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GLOBAL SOLUTION OF 2D HYPERBOLIC LIQUID CRYSTAL SYSTEM FOR
SMALL INITIAL DATA

XUECHENG WANG

Abstract

We prove the global stability of small perturbation near the the constant equilibrium for the two dimensional
simplified Ericksen-Leslie’s hyperbolic system for incompressible liquid crystal model, where the direction function
of liquid crystal molecules satisfies a wave map equation with an acoustical metric. This improves the almost
global existence result by Huang-Jiang-Zhao [14]. As byproducts, we obtain the sharp (same as the linear solution)
L°-decay estimates for the nonlinear velocity and the nonlinear wave part. Moreover the nonlinear wave part
scatters to a linear solution as time goes to infinity.

The main novelty of this paper is that we uncover a null structure inside the velocity equation on the Fourier
side for the nonlinear interaction between nonlinear heat equation and nonlinear wave equation.

1. INTRODUCTION

This paper is devoted to studying the small data global regularity problem for the 2D simplified
Ericksen-Leslie’s hyperbolic liquid crystal model, which read as follows,

du+u-Vu+Vp=Au—V- Vd@Vd), V-u=0, (1.1)
D}d — Ad = (— |Dydf* + |V.d|?)d, ‘

where D; := 0; +u- V,,d € S'. If we parametrize d = (cos ¢, sin ¢), see Huang-Jiang-Zhao [14], then the
following system of equation holds,

Bu— Au = —u-Vu—Vp—0;(Vodid), V-u=0
02— D)6 = —u- V(O +u- V) — d(u- Vo) (12)
—20;(u;i0rpp) — 0;(Oruip) — 0;(uju;0;0) =: Ny

For the physical background of the system (L.2)), we refer readers to [14] and references therein for more
details. The system (L.2)) came to the author’s attention when one of the authors of [14], Prof. Ning Jiang,
presented their small data almost global result in “Workshop on the recent progress of kinetic theory and
related topics”, Jan 15-19, 2024, Sanya, China. Comparing with the rich literature on nonlinear wave
equation and nonlinear heat equation, it’s fair to say that the picture of quadratic interaction between
wave equation and heat equation, is far from complete.

Generally speaking, 2D nonlinear wave decays at most ¢t~'/“ rate over time. Due to the slow time
decay issue, small data global regularity problem for 2D quadratic equations is very challenging. Very
interestingly, in [14], the authors are able to identify an good unknown variable and successfully apply
the ghost weight method of Alinhac [I]. Despite the ghost weight method is well-known in the study of
wave equation, it’s interesting to find its application in the study of heat equation. Remarkably, these
observations allow them to prove almost global solution for small initial data.

A natural question is what happens after the almost global life-span of solution. Does the nonlinear
solution continues to survive or blows up in finite time? If the nonlinear solution continues to survive,
what’s the asymptotic behavior of the solution?

The goal of this paper is to answer these questions affirmatively. The key observation is that we
uncover a null structure inside the velocity equation on the Fourier side for the nonlinear interaction
between nonlinear heat equation and nonlinear wave equation. The null structure comes from cancellation
between the pressure term Vp and 0;(V¢0;¢). Due to its generality, we believe that this type of null

structure will appear in other models of hyperbolic liquid crystal optics and the method presented in this
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paper will shade some light on future study. We will elaborate this observation in subsection and
explain how to make use of this null structure in subsection [L.3l

Different from the physical space approach employed in [14], we mainly analyze the system (L2]) from
the Fourier side. Moreover, we use both the strength of the vector field method and the Fourier method.
Using the combination of these two methods is not new, e.g., it works successfully in the seminal work
of Tonescu-Pausader [1§] for the study of Einstein-Klein-Gordon system, see also [27].

Lastly, for the sake of readers, we give a brief introduction on literature of these two methods. The
celebrated Klainerman vector field method was introduced in the seminal work [22], in which the symme-
tries of the wave operator are exploited to prove decay estimate of the nonlinear wave equation. A great
achievement of the vector field method lies in the monumental work, global stability of the Minkowski
spacetime, by Christodoulou-Klainerman [3]. For the past ten years, the Fourier method, which studies
nonlinear solutions on the Fourier side and controls the pull back of the nonlinear solution along the
linear flow over time, also plays an important role in the study of small data global regularity problem for
nonlinear dispersive PDEs and NLW. Since the literature is too vast to survey, for the purpose of giving a
sense for readers, we only mention the spacetime resonance method and the Z-norm method. The space-
time resonance method was introduced by Germain-Masmoudi-Shatah [9] in the study of NLS. Now, it
has very wide applications in the study of nonlinear dispersive equations, see e.g., [10} 1T}, 15} 16} 17, [18]
and the nonlinear wave equations, see [4, 26]. The Z-norm method was firstly introduced by Ionescu-
Pausader in [I6]. This method is often used together with the spacetime resonance method. It depends
essentially on identifying the “correct” Z-norm, depending on the problem, to prove sharp or almost
sharp decay estimates for the nonlinear solution.

1.1. Main result of this paper. The main result of this paper is stated as follows,

Theorem 1.1. Let Ny = 10°. There exists absolute small constant ey such that if the initial data
(ug, Po, #1) of the system (L2)) satisfies the following smallness condition

luoll gzxo 1 + 1Tollgrvo + N Vauollze + D el Valollze + Y IVEUollpy + IVauollzs < e, (1.3)
laf<1 |8]<11

where Uy := ¢1 +i|V|do. Then the system (LL2) has unique global solution. The nonlinear solution ¢(t)
scatters to a linear solution ¢oo(t). Moreover, the following sharp decay estimates hold for u and ¢,

> OVPIVEViadle + B Vaut)ll= S €o- (1.4)
|| <3
Remark 1.1. The plausible goal of optimizing Ny is not pursued here.

1.2. Null structure. In this subsection, we show with details about the hidden null structure inside the
velocity equation, c.f., (LI)). To this end, we first do some reduction for the nonlinear N,,. Note that, by
using the divergence free condition, we can solve the pressure as follows,

Ap = —0;(w;iOuj) — 0;0;(0ip0;¢), Vp = —VAT;(udiu;) — VATI9;0;(0;60;0).
Therefore, we can formulate the equation satisfied by velocity u as follows,
Opu — Au= Ny = Q(u,u) + Q(¢,9),
Qu,u) = —u - Vu + VAT, (w;0uj) = —0i(uiu) + VAT9;0; (usuj), (1.5)
Q6. 0) = VAT'9,0,(0,60;0) — 0:(0i6V9).

Note that that terms in N, always have one derivative outside, which contributes the smallness of
output frequency. It motivates us to formulate N, as follows,

Nu = |V|ﬁu, j\7 = —RZ(’LLZ’LL) - RRZ'R]'(’LLZ'U]') — RRZRJ(&QS@J@) - Rl(aququ) (1.6)
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Moreover, we observe that there is a null structure inside @((b, ¢). More precisely, the symbol of @(qﬁ, o)

is given as follows,
£E€-n) _ ﬂ]
Pl Inl*

Very interestingly, the null structure presented in @(qﬁ, ¢) is not only helpful in the wave x wave —
wave type interaction, which is more classic, but also helpful in the wave x wave — heat type interaction,
which is new. More precisely, recall (7)), note that,

g€ —n.m) =—i(&- (E—n)nl| (L.7)

n-€= %[(!n\ — =€l +n =€) + €= & —nn) = g UM (E — n,n)g=i (€ — n.n),

| £&-m)
null structure for wxw—h D —
null structure for wxw—w
(1.8)

1.3. Exploiting the null structure. To see better in what sense what we mean by “null structure for
wxw—h”. We employ the following normal form transformation,

vi=u+ Z A, (URUY), (1.9)
u,VE{"r,-}
where the symbol a,,(§ —n,n) of the bilinear operator A, ,(U*,U") is given as follows,
—pvg(€ —n,m) 1
au (& —mnm) = - . 1.10
A8 = TGP+ i — ol + Vi) € — ol (10
Note that, from (LI5]), we have
(81& - A)U = Q(u7 u) + @(@, qb) - Z A(A,LL,I/(UH7 UV)) + A,u,u(atUua UV) + A,u,V(U'uy 8tUV)
,LL,I/G{-F,—}
=Q(u,u)+ Y A (G +i[VNU),U") + A (U, (9 +i[V)U)") (1.11)
/.L,VE{-F,—}
=Quu)+ D Aun((NG)",UY) + A (U, (Np)") =: No(t).
MvVE{J’_v_}

Thanks to the “null structure for wxw—h”, the symbol a,,(§ — 7,7) of normal form transformation
is non-singular. As a result of direct computation, Vk, k1, ko € Z, we have

h —k : 2 3
_ Grvit (€ = 1,) 2 (kL ke) €XEUNXG (g
o€ =gz, | g sule =T o) Vi S 2780 i (ko) € - (12

Now, it’s clear that the equation satisfied by v is much better than u. Naturally, from (I9]), we can also
view that the velocity u consists of two parts: the heat part v, which is close to a free heat solution as time
goes to infinity; the wave part A, ,(U#,U"), which is a higher order perturbation and also independent
of heat flow.

Very importantly, and also very interestingly, since the wxw—w type null structure is not used in
the normal form transformation process, c.f., (L3)), the bilinear form A, ,(-,-) still have wave type null
structure. From (L.2]) and (L.9]), we have the following approximation equation after replacing u by v and
A, (-, ) and neglecting the contribution of v,

(Approximation equation) : O¢ = Z QAL (UM, U"),Viaz0), (1.13)
MvVE{J’_v_}

where () is some bilinear form. If without wave type null structure, generally speaking, 2D cubic wave
equation might blow up in almost global lifespan. If the approximation equation of (L.2)) blows up, we
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don’t expect the nonlinear solution of (L2 exists globally in time. The fact that A, ,(-,-) still have wave
type null structure is main reason why we expect global solution for the system (L.2]).

1.4. Bootstrap assumption. Before stating our bootstrap assumption, we define the following normed
space.

Zult) = sup 2t Pralya, - Z(t) = D 2Rk (19,6, ) yr(€) g + 28|t )i ()| e ) -
kEZ
(1.14)

For any I' € {Id,S :=t0+x -V, Q := 210,, — 220y, }, we define the half wave and its profile as follows,

TOFSNCARET ) AR WSRO R UL O Ny WIS o S G

2 ’ 21|V
pe{+—} vl (1.15)
t
V) =eVIUT (1), = ovT(t) = VINS, U () = IVIUT(0) + /0 e =9IVINT (5)ds.
For simplicity in notation, we abbreviate U#(VI?) as U(V).
Our bootstrap assumption is stated as follows,
sup (8) /270 u(t)l| grrvo+r + (027D ITu@®)a) + () Zu(®) + & IU )] v
te[0,T re{s,0} ( )
1.16
O MU Ol + Y 27 RUT (B)ll2) + Zo(t) S 1 = e/t a=1/10.
Te{s,Q} keZ_

As a consequence of the above bootstrap assumption, we have the sharp decay estimate for the velocity
field u as follows,

> IVEu®)lz= S () e (1.17)
0<]a|<3
1.5. Outline of this paper.

e In section 2, we introduce the notation used in this paper, a super-localized decay estimate, which
plays an important role in later High x High type interaction.

e In section [l we do energy estimates for both the velocity part and the wave part.

e In section [l we estimate the Z-norms for the velocity part and the wave part, which give us the
sharp decay estimates for nonlinear solutions.

Acknowledgment The author acknowledges support from NSFC-12322110,12326602,12141102, and
MOST-2020YFA0713003.

2. PRELIMINARY

2.1. Notation. We define a class of symbol and its associated norms as follows,

§*i={m:me CRYUCR®), [mls~:= Y [€n°VEVIm(E n)llrg < oo},
loe|+[B]<20
(€ mlsgs,, ., = (& YR (€0, (€ — )hrs (1) < 21)

Hm(£7 n, O-)‘|Sl(c>?k1,k2,k3 = Hm(£7 7, O')T,Z)k (£)¢k1 (6 - 77)7/%2 (77 - O')T,Z)k3 (O-)HS“’ .

For any k € Z, we use ki to denote max{k,0} and use k_ to denote min{k,0}. Moreover, for any
k € Z, we use Py, P<j, and P>}, to denote the projection operators by the Fourier multipliers v (-), ¥<(-)
and t¥>x(-) respectively. We use Py, 1, to denotes Eke[kl,kz] Pr. For convenience in notation, we also
use fi(z) to abbreviate Py f(x).
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For any chosen threshold I € Z_,1 € [I,2] N Z, we define the cutoff function with the chosen threshold
@i(z) : R? = R as follows,

bolz) ifl=1,
eri@) == ¢ v<lx) ifle(1,2), (2.2)
¢22(l‘) ifl = 2.

We define the following index sets, which correspond to High x High type interaction, Low x High
type interaction, and High x Low type interaction respectively,

Xt = {(k1, k2) : k1, ko € Z, |ky — ko| <10,k > k — 10},
X3 = {(k1, ko) : k1, ko € Z, |ky — k| < 10,k < k — 10}, (2.3)
X3 = {(k1, ko) : k1, ko € Z, |ky — k| < 10, ko < k — 10}.

To study the HighxHigh — Low type interaction in the energy estimate, we exploit the following
decay estimate with the super-localized cutoff function. Comparing with the usual dyadic decomposition,
the width of the annulus, which is the support of super-localized cutoff function, is not comparable with
the radius of annulus. The idea of using super-localized decay estimate to get around the summation
issue of the HighxHigh — Low type interaction goes back to the work of Ionescu-Pausader [I§] for the
study of Einstein-Klein-Gordon system.

Lemma 2.1. For any t € [2" 1,2, m € Z, k. k,n € Z,x € R u € {+,-}, st., k < k, n €
[26=2 k21N Z, m > 1, k > —m, we have

| /[R () Fe)vr(le] - m)dg] S 27 Im()lls (21T Wz g (6] - )l

- (2.4)
+ 27 SR T F(©ur (€] = m)ll e
Proof. e If || < 2m-10,
Note that, for this case, we have ‘Vg(a: & — ut|€ ])‘ ~ t ~ 2™ To exploit the high oscillation in £, we
do integration by parts in £ once. As a result, we have

[ [, e im© Feng el —mdg] < | /R ey [%mm@)ﬂswm — )] dg]

S 27" Il [2X1F %1 g (€] — )l + 289/ Ve Fl€)le] = )l 2)-
(2.5)

° If |x| > om—10

Note that & x Ve(z - & — ptl¢]) = 0 if and only if £/[¢| = pa/|z| := &. For this case, we do dyadic
decomposition for the angle between ¢ and & with the threshold [ := —m/2 — k/2. From the volume of
support of &, the following estimate holds for the small angle case,

—&o)d¢

‘/ eimvﬁ—iutlﬂf(é’)m(ﬁ)wkaa_n)wgl(%
! ) (2.6)

< [m(€)llsg 25 FH F &)z (lel - n)llLe S 2R i (6) | soe | F (€ €] — n)|lrge.
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For the large angle case, we first do dyadic decomposition for the size of angle between £ and &y and then
do integration by parts in £ once. As a result, we have

| [ = Fem©pvlel = il — o)

irE—ntlél B m(€) F(€)v (€] —”) §
< % | / ' 528 5 8 )[ €2x1 - 51552 (’5‘ €0 ]dd (27)
< 22 Im(©llsp (272 F@un(© g + 25V F (@) O]

1>l

~

S 272 m@) s 252 F@n(€)llge + 27 ARV F () (€) ] 2]
To sum up, our desired estimate (2.4 holds from the above estimate and the obtained estimate (Z5). O

By using the above linear decay estimate of wave equation, in the following Lemma, we show that the
nonlinear wave part decays sharply over time under the bootstrap assumption (L.I6]).

Lemma 2.2. Under the bootstrap assumption (LIQ), the following L3°-decay estimate holds for the wave
part,

> ) P2 P U e S en (2.8)

keZ

Proof. Let t € [2~1,2™] C [0, T],m > 1. By using the volume of support of &, we first rule out the very
low and relatively high frequency cases as follows,

> 2R |1, Ped| Lo S > 2~ F/2H3k+ min {22F|U (¢, V()L
ket —m/2,2m ) (No—20)] ket —m/2,2m ) (No—20)]
QkHﬁ(t, 5)1/% (é‘)HLg} SJ Z 2—k/2+8k+ min{25k/3, 2—(No—l)k+6m}61 5 2—771/261.

k¢[—m/2,2m/(No—20)]

Now, we focus on the case k € [-m/2,2m/(Ny — 20)] N Z. Note that

VeV (1,6)] S HEY ATV (1,6)| + €17 [IUS 1, )] + UL, &) + [T (1, €)]].
Recall (I.2). Note that, from (LI7), we have

10V (8, )vr ()2 S Vel ullws~ S )76

Therefore, from the above two estimates and the bootstrap assumption (LI6]), we have

sup 267F= ||V V (1, &) (€)]| 1 S (B)er (2.9)
keZ

For the rest of cases, we use the linear decay estimate (Z:4]) in Lemma 21l From (29), we have
”PkU(t)HLgo 5 2—m/2 (2k—10k+ + 2—m/4+(1/4+a)k+6m)61

. Z 27K/ 28R | PU || o S 27 26 (2.10)
ke[—m/2,2m/(No—20)]

Hence finishing the proof of the desired estimate (2.8]). O
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3. ENERGY ESTIMATE OF THE VELOCITY PART AND THE WAVE PART
3.1. Energy estimate of the velocity field.

Lemma 3.1. Let t € 2™ 2m] C [0,T],m € Z,, s.t., m > 1. Under the bootstrap assumption (10,
the following improved energy estimate for the velocity field u holds,

()] gvorr S 272 e, (3.1)

Proof. Recall the normal form transformation we did in (LIT). We first estimate the energy of the
normal form part. Thanks to the “null structure for wxw—h”, the symbol a, ., (£ —n,n) of normal form
transformation is non-singular. For any u,v € {+,—}, from the estimate of symbol in (LI2]), we have

> IVE(A U U S D I1P(Auw(Pry (UR), Poy (U)) | 22 + 10 v U wrs.oe
|a|<No+1 |k —k2| <10 (3-2)
k1>k+20

In the above estimate we single out the High x High type interaction because of two reasons. Firstly,
the High x Low and Low x High type interactions are standard. Lastly and most importantly, the High
x High type interaction is non-trivial in the sense that there is summability issue with respect to the
output frequency k if without paying any price of decay rate. Note that this case only happens when
a = 0, which explains why only L?-norm appears in (3.2)).

To get around this summability issue, we first do super localization for two inputs and then use the
super localized decay estimate (Z4) in Lemma 1] and the orthogonality in L?. Let Py, .1 denotes the
Fourier multiplier operator with Fourier symbol vy, (€)(|¢] — 2¥n). From the estimate (Z9) and the
estimate of symbol in (LI2]), we have

1Bi (Apsar (Piy (UH), Py (U")) 12 S > 1P (Apw (Pry e (U*), Prgioom (UY))) || 12
n,me[gkl7k—1072k1,k+10]mZ
‘N—m‘§210
S > g m/2—k1— [gh ket ¢, 4 o=/ /2 7 T (), (€ (€] — 2m)]) 2]
n,me[2k1—k=5 k1 —k+5)n7
|n—m|<210

< | Py (U2 S 27™/2F10- min (o Noba s +9m. gl (gh/24k1/2 | gm/dk/dim) 2
(3.3)

After combining the obtained estimates ([B.2]) and (3.3]), we have

V(A U*,uv 2 <2 /246 62. 3.4
T v 9 L2 ~ 1
|| <No+1

Now, we focus on the estimate of H™°-norm of v. Recall the equation satisfied by “v” in (LII]). Note
that the following Duhamel’s formula holds,

u(t) = e®v(0) + / t et =IBN, (s)ds. (3.5)

0
Note that, for any fixed k € Z, the following estimate holds for the frequency localized heat kernel,
| eiy'f—(t—s)\i\zwk(g)dw < 23k(1 + 22k’t - S’)—IOO(l + 2k‘y’)—100. (3.6)
R3

By using the precise form of the heat kernel and Holder inequality, we have

t
o)l zzvo 01 S 27" 2e0 + Z/O (1+ 2%t = s) 7O 25| PN (5) 1 + 200 R | PN (s) |2 ] s (3.7)
kEZ



8 XUECHENG WANG

Recall (LII)) and (I5). We first estimate the HY7V2 norm of Ny(s). From the estimate of symbol
in (LI2), the L? — L*>-type bilinear estimate and the decay estimates in (LI7) and (Z.8)), we have

Vo (8)llo-12 S ()220 + e ()2 ING (0] o/ + en(s) IING (D)o S ()72 (3.8)

Recall (L2)) and (I.6]). Note that N has one space derivative outside, which contributes the smallness
of output frequency. More precisely, we decompose Ny(s) as follows,

Ny(s) = =20;(ui016) — 0(Duid) — 0 (uin;0;6) — 0([VINu(s)d(s)) (3.9)
Note that, after using the L? — L*®-type bilinear estimate and using Zg(t)-norm to control ¢, we have
> PPy () Pry (0:8)) | 12 + || Pr(Pey (M) Pry (6))ll 22
(k1,k2)ExqUXE (3.10)
+ | Pr(Pry (|V[Nu()) Py () |2 S 28724 (s) el

For the High x High type interaction, we use the super-localized decay estimate for ¢-part. After
employing the same strategy used in ([3.3)), we have

> IPe(Pry () Py (0:9) 2 + 1P (Pry (Awi) Py ()] 2
(k1,k2)€x;, (3.11)
+ (| PPy (IVINw(3)) Py ()| 2. S 28473+ (5) 71

Lastly, from L? — L'-type Sobolev embedding, we have

1P (wiuj0i9)ll 2 S 281 P (i 0;9) |y S 25725 Jull3pa | U lypae S 25(s) 7> el (3.12)
To sum up, after combining (3.9)-B3I12)), we have
1P (No(s)) Iz < 27473 (s) e (3.13)

For any fixed k € Z, from the obtained estimate ([3.14]), L?> — L?-type bilinear estimate, the following
estimate holds if we put u in L? and ¢-part in L for the L2-estimate of N,

[1PeNo(s)l[ 1 S Nluls)l 2l Vuls)l 2 + > 1Pe,Ull 2| Py Nl 2 S (s) et
(k1,k2)€Ui=1,2,3X%
Moreover, After combining the above obtained estimates ([3.4), (3.7), (3.8), and (314]), we have

(3.14)

t
IO + ) gvors S 2720 [0 =) 12 ) B
0 .

< 2—m/2+5m60‘
Hence finishing the proof of our desired estimate (B.1). O
In the following Lemma, we control the energy of velocity with vector fields.

Lemma 3.2. Let t € 2™ 2™ C [0,T],m € Zy, s.t., m > 1. Under the bootstrap assumption, the
following improved energy estimate for the velocity field u holds,

S Tu(®) g S 272, (3.16)
re{s,Q}

Proof. Recall the normal form we did in (L9). Again, we first estimate the energy of the normal form
part. Similar to the obtained estimate ([33)), for any u,v € {+, —},I' € {S,Q}, after putting U" in L?
and the other piece in L>°, from the sharp decay estimate in (2.8)) and the estimate of symbol in (LI2]),
we have

IT (A (UH(8), U (1)) |l S 27220 e
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Now, we focus on the estimate of v-part. Note that, S doesn’t commute with the heat equation. As a

result of direct computation, we have
[8t—A,Q]:O, [8t—A,S]:[Gt—A,t8t+x'Vx]:8t—2A
Therefore,
(O — A)Sv = SNy, + Ny — Av, (0 — A)Qu = QN,,.
We rewrite the above two equations uniformly as follows,
(O — A)Tv =TN, + ¢t N, + dAv, ch =1,k = —1,¢h =c4 =0.

We also have the following Duhamel’s formula for T'v(t),
t
Tou(t) = e Tw(0) + / elt=9)A (TN, + ep Ny + ¢ Av)ds. (3.17)
0

From the explicit formula of heat kernel and the obtained estimate ([B.14]), we have

t t
u / IAN sl D / (14228t — ) 702" (| PN () 1 + 1 PEN(3)]] 1) ds
° t kez (3.18)
</(t_s)_1/2<8>—16%d852—m/2+0.15m60'
0

~

Again, from the explicit formula of heat kernel, the following estimate holds from the obtained H™°-norm
estimate of v in (3.13]),

t t—1 t
I [ e vtsly £ [ 9 s + [ o)ds S 27, (319)
0 0

Now, we focus on the contribution of the main term I'N,. Recall (L)) and (LE). Since Q(u,u) has
one space derivative outside, which contributes the smallness of output frequency, from L? — L>®-type
bilinear estimate, we have

1P (T (Q(u(s), u(s))) ) 2 S 25724+ () 7324906,

After doing dyadic decomposition for the output frequency and using the pointwise estimate of the heat
kernel, the following estimate holds from the above obtained estimate,

t t
I [ e (0 (@ule). o)) sl £ 3 [ (02— o) 1024 s) 2k
° ez ‘ (3.20)
5 / (t . 8)—1/2<S>—3/2+3560d8 S 2—m/260.
0

Now, we consider the case I' hits 4, ,((Ny)",U") and A, ,((U)*, (Ny)"). Due to symmetry, it would
be sufficient to consider the case I' hits AMV((./\/},)”, U"). As a result of computation, we have

(A (V)" UY) = A (TN)"UY) + A (Ng)", (UT)”) + Commpr ()
Commr(¢) =T (A, (Np)",UY)) — A (TN)",UY) — Ao (Np)", (UT))

For the commutators, we use the same strategy of estimating N, in (814 and ([3I8). As a result, we
have

(3.21)

t
||/ elt=9)A (C’ommp(qS))dsHH% < 97m/2H0.10m 2. (3.22)
0

Now, it would be sufficient to focus on the estimate of A, ,((INy)",U") and A, ((N3)", (U")"). From
the estimate of symbol in ([I2)), the obtained estimate ([B.I3)), the L? — L>®-type bilinear estimate and
the L® — L2 type Sobolev embedding for the High x Low and Low x High type interactions, the
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L? — L'-type Sobolev embedding and the L>® — L? type bilinear estimate for the High x High type
interaction, we have

Do IBAL (P Na(s)", Py (U ()2 S 2784750 () 7120,
(k1,k2)exiUx3
> IPeAu (P, (No(5))", Py (UT) ()12 S 28724 () 71261
(k1,k2)€EX],
Similar to the obtained estimate ([3.I3)), we have
1P (DN () ]2 S 282072 () 71206

From the above estimate, the estimate of symbol in (LI2)), the decay estimate (2.8]), the L? — L®-type
bilinear estimate and the L> — L? type Sobolev embedding for the High x Low and Low x High type
interactions, the L? — L!-type Sobolev embedding and the L> — L? type bilinear estimate for the High
x High type interaction, we have
> PeAL(Pry (TN ()", Py (U) ()22 S 22752 min {2k (s) 71420, (5)73/2420) e,
(k1,k2)ExqUX}E
S P (P (TNG())", Pry(U) ()l gz S 257254 (5) 7120,
(k1,k2)Ex)

Recall the decomposition ([B.2I]). To sum up, after combining the above obtained estimates (B3.22])—
B:24]), we have

t
H / e(t_s)AF(Au,u((Nqb)M, UI/)) HH% S 2—m/2+0 16m 2 24 Z/ 1 + 22k|t |) 102k<8>_1+266%d8

° t kez (3.25)
5 2—m/2+0.15m€% +/0 (t . S)—1/2<s>—1+256%d8 5 2—m/2+25m6%

(3.23)

(3.24)

Therefore, our desired estimate (3.16]) holds after combining the obtained estimates (B.17), (318]), (3:19),
B2, and (B25). .

In the following Lemma, we control the energy of the wave part.

Lemma 3.3. Let t € 2™~ 2m] C [0,T],m € Z,, s.t., m > 1. Under the bootstrap assumption (LIG)),
the following improved energy estimate for the wave part,

27Ul gm0 +2727 (Y U @)lze + D 27 IRUT@)ll2) S o (3.26)
re{s,Q} keZ_

Proof. Since the vector field I' € {S,Q} plays the same role as V<, |a| = Ny, the estimate of H™0-norm
of U and the energy estimate of U' (¢) follows in the same argument. We first give a detailed argument
for the HNo-estimate of U by using a modified energy method and then we define the corresponding
modified energy for the vector field part.

For the H™No-estimate of U, we define the following modified energy

Broai(t) = Y / IVEVa|* + V500 — uiu; (0:VE60;V30) + 20 V3oViuidipdr.  (3.97)
|| <No
As a result of direct computations, we have
d
d modz Z / 2V"6t¢ 62 )Vg@ — QUZ‘Uj (alvg‘@tgbﬁjvg‘qﬁ) + 28tvg‘¢8tvgui8i¢d:n

la|<No (3.28)
+ 20, V2PV U000 — 204u;uj (0 VEPO;VEP) + 207 VGV u;0;¢dx.
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Recall (I.2). Note that

(07 — A)V3¢ = Semin(¢) + > Quasi(¢), Semio(¢) = VINs — > Quas, (),
i=1,2 i=1,2 (3.29)

Quasg(9) = —2wi0,05, V56 + uiw;03, 00,V 3,  Quasi(9) = —0,Vauidio.
For the semilinear part, we use the L? — L>®-type bilinear estimate. As a result, we have
| / atvg¢56mia(¢)d$| + ‘ / atuiuj (82Vg¢ajvg¢)dl“ + ‘ / 8tV§¢V§u2616t¢dx\
R3 R3 R3

ST zzmo (1T @) o a2 + (U @) lwee lul)llgvo ] S 8726,

Thanks to the symmetric structure and the divergence free condition of u, for the quasilinear part
Quasl(¢), we have

/ 20,V pQuasl (¢)dx — / 2uu;0;0,V PO,V pdx
R3 R3

(3.30)

= —/ 26tV§¢[2ui8t6miV§‘¢+uiujﬁwiamjvgqﬂ dx —/ ZUinaiath¢ajvg¢d$
R3 R3

= / —26%. (OtVﬁb@]Vﬁgb) uiujdx = / 2(6tV§¢8jV§¢) uzﬁxlujdx
R3 R3
Therefore, by using the L? — L®-type bilinear estimate, we have
\ / 20;V2pQuas! (¢)dx — / 2u;u;0;0,V 5 $0; Vs pd|
R3 R3

STz [T @) grvo [u(@)llwzee + 1T@) lwe [u@)l gro] S (62l

In particular, we add the cubic correction term 20; V¢V %u,;0;¢ in (B.27)) to cancel the Quasilinear part
Quas?(4). More precisely, we have

/ 20,V pQuas? (¢)dzx —I—/ 20,V 5 o0V Su;0;pdr = 0.
R3 R3

(3.31)

Recall (3:28). Now, it remains to estimate the last piece, which is 9?V2¢V2u;0;¢. By using the equation
satisfied by V$¢ in ([8.29), we make the following decomposition,

/ OPV OV u0ipdx = I, (t) + Ix(t),
]R3

L(t) = /RS AV PV Su0;pdx + /RS [Semiq(¢) + Quasiy, ()] Vo 0;¢dz,
I(t) == /R i QuasiZ () Veu;0;¢dr = — /R . 0rV%u;0;V Su;0; pd.
For I5(t), we use the equation satisfied by u in (LZ). As a result, we have
L(t) = L)+ 13(t), IL(t):=— g AVu;0;¢Vu;0;pdxz,  Ia(t) = — /R . VeN., - VoV ou,;0;¢dx.

Since u € HNo+1 which is one regularity better than Vi.¢. By using this fact, now it’s easy to see
that there is no losing derivative issue for I(t), I (t), and 13(t). From the L? — L>-type bilinear estimate,
we have

| [ 08vzoviuoeds] < 1] +1730] + [BO]S 10O 100 e

FIU Ol o lu@)llvo 1 [UOllwseo + [ul) g1 [UE) oo S (876

(3.32)
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To sum up, from the above obtained estimates (3.30), (3.31)),and (B8.32), we have
Um0 S Emodi(t) + 1T O 1) [Fy2.00 + 1T @ grvo [1u()]] 7350 U (2) w200

t
S [t das+ ol 5 (0¥
0

(3.33)

Similar to what we did in the HN0-norm estimate, to avoid the losing derivative issue for the energy
estimate of U (t), we define the following modified energy,

OEY / 10:T¢|* + |V Io* — / uju; (0, ¢0;T'¢) + 20,T pT'u;0;pd. (3.34)
re(s.o} /K R

Again, due to the symmetric structure of N and the fact that T'u € H 1 which is one regularity better
than V;,I'¢. With the minor modification in the arguments for the estimate of E . .(t), we have

d vec
7 e S Y U2 MU O s.ee + 1T Ol 2 [Tul) ] U (#) [lws.
re{s,Q}

+ITu@®) 21U O llwse S ()06

~

(3.35)
— U 172 S Emoai (t) + 1T ()72 [w(t)[[y2.00

t
U Ol g2 Pu®) e U () oo S/O ()" 0elds + € < ()76

Lastly, we consider the low frequency part, for which there is no losing derivative issue. More precisely,
for the the High x High type interaction, there is no losing derivative issue since derivatives can be
distributed between two inputs. Meanwhile, for the High x Low type interaction and the Low x High
type interaction, the frequency of the High frequency part is comparable with the output frequency, hence
the frequency of the High frequency part is less one.

Recall (L2]). Since the nonlinearity N, has a derivative outside, which contributions the smallness of
2F. Therefore, from the L? — L2 type bilinear estimate, for any T’ € {S, Q}, we have

t
> 27 MBUT )l S € +/0 > 2 (PN ()| 2 + 1PN ()| 2) ds

keZ_ kEZ_
t (3.36)
< € —I—/ Z 2(1/2_a)k(s>_1+256%ds < <t>256%
0 kez_
Hence finishing the proof of our desired estimate (3:20]). O

4. Z-NORM ESTIMATE OF THE VELOCITY PART AND THE WAVE PART

In this section, we improve the estimates of Z,(t) and Z,(t) within the time interval [0,7]. Hence
finishing the bootstrap argument. Before proceeding to the the estimate of Z,(t) and Zy(t), we first
prove a technical bilinear estimate, which will be used to study the bilinear interaction of wave part with
angular localization on the Fourier side.

Let pu,v € {+,—}, m(&,m) € S%°,¢ € CP(R?), I, k,ki,ks € Z, « € Ry, 1 <0, and f,g € L2N L. We
define the rescaled Schwartz function ¢;(z) = ¢(27'x) and a bilinear form as follows,

Tty iy (f29) = / e“<‘5‘—“'€—"'—”'"‘>wk(&)m(é,n>(5 L

R2 1€l X |n|)a¢l( ; i)ﬁ;(f = Mgks(n)dn,  (4.1)

1€l Ml
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Lemma 4.1. For the bilinear form defined in (4.1l), the following estimate holds,
1T s (7 Dl <2 s, min {7 (€0010, -0 (€) 12 17 ™90 € b ()]
19(€)pa—2pa 42 (Ol 2 17~ e F ()b, (€)1 (42)

22k2+l”f”L2 ”§”Lg°,min {2If-i-(k1-i-kz)/2-l—l7 2k2+k1+l}Hﬂ‘L§° ”gHLz }

Proof. For any | € (—o0 —100) NZ_, we define K; := |72°~!|. Moreover, Vi € {1,---,K;}, denote
¢t :=i2!74 and 6! := (COS¢ sin ¢l). Let

7/)<l—4(% —6}) Z
f 9
D il K 1[)gl—4(m —0) ie{l, K}

e1i(§) =

Therefore {¢; ; (& )}{;’1 is a partition of unity with finite overlap. Moreover, supp(¢;;(-)) lies in an angular
sector centered at 91 € S'. Note that, for any I,] € Z_, after doing integration by parts in ¢ along

{9“, (6! )L} directions for and doing integration by parts n along {022, (@ 52)l} directions many times, the
followmg estimate holds for the kernel of the angle localized symbol,

S a, &
‘ (gnﬁ(xy[ (E,n)wk(ﬁ)%z(n)(@—u%) ¢l(m_ ‘Z’)wl“(é)w,m(n)ﬂ

in{l,] [ - i - 4.4
< 2 (e, )i, 22 (1 24j0], - af) (1 2 g ) (44)
x 2414242t )4 (14 2810l x y)) !

Applying the above partition of unity, we decompose the bilinear form T,i. ky kl( f,g) as follows,

[ _ l5i0,i1,i2
Thsr ke (f19) = E : Tekigs (fr9)
ile{lv"'7K(k27k1)+l}7i26{17“'7Kl}

‘9(k2fk1)+l_94 |<2t+10
21 22 —_

(4.5)

i it(|€|—plg—nl—vIn]) _ & Mya, & M

X hey—kr+,in () Plis (M) Pheg—ky 411 (£(E —1))m(&,m) FA(E — )G ()dln,

In the above decomposition, we used the fact that |% X ﬁ| ~ 2k2=F1+1 Duye to the orthogonality in

L?, from the above estimate of kernel, we have

l 2 115 2 2al
T a5 I < > ITE (o), < ) e
ile{lv"'7K(k27k1)+l}7i2€{17"'7K} ile{lv“'7K(k27k1)+l}7i2€{17"'7Kl}
‘g(szh)ﬂ_e; |<2t+10 ‘g(szh)ﬂ_e; |<2t+10
i1 il = 1 21—
[m(&, 77)“3;30]c o min { | F:},le o, r1a, i1(i£)f(£)7/)k1(5)]”%;0Hg(g)(pl,iz(£)¢[k2—2,k2+2](£)”%gv

10k k1,00 (E) F (), (€ )HLzII Fole ™90 10 () Ppty 242 (E) 10 }

< 22Mm(€, )5z, |, (min {252 FMH F(€)wn, ()| rge 19(€)pa—2,ka21(€)l 2.

k,kq,ko

2 G(€ -2 (©) 2 1 F(E ©z2))”
(4.6)

Note that if |k — ko| > 10, we have |k — max{ki, k2}| < 10. To prove the final estimate of (42]), it
would be sufficient to consider the case |k; — ko| < 10. As in (@8)), if instead of using the L? — L®-type
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bilinear estimate, we first use the L? — L!'-type Sobolev embedding and then use the L? — L2-type
bilinear estimate, then we have

1Tk, b (F Dz < 2% I m)llsgs,, ,, 2022502 £ (€, ()| 1) ks—2,h421 ()l 2+ (4.7)
Moreover, from the obtained estimate (4.0]), we have
1Tk o (- D22 < 22l ) sz, %242 (O N2 I F e ™ MGE) 0, ()lllzze- (48)
Alternatively, if we apply the partition of unity with iy,45 € {1,--- , K}, for &, 7, we have

1T o (F )72 S ) 2219(€) 1z (Va2 ()12 I F S [ () (N

i1,42€ {1, K1} i1 —ig| <210

< mlem, . S 2 B, 1900k (€2 172 e F€ (€)1
(4.9)
To sum up, our desired estimates in ([4.2]) hold from the above obtained estimates (£.06)—(4.9). O

4.1. The estimate of Z,(t).

Lemma 4.2. Lett € 2™~ 2m] C [0,T],m € Z,, s.t., m > 1. Under the bootstrap assumption (LI0)),
the following improved energy estimate for the velocity field u holds,

Za(t) < 27, (4.10)

Proof. Recall the normal form we did in ([.9]) and the equation satisfied by v in (LII]).

° The estimate of v-part.

Note that, since Q(u,u) has one derivative outside, which contributes one degree of smallness, from
the L? — L®-type bilinear estimate, we have

Vk € Z,  ||PeQu(s), u(s))ll > S 2571 min{28(s) T, (5) 720},
From the above estimate and the estimate of heat kernel, we have
t
S otk [ pQuls),uls))ds]
keZ 0 ‘

t
5 Z/O 22k—5k+(1 + Qk‘t . S‘)—lo min{2k<8>_l+26, <S>_3/2+6}6%d8 SJ <t>_3/2+3660.
kEZ

(4.11)

Now we estimate the contribution of AM,V((/\@)“, U"). Note that, the rough estimate obtained for N
in (BI3]) is almost sufficient. We first rule out most of cases and then focus on the bulk scenario.
By using the L2 — L-type bilinear estimate, and the Lg°-estimate of (u,U), we have

HPkA“,y((Pkl/\/'(b)M,PkZUV)HL% < 9—(No—5)k (s>_3/2+355%_

The above estimate allows us to rule out the case k > 0 as follows,

t
D otk / I8 P AL (P Ng)!, Pe,UY)ds|)
kGZJr 0 I

t
5 Z / 2_(No—10)k+(1 + 2k’t _ S’)_10<S>_3/2+366%d3 5 <t>_3/2+3660.
kezy 70

(4.12)
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Now, we focus on the case k < 0. From the L2 — L2-type bilinear estimate, the obtained estimate ([B.13))
and the Lgo—estimate of U, we first rule out the High x Low and Low x High type interaction as follows,

Z HPkA,u,V((Pkqub)uy sz UV)HL}C S 25k/4<8>_17
(k1,k2)EXFUXE

t
b D DI A /0 IR P A (PrNo(s)", ProU" (s))ds | 2 (4.13)

k€Z— (k1,k2)Ex2Ux3
t
S5 [ B 0 5 )
kez_ /0

Lastly, we consider the High x High type interaction. For this case, we use different strategies for
different pieces of Ny. Recall (L2]). We decompose N, into two pieces as follows,

No=Nj+ N3, Nj =" —2Pj 10(w)0;P(0:0), NG =Ny —Nj. (4.14)

keZ
For NV, g part, the following improved estimate holds since the L2 of Vu decay faster than wu,
| PNZ|| 2 S 2873k () 78/2120¢, (4.15)
From the above estimate and the estimate of symbol in (LI12]), we have

t
S Y e [ AR (BN Pl s
0

kE€Z— (k1,k2)ex}

t
S 30 [ P o)) s S (0 e
kez_ 70

(4.16)

It remains to consider the contribution of A (; For this case, as in (3.3]), we use super localized decay
estimate for the half wave. More precisely, we first consider the case when the frequency of u in A (; is
less than 2%. For this case, we decompose the high frequency inputs into fine pieces as follows,

[ Pi Ay (Pry (P<i(ui) Py (8:05))", Pr, U (5)) | 11
N > 1P Ay (P (P (i) Pt oy (0:0i9))"s Proyitna U (5)) | (4.17)

n17n2€[2k17k7572k17k+5}mz
|n1—na| <210

where |k} — k1| < 5 and P,.1.n, denotes the Fourier multiplier operator with the Fourier symbol

Ui ()P (€] — 2Fm).
From the L? — L? — L° type multilinear estimate, the estimate (23], the estimate of symbol in (LI2)),
and the super localized decay estimate (2.4]) in Lemma 2.1l we have

E1D) < > (8) 71227 Py (000:0) | 2 || P (W) 12
n1,na€[2k1—k=5 k1 —k+5]n7
|n1—ng|<210

x [2Feq + 27M/ATIR R GV (€) by, (€)r([€] — 25na) | 2]
S 2k/2+k‘1 —4k1,+ E% <S>_1+6.

(4.18)

Similarly, for any k' € [k, k1 — 10], we have
[P Ay (P (P (1) Py (0:059)) ", Pe, U ()| 1y S (s) /228 2 HR=4h0s | B (w)| 2
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Moreover, from L? — LS — L type multilinear estimate, we have

D 1PAL(Pay (P (wi) Py (0:0:9))", PryUY (5))ll s S (s) 72228730,
k'<k1—10

From the above obtained estimates, we have

t
SN [ B (P Pl

KE€Z— (k1,k2)ex)

(4.19)
t
<> / 127 (1+ 27F|t — 5)) 710 [min {2%5/2(s) 710, (5) 732} 4 25 (5) /1] ds < (1) ]
kez_ 0
To sum up, after combining the obtained estimates (£12)), (£13]), and (£I9]), we have
t
ZQka*H/O IR PL AL (V] ()", U (s))dsl| 2 < (8) et (4.20)

keZ

Due to symmetry of the bilinear form A,, (-, ), from the above estimate and the obtained estimate (€.11]),
we have

t
3ok / IR PN(s)dsllz < (071l (4.21)
keL 0

° The estimate of the normal form part.

Recall (II0) and (L.8]). We first use trivial estimates to rule out the very low frequency case and the
relatively high frequency case. More precisely, from the estimate of symbol in (LI2)), the L2 — L. type
Sobolev embedding and the L2 — L2-type bilinear estimate, we have

> 2P| P Ay, (U (1), UV (1) 2
keZ,k¢[—m/2—106m,2m /Ny (4 22)
< Z 22k—(N0—10)k++6m6% < 9 M. )

keZ,k¢[—m/2—106m,2m /Ny

Now, we focus on the case k € [-m/2 — 10dm,2m/Ny] N Z. To exploit the wave-wave-wave-type null
structure, we localize the angle between £ and +n as follows,

PeA,, (UR1), U (1) = > S Tl (tx), [i=—m/2— Bk ki, ks)/2
(k1,k2)extUxzUxs 1e[l,2]
l — ix-EitdHv (Em) 1 = =
Tk;kl,kz (t, .Z') = /RS /RS e § (§ n)alu,,lj(g - 7]7 n)vu(t7€ - n)v (t7 n)dﬁdé‘? (423)

dhy (€ — 1) = ag(€— . nm;l-(% <),

Bk, kryk2) := k1, kyeyt + (26 = k1)1, ke + k2l royexs -

o If (k1,k2) € X}, i-e., |k1 — ko| < 10. From the bilinear estimate (£2) in Lemma A1} and the
estimate of symbol in (I12), we have

”Tlg;kl,kg (t,2)llr2 S 2_k1’7+2i2k+4k1/3_10k1’+6% < g bk /3=8ki g 2 (4.24)
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For T,i. k1 ko (t,x), we do integration by parts in 7 once. As a result, we have
l ;2
Tk);k‘l,kz (t,x) := Tk K1 koo (t,x) + 1 k1, k2 (t,z)

zx 7 ” ’LV (I)M’ 57
TE (1) = i@y [V QEN) e T € — )T (2, ) dnde
’ ME{JF R JR t|V,®rv (€, n)|

;2 ix-E+itdHY Ty o 1V q>m”(£ 77) l
Tk k1, kz t $ /RS /RS EFite (5 n)vn : [V“(t,f—ﬁ)v (75,77)} t|V Puv (5 77)|2 ,u, (5 nn )d’l’}dﬁ,

For Tk’_ Ky Ko (t,x), we do integration by parts in 1 again. As a result, we have
v NV @ (€, m) iVy®¥(E,n)
Tl 1 t ZE / / ix-E+itdHY (€, n)v . LV ) v, - n )
bk R JR3 ! [th‘I)“’”(f,U)P ! [t|vn¢“’”(f,77)|2
X a,u,,u(g -1, TI)] VM (tv € - T,)Vy(ta TI)] dnd€

Note that ((¢ —n)/|¢ —n]) x (n/Inl]) = (€ xn)/(]€ = nl|n]). From the estimate of symbol in (LI2), and
the bilinear estimate (£2)) in Lemma 1], we have

l;1 —max{k1,k2} - —2m—2(k+2l) 9k+4k1/3+2l—10k1 + 2 —m—+k1/3—8k1 4+ 2
ST gy () g S 2 etk m2m o2k 2 gk L3 < g3k 2,
le(l,2]nZ

Moreover, from the estimate of symbol in (I.12]), the bilinear estimate (4.2]) in Lemma [£1] the estimate
[229)), and the decay estimate (2.4]) in Lemma 2.1l we have

Z HTlii N (t x)HL2 < 2—max{kl,kz},—m—(k—kl+l)+l2—(1—a)k1+26m2—m/2+k1/2—8k17+
k12N z ~

le,2Inz (4.26)
< 2—3m/2+35m—k+(3/2+a)k1 —8k1,+€%

(4.25)

) If (k1,ke) € X%, i.e., k1 < k — 10. By using the same strategy, from the estimate of symbol in
(LI2]), the bilinear estimate (£.2)) in Lemma [A1], and the decay estimate (2.4]), we have

[Ty o (8 ) 12 S 2700 2R /SH2RT0S G gtk /38

;1 —k —2m—2(2k—k1+20)+2lok1 /3+2k—10k ik /3—8ks 2
Z ”Tk‘ k)l,k‘g(t7x)”L% 5 Z 27 ( 1 ) 2 1/ + 5 2 1/ +€1,
le(t,2nz 12Nz
1;2 —kp—m—(k—k1+1)+lo—(1—a)k1+206mo—m/2+k2 /2—8k
Z HTk;kl,kQ(t,x)HLg S270 (k=k1 ) +lg—(1—a)ks 9—m/2+k2/ 2,4

1e(,2]NZ

(4.27)

S 2—5m/4+ak1 —8k+ 6%.

° If (ki,k2) € X% U xi, i.e., ko < k — 10. By using the same strategy, from the estimate of symbol
in (LI2)), the bilinear estimate (4.2]) in Lemma [£.1], and the decay estimate (2.4)), we have

1Ty s (@)l g S 274 F20Ma/BHETI0Rs & < gmmikafskr

Z ”T]iy}ghkz (t,x)”L% 5 Z 2—k+—2m—2(k2+2l)+2l24k2/3+k—10k+ 5 2—m+k2/3—8k+6%7
1e(1,2]NZ 1e(1,2]NZ
Z ||T]izil7k2 (t, x)HL% 5 Z 2—k+—m—l+l2—(1—o¢)k2+26m—8k+ min{2—m/2+k1/2, 2k2+l+2k1/3}
1e(l,2]NZ 1e(l,2]NZ
< 2—m/2—am/4+35m+ak2/2—8k+ 6%
~ )

(4.28)

Recall the decomposition ([£23). After combining the obtained estimates ([E24H4.28]), we have

> 2| P A, (UM (), U7 (1)) 2 S 27 (4.29)
ke[—m/2—106m,2m/No]NZ
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To sum up, our desired estimate (£I0) holds from the above estimate and the obtained estimate (4£.21]).
O

4.2. The estimate of Zy(t).
Lemma 4.3. Let t1,ty € [2™1,2™] € [0,T],m € Z,, s.t., m > 1. Under the bootstrap assumption

([LI6), we have

sup 2474108 | / NG (5, )un(§)ds| e S 27001 H10mg, (4.30)
(S t1

Proof. Recall (LI4) and (I2). We decompose N, into two parts as follows,
Ny=Ms+ Gy, My:=—-2u-V,00—Au-V,, Gyp=—(0 —A)u-Vup—u-V(u-Vye). (4.31)
More precisely, from the L2 — L2 — L type multilinear estimate, we have
> IVS0i(ui(s)u;(5)956(s)) Iy < ()24 (4.32)
|a]<10

Moreover, from the estimate (£44]) in Lemma 4l and the L2 — L2 — L type multilinear estimate, we
have

sup 28510 Fo e [Q(u, ) - Vo | (€un ()l S ()76,

keZ
sup IR F e [Q(6,0) - Vo] (©en(©)llnge S ()70, (4.33)
— ?EIIZ) 2k/3+10k+”fm_>5[(at _ A)u,&-gb] (§)¢k(€)|!Lgo < <S>—5/4+556:1),_
From the above estimate and the obtained estimate (£32]), we have
?EIIZ) 2k/3+10k+”]:m_>5[/;2 eis\V|G¢dS] (§)¢k(§)HLg° < 2—0.04m+105m6% (4.34)

Now, we focus on the contribution of the main part My. Note that, from the Duhamel’s formula, on
the Fourier side, for any & € supp(¢k(+)), we have

t2

. /zeis|vM¢dS](g)¢k(g): 3 3 / I (5, €)ds,

t t
! pe{+,—} (k1,k2)exiuxiuxg =

H €)= [ D (€0) - (5, = )V

(4.35)

where mgil,ﬁ (&) =in; (1 +cul¢ — 77‘2’77‘_1)1/%(5)1/%1 (& —n)Yr, (n). By using the energy norm and the
volume of support, we can rule out the very low and relative high frequency as follows,

- 5

Z 2k/3+10k+||I£;k1,k2(87£)‘|L§° < Z ok/3+10ky —m/2+5m

(k1 ko) €22 /[=2m/3,2m/ No]? (k1,k2)€Z2 /[~2m/3,2m /No]? (4.36)
X min{22min{k1,k2}/3, 2—(N0—5) max{khkg}}E% 5 2_1'17”6%.

Now, we focus on the case ki, ko € [—2m/3,2m/Ny]. For this case, we do integration by parts in 7
once for I,’:_kl ky (£:€). As a result, we have

Ilg-kl k2(87€) = Ilg-;]il k2(37€) + Ilglfl k2(87€)7

) i
kk1 kz(s §) = /R3 (3 §— 77) [3|77
12 N

|

Sl (€ )V (s, .
(5.0 = [T, (G0, — ) - [

Ml g (€ m)VI (s, m)] .
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Note that,
~ 6 (627 _61) . S
Vet(s, &) = |£|25’U(8 ) + e (€20, 51552) u(s,€) +S|£|23 (s, €)
6 6 7_5 o ~
—2Fuls ) + 6.0 + 5 N5, - stls, )
From the above equality, we decompose I ,‘55 k2(s, €) into three parts as follows,
Ik (5:€) = I (5,€) + IER (5,6 + I (5,6), (4.38)
21 [ istlEl=ulnD),y, i §—1 a=/. + (&2 —m2, =& +m)
k;klkz(S?S) /]\{3 k‘klkz(g 7]) |,’7| [ |£ ,’7|25u.7( 7§ 77)+ |£_,’7|2
0055, )+ S I ) — )] PR,
1 (5,6 o= [ et (R (6P o) P10 6,05, € —
]51313]62(3 6) /I\&S 7«3(‘5‘ /J|77‘ ka er, k)z(g n)VU(S T])U](S 5 T])d?’],

where we use Q;(-,-) and @j to denote the j-th component of the vector Q(-,-) and é(, ).
For [ ,’;f,?l;?’kz(s §), we repeat the procedure we did for I,(¢,&). As a result, we have

T (5:€) = Tk, 1y (5.6 + T 1y (5,6) T I 1 (5.6 + 15 4, (5.,), (4.39)
I, (5:6) = /R e (5,6 — v, [%mﬂ(&n)m(smﬂdm
2 (s,6) = _/RS o€l ] (¢ ) (ésy'g)-n . [|§_77|2§77j(37§_77) (& —|n;,_—n£|12+m)
< (62 — ), —<sl—m>a&>6@7j<s,s—n> ) F1Q; (a5, € — )] Vs ),
Lo, 1 (5:6) = = /R etslelmuin Hm e (& MV (5, FIQ; (&, )] (5, — m)dn,
T o (5:6) = = /R 3 e““-“'“szm (& mVH(s,m)5(s,€ — m)dn

For I 5;,317 kQ(s, €), we do integration by parts in times s once. As a result, we have

t2
4 ;1 ;2
/t Iﬁkl kQ( ,€)ds = Endi;kl,kz(tlatmf) +Iﬁk1,k2(t1,t2,€) +I]5;k17k2(t17t27£)7
1

2
Endﬁkhkz(tbtzaf) = Z (—1)j/ gits (€=l m“(ﬁ, )Vu(tj’ i (t,€ =) (77' (5—77)) dn,

Py B9 1€ = nl* + (€] = plnl) [nf?
; o~ _ 2
is(lel—uln) (& M)Os VI (5, )iy (5, € = m) (- (€ —m))” (4.40)
/tl /R 1€ = nl* + (€] = plnl) PR

o€l TR (€ MV (5, ) FIQ; (w, w)] (5, € — ) (n - (€ = )
T, 12:8) / e €0+ i(e — ) e
[

(€]l T E VB (5, ) F(Q; (6, D)) (5, € =) (0 (€ —))”
T s (1 12:0) / /R € — 0P +i(j€[ — ulnl) BE

Ik :k1,ko tlyt%

dndt,

dndt.
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From the L? — L? type bilinear estimate, the estimate ([2.9]), we have
k/3+10k 1 1231 Ths1
§£22 PO (115 1 (55 V() e + ITE s, (5, O lzge + 1T}, gy (5 n(E) 120
TH;2 —3/2+26 2
+ Hfif;kl,h(saé)%(é)HLgo) S (s) /2 €15
;2
sup MBI (|| Endyy, 1, (b1, 2, )Un(E)l| g + 1Tk, , (b1 2, )00k ()| e
;2 —0.
+If:;kl,kz(tl,tmf)%(f)”Lgo) < 27004m+100 2.

From the estimate (L44]) in Lemma 4], we have

;2;2 T3
sup 25/31108 (9| 1522 (5, &) (€) | = + 21 T0, 1, (5 )vor (€)=
keZ ., (4.42)
+ | Tk gy (15 12, YR ()| 2ge ) S 27004 H10F,

Recall the decomposition in (£37), (438)), (£39)), and (£40). To sum up, after combining the obtained
estimates (LA41]) and (£42), for any ki, ke € [-m/2 — 106m, 2m/Ny| N Z, we have

(4.41)

to
sup 2k/3+10k+|| I;:-k . (8,£)d8||Loo S 2—m/2+106m6% (4‘43)
keZ 4 sR1L,R2 3
Recall decompositions in (£I3]) and (L5). Hence our desired estimate (£30) holds from the above
estimate, the obtained estimates (£.34]) and (Z.36]). O
Lemma 4.4. Let t € 21 2",m € Z,. For any p,v,t € {+,—}, and bilinear operator T(-,-) with
symbol m € SpS. 1., s-t., ||m||5;30k1 o < 27k —F2max{ki ke ynder the bootstrap assumption (LI16), we
have
sup > FBHIOR [T (Py, (Q(Pry UM (), Py UY (1)), Py U (1)) ] () pe S 2710, (4.44)
€

(k1 ,/"ﬂz)EUi:Lz,aX_fv
(k1:k5)€Ui=1,2,3X},

where the bilinear operator @(, \) is defined by the symbol q(§ — n,n) in (LT).

Proof. Recall the symbol (7). By using the volume of support of frequency variable and the H™°-norm
of the wave part, we have

> 2F/AHIOR | FIT (P, (Q(Piy UM(£), Py U (1)), Py U'(£))] (€) e
(k1,k2)€Z2 /[—3m/4,2No /m)?
(k1 ks) €22 (4.45)
N Z min{28 min{kik2}/3 o—(N-15) max{kika}+ 13 < 9=5m/4 3,

(k1 ,k2) €72 /[—3m/4,2No /m)2

Moreover, for any fixed (ki, k2) € [—3m/4,2Ny/m]?, we can rule out the very small &, k, case and the
relatively big k], k, case as follows,

> 2108 | F [Py, (QUP U (2), Pl (1)), Pl (1) (€
(k) ,k5) €22 /[~3m /4,2No /m]? (4.46)
= > min {5 minkka) /3 g (N-15) maxthia) ) of < g om/act, |

(kl ,k2)€Z2/[—3m/4,2N0/m]2

Since there are at most m?* cases left, which only cause logarithmic loss, it would be sufficient to
let ki, ko, ki, Ky € [=3m/4,2Ny/m] N Z be fixed. As in the proof of the obtained estimate ([£29), we
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also exploit the null structure of the bilinear operator @(, -). Motivated from the proof of (£29), we
decompose into two parts as follows,

Q(Py UM(t), Py U"(1)) = Q<(Py UM (t), Py U (1)) + Q™ (P UM (t), Py U (1)), (4.47)
where Vx € {<, >},
@ (AU 0. P 0) = [ [ Gl — naalig x TOTREE ~ TP (omdnde. (145

where @ := —0.45m — B(k1, k], k%) /2, and B(ki, k], k) is defined in (£23).

Since the threshold we choose is a instead of —m/2 — min{k}, k5, k1}/2, and the symbol g(§ — n,n) of
the bilinear operator Q(-,-) is better than the symbol of the bilinear operator AL, (UR(t),UY(t)) in the
sense that it provides the smallness of the output frequency, which plays the small role of 2% in ([Z29).

After rerunning the argument used for obtaining (4.29)), we have
1Py, Q(Pey U (£), Py U (1) ll2 S 27, (4.49)
1Py, @ (P UH(), Py UV (1)) [l 12 S 27117 e,

From the first estimate in (4.49]), we can rule out very low output frequency as follows,
e FBTOR| [T (P, (Q(Py UM (1), Pry U (1)), Py U(8)) ] (§) e S 2710,
€(—o0,—0.1om

e Now, we focus on the case k € [—0.15m,2m/No| N Z and k1, ko, k|, kb, € [-3m/4,2Ny/m] N Z.
From the second estimate in (@49) and the L? — L2-type bilinear estimate, we rule out further the
large angle case as follows,

IO FT (P, (Q7 (P UM (), Py U™ (9)), ProU*(0) | (©)llage S 27106l (4:50)

It remains to estimate the contribution of @S(Pkﬁ UK (), P, U (t))). Note that, on the Fourier side,
after doing dyadic decomposition for the angle between £ — n and +(n — o), we have

]:[T(Pk:l (QVS(Pk’lUu(t)’ PkéUV(t)))7Pk2UL(t))] (f) = Z HZ’Z;L,’I;,M K (tv 5))

l1€[1,2]NZ
g 06) = [ [ b G - )T (o) (66 =) (45D
et R3 JR3
. §-n _n—o U
X q(n —o,0)m(n,& —mr, (e x Yo<a(ih X r)dnda,
TR E =] T =7 ] o]
where [ := —m /2 — min{k}, k1, k2 } /2. Note that
el ¥ B SE e X s
K g : K (4.52)
— ‘E % _‘ < 2k1 (2ké—k/1+ﬁ +2l)

For the threshold case, i.e., [ = [, we use the volume of support of 1,0. As a result, from the above
estimate (£52]), we have

‘ Z:]Z;L,}i27ki,ké (t 5)‘ S.; 2k1 (2k’ —ki+a 49 )22a24m1n{k1,k2}/3+5 min{k,k5}/3—10 max{k,k5}+ —10k2, + i{) (4 53)
—— ok/3+10k+ ‘Hu,w;l (t,§)| < 2—1.1m6§.

kik1,ko;k] k)
For the threshold case, i.e., | > [, we do integration by parts in 1 once. As a result, we have

;U'7V7L;l ;U'7V7L1l11 ;U'7V7L1l12
Heitr deaste i, (6 €) = Mg i (6.6 + Mg s it (66D, (4.54)
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WGl —1 o|+v|o|+e B
Wity = [ [ etlimttetsdeon) g [ - o) T 0~ )T (1.0

(“m o ~ \5 77\)
=g — e n\|
L (16) = /R 3 /R e e G 1y — )T (1,6~ m) T (1, 0)

£=n

i(1i=a _L\s i) §-n n-o n._o
v, — o, L€ — ), (0)py o(L x Ty dndo.
X |: t‘um 7 - ‘S_n‘ ‘2 Q(U g O-)m(n 5 77)¢k (77)901,1(|£ ,’7| |77 — O_|)¢S (|77| X |O'|) nac

— 0, O-)m(nvg - 77)¢k1 (n)‘:ol;l( é Z’ ‘7] : Z‘ )¢S&(% X %)dndaa

For HZ’Z’L}i’lk, " (t, &), we use the L? — L? type bilinear estimate and use the volume of support of 7, o
As a result, from the estimate (#52), we have

2k/3+10k+ |%Z,Z71L,]i,21kl k/ (t é-)‘ 5 2k/3+10k+ 2—m—l+a [2min{k1,k2}—(1—a)k2 2(k1—k)/2 (2]6%—]6/14—@ + 2l) 1/2

« 24min{k1,ké}/3+a 10min{k} kS }+ + 24min{k1,k2}/32k1—k (2k’2—k£+ﬁ + 2l)2&/22min{k£,k’2}—ak’l]eif

< 9—2k/3+(1+a)k:+10k4 (2—m—l2sa/2+4 min{ki,k5}/3—k{/2 4 2—m—l/222&+4min{k§,k’2}/3)efi (4.55)

| 9=2k/3+Tk1 /3+10k (2—m+3a/2+min{k;,kg}—akg I 2—m—l+5a/2+k§+min{k’1,ké}—(l—i—a)k’l)Efi

—1.3m 3
SJ 2 €1.

For ’Hggféfk, K, (t,€), we use the volume of support of 1,0. As a result, from the estimate ([d.52]), we
have
k/3+10k JTRZN k/3+10ky o—m—I+2a0k1—k (okh,—k|+a l
2" +|Hkk1,k2,k’k’(t£)|§2/ A e G
x 92 min{k1,k2}+2min{k}, k5 }—(ko+k}+k5)/3 [2—l—min{k2,ki} + 2—&—]91]

4.56
S_, 2—m—2k/3+5 min{kl,kg}/3+4min{k£,ké}/3+10k+ [2—2l—min{k2,kﬁ}—l—gfl—l—kl—l—ké— /1 4 2—l+2ﬁ,+k’2_k’1 ( )

+ 2—l+2&+k1—min{k2,k’1} + 2&] < 2—1.21’)’),6?‘

Recall the decompositions in (447, (£51), and (£54]). After combining the above two estimates and the
obtained estimates (4.50) and (A53]), we have

sup RO FIT(By QP UM (), PyU (1)), P Ut (0) ) ©)llge < 27-0mel.
k€[—0.15m,2m/NolNZ

Hence finishing the proof of our desired estimate (£.44]). O

4.3. Proof of the theorem [I.1l In this subsection, we summarize the results we obtained so far and
prove our main theorem [[LJ1 From the obtained estimate (3.I]) in Lemma B.I], the obtained estimate
(BI6) in Lemma [3:2] the obtained estimate ([B:26]) in Lemma[33] the obtained estimate (ZI0) in Lemma
12 the obtained estimate (A30]) in Lemmald3] the following improved estimate holds in the time interval
[0, 77,

sup (620 u(t)l| grvo+r + (7D ITw®)r) + () Zult) + &) NU )] o
te[0,T re{s,0}

(O Y MUl + Y 27 BT (0]12) + Zo(t) S o

Te{s,Q} k€EZ_

(4.57)
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Hence finishing the bootstrap argument, i.e., T' can be extended to infinity. Moreover, as a by product
of the Z,(t)-estimate, from the obtained estimate (£30) in Lemma 3] we have

o
sup RBHIOR || [ NG (s, €)n (€)ds | pee S (1) 7004 P,
€ t

= sup 28/3H10k || [T (¢, €) — e_it‘ﬂvoo(f)wk(f)ds\hgo < ()00, (4.58)
keZ

Vaol€) 1= Do(€) + /0 " IR (s, €)ds.

That’s to say, the nonlinear solution scatters to a linear solution.
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