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ON THE BIRATIONAL GEOMETRY OF Q-FANO THREEFOLDS

OF LARGE FANO INDEX, I

YURI PROKHOROV

Abstract. We investigate the rationality problem for Q-Fano threefolds of Fano index ≥ 2.

1. Introduction

A three-dimensional algebraic projective variety X is called Q-Fano threefold if it has only
terminal Q-factorial singularities, Pic(X) ≃ Z, and its anticanonical divisor −KX is ample.
The class of these varieties is important in birational geometry because it is one of the possible
outputs of the Minimal Model Program in dimension 3. It is known that Q-Fano threefolds
are bounded, i.e. they lie in a finite number of algebraic families. Moreover, the methods of
[Kaw92] allow to obtain a (huge) list of numerical invariants of Q-Fano threefolds [B+]. At the
moment there is no classification, but there are a lot of partial results.

This work is a sequel to our previous papers [Pro22b], [Pro22a]. We are interested in the
birational geometry of Q-Fano threefolds rather than biregular one. Mainly, we will discuss the
rationality question.

The Q-Fano index of a Q-Fano threefold X is the maximal integer qQ(X) that divides the
canonical class KX in the Weil divisor class group modulo torsion (see (2.2.1)). A Weil divisor
A such that −KX∼QqQ(X)A we call the fundamental divisor and denote it by AX . It turns out
that the classification of Q-Fano threefolds of large index qQ(X) is much simpler (see [Suz04]
and [Pro10]). Moreover, Q-Fano threefolds of large index qQ(X) are expected to be rational:

1.1. Theorem ([Pro22b]). Let X be a Q-Fano threefold. If qQ ≥ 8, then X is rational.

On the other hand, there are nonrational Q-Fano threefolds of large index. For example,
T. Okada [Oka19] showed that there are Q-Fano threefold hypersurfaces of index 2, 3, 5, and 7
that are not rational.

The following invariant will be very important in the sequel:

pn(X) := max
{
h0(X,OX(D)) | D ∼Q nAX

}
.

If the Weil divisor class group Cl(X) is torsion free, then the above definition becomes simpler:

pn(X) = h0(X,OX(nAX)).

Our main result is as follows:

1.2. Theorem. Let X be a Q-Fano threefold with qQ(X) ≥ 2. If one of the following conditions

hold, then X is rational

(i) p1(X) ≥ 4,
(ii) qQ(X) ≥ 3 and p1(X) ≥ 3,
(iii) qQ(X) ≥ 4 and p1(X) ≥ 2,
(iv) qQ(X) ≥ 5 and p2(X) ≥ 2 and X is not of type [B+, # 41422] (see Proposition 7.4),
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(v) qQ(X) ≥ 6 and p3(X) ≥ 2.

We also study birational geometry of Q-Fano threefolds with p1(X) ≥ 2 and qQ(X) = 2 or
3 (see Propositions 6.4 and 8.1).

2. Preliminaries

2.1. Notation. We employ the following notation.

• ∼ and ∼Q denote the linear and Q-linear equivalences of divisors, respectively;
• Cl(X) denotes the Weil divisor class group of a normal variety X ;
• Cl(X)t is the torsion subgroup of Cl(X);
• g(X) is the genus of the Q-Fano threefold X , that is, g(X) := h0(X,OX(−KX))− 2;
• P(w1, . . . , wn) is the weighted projective space with weights w1, . . . , wn; coinciding
weights we group together as follows P(w1, . . . , w1

︸ ︷︷ ︸

k

, w2, . . . ) = P(wk
1 , w2, . . . );

• B(X) is the basket of singularities of a terminal threefold X (see [Rei87]); this is a
collection of virtual cyclic quotient singularities 1

rP
(1,−1, bP ) associated to each actual

singular point of X . For short, in B(X) we list only indices of these virtual points, i.e.
B(X) = ({rP}).

• µN denotes the multiplicative cyclic group of order N . If µN acts on An by

(x1, . . . , xn) 7−→ (ζw1
n x1, . . . , ζ

wn

n xn),

where ζn is a primitive N -th root of 1, then we say that (w1, . . . , wn) are the weights
of the action an we write µN(w1, . . . , wn) to specify the action.

2.2. Q-Fano threefolds. For a Fano variety with at worst log terminal singularities we define
Fano-Weil and Q-Fano indices as follows:

(2.2.1)
qW(X) := max{q ∈ Z | −KX ∼ qA, A is a Weil divisor},

qQ(X) := max{q ∈ Z | −KX ∼Q qA, A is a Weil divisor}.

The fundamental divisor of X is a Weil divisor AX such that

(2.2.2) −KX ∼Q qQ(X)AX .

Note that if Cl(X)t 6= 0, then the class of AX is not uniquely defined modulo linear equivalence.
However, in the case qQ(X) = qW(X) we always accept the following.

2.2.3. Convention. If qQ(X) = qW(X) we take AX so that

−KX ∼ qW(X)AX .

The Hilbert series of a Q-Fano threefold X is the formal power series [ABR02]

hX(t) =
∑

m≥0

h0(X,mAX) · t
m.

It is computed by using the orbifold Riemann-Roch formula [Rei87]. If the group Cl(X) contains
an element T of N -torsion, we define T -Hilbert series hX(t, σ) ∈ Z[[t, σ]]/(σN − 1) as follows:

hX(t, σ) =
∑

m≥0

N−1∑

j=0

h0(X,mAX + jT ) · tmσj .

Obviously, the above definition depends on the choice the class of AX in Cl(X). Typically
calculating hX(t) or hX(t, σ) for our purposes we need only a few initial terms of the series.
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Recall that the Gorenstein index of a normal Q-Gorenstein variety X is a minimal positive
integer r such that the Weil divisor rKX is Cartier.

2.2.4. Theorem ([Suz04], [Pro10]). Let X be a Fano threefold with terminal singularities and

let r be its global Gorenstein index. Then the following assertions hold:

(i) qW(X) divides qQ(X);
(ii) qW(X) = qQ(X) if and only if r and qW(X) are coprime;

(iii) rA3
X is an integer;

(iv) qW(X), qQ(X) ∈ {1, . . . , 9, 11, 13, 17, 19}.

2.2.5. Theorem ([CF93], [San96]). Let X be a Fano threefold with terminal singularities. As-

sume that there exists a Cartier divisor H on X such that H ∼Q mAX , where m < qQ(X).
Then the general member S ∈ |H| is a smooth del Pezzo surface, the group Cl(X) is torsion

free, and (X,H) is described by the following table. The general member X of each family is a

Q-Fano threefold.

qQ B(X) A3
X X g(X) Rat? m K2

S

1o 4 ∅ 1 P3 33 R 1, 2, 3 9, 8, 3

2o 3 ∅ 2 X2 ⊂ P4 28 R 1, 2 8, 4

3o 2 ∅ d del Pezzo threefold of degree d ≤ 5 4d+ 1 1 d

4o 5 (2) 1/2 P(13, 2) 32 R 2, 4 9, 2

5o 7 (2, 3) 1/6 P(12, 2, 3) 29 R 6 1

6o 4 (32) 1/3 X6 ⊂ P(12, 2, 32) 11 R 3 1

7o 5 (2, 4) 1/4 X6 ⊂ P(12, 2, 3, 4) 16 R 4 1

8o 6 (5) 1/5 X6 ⊂ P(12, 2, 3, 5) 22 R 5 1

9o 3 (23) 1/2 X6 ⊂ P(12, 22, 3) 7 2 1

10o 3 (22) 1 X4 ⊂ P(13, 22) 14 R 2 2

11o 4 (3) 2/3 X4 ⊂ P(13, 2, 3) 22 R 3 2

12o 3 (2) 3/2 X3 ⊂ P(14, 2) 21 R 2 3

The column “Rat” indicates the rationality of X . One can see that almost all the Q-Fano
threefolds in the table are rational. In the case 9o it is known that a very general variety in the
family is not rational (and even not stably rational) [Oka19]. Rationality question of del Pezzo
threefolds (case 3o) has a long story. We refer to the book [IP99] for references and to [CPS19]
for a detailed discussion of the case d = 2.

2.3. Singularities. For the classification of terminal threefold singularities we refer to [Rei87].

2.3.1. Definition. Let X be a threefold with terminal Q-factorial singularities. An extremal

blowup of X is a birational morphism f : X̃ → X such that X̃ has only terminal Q-factorial
singularities and ρ(X̃/X) = 1.

Note that in this situation the divisor −KX̃ is f -ample.

2.3.2. Theorem ([Kaw96]). Let X ∋ P a cyclic quotient terminal threefold singularity of type
1
r
(a, r − a, 1), r ≥ 2 and let f : X̃ → X be an extremal blowup f : X̃ → X ∋ P whose

center contains P . Then f is the weighted blowup with the system of weights 1
r
(a, r − a, 1), in

particular, the discrepancy of the f -exceptional divisor equals 1/r.
3



2.3.3. Theorem ([Kaw93]). Let X ∋ P a terminal threefold singularity of index r. Then there

exists an exceptional divisor E over P whose discrepancy equals 1/r.

The following useful fact is a consequence of the classification of extremal blowups [Kaw05]
(see [Pro13, Lemma 2.6] for explanations).

2.3.4. Lemma. Let X ∋ P be a threefold terminal point of index r > 1 with basket B(X,P ),
let f : X̃ → X be an extremal blowup with f(E) = P , where E is the exceptional divisor, and

let α be the discrepancy of E.

(i) If X ∋ P is a point of type other than cA/r and r > 2, then α = 1/r.
(ii) If X ∋ P is of type cA/r and B(X,P ) consists of n points of index r, then α = a/r,

where n ≡ 0 mod a.

2.4. Du Val del Pezzo surfaces. Let S be a del Pezzo surface with only Du Val singularities.
We assume that ρ(S) = 1. The definitions of Fano indices and the fundamental divisor AX are
applicable to S (see (2.2.1) and (2.2.2)). Recall also our Convention 2.2.3. Let µ : S̃ → S be

the minimal resolution. We say that a curve L ⊂ S is a line if there exists a (−1)-curve E ⊂ S̃
such that L = µ(E).

2.4.1. Lemma. In the above notation assume that d := K2
S < 8. One has:

(i) The set of lines on S is finite and non-empty.

(ii) The group Cl(S) is generated by the classes of lines.

(iii) For every effective Weil divisor D on S there is a presentation

D ∼ a0(−KS) +
∑

aiLi,

where the Li are lines in S, the ai are non-negative integers, and a0 = 0 if d > 1.
(iv) For any line L on S we have L∼Q AS, hence qQ(S) = d.
(v) If D is a divisor on S such that D ∼Q AS, then either

(a) dim |D| = 0 and D ∼ L, where L is a line, or

(b) dim |D| = 1, d = 1, and D ∼ −KS.

(vi) If D is an ample divisor, then |D| 6= ∅.

(vii) If D is an effective divisor such that dim |D| = 0 and D 6= 0, then D is a line.

(viii) Assume that d > 1. Then for any two lines L1 and L2 on S the divisor L1 − L2 is a

non-trivial torsion element in Cl(S). In particular, Cl(S) ≃ Z if and only if S contains

exactly one line.

Sketch of the proof. The assertion (i) follows from the cone theorem applied to S̃. For (ii)
and (iii) we refer to [CP21, Lemma 2.9]. The assertion (iv) follows from the equality d =
−dKS · L = qQ(S)(−KS · AS). To prove (v) assume that D 6∼ −KS and D ∼Q AS. By the
orbifold Riemann-Roch formula [Rei87] applied to D and −D we have:

χ(S,OS(D)) =
1

2
D · (D −KS) + 1 +

∑

cP (D),

χ(S,OS(−D)) =
1

2
D · (D +KS) + 1 +

∑

cP (−D).

By the Kawamata-Viehweg vanishing and Serre duality hi(S,OS(−D)) = 0 for i = 0, 1, 2 and
hi(S,OS(D)) = 0 for i = 1, 2. Since cP (−D) = cP (D), we obtain h0(S,OS(D)) = 1. Hence
we may assume that D is effective. In this case (v) is a consequence of (iii) The assertion (vi)
follows from (v). For (vii), in view of (iii) it is sufficient to show that −KS · D = 1. Let
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C ∈ | −KS| be a general element. Then C is a smooth elliptic curve lying in the smooth part
of S. Since H1(S,OS(D +KS)) = 0, from the exact sequence

0 −→ OS(D +KS) −→ OS(D) −→ OC(D) −→ 0

we obtain h0(C,OC(D)) = 1, hence D · C = degOC(D) = 1.
Finally, (viii) follows from (i), (ii) and (v). �

2.4.2. Lemma. Let S be a del Pezzo surface with only Du Val singularities of type An and

ρ(S) = 1. If the group Cl(S) is torsion free, then there are only the following possibilities:

K2
S S hS(t)

9 P2 1 + 3t+ 6t2 + 10t3 + 15t4 + 21t5 + · · ·

8 P(12, 2) 1 + 2t+ 4t2 + 6t3 + 9t4 + 12t5 + · · ·

6 P(1, 2, 3) 1 + t + 2t2 + 3t3 + 4t4 + 5t5 + · · ·

5 S6 ⊂ P(1, 2, 3, 5) 1 + t + 2t2 + 3t3 + 4t4 + 6t5 + · · ·

where S6 ⊂ P(1, 2, 3, 5) is a hypersurface of degree 6 in P(1, 2, 3, 5) having a unique singular

point which point of type A4; this surface is unique up to isomorphism.

Proof. The classification can be found in [MZ88] and computation of hS(t) follows from the
orbifold Riemann-Roch [Rei87]. �

3. Q-Fano threefolds with torsion in the divisor class group

In this section we discuss Q-Fano threefolds whose class group Cl(X) contains non-trivial
torsion.

3.1. Proposition (see [Pro22b, § 3]). Let X be a Q-Fano threefold with qQ(X) ≥ 5 and

|Cl(X)t| = N > 1. Then qQ(X) = 5 or 7 and X belongs to one of the following classes:

A3
X B(X) g(X) hX(t, σ)

qQ(X) = 7, N = 2

1o 1/24 (22, 3, 4, 8) 6 1 + tσ + t2 + t2σ + 2t3 + 2t3σ + 3t4 + 3t4σ + 4t5 + 4t5σ + · · ·

2o 1/30 (2, 6, 10) 5 1 + t+ t2 + t2σ + t3 + 2t3σ + 2t4 + 3t4σ + 3t5 + 4t5σ + · · ·

qQ(X) = 5, N = 3

3o 1/18 (2, 92) 2 1 + t+ t2 + t2σ + t2σ2 + t3 + 2t3σ + 2t3σ2 + · · ·

qQ(X) = 5, N = 2

4o 1/6 (2, 42, 6) 10 1+t+tσ+2t2+3t2σ+4t3+5t3σ+8t4+7t4σ+12t5+11t5σ+· · ·

5o 1/8 (22, 4, 8) 7 1+t+tσ+2t2+2t2σ+3t3+4t3σ+6t4+6t4σ+9t5+9t5σ+ · · ·

6o 1/12 (42, 12) 4 1 + t+ t2 + t2σ + 2t3 + 2t3σ + 4t4 + 4t4σ + 6t5 + 6t5σ + · · ·

7o 1/28 (2, 4, 14) 1 1 + t+ t2 + t3 + t3σ + 2t4 + 2t4σ + 3t5 + 3t5σ + · · ·

In particular, p1(X) = 1.

The following fact is a consequence of computer calculations as explained in Appendix A. In
principle, one can perform them by hand but since they are not conceptual it is more reasonable
to use a computer.
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3.2. Proposition. Let X be a Q-Fano threefold with qQ(X) ≥ 3 and qW(X) 6= qQ(X). Then

qQ(X) = 3 or 4 and X belongs to one of the following classes:

A3
X B(X) g(X) p1(X) hX(t, σ)

qQ(X) = 3, Cl(X)t ≃ Z/3Z

1o 1/2 (34, 6) 6 2 1+(1+σ+2σ2)t+(3+4σ+4σ2)t2+(8+8σ+7σ2)t3+· · ·

2o 1/10 (34, 5, 6) 0 1 1 + σ2t+ (σ + σ2)t2 + (2 + 2σ + σ2)t3 + · · ·

3o 1/4 (2, 32, 12) 2 1 1+ (σ+ σ2)t+2(1+ σ+ σ2)t2 +4(1+ σ+ σ2)t3+ · · ·

qQ(X) = 4, Cl(X)t ≃ Z/2Z

4o 1/3 (25, 6) 10 2 1+(1+2σ)t+(4+3σ)t2+7(1+σ)t3+12(1+σ)t4+· · ·

5o 2/15 (25, 5, 6) 3 1 1 + σt+ (2 + σ)t2 + 3(1 + σ)t3 + 5(1 + σ)t4 + · · ·

6o 1/21 (25, 6, 7) 0 1 1 + σt+ t2 + (1 + σ)t3 + 2(1 + σ)t4 + · · ·

7o 2/5 (23, 10) 12 2 1+(1+2σ)t+4(1+σ)t2+8(1+σ)t3+14(1+σ)t4+· · ·

8o 1/15 (23, 3, 10) 1 1 1 + σt+ (1 + σ)t2 + 2(1 + σ)t3 + 3(1 + σ)t4 + · · ·

9o 1/5 (23, 5, 10) 5 1 1 + σt+ 2(1 + σ)t2 + 4(1 + σ)t3 + 7(1 + σ)t4 + · · ·

10o 4/35 (23, 7, 10) 2 1 1 + σt+ (1 + σ)t2 + 2(1 + σ)t3 + 4(1 + σ)t4 + · · ·

3.3. Proposition. Let X be a Q-Fano threefold with qQ(X) ≥ 3, qW(X) 6= qQ(X), and p1(X) ≥
2. Then one of the following holds

(i) X is of type 1o of Proposition 3.2 and then X is the quotient X ′/µ3, where X
′ is a

hypersurface of degree 3 in P(14, 2):
{

x2x
(1)
1 + φ3

(
x
(1)
1 , . . . , x

(4)
1

)
= 0

}

/µ3(0, 0, 1, 1,−1).

(ii) X is of type 4o of Proposition 3.2 and then X is the quotient X ′/µ2, where X
′ is a

hypersurface of degree 4 in P(13, 2, 3):
{
x3x1 + x22 + φ4(x

′
1, x

′′
1) + φ2(x

′
1, x

′′
1)x

2
1 = 0

}
/µ2(0, 1, 1, 1, 0).

Here the subscript is the degree of the corresponding variable or polynomial.

In both cases X is rational.

Proof. By Proposition 3.2 we have either qQ(X) = 3 or qQ(X) = 4. First, consider the case
qQ(X) = 3. Then the variety X is of type 1o of Proposition 3.2. The group Cl(X)t ≃ Z/3Z
defines a triple cyclic cover π : X ′ → X which is étale outside Sing(X). Thus X = X ′/µ3,
where X ′ is a Fano threefold with terminal singularities (not necessarily Q-Fano) such that
qW(X ′) is divisible by 3, A3

X′ = 3/2, and B(X ′) = (2). By Theorem 2.2.5 the variety X ′ is a
hypersurface of degree 3 in P(14, 2). In these settings, the unique point P ′ ∈ X ′ of index 2 has
coordinates (0, 0, 0, 0, 1). Since P ′ ∈ X ′ is a terminal cyclic quotient singularity, the variable
x2 of degree 2 appears in the equation of X ′.

The embedding X ′ ⊂ P(14, 2) is canonical, so it is µ3-equivariant and the action of µ3 on
X ′ is induced by a liner action on the ambient space P(14, 2). Moreover, the homogeneous

coordinates x
(k)
1 and x2 can be taken to be semi-invariant. Modulo a linear coordinate change

we may assume that the equation of X ′ is as follows:

x2x
(1)
1 + φ(x

(1)
1 , . . . , x

(4)
1 ) = 0.
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Consider the affine chart U2 := {x2 6= 0} ⊂ X ′. Then

U2 = {y(1) + φ′(y(1), . . . , y(4)) = 0}/µ2(1, 1, 1, 1).

The quotient U2/µ3 is a terminal cyclic quotient singularity. Hence µ3-action on U2 has weights
(a, 1, 1,−1) for some a ∈ {0, 1, 2} modulo permutations of y(2), y(3), y(4) and changing the
generator of µ3. Thus µ3-action on P(14, 2) has weights (0, a, 1, 1,−1). If a = 1, then the fixed

point locus contains the curve {x2 = x
(4)
1 = 0} ∩X ′, a contradiction. If a = −1, then, by the

same reason, the line x2 = x
(2)
1 = x

(3)
1 = 0 is not contained in X ′ and so φ(x

(1)
1 , 0, 0, x

(4)
1 ) 6= 0.

But in this case φ and x2x
(1)
1 must be µ3-invariant, a contradiction. Hence a = 0. This

proves (i).
Now consider the case qQ(X) = 4. Then again by Proposition 3.2 the variety X is of type 4o

or 7o. The group Cl(X)t ≃ Z/2Z defines a double cover π : X ′ → X which is étale outside
Sing(X), where X ′ is a Fano threefold with terminal singularities. Moreover, in our two cases
we have

4o. qW(X ′) = 4, A3
X′ = 2/3, B(X ′) = (3), dim |AX′ | = 2, g(X ′) = 22;

7o. qW(X ′) = 4, A3
X′ = 4/5, B(X ′) = (5), dim |AX′ | = 2, g(X ′) = 26.

By Theorem 2.2.5 in the case 4o the variety X ′ is a hypersurface of degree 4 in P(13, 2, 3) and
by Proposition 3.3.1 below the case 7o does not occur. As above the embedding X ′ ⊂ P(13, 2, 3)
is µ2-equivariant, where the action on X ′ is induced by a liner action on the ambient space
P(13, 2, 3). Moreover, we may assume that the coordinates x1, x

′
1, x

′′
1, x2, x3 are semi-invariants

with eigenvalues ±1 and x1 is an invariant. Since B(X ′) = (3), the terms x22 and some of x3x1,
x3x

′
1 or x3x

′′
1 appear in the equation. Modulo an obvious coordinate change we may assume

that the equation of X ′ is as follows:

x3x1 + x22 + φ(x1, x
′
1, x

′′
1) = 0,

where φ is a semi-invariant of degree 4. Then we see that φ is in fact an invariant and x3 must
be an invariant as well. Since the set of fixed points is finite, the variables x′1, x

′′
1, x2 cannot be

invariant. Hence the action have the desired form. The rest is obvious. �

3.3.1. Proposition. Let Y be a weak Fano threefold with terminal singularities with g(Y ) > 22.
Assume that there exists a Weil divisor B on Y such that −KY ∼ 4B and dim |B| ≥ 2. Then

Y ≃ P3.

Proof. If Y is a Q-Fano threefold, then the assertion follows from [Pro13, Theorem 1.2]. Thus
we assume that Y is not Q-Fano. Replacing Y with its Q-factorialization, we may assume that
Y is Q-factorial. Then ρ(Y ) > 1. Run the MMP on Y :

(3.3.2) Y = Y (0)
99K Y (1)

99K · · · 99K Y (n−1)
99K Y (n).

Let Bk be the proper transform of the linear system B0 := |B| on Y (k). On each step the
relation −KY (k) ∼ 4Bk is kept. Moreover, dimBk = dim |B| ≥ 2. Thus Y (n) has a structure
of Mori-Fano fiber space ϕ : Y (n) → Z such that for a general fiber F we have −KF ∼ 4Bn|F .
This is not possible if ϕ is a del Pezzo or a rational curve fibration. Hence Z is a point and
Y (n) is a Q-Fano threefold such that qW(Y (n)) is divisible by 4 and g(Y (n)) ≥ g(Y ) > 22. By
[Pro13, Theorem 1.2] we have Y (n) ≃ P3. Let us consider the last step ψ : Y (n−1)

99K Y (n)

of the MMP. Since ρ(Y (n)) = 1, the map ψ : Y (n−1)
99K Y (n) must be a divisorial contraction

and since −KY (n−1) is divisible, ψ cannot be a contraction of a divisor to a curve. Thus ψ
contracts a divisor E ⊂ Y (n−1) to a point P ∈ Y (n). Since −KY (n−1) ∼ 4Bn−1 is ψ-ample, we
see that P ∈ BsBn. Then Bn is subsystem in |OP3(1)| of codimension 1 and so Bn has a single
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base point, say P . Therefore, Bn−1 has no base points outside E. Since −KY (n−1) is ample
on E, we see that −KY (n−1) is nef. Since −KY (n−1) is the proper transform of −KY , it is also
big. Thus Y (n−1) is a weak Fano threefold with terminal singularities and −KY (n−1) ∼ 4Bn−1.
According to [Kaw01] the contraction ψ is the weighted blowup with weights (1, w1, w2), where
gcd(w1, w2) = 1. Then we have

B(Y (n−1)) = (w1, w2), KY (n−1) = ψ∗KP3 + (w1 + w2)E.

Here w1 + w2 is divisible by 4 because so KY (n−1) is. Then

0 < (−KY (n−1))3 = 64−
(w1 + w2)

3

w1w2

.

Up to permutation of w1 and w2 we obtain the following possibilities for
(
w1, w2, A

3
Y (n−1)

)
:

(1, 3, 2/3), (3, 5, 7/15), (5, 7, 8/35).

Then from the Kawamata-Viehweg vanishing and the orbifold Riemann-Roch formula (see (A.1.2))
we obtain g(Y (n−1)) = 22, 15, 7 in these cases, respectively. This contradicts our assumption
g(Y ) > 22. �

3.3.3. Corollary. Let X be a Q-Fano threefold with qQ(X) ≥ 6. If either p1(X) ≥ 2 or

qQ(X) ≥ 7 and p2(X) ≥ 2, then X is rational.

Proof. By Theorem 1.1 we may assume that qQ(X) = 6 or 7. By Proposition 3.1 the group
Cl(X) is torsion free. If qQ(X) = 6 and p1(X) ≥ 2, then computer search (see Sect. A) gives
only one possibility: A3

X = 1/5, B(X) = (5), [B+, # 41469]. In this case X is rational by
Theorem 2.2.5. Similarly in the case qQ(X) = 7 and p2(X) ≥ 2 there are four possibilities:

• A3
X = 1/6, B(X) = (2, 3), g(X) = 29, [B+, # 41492];

• A3
X = 1/12, B(X) = (2, 32, 4), g(X) = 14, [B+, # 41484];

• A3
X = 1/10, B(X) = (23, 5), g(X) = 17, [B+, # 41489];

• A3
X = 1/15, B(X) = (22, 3, 5), g(X) = 11, [B+, # 41481].

In the case A3
X = 1/6 we have X ≃ P(12, 22) by Theorem 2.2.5 and in the cases A3

X = 1/12 and
A3

X = 1/10 there is explicit descriptions of X as a weighted hypersurface X6 ⊂ P(1, 2, 32, 4)
and X6 ⊂ P(1, 22, 3, 5), respectively (see [Pro13, Theorem 1.4] and [Pro16, Theorem 1.2]). It
is easy to see that these varieties are rational. Rationality of X in the case A3

X = 1/15 was
proved in [Pro22b, Proposition 5.1]. �

3.4. Proposition. Let X be a Q-Fano threefold with qQ(X) ≥ 3 and N := |Cl(X)t| > 1.
Assume either N ≥ 4 or qQ(X) = 4 and N = 3. Then Cl(X)t ≃ Z/NZ and X is the quotient

X ′/µN , where X
′ is a Fano threefold with terminal singularities and the action of µN on X ′ is

free outside a finite number of points. Moreover, X and X ′ are described by the following table:

qQ(X) B(X) N A3
X g(X) p1(X) B(X ′) X ′

1o 3 (22, 82) 4 1/4 2 1 (22) X ′
4 ⊂ P(13, 22)

2o 3 (54) 5 2/5 4 1 ∅ Q ⊂ P4

3o 4 (54) 5 1/5 5 1 ∅ P3

4o 4 (92) 3 1/9 3 1 (32) X ′
6 ⊂ P(12, 2, 32)

where X ′
4 ⊂ P(13, 22) is a hypersurface of degree 4 and Q ⊂ P4 is a smooth quadric.

In particular, X is rational.
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Proof. The computer search by the algorithm outlined in Appendix A produces exactly three
possibilities with numerical invariants as in the table. Then Cl(X)t ≃ Z/NZ, where N = 4
or 5 and, as in the proof of Proposition 3.3, we see that the generator of this group defines a
global cyclic cover X ′ → X of degree N . Thus X = X ′/µN . Here the Gorenstein index of X ′

is strictly less than qQ(X
′). Hence X ′ by Theorem 2.2.5 X ′ is either a hypersurface of degree

4 in P(13, 22), of degree 6 in P(12, 2, 32), the projective space P3, or a quadric Q ⊂ P4.
It remains to show that X is rational. In the case 3o the variety X is toric, so rationality

is obvious. In the case 2o the action of µ5 on Q is induced by a linear action on P4. The
projection Q 99K P3 from a fixed point P ∈ Q is equivariant, hence Q/µ5 is birational to the
toric variety P3/µ5, so it is rational.

Consider the case 1o. As above, action of µ4 on X ′ is induced by a liner action on the
ambient space P(13, 22). Moreover, we may assume that the coordinates x1, x2, x3, y1, y2 are
semi-invariants with deg xi = 1, deg yj = 2. The equation of X ′ can be written as follows

q(y1, y2) + y1φ
′
2(x1, x2, x3) + y2φ

′′
2(x1, x2, x3) + φ4(x1, x2, x3) = 0,

where q, φ′
2, φ

′′
2, φ4 are homogeneous polynomials of degree 2, 2, 2, 4, respectively. Since the

line Sing(P(13, 22)) = {x1 = x2 = x3 = 0} is not contained in X ′, we have q(y1, y2) 6= 0. The
projection Ψ : X ′

99K P(13) = P2 is an equivariant rational map whose fibers are conics in
P(1, 22) = P2 and whose indeterminacy locus Ind(Ψ) = {q(y1, y2) = x1 = x2 = x3 = 0} consists
of one or two points of index 2. These points cannot be switched by the action of µ4 because
their images on X are exactly the points of index 8. Hence points in Ind(Ψ) = {q(y1, y2) =
x1 = x2 = x3 = 0} give invariant sections of Ψ. This implies that the rational curve fibration
X = X ′/µ4 99K P2/µ4 has a section, hence X is rational.

Finally, in the case 4o, as above, the equation of X ′ can be reduced to one of the following
forms

x3x
′
3 + ax32 + x2φ4(x1, x

′
1) + φ6(x1, x

′
1) = 0,

x23 + ax32 + x2φ4(x1, x
′
1) + φ6(x1, x

′
1) = 0.

In the former case the projection to P(12, 2, 3) establishes the rationality of X . In the latter
case the point (0, 0, 0, 0, 1) on X ′ is a unique non-Gorenstein point and it is not of type cA/3
[Rei87]. Hence its quotient by µ3 cannot be terminal, a contradiction. �

3.5. Proposition. Let X be a Q-Fano threefold with Cl(X)t 6= 0. Assume either

(i) qQ(X) = 5, and p2(X) ≥ 2, or
(ii) qQ(X) = qW(X) = 3, p1(X) ≥ 2, and dim |AX | ≤ 0.

Then Cl(X)t ≃ Z/2Z and X is the quotient X ′/µ2, where X
′ is a Fano threefold with terminal

singularities and the action of µ2 on X ′ is free outside a finite number of points. Moreover, X
and X ′ are described by the following table:

qQ(X) B(X) A3
X g(X) B(X ′) g(X ′) X ′

1o 5 (22, 4, 8) 1/8 7 (2, 4) 16 X ′
6 ⊂ P(12, 2, 3, 4)

2o 5 (2, 42, 6) 1/6 10 (22, 3) 21 X ′
4 ⊂ P(12, 22, 3)

3o 3 (24, 42) 1/2 6 (22) 14 X ′
4 ⊂ P(13, 22)

In particular, X is rational.

Proof. The numerical invariants of X and its global cover X ′ are obtained from Proposition 3.1
in the case qQ(X) = 5 and by computer search in the case qQ(X) = 3. Then in the case 1o we
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see that X ′ is a hypersurface X ′
6 ⊂ P(12, 2, 3, 4) by Theorem 2.2.5. As above, we may assume

that the coordinates x1, x
′
1, x2, x3, x4 are semi-invariants with deg xi = i, deg x′1 = 1. The set

of non-Gorenstein points of X ′ consists of either two cyclic quotient singularities P1 and P2 of
types 1

2
(1, 1, 1) and 1

4
(1, 1 − 1) or one point P of type cAx/4. The latter case does not occur

because the quotient (X ′ ∋ P )/µ2 must be a terminal singularity. Hence the equation of X ′

must contain the term x4x2. Then the projection X ′ → P(12, 2, 3) is equivariant and birational.
Therefore the variety X = X ′/µ2 is birational to P(12, 2, 3)/µ2, so it is rational.

Consider the case 2o. We claim that X ′ is a Q-Fano threefold. Indeed, otherwise, as in
the proof of Proposition 3.3.1 we can take Q-factorialization Y → X ′ and run the MMP
(3.3.2). At the end we obtain a Q-Fano threefold Y (n) such that g(Y (n)) ≥ g(X) ≥ 21. Hence
Y (n) ≃ P(13, 2) or Y (n) ≃ Y4 ⊂ P(12, 22, 3) by [Pro13]. In both cases the group Cl(Y (n)) is
torsion free. Therefore, the same is true for Cl(Y (k)), 0 ≤ k ≤ n. Consider the first step
ψ : Y 99K Y (1). Assume that ψ is a flip and let C be a component of the flipping locus. Then
−KY · C = 5AY · C ≥ 5/ Index(Y ) = 5/6. On the other hand, by [Mor88, (2.3.2)] we have
−KY · C = 1 −

∑

P wP (0), where the sum runs through the set of points lying on C and wP

is a local invariant defined in [Mor88, (2.2.1)]. By definition wP takes values in 1
r
Z>0, where

r is the index of P . Since r ∈ {2, 3} in our case we obtain −KY · C ≤ 2/3, a contradiction.
Therefore, ψ is a divisorial contraction. Let S be the exceptional divisor. Since KY is divisible,
ψ(S) is not a curve. Thus Q := ψ(S) is a point. Let m be its index. Assume that m > 1. Since
−KY (1) ∼ 5ψ∗AY and −KY (1) is a (local) generator of the group Cl(Y (1), Q)t ≃ Z/mZ, the
numbers m and 5 must be coprime. Write mKY ∼ ψ∗(mKY (1))+mαS, where α ∈ 1

m
Z>0 is the

discrepancy of S. Since the group Cl(Y (1)) is torsion free, this implies that mα is divisible by 5.
In particular, α > 1/m. On the other hand, by Theorem 2.3.3 there exists an exceptional over
Q ∈ Y (1) divisor S ′ whose discrepancy equals 1/m. Then the discrepancy of S ′ over Y must
be strictly less than 1/m. Since B(Y ) = (22, 3), the only possibility is m = 2. In this situation
−KY (1) is nef and big, and does not contract any divisors. Therefore, Y (1) is an almost Fano

threefold with terminal singularities of Gorenstein index ≤ 2. The anticanonical model Y
(1)
can

of Y (1) a Fano threefold whose singularities are also of index ≤ 2. By Theorem 2.2.5 we have

Y (1) ≃ P(13, 2) because g(Y
(1)
can) ≥ g(X ′) ≥ 21 and P(13, 2) is Q-factorial. But in this case Y (1)

has a unique singular point which is of type 1
2
(1, 1, 1) and its extraction ψ produces a smooth

variety, a contradiction. Therefore, m = 1, i.e. Q = ψ(S) is a Gorenstein point. Then we can
apply the above arguments replacing Y with Y (1) and get a contradiction again. Thus X ′ is
a Q-Fano threefold. Then X ′ is a hypersurface of degree 4 in P(12, 22, 3) by [Pro13]. As in
the case 1o we see that the projection X ′ → P(12, 22) is µ2-equivariant and birational. Hence
X = X ′/µ2 is rational.

Finally in the case 3o we see that X ′ is a hypersurface X ′
4 ⊂ P(13, 22) by Theorem 2.2.5. As

above, we may assume that the coordinates x1, x
′
1, x

′′
1, x2, x

′
2 are semi-invariants with eigenvalues

±1 and x1 is an invariant. Since the fixed point locus if zero-dimensional, the µ2-action on
P(13, 22) has weights (0, 0, 1; 1, 1). Then X = X ′/µ2 is rational by the arguments similar to
that in the case 1o. �

4. Sarkisov link

The following construction will be systematically used throughout the paper. From now on
we adopt the following notation.

4.1. Let X be a non-Gorenstein Q-Fano threefold of Q-Fano index q = qQ(X) > 1. Let M

be a linear system on X such that M ∼Q nAX with n < q, dimM > 0, and M has no fixed
10



components. This M will be chosen at the beginning and fixed throughout this section. We
usually take M = |nAX | if qQ(X) = qW(X). Let c := ct(X,M ) be the canonical threshold
of the pair (X,M ). We assume that c ≤ 1 (see Lemma 4.2.3 below). According to [Cor95,
Proposition 2.10] (see also [Pro21, Claim 4.5.1]) there exists an extremal blowup f : X̃ → X .

that is crepant with respect to KX + cM . By our construction ρ(X̃) = 2 and −(KX̃ + cM̃ ) is

nef and big. As in [Ale94], run the log minimal model program on X̃ with respect to KX̃ + cM̃
(see e.g. [Ale94, 4.2] or [Pro21, 12.2.1]). We obtain the following Sarkisov link:

(4.1.1)

X̃
χ

//❴❴❴❴❴

f

��✄✄
✄✄
✄✄
✄✄

X̄
f̄

��
❀❀

❀❀
❀❀

❀

X X̂

where χ is an isomorphism in codimension 1, the variety X̄ also has only terminal Q-factorial
singularities, ρ(X̄) = 2, and f̄ : X̄ → X̂ is an extremal KX̄-negative Mori contraction which
can be either divisorial or fiber type.

4.1.2. Remark. The proof of [Cor95, Proposition 2.10] shows that for any zero-dimensional
canonical center P of the pair (X, cM ) there exists an extremal blowup f : X̃ → X as in 4.1
with center P . Thus in general the link (4.1.1) is not determined by the choice of M .

4.2. In what follows, for a divisor (or a linear system) D on X by D̃ and D̄ we denote proper
transforms of D on X̃ and X̄ , respectively. By E we denote the f -exceptional divisor. For
1 ≤ k < q, let Mk be a linear system such that Mk ∼Q kAX . As in the case k = n, we usually
take Mk = |kAX | if qQ(X) = qW(X). By Mk we denote a general member of Mk. We can
write

(4.2.1)
KX̃ ∼Q f ∗KX + αE, α ∈ Q, α > 0,

M̃k ∼Q f ∗Mk − βkE, βk ∈ Q, βk ≥ 0.

Then by taking proper transforms on X̄ we obtain

kKX̄ + qM̄k ∼Q (kα− qβk)Ē.

Moreover, if kKX + qMk ∼ 0 near f(E), then kα − qβk is an integer and we have linear
equivalence

(4.2.2) kKX̄ + qM̄k ∼ (kα− qβk)E.

In particular, this holds if qQ(X) = qW(X).

4.2.3. Lemma ([Pro10, Lemma 4.2]). Let P ∈ X be a point of index r > 1. Assume that

in a neighborhood of P we have M ∼ −mKX , where 0 < m < r. Then ct(X,M ) ≤ 1/m.

Therefore,

βn ≥ mα and qβn − nα ≥ α > 0.

4.3. Assume that the contraction f̄ is birational. Then X̂ is a Q-Fano threefold. In this
case, denote by F̄ the f̄ -exceptional divisor, by F̃ ⊂ X̃ its proper transform, F := f(F̃ ), and

q̂ := qQ(X̂). The divisor Ē is not contracted by f̄ , i.e. Ē 6= F̄ (see e.g. [Pro10, Claim 4.6]).

Let AX̂ be a fundamental divisor on X̂ . Write

F ∼Q dAX , Ê ∼Q eAX̂ , M̂k ∼Q skAX̂ ,

where d, e ∈ Z>0, sk ∈ Z≥0.
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Note that sk = 0 if and only if dimMk = 0 and the unique element Mk ∈ Mk coincides with
the f̄ -exceptional divisor F̄ .

4.3.1. Lemma. If Cl(X)t = 0, then Cl(X̂)t ≃ Z/Zd/e.

Proof. Follows from obvious isomorphisms

Z/dZ ≃ Cl(X)/(F · Z) ≃ Cl(X̄)/(F̄ · Z⊕ Ē · Z) ≃ Cl(X̂)/(Ê · Z)

and Cl(X̂)/(Cl(X̂)t ⊕ Ê · Z) ≃ Z/eZ. �

4.4. Assume that f̄ is a fibration. Then we denote by F̄ a general geometric fiber. Then F̄ is
either a smooth rational curve or a del Pezzo surface contained in the smooth part of X̄ . The
image of the restriction map Cl(X̄) → Pic(F̄ ) is isomorphic to Z. Let Ξ be its ample generator.
As above, we can write

−KX̄ |F̄ = −KF̄ ∼ q̂Ξ, Ē|F̄ ∼ eΞ, M̄k|F̄ ∼ skΞ,

where q̂, e ∈ Z>0, and sk ∈ Z≥0.

4.4.1. Lemma. Assume that dim X̂ = 2. Then X̂ is a del Pezzo surface with Du Val singular-

ities of type A, ρ(X̂) = 1, and Cl(X̂)t ≃ Cl(X̄)t. Furthermore, there is an embedding

Cl(X̂)t ⊂ Cl(X)t.

In particular, if Cl(X) is torsion free, then so Cl(X̂) is and so X̂ is one of the four surfaces

described in Lemma 2.4.2.

Proof. By [MP08, Theorem 1.2.7] the surface X̂ has only Du Val singularities of type An. Since

ρ(X̂) = ρ(X̄) − 1 = 1 and X̂ is uniruled, −KX̂ is ample. Further, since both X̄ and X̂ have

only isolated singularities and Pic(X̄/X̂) ≃ Z, there is a well-defined injective map

f̄ ∗ : Cl(X̂) −→ Cl(X̄).

Hence Cl(X̂)t ≃ Cl(X̄)t ≃ Cl(X̃)t. On the other hand, the push-forward map f∗ : Cl(X̃) →
Cl(X) is the quotient by the subgroup Z · E, hence f∗ is injective on Cl(X̃)t. �

Regardless of whether f̄ is birational or not, from (4.2.2) we obtain

4.5. Corollary. In the notation of 4.3 and 4.4 one has

(4.5.1) kq̂ = qsk + (qβk − kα)e,

where qβn − nα > 0. If furthermore qQ(X) = qW(X), then qβn − nα is a positive integer.

Also from our construction we obtain the following easy corollary. It shows that most of
Q-Fano threefolds of Q-Fano index at least two are not birationally rigid. In the case where X
is a weighted hypersurface much stronger result was proved in [ACP21].

4.6. Corollary. Let X be a Q-Fano threefold with qQ(X) > 1. If pn(X) ≥ 2 for some n <
qQ(X), then X is not birationally rigid.

Proof. Assume the converse. Let n be the minimal positive integer such that pn(X) ≥ 2. Thus
there is a (complete) linear system M such that dimM > 0 and M ∼Q nAX . Apply the

construction (4.1.1). Since X is birationally rigid, X̂ ≃ X and so q̂ = q. By (4.5.1) we have

n > sn. But then dim M̂ > 0 and M̂ ∼Q snAX̂ . This contradicts our assumption on minimality
of n. �
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5. Sarkisov link and rationality

5.1. Lemma. In the notation of 4.1 assume that X is not rational.

(i) If the contraction f̄ is birational, then either q̂ ≤ 6 or q̂ = 7 and sn ≥ 2.
(ii) If f̄ is a fibration, then q̂ = 1.

Proof. The assertion (i) follows from Theorem 1.1 and Corollary 3.3.3. To prove (ii) assume

that q̂ > 1. If X̂ is a curve, then X̂ ≃ P1 and F̄ is a smooth del Pezzo surface with divisible
canonical class. Thus f̄ is either a generically P2-bundle or quadric bundle. Then f̄ must be
locally trivial in Zariski topology, hence X̄ is rational in this case. Now assume that dim X̂ = 2.
Let L be an effective Weil divisor on X̂ such that L ∼ AX̂ and let B be a Weil divisor on X̄

whose image is Ξ (see 4.4). Then B is a section of f̄ over a Zariski open subset in X̂. Since the

general fiber is a smooth rational curve and X̂ is rational, the variety X̄ is rational as well. �

5.2. Lemma. In the notation of 4.1 assume that qW(X) = qQ(X), p1(X) ≥ 2, s1 = 0, and X

is not rational. Then q̂ = 1 and there is an embedding Cl(X̂)t ⊂ Cl(X)t.

(i) If Cl(X̂)t = 0, then X̂ ≃ P1, P2, or P(1, 1, 2).

(ii) If Cl(X̂)t 6= 0, then X̂ is a del Pezzo surface of degree 1 and |Cl(X̂)t| ≥ 3.

The numbers pi(X) satisfy the following conditions:

X̂ p1(X) p2(X) p3(X)

1o X̂ ≃ P1 2 ≥ 3 ≥ 4

2o X̂ ≃ P2 3 ≥ 6 ≥ 10

3o X̂ ≃ P(1, 1, 2) 2 ≥ 4 ≥ 6

4o X̂ is a del Pezzo surface of degree 1 2 ≥ 4 ≥ 7

Furthermore, assume that Cl(X̂)t = 0. If s2 = 0 (resp., s3 = 0), then equalities hold for p2(X)
(resp., for p3(X)).

Proof. We have q̂ = 1 by Lemma 5.1. For short, we consider only the case where X̂ is a surface.
The case where X̂ is a curve is much easier. By Lemma 4.4.1 we have Cl(X̂)t ⊂ Cl(X)t and

X̂ is a del Pezzo surface with Du Val singularities of type A and ρ(X̂) = 1. The pull-back
map f̄ ∗ of Weil divisors is well-defined and injective (see the proof of Lemma 4.4.1). Hence

M̄ = f̄ ∗|AX̂ | for a primitive element AX̂ ∈ Cl(X̂) and dim |AX̂ | = dimM = dim |AX | ≥ 1. If

K2
X̂
> 6, then X̂ is either P2 or P(12, 2) (see e.g. [HW81, Theorem 3.4]) and p1(X) = 3 or 2 in

these cases, respectively. Let K2
X̂
≤ 6. Then K2

X̂
= 1 and AX̂ ∼ −KX̂ by Lemma 2.4.1. Hence

p1(X) = dim |M̄ |+ 1 = 2. Finally, |Cl(X̂)t| ≥ 3 by the classification [MZ88].
Note that kM̄ ∼ f̄ ∗(kAX̂) for any k, hence the linear system f∗χ

−1
∗ |f̄ ∗(kAX̂)| is contained

in |kAX | = Mk. This implies that dim |kAX̂ | ≤ dim |kAX |. Then the inequalities in the table
follow from Lemma 2.4.2 and the Riemann-Roch for −kKX̂ in the case K2

X̂
= 1. Finally, if

sk = 0 and Cl(X̂)t = 0, then the linear system M̄k is f̄ -vertical, that is, M̄k = f̄ ∗(kAX̂) and
so dim |kAX̂ | = dim |kAX |. Hence, the inequalities in the table are in fact equalities in this
case. �

6. Case p1(X) ≥ 2.

6.1. Set-up. Let X be a non-rational Q-Fano threefold with qQ(X) = qW(X) > 1 and p1(X) ≥
2. We assume that X is has at least one non-Gorenstein point. This holds automatically if
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qQ(X) ≥ 3 because X is not rational. The linear system |AX | has no fixed components. Apply
the construction (4.1.1) with n = 1, i.e. M = |AX |. The relation (4.5.1) for k = 1 has the form

(6.1.1) q̂ = qs1 + (qβ1 − α)e,

where qβ1−α is a positive integer by Corollary 4.5. Taking Lemma 5.1 into account we obtain
two possibilities:

6.1.1. Case s1 > 0. Then f̄ is birational and q̂ ≥ q + 1.

6.1.2. Case s1 = 0. Then f̄ is a fibration and q̂ = e = qβ1 − α = 1.

6.2. Proposition. Let X be a Q-Fano threefold with qQ(X) ≥ 5. If p1(X) ≥ 2, then X is

rational.

Proof. By Corollary 3.3.3 we may assume that qQ(X) = 5. By Proposition 3.1 the group Cl(X)
is torsion free. Apply the construction (4.1.1) with M = |AX | (see 6.1). Assume that X is not
rational.

If s1 > 0, then q̂ ≥ 6 (see 6.1.1). By Theorem 1.1 and Corollary 3.3.3 we have s1 ≥ 2. Hence
q̂ ≥ 11 and X is rational by Theorem 1.1, a contradiction.

Therefore, s1 = 0, f̄ is fibration, q̂ = e = 1, and 5β1 = α + 1 (see 6.1.2). Let P ∈ X be any
point of index r > 1. Since qQ(X) = qW(X), the numbers r and 5 are coprime. Take m ∈ Z>0

so that 5m ≡ 1 mod r. Then m(−KX) ∼ M near P and so β1 ≥ mα by Lemma 4.2.3. We
obtain α + 1 = 5β1 ≥ 5mα and α ≤ 1

5m−1
. Since X is not rational, we can take P so that

r /∈ {2, 4} by Theorem 2.2.5. Then 5 6≡ 1 mod r, hence m ≥ 2 and so α ≤ 1/9. This implies
that f(E) is a point of index ≥ 9. In this case computer search (see Sect. A) gives the only
possibility [B+, # 41446]:

B(X) = (2, 9), A3
X = 5/18, p1(X) = 2, p2(X) = 4, p3(X) = 7.

Then α = β1 = 1/9 because B(X) = (2, 9). Recall that e = 1. Then one can show that (4.5.1)
implies s2 = s3 = 0. This contradicts Lemma 5.2. �

6.3. Proposition. Let X be a Q-Fano threefold with qQ(X) ≥ 4. If p1(X) ≥ 2, then X is

rational.

Proof. By Proposition 6.2 we may assume that qQ(X) = 4. By Proposition 3.3 the group Cl(X)
is torsion free. Apply the construction (4.1.1) with M = |AX |. Assume that X is not rational.

If s1 > 0, then q̂ ≥ 5 (see 6.1.1), hence s1 ≥ 2 by Theorem 1.1, Corollary 3.3.3, and
Proposition 6.2. In this case (6.1.1) implies q̂ ≥ 9, hence X is rational, a contradiction.

Therefore, s1 = 0, f̄ is a fibration, q̂ = 1, and e = 4β1 − α = 1. Let P ∈ X be a point of
maximal index r. Recall that r must be odd because qW(X) = 4. Take m so that 4m ≡ 1
mod r and 0 < m < r, that is,

m =

{

(3r + 1)/4 if r ≡ 1 mod 4,

(r + 1)/4 if r ≡ −1 mod 4.

In both cases, 4m− 1 ≥ r. By Lemma 4.2.3 we have β1 ≥ mα, hence

α + 1 = 4β1 ≥ 4mα,
1

4m− 1
≥ α ≥

1

r
, r ≥ 4m− 1.

On the other hand, 4m − 1 ≥ r. Therefore, r = 4m − 1 and α = 1/r. We may assume that
f(E) = P . If X has a point P ′ of index r′ with r′ ≡ 1 mod 4, then similar computations show
that 1/r + 1 = α + 1 ≥ 4m′α = (3r′ + 1)/r and so 3r′ ≤ r.

Thus the variety X and the point f(E) satisfy the following properties:
14



(1) p1(X) ≥ 2 and g(X) ≤ 21 [Pro13, Theorem 1.2];
(2) f(E) is a point whose index r is maximal, r ≡ −1 mod 4 and r ≥ 7;
(3) if P ∈ X is a point of index r′ with r′ ≡ 1 mod 4, then 3r′ ≤ r.

Applying computer search (see Sect. A) under these conditions we obtain the following possi-
bilities:

A3
X B(X) g(X) p1(X) p2(X) p3(X) [B+]

1o 3/7 (7) 14 2 5 9 # 41372

2o 8/21 (3, 7) 12 2 4 8 # 41367

3o 3/7 (72) 13 2 4 8 # 41370

4o 5/9 (9) 18 2 6 11 # 41381

5o 13/33 (3, 11) 12 2 4 8 # 41368

The relation (4.5.1) for k = 2 and k = 3 has the form

2 = 2q̂ = 4s2 + 4β2 − 2α, 3 = 3q̂ = 4s3 + 4β3 − 3α.

Since X has no points of index 2, we have β2 > 0 and so β2 ≥ 1/r = α. We obtain s2 = 0. Then
the cases 1o and 4o B(X) = (7) and (9) are impossible by Lemma 5.2 and our assumptions.
In the remaining cases 2o, 3o and 5o again by Lemma 5.2 we have s3 6= 0, hence β3 = 0 and
α = 1/3. Thus f(E) is a point of index 3. This contradicts the property (2). �

6.4. Proposition. Let X be a Q-Fano threefold with qQ(X) = 3.

(i) If p1(X) ≥ 3, then X is rational.

(ii) If p1(X) = 2 and X is not rational, then Cl(X) is torsion free and one of the following

holds:

(a) A3
X = 1/2, B(X) = (2, 2, 2), g(X) = 7, [B+, # 41198];

(b) A3
X = 2/5, B(X) = (5), g(X) = 6, [B+, # 41195];

(c) A3
X = 6/11, B(X) = (11), g(X) = 7, [B+, # 41196];

(d) A3
X = 10/17, B(X) = (17), g(X) = 7, [B+, # 41197].

In these cases X is unirational and has a conic bundle structure.

6.4.1. Remark. By Theorem 2.2.5 a variety of type (ii)(a) is a hypersurface X6 ⊂ P(12, 22, 3).
It is known that a very general variety in the family is not rational [Oka19]. We do not know
if the varieties satisfying (ii)(b), (ii)(c), and (ii)(d) are rational or not. Moreover, we do not
know if the varieties satisfying (ii)(c) and (ii)(d) really exist. The general complete intersection
X6,6 ⊂ P(12, 2, 32, 5) satisfies (ii)(b) but still we do not know if this is the only example.

Proof. Assume that X is not rational and p1(X) ≥ 2. By Proposition 3.3 we have qQ(X) =
qW(X) and dim |AX | ≥ 1 by Proposition 3.5. Apply the construction (4.1.1) with M = |AX |
(see 6.1).

If s1 > 0, then q̂ ≥ 4 (see 6.1.1), hence s1 ≥ 2 by Proposition 6.3. Then q̂ = 7 and by
Corollary 3.3.3 we have s1 ≥ 3 and so q̂ > 7, a contradiction.

Therefore, s1 = 0, q̂ = e = 1, and 3β1 = α + 1, f̄ is a fibration, and M̄ = f̄ ∗|AX̂ |.
Since β1 ≥ α by Lemma 4.2.3, we have α ≤ 1/2. In particular, this implies that f(E) is
non-Gorenstein point.

Assume that Cl(X)t 6= 0. Then |Cl(X)t| ≥ 3 by Lemma 5.2. Since qQ(X) = qW(X), we have
|Cl(X)t| 6= 3 by Theorem 2.2.4(ii). Then X is rational by Proposition 3.4, a contradiction.
Thus we may assume that Cl(X) is torsion free.
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Let P be a point of maximal index r. Then r is not divisible by 3 by Theorem 2.2.4(ii).
Consider the case where r = 2. Then X is as in (ii)(a) by Theorem 2.2.5, 9o and we may

assume that f(E) = P . Moreover, α = β1 = 1/2 and s2 = 1 by (4.5.1). Note that in this
case the linear system M2 = |2AX | is base point free and dimM2 = 4. Let M ′

2 ⊂ M2 be the
subsystem consisting of all divisors passing through P . Then dimM ′

2 = 3. Similar to (4.5.1)
we have

2 = kq̂ = qs′k + (qβ ′
k − kα)e = 3s′2 + 3β ′

2 − 1

where β ′
2 is a positive integer. Hence, s′2 = 0, that is, M̄ ′

2 ⊂ f̄ ∗|2AX̂ |. Thus dim |AX̂ | = 1 and

dim |2AX̂ | ≥ 3. Then X̂ 6≃ P1, hence X̂ is a surface and f̄ is a Q-conic bundle. A general
member S ∈ M2 is a smooth del Pezzo surface of degree 1 and its proper transform S̄ ⊂ X̄ is a
rational multisection of f̄ (because s2 = 1). This implies that X̄ is unirational. Unirationality
of X in this case is also proved in [CF93].

From now on we assume that r ≥ 4. Put

m =:

{

(2r + 1)/3 if r ≡ 1 mod 3,

(r + 1)/3 if r ≡ −1 mod 3.

Note that in both cases r ≤ 3m− 1. Then β1 ≥ mα by Lemma 4.2.3. Hence,

α + 1 = 3β1 ≥ 3mα,
1

3m− 1
≥ α ≥

1

r
, r ≥ 3m− 1.

Since r ≤ 3m− 1, we obtain r = 3m− 1 and α = 1/r. Thus we may assume that f(E) = P .
If X has a point P ′ of index r′ with r′ ≡ 1 mod 3, then similar computations show that
1/r+1 = α+1 ≥ 3m′α = (2r′+1)/r and so 2r′ ≤ r. Thus X satisfies the following properties:

(1) p1(X) ≥ 2 and g(X) ≤ 20 [Pro13, Theorem 1.2];
(2) if r is the maximal index r of points on X , then r ≡ −1 mod 3 and r ≥ 5;
(3) if X has a point of index r′ with r′ ≡ 1 mod 3, then 2r′ ≤ r.

Then computer search (see Sect. A) under these conditions gives the following possibilities:

A3
X B(X) g(X) p1(X) p2(X) A3

X B(X) g(X) p1(X) p2(X)

1o 2/5 (5) 6 2 4 2o 11/10 (2, 5) 15 3 8

3o 3/5 (22, 5) 8 2 5 4o 6/5 (52) 16 3 8

5o 7/10 (2, 52) 9 2 5 6o 9/8 (2, 8) 15 3 8

7o 4/5 (53) 10 2 5 8o 7/8 (22, 4, 8) 11 2 6

9o 5/8 (22, 8) 8 2 5 10o 29/40 (2, 5, 8) 9 2 5

11o 49/40 (5, 8) 16 3 8 12o 25/22 (2, 11) 15 3 8

13o 6/11 (11) 7 2 4 14o 35/44 (4, 11) 10 2 5

15o 7/11 (22, 11) 8 2 5 16o 11/14 (14) 10 2 5

17o 81/110 (2, 5, 11) 9 2 5 18o 10/17 (17) 7 2 4

19o 9/14 (22, 14) 8 2 5

Note that |2AX | has no fixed components in our case. Then one can show that (4.5.1) implies
s2 = 0. Hence by Lemma 5.2 the only cases 1o, 13o, and 18o are possible. We get (ii)(b), (ii)(c),
and (ii)(d). Note that in all cases X has only cyclic quotient singularities. By Theorem 2.3.2
the f -exceptional divisor E is toric, in particular, rational. Its proper transform Ē ⊂ X̄ is a
multisection of f̄ . Hence X̄ is unirational. This finishes the proof of Proposition 6.4. �
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7. Q-Fano threefolds with qQ(X) ≥ 5

7.1. Proposition. Let X be a Q-Fano threefold with qQ(X) ≥ 6. If p2(X) ≥ 2, then X is

rational.

Proof. The group Cl(X) is torsion free by Proposition 3.1 and by Corollary 3.3.3 we may assume
that qQ(X) = 6. Assume that X is not rational. By Theorem 2.2.5 the global Gorenstein index
of X is at least 6. Apply the computer search (see Sect. A) or [B+] under the assumption
p2(X) ≥ 2 and p1(X) ≤ 0. We obtain the only possibility [B+, # 41466]:

A3
X = 3/35, B(X) = (5, 7), g(X) = 9, hX(t) = 1 + t+ 2t2 + 3t3 + · · · .

Since dim |AX | = 0, the linear system |2AX | has no fixed components. Hence we can apply
the construction (4.1.1) with M = |2AX |. In a neighborhood of the point of index 7 we have
M ∼ 5(−KX) and so β2 ≥ 5α by Lemma 4.2.3. The relation (4.5.1) for k = 2 has the form

q̂ = 3s2 + (3β2 − α)e ≥ 3s2 + 14αe.

Since α ≥ 1/7, we see that q̂ ≥ 2. Then the contraction f̄ is birational by Lemma 5.1. Since
dimM2 > 0, we have s2 > 0 and so q̂ ≥ 5. Then s2 ≥ 2 by Proposition 6.3. Hence q̂ ≥ 8 and
X is rational by Theorem 1.1, a contradiction. �

7.2. Proposition. Let X be a Q-Fano threefold with qQ(X) = 6. If p3(X) ≥ 2, then X is

rational.

Proof. Assume that X is not rational. Assume also that p2(X) ≤ 1 and p3(X) ≥ 2. Applying
computer search (see Sect. A or [B+]) we obtain the only possibility [B+, # 41462]:

A3
X = 2/35, B(X) = (5, 72), g(X) = 5, hX(t) = 1 + t2 + 2t3 + 3t4 + · · · .

Apply the construction (4.1.1) with M = |3AX |. In a neighborhood of the point of index 7 we
have M ∼ 4(−KX) and so β3 ≥ 4α by Lemma 4.2.3. The relation (4.5.1) for k = 3 has the
form

q̂ = 2s3 + (2β3 − α)e ≥ 2s3 + 7αe.

We claim that α = 1/7 and e = 1. Indeed, otherwise q̂ ≥ 7αe > 1. Hence f̄ is birational by
Lemma 5.1. In this case, s3 > 0 and so q̂ ≥ 4. Then s3 ≥ 2 by Proposition 6.3 and so q̂ ≥ 6.
From Proposition 7.1 we obtain s3 ≥ 3 and so q̂ ≥ 8. This contradicts Theorem 1.1.

Thus α = 1/7 and e = 1. Then we consider (4.5.1) for k = 2. Since f(E) is a point of
index 7, the number 7β2 is an integer and 7q̂ = 3(7s2 + 7β2) − 1, hence q̂ ≡ −1 mod 3. In
particular, q̂ 6= 1, hence f̄ is birational and s2, s3 > 0. Then the only possibility is q̂ = 5 and
s3 = 2 by Proposition 6.3. Hence p2(X̂) ≥ 2. Since e = 1 and |AX | = ∅, we have Cl(X)t 6= 0

by Lemma 4.3.1. Then X̂ is rational by Proposition 3.5. �

7.3. Proposition. Let X be a Q-Fano threefold with qQ(X) = 7. If p3(X) ≥ 2, then X is

rational.

Proof. Assume that X is not rational. By Proposition 3.2 we have qQ(X) = qW(X) and
p2(X) ≤ 1 by Corollary 3.3.3. Computer search (see Sect. A or [B+]) produces four numerical
possibilities which will be considered below. We will use the construction (4.1.1) with M =
|3AX | or M = |4AX |. The relation (4.5.1) for k = 3 and 4 has the form

3q̂ = 7s3 + (7β3 − 3α)e,(7.3.1)

4q̂ = 7s4 + (7β4 − 4α)e.(7.3.2)
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Case A3
X = 1/24, [B+, # 41477]. Then B(X) = (22, 3, 4, 8) and hX(t) = 1 + t2 + 2t3 +

3t4 + · · · . Thus dim |3AX | = 1. Note that in this case X can have a 2-torsion in Cl(X) (see
Proposition 3.1). Apply the construction (4.1.1) with M = |3AX |. In a neighborhood of the
point of index 8 we have M ∼ 5(−KX) and so β3 ≥ 5α by Lemma 4.2.3. By (7.3.1)

3q̂ = 7s3 + (7β3 − 3α)e ≥ 7s3 + 32αe ≥ 7s3 + 4e.

Hence, q̂ ≥ 2 and f̄ is birational. Then s3 > 0 and q̂ ≥ 4. By Proposition 6.3 we have s3 ≥ 2
and q̂ ≥ 6. By Proposition 7.1 we have s3 ≥ 3 and q̂ ≥ 9. This contradicts Theorem 1.1.

Case A3
X = 1/18, [B+, # 41480]. Then B(X) = (3, 6, 9), the group Cl(X) is torsion free, and

and hX(t) = 1 + t + t2 + 2t3 + 3t4 + · · · . Thus dim |4AX | = 2. Apply the construction (4.1.1)
with M = |4AX |. In a neighborhood of the point of index 9 we have M ∼ 7(−KX) and so
β4 ≥ 7α by Lemma 4.2.3. From (7.3.2) we have

4q̂ = 7s4 + (7β4 − 4α)e ≥ 7s4 + 45αe ≥ 7s4 + 5e.

Hence q̂ ≥ 2, f̄ is birational, s4 ≥ 1, and q̂ ≥ 3. Then α < 1, so f(E) is a point of index
r = 3, 6 or 9 and α = 1/r (see Theorem 2.3.2). The relation (4.5.1) for k = 1 has the form
q̂ = 7s1 + (7β1 − α)e, where β1 ≥ 1

4
β4 ≥ 7

4
α because 4M1 ∈ M . This gives us s1 = 0, e = 1

by Lemma 4.3.1, and q̂ = 7β1 − α. If q̂ ≥ 6, then s4 ≥ 3 by Proposition 7.1, and q̂ > 7, a
contradiction.

Thus 3 ≤ q̂ ≤ 5. If q̂ = 3, then s4 = e = 1 and α = 1/9. Thus M̂4 ⊂ |AX̂ |. We
obtain dim |AX̂ | ≥ 2. This contradicts Proposition 6.4. Therefore, q̂ ≥ 4, then s3 ≥ 2 by
Proposition 6.3, hence q̂ = 5 by (7.3.1). Then β1 = (5 + α)/7 = (5r + 1)/7r, so 5r + 1 ≡ 0
mod 7. This is contradicts r ∈ {3, 6, 9}.

Case A3
X = 1/33, [B+, # 41476]. Then B(X) = (22, 3, 11), the group Cl(X) is torsion free,

and hX(t) = 1 + t2 + 2t3 + 2t4 + · · · . Apply the construction (4.1.1) with M = |4AX |. In a
neighborhood of the point of index 11 we have M ∼ 10(−KX) and so β4 ≥ 10α by Lemma 4.2.3.
By (7.3.2)

4q̂ = 7s4 + (7β4 − 4α)e ≥ 7s4 + 66αe ≥ 7s4 + 6e.

Hence q̂ ≥ 2, f̄ is birational, and s4 ≥ 1. Then q̂ ≥ 5, s4 ≥ 2 by Proposition 6.3, and α ≤ 7/33,
so f(E) is a point of index 11 and α = 1/11 (see Theorem 2.3.2). If q̂ ≥ 6, then s3, s4 ≥ 3
by Proposition 7.1. Since β3 ≥ α = 1/11, from (7.3.1) we obtain q̂ > 7, a contradiction.

Therefore, q̂ = 5, s3 = s4 = 2, and e = 1. Hence p1(X̂) ≥ 1 and p2(X̂) ≥ 2. On the other

hand, Cl(X̂)t 6= 0 by Lemma 4.3.1 because |AX | = ∅. Then by Proposition 3.5 the variety X̂
is rational.

Case A3
X = 1/30, [B+, # 41479]. Then B(X) = (2, 6, 10) and

hX(t) = 1 + t+ t2 + t3 + 2t4 + 3t5 + · · · .

In particular, dim |3AX | = 0 and dim |4AX | = 1. By our assumption p3(X) ≥ 2, hence X
has to have a 2-torsion T ∈ Cl(X) (see Proposition 3.1). Hence X is of type 3.12o. Apply
the construction (4.1.1) with M = |4AX |. In a neighborhood of the point of index 6 we have
M ∼ 4(−KX) and so β4 ≥ 4α by Lemma 4.2.3. By (7.3.2)

4q̂ = 7s4 + (7β4 − 4α)e ≥ 7s4 + 24αe.

If α = 1, then q̂ ≥ 6 and so s4 ≥ 2 by Proposition 6.3. But in this case q̂ > 7, a contradiction.
Thus α < 1 and so f(E) is a cyclic quotient singularity of index r = 2, 6 or 10. In particular,
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α = 1/r by Theorem 2.3.2. The relation (4.5.1) for k = 1 has the form

q̂ = 7s1 + (7β1 − α)e.

Here β1 ≥ α, hence q̂ = 1 because q̂ < 8 by Theorem 1.1. Then s1 = s4 = 0, r = 6, α = 1/6,
and e = 1. This means that f̄ is a fibration, M̄1 ∼ f̄ ∗AX̂ and M̄4 = f̄ ∗|4AX̂ | for a primitive

element AX̂ ∈ Cl(X̂). Hence dim |AX̂ | = 0 and dim |4AX̂ | = 1. This is impossible if X̂ ≃ P1.

Therefore, X̂ is a Du Val del Pezzo surface. Thus AX̂ is a line on Ŝ by Lemma 2.4.1(vii). Since

dim |2AX̂ | = dim |3AX̂ | = 0 we see that Cl(X̂)t 6= 0 by Lemma 2.4.2. Therefore, X̂ contains a

line L̂ other than AX̂ (see Lemma 2.4.1(viii)). Let D̄ := f̄ ∗L̂. Then D̄ is an irreducible effective

divisor and D̄ 6= M̄1. Hence D̃ := χ−1
∗ D̄ 6= M̃1 and D := f∗D̃ 6= M1. So, D is an effective

divisor on X such that D 6≃ AX but D ∼Q AX . This contradicts Proposition 3.12o. �

7.3.3. Corollary. Let X be a Q-Fano threefold with qQ(X) ≥ 6. If either Cl(X)t 6= 0 or

p3(X) ≥ 2, then X is rational.

7.4. Proposition. Let X be a Q-Fano threefold with qQ(X) = 5 and p2(X) ≥ 2. Assume that

X is not rational. Then X belongs to the following class:

(*) B(X) = (22, 3, 4), A3
X = 1/12, Cl(X)t = 0, p1(X) = 1, p2(X) = 2, [B+, # 41422].

Moreover, X is birational to a conic bundle, and if the point of index 4 is a cyclic quotient

singularity, then X is unirational.

7.4.1. Remark. A general hypersurface X10 ⊂ P(1, 2, 3, 4, 5) belongs to the class (*) and
according to [Oka19] a very general such a hypersurface is not rational. However we do not
know that the family of such hypersurfaces exhaust (*).

Proof. We have qQ(X) = qW(X) = 5 by Proposition 3.2.

7.4.2. Claim. |AX | 6= ∅ and dim |2AX | ≥ 1.

Proof. If Cl(X)t 6= 0, the assertions follow from Proposition 3.1. Thus we may assume that
Cl(X) ≃ Z · AX . Then dim |2AX | ≥ 1 by our assumption p2(X) ≥ 2. Computer search shows
that there are 35 Hilbert series of Q-Fano threefolds with qW(X) = 5 and Cl(X)t = 0, and in
all cases dim |2AX | ≥ 1 implies |AX | 6= ∅ (see also [B+]). �

7.4.3. Claim. We have s1 = 0, e = 1, and one of the following holds:

(i) s2 = 0, q̂ = 1, 5β1 = α + 2s2 + 1, 5β2 = 2α + 2, f̄ is a fibration, or

(ii) s2 = 1, q̂ = 3, 5β1 = α + 3, 5β2 = 2α + 1, and f̄ is birational.

Moreover, in the case (i) we have s3 = 0 if β3 > 0 and s4 = 0 if β4 > 0, and in the case (ii) we
have s3 = 1 if β3 > 0.

Proof. The relation (4.5.1) for k = 1 and 2 has the form

q̂ = 5s1 + (5β1 − α)e,

2q̂ = 5s2 + (5β2 − 2α)e.

Note that 5β1 ≥
5
2
β2 > α. Hence q̂ > 5s1. If s1 > 0, then q̂ ≥ 6 and s2 ≥ 3 by Proposition 7.1.

But then q̂ > 15, a contradiction. Therefore, s1 = 0 and q̂ = (5β1 − α)e.
Consider the case s2 = 0. Then q̂ = 1. Since 5β1 − α is an integer, we have 5β1 = α + 1,

e = 1, and so 5β2 = 2α + 2.
Consider the case s2 > 0, then q̂ ≥ 3. If moreover q̂ > 3, then s2 ≥ 2 by Proposition 6.3. In

this case q̂ > 5 and s2 ≥ 3 by Proposition 7.1. But then q̂ > 7, a contradiction. Thus q̂ = 3,
then s2 = 5β2 − 2α = e = 1 and 5β1 = α + 3.

The last statement follows from (4.5.1). �
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Proof of Proposition 7.4 (continued). Thus we have

q̂ = 2s2 + 1, 5β1 = α + 2s2 + 1, 5β2 = 2α+ 2− s2.

Let P ∈ X be a point of index r > 1. Take m so that 5m ≡ 2 mod r and 0 < m < r. Then
β2 ≥ mα by Lemma 4.2.3. This gives us 2 ≥ 2− s2 ≥ 3mα. By Theorem 2.2.5 we may assume
that r > 2 and then m ≥ 1 and α ≤ 2/3. Hence f(E) is a non-Gorenstein point. Now take
P = f(E). Then bi := βir and a := αr are integers such that

5b1 = a+ (2s2 + 1)r, 5b2 = 2a+ (2− s2)r ≥ 5ma.

Since r ≤ 24 by (A.1.1), we have (5m−2)a ≤ 48. Now it is easy to enumerate all the possibilities
for the point f(E) and numbers βi, s2, and m:

r s2 q̂ α β1 β2 m ct(X,M )

3 1 3 1/3 2/3 1/3 1 1

3 0 1 2/3 1/3 2/3 1 1

4 0 1 1/4 1/4 1/2 2 1/2

8 1 3 1/8 5/8 1/4 2 1/2

8 0 1 1/4 1/4 1/2 2 1/2

9 0 1 1/9 2/9 4/9 4 1/4

Let P ′ ∈ X be a point P ′ of index r′ > 1 and let m′ is an integer such that 5m′ ≡ 2 mod r′

and 0 < m′ < r′. Then ct(X,M ) ≤ 1/m′ by Lemma 4.2.3 and so m′ ≤ m ≤ 4. This shows
that X can contain only points of indices r′ = 2, 3, 4, 6, 8, 9, 13, 18. Computer search shows
that under the assumptions p2(X) ≥ 2 and p1(X) ≤ 1 we have B(X) = (2, 42, 6), (22, 3, 9),
(23, 3, 8),(23, 32), (22, 4, 8), or (22, 3, 4). Consider these cases separately.

Case B(X) = (2, 42, 6), [B+, # 41434]. In this case r = 4 and for r′ = 6 we have m′ = 4 >
m = 2, a contradiction.

Case B(X) = (22, 3, 9), [B+, # 41423]. Then the group Cl(X) is torsion free,

(7.4.4) dim |AX | = 0, dim |2AX | = 1, dim |3AX | = 2, and dim |4AX | = 4.

In this case r = 9 and q̂ = 1. Then s3 = s4 = 0 by Claim 7.4.3 because 3AX and 4AX

are not Cartier at P = f(E). We see that M̄k = f̄ ∗|M̂k| for k = 2, 3, 4. If X̂ ≃ P1, then

M̄2 = f̄ ∗|OP1(1)| and M̄4 = f̄ ∗|OP1(2)|. This contradicts (7.4.4). Hence by Lemma 4.4.1 X̂

is a Du Val del Pezzo surface with only type A-singularities and Cl(X̂) ≃ Z. This contradicts
Lemma 2.4.2.

Case B(X) = (23, 3, 8), [B+, # 41440]. Then the group Cl(X) is torsion free, r = 8, dim |AX | =

0, dim |2AX | = 2, and dim |3AX | = 4. If s2 = 1, then q̂ = 3, X̂ is a Q-Fano with p1(X̂) ≥ 3.

In this case X̂ is rational by Proposition 6.4. Let s2 = 0. Then s3 = 0 by Claim 7.4.3
because 3AX is not Cartier at P = f(E). Hence M̄k = f̄ ∗|M̂k| for k = 2 and 3, where

dim |M̂2| = dim |2AX | = 2 and dim |M̂3| = dim |3AX | = 4. As above, X̂ 6≃ P1 and we get a
contradiction by Lemma 2.4.2.
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Case B(X) = (23, 32), [B+, # 41439]. In this case r = 3, the group Cl(X) is torsion free,

dim |AX | = 0, and dim |2AX | = 2. If q̂ = 3, then X̂ ia a Q-Fano threefold with p1(X̂) ≥ 3

because s2 = 1. Then X̂ is rational by Proposition 6.4. Let q̂ = 1. Then f̄ is a fibration such
that M̄2 = f̄ ∗|M̂2| with dim |M̂2| = 2. Since dim |M̄1| = 0, we have X̂ 6≃ P1. Hence X̂ is a Du

Val del Pezzo surface such that Cl(X̂) ≃ Z, dim |AX̂ | = 0 and dim |2AX̂ | = 2. This contradicts
Lemma 2.4.2.

Case B(X) = (22, 4, 8), [B+, # 41425]. Then dim |kAX | = k− 1 for k = 1, 2, 3. If Cl(X)t 6= 0,
then X is rational by Proposition 3.5. Thus we may assume that Cl(X) is torsion free. Apply
the construction (4.1.1) with M = |3AX |. In a neighborhood of the point of index 8 we have
M ∼ 7(−KX) and so β3 ≥ 7α by Lemma 4.2.3. The relation (4.5.1) for k = 3 has the form

3q̂ = 5s3 + (5β3 − 3α)e ≥ 5s3 + 32αe ≥ 5s3 + 4e.

Hence q̂ > 1, f̄ is birational, s3 > 0, and q̂ ≥ 3. Then s3 ≥ 2 by Proposition 6.4 because
dim |3AX | = 2. Hence q̂ ≥ 5. If q̂ ≥ 6, then s3 ≥ 4 by Proposition 7.3.3 and q̂ ≥ 8. This
contradicts Theorem 1.1. Thus q̂ = 5, e = 1, s3 = 2, and α < 1/4. Hence α = 1/8 and
β3 = 43/40 /∈ 1

8
Z, a contradiction.

Case B(X) = (22, 3, 4), [B+, # 41422]. Then the group Cl(X) is torsion free, dim |kAX | = k−1

for k = 1, 2, 3, r = 4, and q̂ = 1. As above, we obtain X̂ is a Du Val del Pezzo surface and f̄ is
a Q-conic bundle, i.e. X is in situation (*) of 7.4. If f(E) is a cyclic quotient singularity, then
E ≃ P(1, 1, 3) by Theorem 2.3.2 and as in the proof of Proposition 6.4 we conclude that X̄ is
unirational. This finishes the proof of Proposition 7.4. �

8. Q-Fano threefolds with qQ(X) = 2

The following proposition slightly improves the corresponding result in [Pro22a].

8.1. Proposition. Let X be a Q-Fano threefold with qQ(X) = 2. Assume that X is not

Gorenstein.

(i) If p1(X) ≥ 2, then X is not solid, i.e. it is birational to a strict Mori fiber space.

(ii) If p1(X) ≥ 3, then X is birational to a conic bundle. If furthermore non-Gorenstein

points of X are of types cA/r, then X is unirational.

(iii) If p1(X) ≥ 4, then X is rational.

Proof. Assume that X is not rational and p1(X) ≥ 2. Let A′ be a divisor such that A′ ∼Q AX

and dim |A′| = p1(X)− 1. Apply the construction (4.1.1) with M := |A′| (cf. 6.1). We have

(8.1.1) q̂ = 2s1 + (2β1 − α)e,

where 2β1 − α > 0 by Lemma 4.2.3.
First, consider the case s1 ≥ 2. Then q̂ ≥ 5. If q̂ ≥ 6, then s1 ≥ 4 by Corollary 7.3.3. But

in this case q̂ > 7, a contradiction. Therefore, q̂ = 5. Then s1 = 2, p2(X̂) ≥ 2, and so X is

birational to a conic bundle by Proposition 7.4. If furthermore p1(X) ≥ 3, then p2(X̂) ≥ 3 and
X is rational again by Proposition 7.4.

Consider the case s1 = 1. Then q̂ ≥ 3, p1(X̂) ≥ 2, and X is unirational and has a conic
bundle structure by Propositions 6.3 and 6.4. Moreover, if p1(X) ≥ 3, then X is rational.

Finally, consider the case s1 = 0. Then, q̂ = 1 and f̄ is a fibration. This proves (i). Now,

assume that p1(X) ≥ 3. Then X̂ ≃ P2 (see Lemma 5.2) and f̄ is a Q-conic bundle. Moreover,
in this case we have p1(X) = 3. This proves (iii). To prove (ii) we note that 2β1 ≤ α + 1
by (8.1.1). On the other hand, β1 ≥ α by Lemma 4.2.3. Hence α ≤ 1. If α < 1, then f(E)
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is a point of index > 1. If α = 1, then f(E) there is a canonical center of (X,M ) which is
a point of index > 1 again by Lemma 4.2.3. Thus replacing f with another extremal blowup
if necessary (see Remark 4.1.2) we may assume that f(E) is a non-Gorenstein point. By our
assumption f(E) must be a point of type cA/r. In this case the divisor E must be a rational
surface [Pro02]. Its proper transform Ē ⊂ X̄ is a multisection of f̄ . Hence X̄ is unirational.
This proves (ii). �

Appendix A.

In this section we present a computer algorithm (see [Pro22b, § 3] or [Car08, § 3]) that alow
to list all the numerical possibilities for Q-Fano threefolds of index at least 3. Let X be a
Q-Fano threefold with q := qQ(X) ≥ 3 and let T ∈ Cl(X)t be an element of order N .

Step 1. By [Kaw92] we have the inequality

(A.1.1) 0 < −KX · c2(X) = 24−
∑

P∈B

rP − 1

rP
.

This produces a finite (but huge) number of possibilities for the basket B(X) and the number
−KX · c2(X).

Step 2. Theorem 2.2.4 implies that q ∈ {3, . . . , 11, 13, 17, 19}. In each case we compute A3
X

by the formula

A3
X =

12

(q − 1)(q − 2)

(

1−
AX · c2(X)

12
+

∑

P∈B

cP (−AX)
)

(see [Suz04]), where cP is the correction term in the orbifold Riemann-Roch formula [Rei87].
The number rA3

X must be a positive integer by Theorem 2.2.4(iii).

Step 3. On this step we can use an improved version of Bogomolov–Miyaoka inequality [LL23]
instead of the one used in [Kaw92] and [Suz04]. Thus we have

(−KX)
3







< 3(−KX) · c2(X) if qQ(X) 6= 4, 5,

≤ 25
8
(−KX) · c2(X) otherwise.

This removes a lot of possibilities.

Step 4. In a neighborhood of each point P ∈ X we can write AX ∼ lPKX , where 0 ≤ lP < rP .
There is a finite number of possibilities for the collection {(lP )}. If qW(X) = qQ(X), then
gcd(q, r) = 1 by Theorem 2.2.4. In this case the numbers lP are uniquely determined by
1 + qlP ≡ 0 mod rP because KX + qAX ∼ 0.

Step 5. Similarly, a neighborhood of each point P ∈ X we can write T ∼ l′PKX , where
0 ≤ l′P < rP . The collection {(l′P )} and the number N satisfy the following properties:

χ(X, OX(NT )) = 1 and χ(X, OX(jT )) = 0 for j = 1, . . . , N − 1

(by the Kawamata–Viehweg vanishing). Thus we obtain a finite number of possibilities for {(l′P )}
and N .

Step 6. Finally, applying Kawamata–Viehweg vanishing we obtain

χ(X, OX(mAX + jT )) = h0(X, OX(mAX + jT )) = 0.

for −q < m < 0 and 0 ≤ j < n. Again, we check this condition using orbifold Riemann-Roch
and remove a lot of possibilities.
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Step 7. We obtain a list of collections (q,B(X), A3
X, {(lP )}, n{(l

′
P )}). In each case we compute

g(X) and hX(t, σ) by using the orbifold Riemann-Roch theorem. For example,

(A.1.2) g(X) = −
1

2
K3

X + 1−
∑

P∈B

bP (rP − bP )

2rP
.
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