λE(q)
2

q
+O(1) = log log y +O(1),
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we then conclude that the main term of (5.3) is equal to

X

vN0

∏

p∤N0

(

1− 1

p2

)

∏

p|v

(

1 +
1

p

)−1
qΦ(0)

(

2 logX

L
ph(0) +

h(0)

2
+O(L−1)

)

×
(

(k − j)!

2(k−j)/2((k − j)/2)!
+ o(1)

)

(log logX)
k−j
2

(5.6)

in this case (namely, the contribution of terms with pj+1 · · · pk = �).

Finally, by the third part of Proposition 2.1, we can bound the contribution of the terms arising

from pj+1 · · · pk that is a prime times a square (which forces k − j to be odd) by

≪ X

vLN0

∑

q≤x

log q

q

∏

p|v

(

1 +
1

p

)−1
∑

pj+1,...,pk−1≤x
pi∤N0

pj+1···pk−1=�

∏k−1
i=j+1 λE(pi)

√
pj+1 · · · pk−1

+ xkX
1
2
+εe

L
4

≪ X log x

vLN0

∏

p|v

(

1 +
1

p

)−1

(log logX)
k−j−1

2 + xkX
1
2
+εe

L
4 .

(5.7)

In light of the above discussion (especially, (5.3), (5.4), (5.6), and (5.7)), to handle (5.2), we shall

estimate

(5.8)
∑

logX≤p1,...,pj≤x

∑

v|q1···qu

∑

rs=v

µ(r)

u
∏

i=1

Cqi(s)
mi

1

v

∏

p|v

(

1 +
1

p

)−1

(for j ≥ 1). Noting that 1
v

∏

p|v(1 +
1
p)

−1 =
∏

p|v
1

p+1 (as v is square-free in our consideration), we

follow [14, p. 1050] to set

G(qm1
1 · · · qmu

u ) =
∑

v|q1···qu

∑

rs=v

µ(r)

u
∏

i=1

Cqi(s)
mi
∏

p|v

1

p+ 1
,

which is multiplicative. In addition, we recall that

G(pα) = (log c(p))α
(

1

p+ 1

(

1− 1

p+ 1

)α

+
p

p+ 1

( −1

p+ 1

)α)

,

which implies that G(qm1
1 · · · qmu

u ) is non-vanishing only if mi ≥ 2 for all i, and also

G(pα) ≪ (log c(p))α/p

for all α ≥ 2.

Given q1 < · · · < qu and mi ≥ 2 with
∑u

i=1 mi = j, the number of choices for p1, . . . , pj is
j!

m1!···mu!
. Hence, the first double sum in (5.8) can be written as

(5.9)
∑

u
mi≥2∀i∑u
i=1 mi=j

j!

m1! · · ·mu!

∑

logX≤q1<···<qu<x

G(qm1
1 · · · qmu

u ).

If mi ≥ 3 for some i, then the above inner sum over qi is at most

≪ (log logX)(j−1)/2.
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Otherwise, if mi = 2 for all i, we must have j = 2u (which is even). As a direct calculation shows

G(p2) =
(log c(p))2

p
+O

(

1

p2

)

,

it then follows from (2.2) that the terms with all mi = 2 contribute

(5.10)
j!

2j/2(j/2)!
((σ(E)2 − 1) log logX +O(log log logX))j/2

to (5.9). Therefore, we conclude that the main term must arise from terms with even j. Conse-

quently, when k is even (which forces k − j to be even), it follows from (5.2), (5.3), (5.4), (5.6),

(5.8), and (5.10) that (5.1) (and thus the left of (2.6)) becomes

k
∑

j=0
j even

(

k

j

)

(−1)j
X

N0

∏

p∤N0

(

1− 1

p2

)

qΦ(0)

(

2 logX

L
ph(0) +

h(0)

2
+O(L−1)

)

× j!

2j/2(j/2)!
(c2(σ(E)2 − 1 + o(1)) log logX)j/2

(k − j)!

2(k−j)/2((k − j)/2)!
(((b+ c)2 + o(1)) log logX)

k−j
2 ,

which yields the claimed estimate for even k. In the case that k is odd, the “main term” of (5.1)

does not manifest since by (5.2), (5.3), (5.4), (5.7), (5.8), and (5.10), it is

≪b,c

k
∑

j=0
j even

(

k

j

)

X log x

LN0
(log logX)j/2(log logX)

k−j−1
2 ≪ X logX

LN0
(log logX)

k−1
2 ,

which completes the proof.

6. Derivation of Theorem 1.4

In this section, we shall take x = X1/(log logX)2 and let V1, V2 be real. Recall that in [14, pp.

1045-1048], Radziwiłł and Soundararajan proved the following:

(1) If d ∈ E, with X
logX < |d| ≤ |X|, satisfies

(6.1) logL(12 , Ed) + log logX ≥ V1

√

log logX,

then one of the following cases must happen:

(a) P(d;x) ≥ (V1 − ε)
√
log logX ;

(b) |P(d;x)| ≥ log logX;

(c) |P(d;x)| ≤ log logX but L(12 , Ed)(logX)
1
2 exp(−P(d;x)) ≥ exp(ε

√
log logX).

(2) If d ∈ E, with X
logX < |d| ≤ |X|, satisfies

(6.2)
logL(12 , Ed)−

∑

p|d log c(p)− µ(E) log logX
√

σ(E)2 log logX
≥ V2,

then either (b), (c), or one of the following cases must happen:

(d) P(d;x) − C(d;x) ≥ (V2 − ε)
√

σ(E)2 log logX;

(e) | log Tam(Ed) + (µ(E) + 1
2) log logX − C(d;x)| ≥ ε

10

√
log logX .
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In addition, cases (b), (c), and (e) occur for at most o(X) discriminants d ∈ E. Consequently,

if d ∈ E, with X
logX < |d| ≤ |X|, satisfies both (6.1) and (6.2), then cases (a) and (d) happen,

simultaneously, for all but at most o(X) discriminants d ∈ E.

On the other hand, it follows from (3.1) that

log(S(Ed)/
√

|d|) = logL(12 , Ed)− log Tam(Ed) +O(1)

= logL(12 , Ed) + (µ(E) + 1
2) log logX − C(d;x) +O(ε

√

log logX + 1),

except for at most o(X) discriminants d ∈ E, where the implied constant is independent of ε, as

case (e) appears with frequency o(X). By the definition of C(d;x) and (2.1), one has

log(S(Ed)/
√

|d|)− µ(E) log logX = logL(12 , Ed)− µ(E) log logX −
∑

logX≤p≤x
p|d

log c(p)

+O(ε
√

log logX + log log logX + 1).

In addition, by the argument leading to the first estimate in [14, p. 1048], one knows

∑

d∈E
X/ logX≤|d|≤X

(

∑

p<logX
p|d

log c(p) +
∑

p>x
p|d

log c(p)

)

≪ X log log logX,

and thus the number of d ∈ E, with X
logX < |d| ≤ |X|, satisfying

∑

p<logX
p|d

log c(p)+
∑

p>x
p|d

log c(p) ≥

(log log logX)2 is O(X/ log log logX) = o(X). Hence, log(S(Ed)/
√

|d|)− µ(E) log logX is

logL(12 , Ed)− µ(E) log logX −
∑

p|d

log c(p) +O(ε
√

log logX + (log log logX)2)

for all but o(X) d ∈ E, with X
logX < |d| ≤ |X|. Thus, we conclude that

#

{

d ∈ E,
X

logX
< |d| ≤ X :

logL(12 , Ed) +
1
2 log logX√

log logX
≥ V1,

log(S(Ed)/
√

|d|)− µ(E) log logX
√

σ(E)2 log logX
≥ V2

}

is less than

#

{

d ∈ E,
X

logX
< |d| ≤ X :

P(d;x)√
log logX

≥ V1 − ε,
P(d;x) − C(d;x)
√

σ(E)2 log logX
≥ V2 − ε

}

+ o(X),

which is ∼ (ΞE((V1−ε, V2−ε), (∞,∞))+o(1))#{d ∈ E : |d| ≤ X}, and so the desired result follows.

7. Concluding remark

It is known that assuming GRH and the 1-level density conjectures of Katz and Sarnak [10], then

Keating-Snaith’s conjecture, as mentioned in the introduction, would be true (see [19, p. 992] and

also [15, p. 1033]). Indeed, as remarked by Soundararajan [19], if most of L(s,Ed) do not have

a zero very close to s = 1
2 (which is implied by the 1-level density conjectures), then one could
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prove Keating-Snaith’s conjecture. In addition, similarly, Conjecture 1, proposed by Radziwiłł-

Soundararajan, and Conjecture 2 would follow from the same assumption.

To end this article, we shall discuss how Radziwiłł-Soundararajan’s argument leads to a quantified

formulation of Soundararajan’s remark above as follows. From the proof of [15, Proposition 1], under

GRH, one has

logL(12 , Ed) = P(d;x) − 1
2 log log x+

1

log x

∑

γd

Re

∫ ∞

1
2

xρd−σ

(ρd − σ)2
dσ +O

(

log |d|
log x

)

.

In addition, it was shown that for |γd log x| ≥ 1,
∫ ∞

1
2

xρd−σ

(ρd − σ)2
dσ ≪ 1

γ2d

∫ ∞

1
2

x
1
2
−σdσ ≪ 1

γ2d log x
,

which is ≤ log x for this range of γd. Also, in the two estimates above [15, Eq. (15)], for |γd log x| ≤ 1,

one has

Re

∫ ∞

1
2
+ 1

log x

xρd−σ

(ρd − σ)2
dσ ≪

∫ ∞

1
2
+ 1

log x

x
1
2
−σ

(12 − σ)2
dσ ≪ log x

and

Re

∫ 1
2
+ 1

log x

1
2

xρd−σ

(ρd − σ)2
dσ = Re

(−1

iγd
− 1

1/ log x− iγd
+ (log x) log

−iγd
1/ log x− iγd

+O(log x)

)

= − 1/ log x

(1/ log x)2 + γ2d
+ (log x) log

∣

∣

∣

∣

(1/ log x+ iγd)(iγd)

(1/ log x)2 + γ2d

∣

∣

∣

∣

+O(log x)

= (log x) log
|γd| log x

(1 + (γ2d log x)
2)1/2

+O(log x).

To prove [15, Proposition 1], Radziwiłł and Soundararajan bounded the above three integrals all

by ≪ (log x) log(1 + 1
(γd log x)2 )). It is worth noting that by the above discussion (especially the last

estimate), one may further establish

logL(12 , Ed) = P(d;x) − 1
2 log log x+

∑

|γd|≤((logX)(log logX))−1

log(|γd| log x)

+O

(

log |d|
log x

+
∑

|γd|≥((logX)(log logX))−1

log

(

1 +
1

(γd log x)2

))

,

where x = X1/ log log logX , and the last sum is at most O((log log logX)3) for all but o(X) d ∈ E by

Lemma 3.3. Hence, from this and the proof of Theorem 1.2, we then deduce the following:

Theorem 7.1. Assume GRH for the family of twisted L-functions L(s,E ⊗ χ) with all Dirichlet

characters χ. Suppose, further, that for all but o(X) d ∈ E, with X < |d| ≤ 2X, one has
∑

|γd|≤((logX)(log logX))−1

log(|γd| log x) = o(
√

log logX),

as X → ∞, where x = X1/ log log logX . Then Conjecture 2 (and thus both conjectures of Keating-

Snaith and Radziwiłł-Soundararajan) is true.
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