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SAILS FOR UNIVERSAL QUADRATIC FORMS

VÍTĚZSLAV KALA AND SIU HANG MAN

Abstract. We establish a new connection between sails, a key notion in the geometric theory
of generalised continued fractions, and arithmetic of totally real number fields, specifically,
universal quadratic forms and additively indecomposable integers. Our main application is to
biquadratic fields, for which we show that if their signature rank is at least 3, then ranks of
universal forms and numbers of indecomposables grow as a power of the discriminant. We also
construct a family in which these numbers grow only logarithmically.

1. Introduction

Quadratic forms and the integers represented by them have been influential from the dawn of
number theory till today. Their study used and often initiated the development of a broad range
of tools, from elementary and combinatorial (a modern example being escalations used in the
proof of 290-Theorem), through algebraic (such as the classical connection to class groups of real
quadratic number fields or local-global principles) to analytic (theta functions, circle method, or
Siegel’s mass formula). In this paper, we aim to initiate the use of sails in the study of universal
quadratic forms. However, let us discuss some background before turning to sails and our new
connection.

Over rational integers, 290-Theorem of Bhargava–Hanke [BH11] completely characterised pos-
itive definite quadratic forms that are universal in the sense that they represent all positive in-
tegers: Their universality is equivalent to the representability of all the integers 1, 2, 3, . . . , 290.

The situation over rings of integers OK in number fields K is much more complicated. We
call a quadratic form Q over OK totally positive definite if all its values are totally positive,
except for Q(0) = 0, and universal if it moreover represents all elements of O+

K , i.e., all totally
positive integers. In the 1940’s, Siegel [Sie45] established that Q and Q(

√
5) are the only totally

real number field over which the sum of any number of squares is universal; four (Lagrange,
1770) and three (Maaß [Maa41]) squares suffice, respectively. This was the first suggestion that
universal forms over totally real number fields may be quite scarce. In contrast, when the field is
not totally real, then the sum of squares is universal if and only if the field has odd discriminant
[Sie45]. More generally, when the quadratic form is not totally positive definite, then local
methods give much more information, e.g., see [EH82, HHX23].

While the asymptotic local-global principle of Hsia–Kitaoka–Kneser [HKK78] implies that
universal quadratic forms exist over every (totally real) number field, it does not provide any
information about their ranks. Still unproven is even the influential Kitaoka’s conjecture from
the 1990’s that there are only finitely many totally real number fields with a ternary universal
quadratic form, despite interesting results for quadratic [CKR96] and biquadratic [KTZ20] fields,
for fields of odd degree [EK97], and a weaker statement in every fixed degree [KY23]. Further,
Kim–Kim–Park [Kim00, KKP22] studied real quadratic fields with universal forms of ranks up
to eight.

Starting in 2015, Blomer–Kala [BK15, BK18, Kal16] pioneered the use of two new tools in
the area: additively indecomposable integers and continued fractions. An element α ∈ O+

K is
indecomposable if it does not decompose as α = β + γ for any β, γ ∈ O+

K . As already observed
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by Siegel [Sie45], such elements are hard to represent by a quadratic form, and in real quadratic
fields, Dress–Scharlau [DS82] showed that they precisely correspond to semiconvergents of peri-
odic continued fractions. Together, these notions can be used to establish the surprising result
[BK15] that, for every r, there are real quadratic fields without a universal quadratic form of
rank at most r. Along with the study of small trace elements in the codifferent [KT23, Yat19],
Kala–Yatsyna–Żmija [KYŻ23] recently even showed that, when ordered by discriminant, density
1 of real quadratic fields do not admit a universal quadratic form of rank at most r.

Also over number fields of higher degrees, the importance of indecomposables was quite clear,
but the absence of suitable generalised continued fractions posed a significant obstacle, in spite
of some interesting partial results [Kal23, KT23, KL24, KTZ20, Man23, Yat19].

To understand the difficulty, note that while there are various generalizations of continued
fractions, in particular multidimensional ones such as the Jacobi–Perron algorithm (JPA, [HJ68,
Per07]), they are still not well understood. In particular, a major open question is Hermite’s
problem from 1839 that asks about the existence of periodic expansions for algebraic numbers
of degree > 2. This is still wide open, even in the cubic case, where computational evidence
suggests that the JPA expansion of 3

√
n is typically not periodic [Vou16]. However, Karpenkov

[Kar23] recently constructed a modification of JPA that has periodic expansions of totally real
cubic vectors. Nevertheless, these multidimensional continued fraction algorithms are still quite
mysterious, making it difficult to use for our purposes (see [KST23]).

In this paper, we break through this barrier by connecting universal forms and indecompos-
ables to the geometric approach to generalised continued fractions, first considered by Klein in
1895 [Kle95], and recently revived by Arnold and his colleagues, including Karpenkov [Kar22].

Let K be a totally real number field of degree n with ring of integers OK and unit group O×
K .

The Minkowski embedding i : K →֒ Rn is then defined by the n embeddings τi : K →֒ R and the
image Λ := i(OK) ⊆ Rn is a lattice of rank n. As we are interested in totally positive elements,
we consider the set of lattice points Λ+ := Λ ∩Rn

+ in the positive octant. The Klein polyhedron
is the convex hull KK := Conv(Λ+), and its boundary SK := ∂KK is called the sail associated
to Λ+ (or O+

K , or just K).
Informally, the lattice points lying on the sail are the points closest to the coordinate hyper-

planes, in a suitable sense, and one may thus suspect that they may be related to indecompos-
ables. We indeed show in Theorem 2.4 that this is the case: α is indecomposable if it lies on the
sail, i.e., i(α) ∈ SK . However, the other implication holds in the quadratic case n = 2, but not
in general.

Nevertheless, we propound that understanding sails is critical for the study of indecompos-
ables (and, in turn, universal forms) and that, conversely, indecomposables provide a natural
refinement of sails that should be of interest also for the continued fraction community.

We start this paper by describing the face structure of a sail SK . Thanks to the action
by multiplication by totally positive units, there is a finite set of faces Ai whose translates
give the whole sail, see (2.1); topologically, these faces Ai give a torus decomposition [0, 1]n =
⋃

iAi. As the corresponding cones cover the totally positive octant (2.2), each indecomposable
correspondingly lies “above” one of the faces Ai. Suitable counting of lattice points then allows
us to estimate the total number of indecomposables (Theorem 2.6). This is particularly nice
and useful for cubic fields where Theorem 2.7 gives an equality that allows us to significantly
simplify previous arguments (due to Kala–Tinková [KT23, Tin23]) determining indecomposables
in families such as Shanks’ simplest cubic fields [Sha74].

For α ∈ K×, we define its signature sgn(α) as the n-tuple of signs of τi(α). We often
view sgn(α) as a vector in the signature space Fn

2 . The collection of signatures sgn(α) for
α ∈ O×

K is the unit signature group of K, and its dimension (as a subspace of Fn
2 ) is called the

unit signature rank of K, denoted by sgnrk(K). As −1 ∈ O×
K , we have 1 ≤ sgnrk(K) ≤ n.

Available unit signatures control symmetries between various octants of the Minkowski space,
and so have key influence on the structure of the sail, as well as indecomposables and universal
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forms. For example, Kitaoka’s conjecture (for classical quadratic forms) is non-trivial only when
sgnrk(K) = n− 1, n.

In our paper, we then turn to the case of biquadratic fields, i.e., extensions K = Q(
√
D1,

√
D2)

of degree n = 4 (with squarefree D1,D2 ∈ Z>0). Their great advantage is that they contain the
quadratic subfields Q(

√
D1),Q(

√
D2),Q(

√
D1D2). While the indecomposables for these sub-

fields need not remain indecomposable in K (although they often do, see [ČLS+19, KTZ20,
Man23]), they still lie close to the sail (as they have small traces). Crucially for us, quadratic
fields always contain many indecomposables in the quadrant of signature (+,−) and, when the
biquadratic field has sgnrk(K) = 3, 4, there are enough units to make some of these indecom-
posables totally positive in K.

These considerations imply the following theorem, for which we denote by Rcls(K) the mini-
mal rank of a universal quadratic lattice that is classical (see Section 3.3 below; similarly R(K)
denotes the minimal rank without the classical assumption), and by ι(K) the number of inde-
composables modulo multiplication by totally positive units.

Theorem 1.1. Let K be a totally real biquadratic field with sgnrk(K) ≥ 3. Then we have

Rcls(K), ι(K) ≫ ∆
1/12
K and R(K) ≫ ∆

1/42
K for some explicitly computable constants, where ∆K

denotes the discriminant of K.

Here we use the usual analytic notation where f ≫ g (or g ≪ f) denotes that there is a
constant C > 0 such that f(x) > Cg(x) for all admissible values of x, and f ≍ g if f ≫ g and
f ≪ g.

This theorem will be proved in Subsection 3.4. Perhaps curiously, it covers exactly the hard
cases for Kitaoka’s conjecture, and in fact, it can be used to simplify a part of its proof for
biquadratic fields (that is due to Krásenský–Tinková–Zemková [KTZ20]).

Theorem 1.1 leaves open the enticing question of the behaviour of R(K), ι(K) in the case
sgnrk(K) ≤ 2. As we have seen in [Man23], ι(K) usually grows with the discriminant of K, it is
hard to find examples of biquadratic fields with small value of ι(K), and it even seems that there
may be only finitely many biquadratic fields with ι(K) ≤ R for each R [Man23, Conjecture 1.7].
Using our improved understanding motivated by the geometry of sails, we construct a family
where the number of indecomposables grows only logarithmically, while the best examples known
so far involved ι(K) ≍ ∆

1/8
K [Man23, Section 5]).

Theorem 1.2. Let pn be defined as in (4.4) and let K = Q(
√
5,
√
pn). Then we have

log ∆K

8w
≤ ι(K) ≤ log∆K

8w
+ 1,

where w := log(1+
√
5

2 ).

A more precise version of this result will be proved as Theorem 4.1. Note that, since squarefree
integers have positive density in N, we expect that Theorem 1.2 actually describes an infinite
family of biquadratic fields. However, showing that such an exponentially sparse sequence takes
infinitely many squarefree values is far out of reach with current techniques. By the relation
between R(K) and ι(K) (see Corollary 3.6), Theorem 1.2 also implies that R(K) ≤ Rcls(K) ≪
log ∆K .

Let us conclude by pointing out some possible directions of future research (that we are
already investigating). First of all, one can consider sails in all signatures, not only in the
totally positive octant, as they carry additional information about the number field K. Units
that are not totally positive give isomorphisms between some of these sails (this was already the
idea behind the proof of Theorem 1.1!), and so the other sails are useful especially when K do
not have all unit signatures, i.e., sgnrk(K) < [K : Q]. However, a natural question is how are
the different sails related; can they be (partially) reconstructed from the “totally positive” sail?

Acknowledgments
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discussions.
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2. Sails for totally real number fields

Let K be a totally real number field of degree n. Then we have n distinct real embeddings
τ1, . . . , τn : K →֒ R. Given an element α ∈ K×, we define the signature of α to be

sgn(α) := (sign(τ1(α)), . . . , sign(τn(α))) ,

where sign(x) denotes the sign of the real number x ∈ R. Often we view sign(x) as an element
lying in the additive group F2, so sign(x) has value 0 if x > 0 and value 1 if x < 0, and sgn(α)
is viewed as a vector in the signature space Fn

2 . Let OK denote the ring of integers of K, and
O×

K the group of units in OK . The collection of signatures sgn(α) for α ∈ O×
K is called the

unit signature group of K, and the rank of this subspace is called the unit signature rank of K,
denoted by sgnrk(K).

We have the Minkowski embedding i : K →֒ Rn, defined by the n embeddings τi : K →֒ R.
Then the image Λ := i(OK) ⊆ Rn is a lattice of rank n whose covolume is Vol(Λ) = ∆

1/2
K . By a

mild abuse of notation, we shall often refer to a lattice point v ∈ Λ by its corresponding element
α ∈ OK .

Let us further recall some notions from integer geometry relevant for our purposes. A detailed
discussion on the subject can be found in [Kar22].

An integer plane is an affine subspace A ⊆ Rn such that the sublattice A ∩ Λ has the same
rank as the dimension of A. We say that a (convex) polytope, not necessarily of full dimension
is integer if all of its vertices lie in Λ. The integer volume of an integer simplex S = 〈v0, . . . , vd〉,
denoted by IV(S), is the index of the sublattice generated by the vectors v1 − v0, . . . , vd − v0 in
the lattice ΛS := Λ ∩ SpanR(v1 − v0, . . . , vd − v0). The integer volume is related to the usual
Euclidean volume via the formula

Vol(S) =
1

d!
IV(S)Vol(ΛS),

where d is the dimension of the simplex S. Since an integer polytope can be decomposed into
a disjoint union of integer simplices of the same dimension, we may define integer volume of an
integer polytope to be the sum of the integer volumes are the constituent integer simplices; the
integer volume is independent of the decomposition.

Let A ⊆ Rn be an integer plane which does not intersect with the origin. The integer distance
of A from the origin, denoted by ID(A), is the index of the sublattice generated by A ∩ Λ in
the integer lattice Λ ∩ SpanR(A). By convention, if A intersects with the origin, then we say
the integer distance of A from the origin is 0. We shall also define the integer distance ID(S) of
a polytope S from the origin to be ID(A), where A is the integer plane of the same dimension
containing S.

Lemma 2.1. Let A ⊆ Rn be an integer plane with integer distance ID(A) = k > 0. Then there
exists δ ∈ O∨

K such that A is contained in the hyperplane TrK/Q(δ(−)) = k.

Proof. By extending A, we may assume A has dimension n − 1. Let α0, . . . , αn−1 ∈ OK cor-
respond to a set of generators of A. By picking a Q-basis of K, we obtain a system of linear
equations TrK/Q(δαi) = k over Q. It follows that there exists δ ∈ K satisfying TrK/Q(δαi) = k.
Now let q ∈ Q be the minimal positive value of TrK/Q(δα) for α ∈ OK . Then ID(A) = k/q = k,
which implies q = 1. Thus δ lies in the codifferent O∨

K . �

The argument above also works backwards, giving us the following corollary.

Corollary 2.2. Suppose an integer plane A is contained in the hyperplane TrK/Q(δ(−)) = k for
some δ ∈ O∨

K and k > 0. Then ID(A) is a divisor of k. In particular, if A is contained in the
hyperplane TrK/Q(δ(−)) = 1 for some O∨

K , then ID(A) = 1.

Now we consider the set of lattice points Λ+ := Λ ∩ Rn
+ in the positive octant, which cor-

responds to the set of totally positive integers O+
K . The Klein polyhedron is the convex hull

KK := Conv(Λ+). The boundary SK := ∂KK is called the sail associated to Λ+ (or O+
K). The

Klein polyhedron is invariant under multiplication by totally positive units, so the sail SK also
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has a periodic structure, and we can find a finite set of faces Ai, such that SK is a union of their
translates by totally positive units (see [Kar22, Ch. 22]):

SK =
⋃

ǫ∈O×,+

K

⋃

i

Aiǫ. (2.1)

It turns out that a good understanding of the sail SK can yield useful information about the
indecomposable elements, at least when the degree of the number field K is small.

Example 2.3. For real quadratic fields K, the structure of the indecomposable elements is fully
understood in terms of continued fractions (see Section 3.2). The sail SK consists of segments
connecting two consecutive upper convergents (and their conjugates). Assuming the notation in
Section 3.2, we note that the segment Bi connecting the upper convergents β2i−1 and β2i+1 is
contained in the line TrK/Q(δ2i(−)) = 1. By Corollary 2.2, we conclude that ID(Bi) = 1 for all i.
Since the upper semiconvergents β2i−1,l all lie on the segment Bi, and that the indecomposable
elements of O+

K are precisely the upper semiconvergents, we see that a totally positive integer
α ∈ O+

K is indecomposable if and only if it lies on the sail SK .

In the general case, we show below in Theorem 2.4 that the integers lying on the sail are still
indecomposable. However, the converse is not quite true, and there are often indecomposable
elements lying in the interior of the Klein polyhedron KK . For example, it was shown in [KT23]
that for simplest cubic fields there is an indecomposable element, unique up to multiplication
by totally positive units, that sits in the interior of the Klein polyhedron.

Theorem 2.4. Let K be a totally real number field. If α ∈ O+
K lies on the sail SK , then α is

indecomposable.

To prove Theorem 2.4, we need a small lemma.

Lemma 2.5. Let Ai be a face of SK . Then Ai is contained in the hyperplane TrK/Q(δ(−)) = k

for some δ ∈ O∨,+
K and k ∈ N.

Proof. By Lemma 2.1, we know that Ai is contained in the hyperplane TrK/Q(δ(−)) = k for
some δ ∈ O∨

K and k ∈ N. It remains to show that δ is totally positive. Suppose to the contrary
that δ is not totally positive. Then the hyperplane TrK/Q(δ(−)) = 0 intersects nontrivially with
the positive octant Rn

+, and in particular contains a totally positive element α ∈ O+
K . On the

other hand, since Ai is a face of the sail SK , by convexity of the Klein polyhedron KK we have
TrK/Q(δα) ≥ k for all α ∈ O+

K , a contradiction. So δ ∈ O∨,+
K is totally positive. �

Proof of Theorem 2.4. Suppose α ∈ O+
K lies on a face Ai of the sail SK . By Lemma 2.5, Ai is

contained in the hyperplane TrK/Q(δ(−)) = k for some δ ∈ O∨,+
K and k ∈ N. In particular, we

have TrK/Q(δα) = k. Suppose α admits a decomposition α = α1 +α2, with α1, α2 ∈ O+
K . Then

TrK/Q(δα1) and TrK/Q(δα2) are both positive, and we have

TrK/Q(δα1) + TrK/Q(δα2) = TrK/Q(δα) = k.

Hence TrK/Q(δα1),TrK/Q(δα2) < k. On the other hand, as in the proof of Lemma 2.5, convexity
of the Klein polyhedron KK implies that TrK/Q(δγ) ≥ k for all γ ∈ O+

K , a contradiction. So α
is indecomposable. �

To a face Ai of the sail SK , we may associate a cone R+Ai. By Shintani’s unit theorem
[Shi76], the translates of these cones by totally positive units cover the positive octant:

Rn
+ =

⋃

ǫ∈O×,+
K

⋃

i

R+Aiǫ. (2.2)

In particular, every indecomposable element in O+
K , up to translation by a totally positive unit,

sits in some cone R+Ai. So it suffices to consider the indecomposable elements in these cones.
Let Ai =

⋃

j Ai,j be a decomposition of the face Ai into integer simplices. This induces a
decomposition R+Ai =

⋃

j R+Ai,j of the cone R+Ai into simplicial cones. Let α1, . . . , αn ∈ O+
K
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be the vertices of the integer simplex Ai,j. Then every indecomposable element in the cone
R+Ai,j is actually contained in the parallelepiped

Pi,j =

{

n
∑

k=1

λkαk

∣

∣

∣

∣

∣

0 ≤ λk < 1, 1 ≤ k ≤ n

}

.

Noting that Pi,j is the fundamental domain of the lattice generated by α1, . . . , αn, it follows that

#(O+
K ∩ Pi,j) = IV(A′

i,j)− 1 = IV(Ai,j) ID(Ai,j)− 1,

where A′
i,j is the simplex with vertices 0, α1, . . . , αn. In particular, this says that the number

of indecomposable elements in the cone R+Ai,j which are not on Ai,j is bounded above by
IV(Ai,j) ID(Ai,j)− 1. Denoting by ιint(Ai) the number of indecomposable elements in the cone
R+Ai which are not on the face Ai, we conclude the following theorem.

Theorem 2.6. Let Ai be a face of the sail SK , and Ai =
⋃k

j=1Ai,j a decomposition of Ai into

k simplices. Then ιint(Ai) ≤ ID(Ai) IV(Ai) − k. In particular, if ID(Ai) = 1, and Ai admits
a unimodular triangulation (i.e., a decomposition into simplices with unit integer volume), then
ιint(Ai) = 0, so all indecomposable elements in the cone R+Ai lie on the face Ai.

On the other hand, the totally positive integers lying in the parallelepipeds Pi,j need not
be indecomposable, because it could possibly be written as a sum of two other totally positive
integers inside (or outside) of the parallelepiped. However, we shall show that when K is a cubic
field, then the totally positive integers in Pi,j are indeed indecomposable. This gives an explicit
formula for ιint(Ai).

Theorem 2.7. Suppose [K : Q] = 3, and let Ai be a face of the sail SK . Then we have

ιint(Ai) = (ID(Ai)− 1) IV(Ai).

Proof. We observe that if [K : Q] = 3, then Ai is 2-dimensional, and always admits a unimodular
triangulation Ai =

⋃k
j=1Ai,j (see [Kar22, Proposition 2.17]). By Lemma 2.1, we find δ ∈ O∨

K

such that Ai is contained in the plane TrK/Q(δ(−)) = ID(Ai). By the construction of the sail
SK , we deduce that TrK/Q(δα) ≥ ID(Ai) for every α ∈ O+

K .
Now consider the parallelepiped Pi,j associated to the simplex Ai,j = 〈α1, α2, α3〉. Let γ ∈

O+
K ∩Pi,j. Then the element γ′ := α1+α2+α3− γ is contained in the closure Pi,j , and we have

TrK/Q(δγ) + TrK/Q(δγ
′) = TrK/Q(δ(α1 + α2 + α3)) = 3 ID(Ai).

Since we know that TrK/Q(δα) ≥ ID(Ai) for α ∈ O+
K , we immediately deduce that

ID(Ai) ≤ TrK/Q(δγ) ≤ 2 ID(Ai).

The inequality above can be made strict. To see this, we observe that α1, α2, α3 are the only
lattice points on Ai,j, which is the intersection of Pi,j and the plane TrK/Q(δ(−)) = ID(Ai). Since
γ and γ′ are not a sum of αi’s by construction, it follows that TrK/Q(δγ),TrK/Q(δγ

′) 6= ID(Ai).
So we conclude a strict inequality

ID(Ai) < TrK/Q(δγ) < 2 ID(Ai)

as claimed. Suppose γ admits a decomposition γ = γ1 + γ2 as a sum of totally positive integers.
Then one of TrK/Q(δγ1) and TrK/Q(δγ2) must be smaller than ID(Ai), a contradiction. So γ
is indecomposable. Since there are ID(Ai) − 1 such indecomposable elements in Pi,j , summing
over j yields the statements for cubic fields. �

Using Theorem 2.7 and the knowledge of the sail SK of a totally real cubic field K, we may
compute ι(K) without the need completely characterise the indecomposable elements in O+

K , a
process which is often difficult or tedious. We demonstrate this with the following example.

Example 2.8. We consider Shanks’ family of the simplest cubic fields [Sha74], defined as K =
Q(ρ), where ρ is the largest root of the polynomial

x3 − ax2 − (a+ 3)x− 1,
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where a ≥ −1 is an integer. Suppose also that OK = Z[ρ]; it is shown in [KT23] that there are
infinitely many such fields. Then 1, ρ, ρ2 is an integral basis of OK . The group O×,+

K of totally
positive units is generated ε1 = ρ2, and ε2 = 1 + 2ρ + ρ2. From [Kar22, Chapter 22.6], we see
that the sail consists of translates of the following two faces by totally positive units:

A1 = 〈1, ε1, ε2〉 , A2 =
〈

1, ε1, ε1ε
−1
2

〉

.

In terms of the basis 1, ρ, ρ2, we compute

ε1ε
−1
2 = −(a+ 1)− (a2 + 3a+ 3)ρ+ (a+ 2)ρ2.

It is then straightforward to compute that

ID(A1) = 2, ID(A2) = 1,

and

IV(A1) = 1, IV(A2) = a2 + 3a+ 3.

By Theorem 2.7, we see that ιint(A1) = 1, and ιint(A2) = 0. Meanwhile, since the edges of A2

contains no other integral points other than the vertices, by Pick’s formula we see that there are
1
2(a

2+3a+2) integral points in the interior of the face A2, all of which are indecomposable. So we
conclude that ι(K) = 1

2 (a
2+3a+6). This agrees with the characterisation of the indecomposable

elements in O+
K found in [KT23].

Finally, we give a useful criterion to detect sails, which we will use in later sections.

Lemma 2.9. Let S be a polytope of dimension n−1 with vertices in O+
K . Suppose S is contained

in the hyperplane TrK/Q(δ(−)) = 1 for some δ ∈ O∨,+
K . Then S ⊆ SK .

Proof. Obviously the polytope S is contained in the Klein polyhedron KK . On the other hand,
we observe that TrK/Q(δα) ≥ 1 for every α ∈ O+

K . So we see that S ⊆ ∂KK = SK . �

3. Unit signature ranks and indecomposable elements

3.1. Units in biquadratic fields. Let us now turn to the case of biquadratic fields. First we
recall the following theorem of Kubota, which characterises for real biquadratic fields K the
group of units O+

K .

Theorem 3.1 ([Kub56, Satz 1]). Let K be a real biquadratic field, with quadratic subfields
K1,K2,K3. For 1 ≤ i ≤ 3, let εi denote the fundamental unit of Ki.

(1) Suppose NKi/Q(εi) = 1 for some 1 ≤ i ≤ 3. Then a system of fundamental units of O×
K

is given by one of the following (up to relabelling of units εi):
(i) ε1, ε2, ε3, (ii)

√
ε1, ε2, ε3,

(iii)
√
ε1,

√
ε2, ε3, (iv)

√
ε1ε2, ε2, ε3,

(v)
√
ε1ε2,

√
ε3, ε2, (vi)

√
ε1ε2,

√
ε2ε3,

√
ε3ε1,

(vii)
√
ε1ε2ε3, ε2, ε3,

where the units εi under the radical always have NKi/Q(εi) = 1.
(2) Suppose NKi/Q(εi) = −1 for every 1 ≤ i ≤ 3. Then a system of fundamental units of

O×
K is given by one of the following:

(i) ε1, ε2, ε3, (ii)
√
ε1ε2ε3, ε2, ε3.

Lemma 3.2. Let K be a real biquadratic field with sgnrk(K) ≤ 3. Then we have NK/Q(η) = 1

for every η ∈ O×
K .

Proof. First suppose NKi/Q(εi) = 1 for some 1 ≤ i ≤ 3. Note that this assumption actually
implies sgnrk(K) ≤ 3 (see [DDK19, Remark 1]). We see from above that every η ∈ O×

K is of the
form η = ±

√

εm1

1 εm2

2 εm3

3 , where mi ∈ Z is even unless NKi/Q(εi) = 1.
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Let σi denote the non-trivial element in Gal(K/Ki), and write ησi := σi(η). Then we have

η2(1+σ1) = ε2m1

1 =⇒ η1+σ1 = (−1)ν1εm1

1 =⇒ ησ1 = (−1)ν1εm1

1 η−1,

η2(1+σ2) = ε2m2

2 =⇒ η1+σ2 = (−1)ν2εm2

2 =⇒ ησ2 = (−1)ν2εm2

2 η−1,

for some ν1, ν2 ∈ Z, and

ησ3 = ησ1σ2 =
(

(−1)ν1εm1

1 η−1
)σ2 = (−1)ν1+ν2ε−m1

1 ε−m2

2 η.

This implies

NK/Q(η) = η1+σ1+σ2+σ3 = η
(

(−1)ν1εm1

1 η−1
) (

(−1)ν2εm2

2 η−1
) (

(−1)ν1+ν2ε−m1

1 ε−m2

2 η
)

= 1.

Now suppose NKi/Q(εi) = −1 for every 1 ≤ i ≤ 3. In this case, we observe that the signatures
of −1, ε1, and ε2 are linear independent over F2. By the assumption sgnrk(K) ≤ 3, this says
the unit signature group of K is generated by these signatures. Since we have

NK/Q(−1) = NK/Q(ε1) = NK/Q(ε2) = 1,

the lemma follows. �

Lemma 3.3. Let K be a real biquadratic field with sgnrkK ≥ 3. Let Ki = Q(
√
Di), 1 ≤ i ≤ 3,

be the quadratic subfields of K, with Di > 0 squarefree. Then for each 1 ≤ i ≤ 3, there exists a
unit ηi ∈ O×

K with the same signature as
√
Di.

Proof. If sgnrk(K) = 4, then the statement is obvious because O×
K has all signatures. Now

suppose sgnrk(K) = 3. By Lemma 3.2, we see that for η ∈ O×
K , the signature sgn(η) lies in the

kernel of the surjective map

N : Fn
2 → F2, (s1, . . . , sn) 7→

∑

i

si.

Since sgnrk(K) = 3 = dimF2
ker(N), we see that O×

K has all signatures in ker(N). The statement
then follows, because NK/Q(

√
Di) = (NKi/Q(

√
Di))

2 = 1, which implies sgn(
√
Di) ∈ ker(N). �

3.2. Continued fraction. Now we recall some well-known results about indecomposable ele-
ments in real quadratic fields and continued fractions. See [JW09, Khi64, Per77] for detailed
discussion on the subject. Let K = Q(

√
D) be a real quadratic field, with D > 0 squarefree.

We write

ωD :=

{√
D if D ≡ 2, 3 (mod 4),

1+
√
D

2 if D ≡ 1 (mod 4).

Then the ring of integers OK is given by Z[ωD]. As a quadratic irrational number, −ωD, admits
a periodic continued fraction

−ωD = [u0;u1, . . . , us].

In particular, we have

us =

{

2u0 if D ≡ 2, 3 (mod 4),

2u0 + 1 if D ≡ 1 (mod 4).
(3.1)

From the continued fraction, we obtain a series of convergents
si
ti

:= [u0;u1, . . . , ui], i ≥ 0.

As a convention, we define (s−1, t−1) := (1, 0). We associate with these convergents elements in
OK , which by an abuse of notation are also called convergents:

βi := si + tiωD ∈ OK , i ≥ −1. (3.2)

We also define the semiconvergents

βi,l := si,l + ti,lωD := (si + lsi+1) + (ti + lti+1)ωD, i ≥ −1, 0 ≤ l ≤ ui+2. (3.3)

The convergents βi (resp. semiconvergents βi,l) are called upper if i is odd, and lower if i is even.
We note that the upper (resp. lower) semiconvergents gives upper (resp. lower) bounds for −ωD,
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and that the upper semiconvergents (and their conjugates) are precisely the indecomposable
elements in O+

K .
Let τ+, τ− : K → R be the two real embeddings which sends

√
D to

√
D and −

√
D respec-

tively. With respect to these embeddings, the upper semiconvergents have signature (+,+),
while the lower semiconvergents have signature (+,−). For i ≥ −1, we also define

δi :=







(−1)i

2
√
D
(tiωD − si) if D ≡ 2, 3 (mod 4),

(−1)i√
D

(tiωD − si) if D ≡ 1 (mod 4).
. (3.4)

It is easy to verify that δi lies in the codifferent O∨
K , and δi+1 has the same signature as βi,l.

Moreover, we have TrK/Q(δi+1βi,l) = 1 for every 0 ≤ l ≤ ui+2.

3.3. Universal lattices and indecomposable elements. Let K be a totally real number
field. We shall consider quadratic OK-lattices (Λ, Q) over K, that is, a finitely generated OK-
module Λ equipped with a quadratic form Q. The rank of (Λ, Q) is the K-dimension of KΛ. The
lattice (Λ, Q) is integral if Q(v) ∈ OK for every v ∈ Λ, totally positive if Q is totally positive,
and classical if all the values in the associated symmetric bilinear form lie in OK . The lattice
(Λ, Q) is universal if it represents every element in O+

K .
It is known that classical universal lattices exist over every totally real number field [HKK78],

so we may denote by Rcls(K) the minimal rank of a classical universal lattice. The following
theorems say that Rcls(K) can be used to give a lower bound for ι(K). To state the theorem,
we recall that the Pythagoras number of a ring R is the smallest integer s(R) such that every
sum of squares of elements of R can be expressed as the sum of s(R) squares.

Theorem 3.4 ([KT23, Proposition 7.1]). Let K be a totally real number field of degree n = [K :
Q]. Let s = s(OK) denote the Pythagoras number of OK , and S denote a set of representatives
of classes of indecomposables in OK up to multiplication by squares of units O×2

K . Then the
quadratic form

∑

σ∈S
σ
(

x21,σ + x22,σ + . . . + x2s,σ
)

is universal over OK , and has rank s ·#S. In particular, this implies Rcls(K) ≤ 2n−sgnrk(K)s ·
ι(K).

Theorem 3.5 ([KY21, Corollary 3.3]). Let K be a totally real number field of degree n = [K : Q].
Then the Pythagoras number s(OK) is finite, and is bounded above by a function depending only
on n.

Using Theorems 3.4 and 3.5, the following is immediate.

Corollary 3.6. Let K be a totally real number field. Then we have R(K) ≤ Rcls(K) ≪ ι(K)
for some constant depending only on n = [K : Q].

We shall also make use of the following result which bounds the number of short vectors in a
Z-lattice. The main part of the result is due to Regev–Stephens-Dawidovitz; for a reference to
our formulation, see, e.g., the comments immediately following [Man23, Theorem 3.1].

Proposition 3.7 ([RSD23, Theorem 1.1]). Let (Λ, Q) be a totally positive classical quadratic
Z-lattice of rank R, and m ∈ N. Let NΛ,Q(m) denote the number of vectors v ∈ Λ for which
Q(v) = m. Then we have NΛ,Q(m) ≤ C(R,m), where

C(R,m) ≤
{

max {480, 2R(R − 1)} if m = 2,

2
(R+2m−2

2m−1

)

otherwise.

3.4. Proof of Theorem 1.1. Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let K be a real biquadratic field with sgnrk(K) ≥ 3. Let Ki = Q(
√
Di),

1 ≤ i ≤ 3 be the quadratic subfields of K, with Di > 0 squarefree. Without loss of generality,
we assume D1 < D2 < D3. By Lemma 3.3, there is a unit η ∈ O×

K with the same signature as√
D3.
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We write
−ωD3

= [u0;u1, . . . , us]

the continued fraction of −ωD3
, and define u := max {ui | i ∈ N}. We construct as in (3.3) the

semiconvergents
βi,l = si,l + ti,lωD3

∈ OK3
, i ≥ −1, 0 ≤ l ≤ ui+2,

as well as the codifferent elements δi ∈ O∨
K3

, i ≥ −1. For i ≥ −1 odd, we observe that the
elements βi,l and δi+1 are totally positive, and we have

TrK/Q (δi+1βi,l) = 2TrK3/Q (δi+1βi,l) = 2

for 0 ≤ l ≤ ui+2. Meanwhile, for i ≥ 0 even, we observe that elements βi,l and δi+1 have the
same signature as

√
D3. Hence the elements ηβi,l and η−1

3 δi+1 are totally positive, and we have

TrK/Q

((

η−1δi+1

)

(ηβi,l)
)

= 2TrK3/Q (δi+1βi,l) = 2

for 0 ≤ l ≤ ui+2. We thus conclude that there exists δ ∈ O∨,+
K such that there are u+1 distinct

elements γ1, . . . , γu+1 ∈ O+
K satisfying TrK/Q(δγj) = 2.

Now let (Λ, Q) be a classical universal OK -lattice of rank R ≥ Rcls(K). By fixing a Z-basis of
OK , we can identify Λ with a classical Z-lattice of rank 4R via an isomorphism ϕ : Λ

∼−→ Z4R, on
which we equip a quadratic form q(v) := TrK/Q(δQ(ϕ−1(v))), which is positive definite. Since
Q is universal, for each 1 ≤ i ≤ u + 1 we can find wi ∈ Λ such that Q(wi) = γi. For the
corresponding vector vi := ϕ(wi) ∈ Z4R, we have

q(±vi) = TrK/Q (δQ(wi)) = TrK/Q(δγi) = 2.

So there are at least 2(u+ 1) vectors v ∈ Z4R for which we have q(v) = 2. By Proposition 3.7,
we deduce that

u+ 1 ≤ 1

2
C(4R, 2) ≤ max {240, 4R(4R − 1)} ≪ R2.

On the other hand, from (3.1) we see that

u ≥ us ≥ 2 ⌊−ωD3
⌋ >

√

D3 − 3 ≫
√

D3.

It follows that D3 ≪ R4. Since the discriminant ∆K of K satisfies (see, e.g., [Cha73, Sch89])

∆K ≍ D1D2D3 ≪ D3
3 ,

we conclude that Rcls(K) ≫ ∆
1/12
K . By Corollary 3.6 it follows that ι(K) ≫ ∆

1/12
K as well.

Now suppose (Λ, Q) be a non-classical universal OK -lattice of rank R ≥ R(K). Then (Λ, 2Q)
is a classical 2OK -universal lattice (i.e., it represents all elements in O+

K ∩ 2OK). Applying the
aforementioned arguments with 2Q in place of Q, this yields 2(u + 1) vectors in v ∈ Z4R for
which we have q(v) = 4. By Proposition 3.7, we deduce that

u+ 1 ≤ 1

2
C(4R, 4) ≤

(

4R + 6

7

)

≪ R7.

Then the same argument gives R(K) ≫ ∆
1/42
K . �

3.5. Finding unit signature ranks for biquadratic fields. Here we give a brief account on
finding the unit signature rank of a real biquadratic field K. Everything in this subsection is
easily derived from the results of Kubota [Kub56]. Nevertheless, we include this exposition for
the reader’s convenience.

For this we need some notations. Let K = Q(
√
D) be a real quadratic field, and ε ∈ O×

K
with NK/Q(ε) = 1. Then there exists a unique squarefree integer d = dK(ε) ∈ N such that
dε ∈ K2. In fact, this d is given by the squarefree part of TrK/Q(ε+ 1). One easily verifies that
TrK/Q(ε+ 1)ε = (ε+ 1)2, and it follows that

√
dε ∈ K is totally positive.

Let K be a real biquadratic field, with quadratic subfields K1,K2,K3. For 1 ≤ i ≤ 3, let
εi denote the fundamental unit of Ki. The first thing to look at is the norm NKi/Q(εi) of the
fundamental units.
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Suppose NKi/Q(εi) = −1 for every 1 ≤ i ≤ 3. From Theorem 3.1, we see that if ε1ε2ε3 is
not a square in K, then a system of fundamental units of O×

K is given by ε1, ε2, ε3, and we have
sgnrk(K) = 3. On the other hand, if ε1ε2ε3 is a square in K, then [Kub56, Hilfssatz 3] shows
that NK/Q(

√
ε1ε2ε3) = −1. Thus −1,

√
ε1ε2ε3, ε2, ε3 have independent signatures, and we have

sgnrk(K) = 4. To determine whether ε1ε2ε3 is a square in K, we use the following criterion.

Proposition 3.8 ([Kub56, Zusatz 1]). Assume the settings as above, and suppose NKi/Q(εi) =
−1 for every 1 ≤ i ≤ 3. We define the following elements in K:

ξ0 = ε1ε2ε3 + ε1 + ε2 − ε3, ξ1 = ε1ε2ε3 + ε1 − ε2 + ε3,

ξ2 = ε1ε2ε3 − ε1 + ε2 + ε3, ξ3 = ε1ε2ε3 − ε1 − ε2 − ε3.

Then ε1ε2ε3 ∈ K2 if and only if TrK/Q(ξi) ∈ K2 for some (or equivalently every) i ∈ {0, 1, 2, 3}.
Now suppose NKi/Q(εi) for some 1 ≤ i ≤ 3. To determine the set of fundamental units of

OK , we use the following criterion.

Proposition 3.9 ([Kub56, Hilfssatz 11]). Assume the settings as above, and suppose NKi/Q(εi) =

1 for some 1 ≤ i ≤ 3. Let η = εm1

1 εm2

2 εm3

3 ∈ O×
K , where mi ∈ Z is even unless NKi/Q(εi) = 1.

Then η ∈ K2 if and only if

dη := dK1
(εm1

1 )dK2
(εm2

2 )dK3
(εm3

3 ) ∈ K2. (3.5)

To find the unit signature rank of K, it remains to determine the signature of
√
η for which

η ∈ K2. Write Ki = Q(
√
Di), 1 ≤ i ≤ 3, with Di > 0 squarefree. Since

√

dKi
(εmi

i )εmi

i , it
follows that

√
η has the same signature as

√

dη. Finally, (3.5) implies dη ∈ cηQ
2 for some

cη ∈ {1,D1,D2,D3}, this says sgn(
√
η) = sgn(

√
cη).

3.6. Applications towards Kitaoka conjecture. The Kitaoka conjecture states that there
are only finitely many totally real number fields admit universal ternary forms. Towards this
conjecture, Krásenský, Tinková, and Zemková [KTZ20] showed the following result concerning
biquadratic fields.

Theorem 3.10 ([KTZ20]). There are no classical universal ternary forms over real biquadratic
fields.

In their proof, the case where the unit signature rank of K is ≤ 2 is quite easy; however, for
the case where sgnrk(K) ≥ 3, they relied on a lengthy and technical proof to show that there
are only finitely many possible exceptions that one have to check. Our Theorem 1.1 gives a vast
simplification for this part of the proof.

Corollary 3.11. Let K be a real biquadratic field with sgnrk(K) ≥ 3, and let Ki = Q(
√
Di),

1 ≤ i ≤ 3 be the quadratic subfields of K, with Di > 0 squarefree. If K admits a ternary
universal form, then Di < 1332.

Proof. We follow the proof of Theorem 1.1, and optimise the constants along the proof. For
R = 3, we find C(12) ≤ 264, where the equality is attained for example by the lattices Z12, as
well as E8 ⊕ D4. It follows that u ≤ 131, and ⌊−ωDi

⌋ ≤ 65. Using the definition of ωDi
, we

obtain
√
Di < 133, or equivalently Di < 1332, as claimed. �

4. A family of fields with few indecomposables

In this section, we let F = Q(
√
5). Then 1+

√
5

2 is a fundamental unit of O×
F . For n ∈ N, we

define integers xn, yn by the equation

xn + yn
√
5

2
=

(

1 +
√
5

2

)n

.

It is easily verified that xn, yn satisfy the recurrence relations

xn+1 =
xn + 5yn

2
, yn+1 =

xn + yn
2

, (4.1)
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as well as the equations

xnyn+1 − xn+1yn = 2(−1)n, xnxn+1 − 5ynyn+1 = 2(−1)n, (4.2)

and
x2n − 5y2n = 4(−1)n. (4.3)

For n ≥ 0 be an integer such that

p = pn := y212n+3 − 1, r = rn := x212n+3 − 1 (4.4)

are squarefree integers, and let K = Kn := Q(
√
5,
√
p). The discriminant of the field K is given

by
∆K = 16(x24n+6 − 3)2. (4.5)

The subfields of K are given by

K1 := F = Q(
√
5), K2 := Q(

√
p) K3 := Q(

√
r).

For convenience, we shall write X := x12n+3, and Y := y12n+3. It is easily verified that

ǫ1 =
3 +

√
5

2
, ǫ2 = Y +

√
p, ǫ3 = X +

√
r

are the generators of O×,+
K1

, O×,+
K2

, O×,+
K3

respectively. We note from [Wil70] that an integral
basis of OK is given by

{

1,
1 +

√
5

2
,
√
p,

√
p+

√
r

2

}

,

and an integral basis of the codifferent O∨
K is given by

{

1

4
−

√
5

20
,

√
5

10
,

√
p

4p
−

√
r

4r
,

√
r

2r

}

.

We shall write [a, b, c, d] to denote the element a+ b
√
5 + c

√
p+ d

√
r ∈ K.

Theorem 4.1. Let K = Kn = Q(
√
5,
√
pn) be a biquadratic field constructed as above. A

complete set of indecomposable elements in O+
K modulo totally positive units is given by

1, ρ :=

[

X + Y

2
, 0,−1

2
,
1

2

]

, and

γj =

[

y2j−1X + 1

2
,
x2j−1X − (−1)j

10
, (−1)j

x2j−1

2
, (−1)j

y2j−1

2

]

, 1 ≤ j ≤ 6n+ 1.

So ι(K) = 6n+ 3. In particular, for this family of biquadratic fields, we have

log ∆K

8w
≤ ι(K) ≤ log∆K

8w
+ 1,

where w := log(1+
√
5

2 ).

The rest of the section is devoted to the proof of Theorem 4.1. We fix the embeddings

τ1

(

a+ b
√
5 + c

√
p+ d

√
r
)

= a+ b
√
5 + c

√
p+ d

√
r,

τ2

(

a+ b
√
5 + c

√
p+ d

√
r
)

= a− b
√
5 + c

√
p− d

√
r,

τ3

(

a+ b
√
5 + c

√
p+ d

√
r
)

= a+ b
√
5− c

√
p− d

√
r,

τ4

(

a+ b
√
5 + c

√
p+ d

√
r
)

= a− b
√
5− c

√
p+ d

√
r.
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We consider the following elements in the codifferent O∨
K :

δA :=

[

1

4
,− 1

20
, 0,− 1

5(X + Y )

]

,

δ±B,j :=

[

1

4
,− 1

20
,±X − x4j−1

20p
,∓X − y4j−1

4r

]

, 1 ≤ j ≤ 3n,

δ±C,j :=

[

1

4
,± 1

20
,−Y − y2j−1

4p
,∓Y − x2j−1

4r

]

, 1 ≤ j ≤ 6n+ 1.

Proposition 4.2. The elements 1, ρ, γj , δA, δ
±
B,j , δ

±
C,j constructed above are totally positive.

Proof. This is some routine checking, using rational approximations of
√
p and

√
r to give lower

bounds to the embeddings. Here we show that the elements γj are totally positive; the proofs
for other elements are analogous. The embeddings τi sends γj to

τ1(γj) =

(

y2j−1X + 1

2
+

x2j−1X − (−1)j

10

√
5

)

+ (−1)j
(x2j−1

2
+

y2j−1

2

√
5
)√

p,

τ2(γj) =

(

y2j−1X + 1

2
− x2j−1X − (−1)j

10

√
5

)

+ (−1)j
(x2j−1

2
− y2j−1

2

√
5
)√

p,

τ3(γj) =

(

y2j−1X + 1

2
+

x2j−1X − (−1)j

10

√
5

)

− (−1)j
(x2j−1

2
+

y2j−1

2

√
5
)√

p,

τ4(γj) =

(

y2j−1X + 1

2
− x2j−1X − (−1)j

10

√
5

)

− (−1)j
(x2j−1

2
− y2j−1

2

√
5
)√

p.

Since we have x2j−1

y2j−1
<

√
5, we check that

τ1(γj) < τ3(γj), τ4(γj) < τ2(γj) for 1 ≤ j ≤ 6n+ 1 odd, and

τ3(γj) < τ1(γj), τ2(γj) < τ4(γj) for 2 ≤ j ≤ 6n even.

So it suffices to show that τ1(γj), τ4(γj) > 0 for j odd, and τ2(γj), τ3(γj) > 0 for j even.
Using the bound

√
p < Y , we obtain for j odd

τ1(γj) >

(

y2j−1X + 1

2
+

x2j−1X + 1

10

√
5

)

−
(x2j−1

2
+

y2j−1

2

√
5
)

Y. (4.6)

So it suffices to show the right of (4.6) is positive. By rearranging the terms, we see that this is
equivalent to

(

Y
√
5−X

)(

x2j−1 + y2j−1

√
5
)

< 1 +
√
5. (4.7)

To see that (4.7) is true, we observe that

(

Y
√
5−X

)(

x2j−1 + y2j−1

√
5
)

= 4

(

1 +
√
5

2

)2j−12n−4

≤ 4

(

1 +
√
5

2

)−2

< 1 +
√
5,

using the assumption 1 ≤ j ≤ 6n+ 1. Similarly, for j odd we have

τ4(γj) >

(

y2j−1X + 1

2
− x2j−1X + 1

10

√
5

)

+
(x2j−1

2
− y2j−1

2

√
5
)

Y. (4.8)

So it suffices to show the right of (4.8) is positive. By rearranging the terms, this is equivalent
to

(

X − Y
√
5
)(

x2j−1 − y2j−1

√
5
)

<
√
5− 1. (4.9)

To see that (4.9) is true, we observe that

(

X − Y
√
5
)(

x2j−1 − y2j−1

√
5
)

= 4

(

1 +
√
5

2

)−2j−12n−2

≤ 4

(

1 +
√
5

2

)−12n−4

<
√
5− 1,

again using the assumption 1 ≤ j ≤ 6n+ 1.
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On the other hand, we obtain for j even

τ2(γj) >

(

y2j−1X + 1

2
− x2j−1X − 1

10

√
5

)

+
(x2j−1

2
− y2j−1

2

√
5
)

Y. (4.10)

By rearranging the terms, the right of (4.10) being positive is equivalent to
(

X − Y
√
5
)(

x2j−1 − y2j−1

√
5
)

<
√
5− 1,

which is just (4.9). Similarly, for j even we have

τ3(γj) >

(

y2j−1X + 1

2
+

x2j−1X − 1

10

√
5

)

−
(x2j−1

2
+

y2j−1

2

√
5
)

Y. (4.11)

By rearranging the terms, the right of (4.11) being positive is equivalent to
(

Y
√
5−X

)(

x2j−1 + y2j−1

√
5
)

< 1 +
√
5,

which is just (4.7). Therefore γj is totally positive for 1 ≤ j ≤ 6n + 1. �

Next we show that the twisted trace-1 hyperplanes associated to δA, δ
±
B,j , δ

±
C,j contain certain

translates of 1, ρ, γj . As a convention we shall take γ0 := γ1ǫ
−1
1 ǫ3.

Proposition 4.3. The hyperplane TrK/Q(δA(−)) = 1 contains the elements

1, ǫ1, ǫ
6n+1
1 ǫ2, ǫ

6n+2
1 ǫ2, ǫ

6n+1
1 ǫ3, ǫ

6n+2
1 ǫ3, ǫ2ǫ3, ǫ1ǫ2ǫ3, ρǫ2, ρǫ1ǫ2, γ6nǫ1, γ6nǫ

2
1, γ6n+1ǫ2ǫ3, γ6n+1ǫ1ǫ2ǫ3;

for 1 ≤ j ≤ 3n, the hyperplanes TrK/Q(δ
+
B,j(−)) = 1 contains the elements

1, ǫ1, ǫ
2j−1
1 ǫ3, ǫ

2j
1 ǫ3, γ2j−2ǫ1, γ2j−2ǫ

2
1, γ2j , γ2jǫ1;

for 1 ≤ j ≤ 3n, the hyperplanes TrK/Q(δ
−
B,j(−)) = 1 contains the elements

1, ǫ1, ǫ
2j−1
1 ǫ−1

3 , ǫ2j1 ǫ−1
3 , γ2j−1, γ2j−1ǫ1, γ2j+1ǫ

−1
1 , γ2j+1;

for 1 ≤ j ≤ 6n+ 1, the hyperplanes TrK/Q(δ
+
C,j(−)) = 1 contains the elements

ǫ−1
1 , 1, ǫ−j

1 ǫ2, ǫ
−j+1
1 ǫ2;

for 1 ≤ j ≤ 6n+ 1, the hyperplanes TrK/Q(δ
−
C,j(−)) = 1 contains the elements

1, ǫ1, ǫ
j−1
1 ǫ2, ǫ

j
1ǫ2.

Proof. This is also routine checking, using the relations (4.1)-(4.3) between xi and yi. Here we
show the statement for δA; the proofs for other statements are analogous. For α = [a, b, c, d], we
compute

TrK/Q(δAα) = a− b− 4dr

5(X + Y )
. (4.12)

Using (4.12), we compute the trace as follows.
• For α = 1 = [1, 0, 0, 0], we get TrK/Q(δA) = 1.
• For α = ǫ1 = [32 ,

1
2 , 0, 0], we get TrK/Q(δAǫ1) =

3
2 − 1

2 = 1.
• For α = ǫ6n+1

1 ǫ2 = [x12n+2y12n+3

2 , y12n+2y12n+3

2 , x12n+2

2 , y12n+2

2 ], we get

TrK/Q(δAǫ
6n+1
1 ǫ2) =

x12n+2y12n+3

2
− y12n+2y12n+3

2
− 2y12n+2(x

2
12n+3 − 1)

5(x12n+3 + y12n+3)

=
y12n+3(x12n+2x12n+3 − 5y12n+2y12n+3) + (4x12n+3 + 512n+3)(x12n+2y12n+3 − x12n+3y12n+2) + 4y12n+2

10(x12n+3 + y12n+3)
.

(4.13)

Using (4.1) and (4.2), the numerator in (4.13) equals

8x12n+3 + 4y12n+2 + 12y12n+3 = 10x12n+3 + 10y12n+3.

So we get TrK/Q(δAǫ
6n+1
1 ǫ2) = 1.
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• For α = ǫ6n+1
1 ǫ2 = [x12n+3y12n+4

2 , y12n+3y12n+4

2 , x12n+4

2 , y12n+4

2 ], we get

TrK/Q(δAǫ
6n+2
1 ǫ2) =

x12n+3y12n+4

2
− y12n+3y12n+4

2
− 2y12n+4(x

2
12n+3 − 1)

5(x12n+3 + y12n+3)

=
y12n+3(x12n+3x12n+4 − 5y12n+3y12n+4) + (4x12n+3 + 5y12n+3)(x12n+4y12n+3 − x12n+3y12n+4) + 4y12n+4

10(x12n+3 + y12n+3)
.

(4.14)

Using (4.1) and (4.2), the numerator in (4.14) equals

8x12n+3 + 8y12n+3 + 4y12n+4 = 10x12n+3 + 10y12n+3.

So we get TrK/Q(δAǫ
6n+2
1 ǫ2) = 1.

• For α = ǫ6n+1
1 ǫ3 = [x12n+2x12n+3

2 , x12n+3y12n+2

2 , 5y12n+2

2 , x12n+2

2 ], we get

TrK/Q(δAǫ
6n+1
1 ǫ3) =

x12n+2x12n+3

2
− x12n+3y12n+2

2
− 2x12n+2(x

2
12n+3 − 1)

5(x12n+3 + y12n+3)

=
x12n+3(x12n+2x12n+3 − 5y12n+2y12n+3 + 5x12n+2y12n+3 − 5x12n+3y12n+2) + 4x12n+2

10(x12n+3 + y12n+3)
. (4.15)

Using (4.1) and (4.2), the numerator in (4.15) equals

12x12n+3 + 4x12n+2 = 10x12n+3 + (2x12n+3 + 4x12n+2) = 10x12n+3 + 10y12n+3.

So we get TrK/Q(δAǫ
6n+1
1 ǫ3) = 1.

• For α = ǫ6n+2
1 ǫ3 = [x12n+3x12n+4

2 , x12n+3y12n+4

2 , 5y12n+4

2 , x12n+4

2 ], we get

TrK/Q(δAǫ
6n+2
1 ǫ3) =

x12n+3x12n+4

2
− x12n+3y12n+4

2
− 2x12n+4(x

2
12n+3 − 1)

5(x12n+3 + y12n+3)

=
x12n+3(x12n+3x12n+4 − 5y12n+3y12n+4 + 5x12n+4y12n+3 − 5x12n+3y12n+4) + 4x12n+4

10(x12n+3 + y12n+3)
. (4.16)

Using (4.1) and (4.2), we simplify the numerator in (4.16) to

8x12n+3 + 4x12n+4 = 10x12n+3 + (4x12n+4 − 2x12n+3) = 10x12n+3 + 10y12n+3.

So we get TrK/Q(δAǫ
6n+2
1 ǫ3) = 1.

• For α = ǫ2ǫ3 = [x12n+3y12n+3, y
2
12n+3 − 1, x12n+3, y12n+3], we get

TrK/Q(δAǫ2ǫ3) = x12n+3y12n+3 − y212n+3 + 1− 4y12n+3(x
2
12n+3 − 1)

5(x12n+3 + y12n+3)

=
y12n+3(x

2
12n+3 − 5y212n+3) + 5x12n+3 + 9y12n+3

5(x12n+3 + y12n+3)
. (4.17)

By (4.3), the numerator in (4.17) equals 5x12n+3 + 5y12n+3, thus TrK/Q(δAǫ2ǫ3) = 1.
• For α = ǫ1ǫ2ǫ3 = [x12n+4y12n+4 − 3

2 , y
2
12n+4 − 1

2 , x12n+5, y12n+5], we get

TrK/Q(δAǫ1ǫ2ǫ3) = x12n+4y12n+4 − y212n+4 − 1− 4y12n+5(x
2
12n+3 − 1)

5(x12n+3 + y12n+3)
.

Using (4.1) and rewrite everything in terms of x12n+3 and y12n+3, we get

TrK/Q(δAǫ1ǫ2ǫ3) =
(2x12n+3 + y12n+3)(5y

2
12n+3 − x212n+3)− 3x12n+3 + y12n+3

5(x12n+3 + y12n+3)
. (4.18)

By (4.3), the numerator in (4.18) equals 5x12n+3 + 5y12n+3, thus TrK/Q(δAǫ1ǫ2ǫ3) = 1.
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• For α = ρǫ2 = [x12n+3y12n+3+1
2 ,

y212n+3−1

2 , x12n+3

2 , y12n+3

2 ], we get

TrK/Q(δAρǫ2) =
x12n+3y12n+3 + 1

2
− y212n+3 − 1

2
− 2y12n+3(x

2
12n+3 − 1)

5(x12n+3 + y12n+3)

=
y12n+3(x

2
12n+3 − 5y212n+3) + 10x12n+3 + 14y12n+3

10(x12n+3 + y12n+3)
. (4.19)

By (4.3), the numerator in (4.19) equals 10x12n+3 + 10y12n+3, thus TrK/Q(δAρǫ2) = 1.

• For α = ρǫ1ǫ2 = [x12n+4y12n+4

2 ,
y2
12n+4

2 , x12n+5

2 , y12n+5

2 ], we get

TrK/Q(δAρǫ1ǫ2) =
x12n+4y12n+4

2
− y212n+4

2
− 2y12n+5(x

2
12n+3 − 1)

5(x12n+3 + y12n+3)
.

Using (4.1) and rewrite everything in terms of x12n+3 and y12n+3, we get

TrK/Q(δAρǫ1ǫ2) =
(2x12n+3 + y12n+3)(5y

2
12n+3 − x212n+3) + 2x12n+3 + 6y12n+3

10(x12n+3 + y12n+3)
. (4.20)

By (4.3), the numerator in (4.20) equals 10x12n+3 + 10y12n+3, thus TrK/Q(δAρǫ1ǫ2) = 1.

• For α = γ6nǫ1 = [x12n+2y12n+2

2 + 1,
y2
12n+2

2 , x12n+1

2 , y12n+1

2 ], we get

TrK/Q(δAγ6nǫ1) =
x12n+2y12n+2

2
+ 1− y212n+2

2
− 2y12n+1(x

2
12n+3 − 1)

5(x12n+3 + y12n+3)
.

Using (4.1) and rewrite everything in terms of x12n+1 and y12n+1, we get

TrK/Q(δAγ6nǫ1) = 1 +
y12n+1(x

2
12n+1 − 5y212n+1) + 4y12n+1

20(x12n+1 + 2y12n+1)
. (4.21)

By (4.3), the rightmost term on the right of (4.21) vanishes, thus TrK/Q(δAγ6nǫ1) = 1.

• For α = γ6nǫ
2
1 = [x12n+3y12n+3

2 + 1,
y2
12n+3

2 , x12n+3

2 , y12n+3

2 ], we get

TrK/Q(δAγ6nǫ
2
1) =

x12n+3y12n+3

2
+ 1− y212n+3

2
− 2y12n+3(x

2
12n+3 − 1)

5(x12n+3 + y12n+3)

= 1 +
y12n+3(x

2
12n+3 − 5y212n+3) + 4y12n+3

5(x12n+3 + y12n+3)
. (4.22)

By (4.3), the rightmost term on the right of (4.22) vanishes, thus TrK/Q(δAγ6nǫ
2
1) = 1.

• For α = γ6n+1ǫ2ǫ3 = [x12n+3y12n+4+1
2 , y12n+3y12n+4−1

2 , x12n+4

2 , y12n+4

2 ], we get

TrK/Q(δAγ6n+1ǫ2ǫ3) =
x12n+3y12n+4 + 1

2
− y12n+3y12n+4 − 1

2
− 2y12n+4(x

2
12n+3 − 1)

5(x12n+3 + y12n+3)

= 1 +
y12n+4(x

2
12n+3 − 5y212n+3) + 4y12n+4

10(x12n+3 + y12n+3)
. (4.23)

By (4.3), the rightmost term on the right of (4.23) vanishes. Thus TrK/Q(δAγ6n+1ǫ2ǫ3) = 1.
• For α = γ6n+1ǫ1ǫ2ǫ3 = [x12n+5y12n+4−1

2 , y12n+4y12n+5−1
2 , x12n+6

2 , y12n+6

2 ], we get

TrK/Q(δAγ6n+1ǫ1ǫ2ǫ3) =
x12n+5y12n+4 − 1

2
− y12n+4y12n+5 − 1

2
− 2y12n+6(x

2
12n+3 − 1)

5(x12n+3 + y12n+3)
.

Using (4.1) and rewrite everything in terms of x12n+3 and y12n+3, we get

TrK/Q(δAγ6n+1ǫ1ǫ2ǫ3) =
(3x12n+3 + y12n+3)(5y

2
12n+3 − x212n+3) + 8x12n+3 + 16y12n+3

20(x12n+3 + y12n+3)
. (4.24)

By (4.3), the numerator in (4.24) equals 20x12n+3 + 20y12n+3, thus TrK/Q(δAγ6n+1ǫ1ǫ2ǫ3) =
1. �

Proposition 4.4. The elements 1, ρ, γj constructed above are indecomposable.
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Proof. This follows from the observation that if α ∈ O+
K , and there exists δ ∈ O∨,+

K such that
TrK/Q(δα) = 1, then α is indecomposable. �

Now it remains to show that 1, ρ, γj are the only indecomposables. For this we utilise the
theory of sails. Following Proposition 4.3, we define the following 3-polytopes:

A :=
〈

1, ǫ1, ǫ
6n+1
1 ǫ2, ǫ

6n+2
1 ǫ2, ǫ

6n+1
1 ǫ3, ǫ

6n+2
1 ǫ3, ǫ2ǫ3, ǫ1ǫ2ǫ3,

ρǫ2, ρǫ1ǫ2, γ6nǫ1, γ6nǫ
2
1, γ6n+1ǫ2ǫ3, γ6n+1ǫ1ǫ2ǫ3

〉

,

B+
j :=

〈

1, ǫ1, ǫ
2j−1
1 ǫ3, ǫ

2j
1 ǫ3, γ2j−2ǫ1, γ2j−2ǫ

2
1, γ2j , γ2jǫ1

〉

, 1 ≤ j ≤ 3n,

B−
j :=

〈

1, ǫ1, ǫ
2j−1
1 ǫ−1

3 , ǫ2j1 ǫ−1
3 , γ2j−1, γ2j−1ǫ1, γ2j+1ǫ

−1
1 , γ2j+1

〉

, 1 ≤ j ≤ 3n,

C+
j :=

〈

ǫ−1
1 , 1, ǫ−j

1 ǫ2, ǫ
−j+1
1 ǫ2

〉

, 1 ≤ j ≤ 6n+ 1,

C−
j :=

〈

1, ǫ1, ǫ
j−1
1 ǫ2, ǫ

j
1ǫ2

〉

, 1 ≤ j ≤ 6n+ 1.

Lemma 4.5. For the polytopes A,B±
j , C

±
j , we have

IV(A) = 24, IV(B±
j ) = 9, IV(C±

j ) = 1.

Moreover, these polytopes all admit a unimodular triangulation.

Proof. It is more convenient to use alternative bases to describe these polytopes. For the poly-
tope A, we take 1 as the origin, and pick basis vectors e1 = ǫ1−1, e2 = ǫ6n+1

1 ǫ2, and e3 = ǫ6n+2
1 ǫ2.

We check that the integer simplex
〈

1, ǫ1, ǫ
6n+1
1 ǫ2, ǫ

6n+2
1 ǫ2

〉

corresponding to this basis has inte-
gral volume 1. With respect to this basis, the lattice points on A are taken to the following
coordinates:

1 7→ (0, 0, 0) =: A1, ǫ1 7→ (1, 0, 0) =: A2,

ǫ6n+1
1 ǫ2 7→ (0, 1, 0) =: A3, ǫ6n+2

1 ǫ2 7→ (0, 0, 1) =: A4,

ǫ6n+1
1 ǫ3 7→ (−2,−3, 2) =: A5, ǫ6n+2

1 ǫ3 7→ (−2,−2, 3) =: A6,

ǫ2ǫ3 7→ (−2,−2, 2) =: A7, ǫ1ǫ2ǫ3 7→ (−3,−2, 4) =: A8,

ρǫ2 7→ (−1,−1, 1) =: A9, ρǫ1ǫ2 7→ (−1,−1, 2) =: A10,

γ6nǫ1 7→ (−1,−2, 1) =: A11, γ6nǫ
2
1 7→ (0,−1, 1) =: A12,

γ6n+1ǫ2ǫ3 7→ (−1, 0, 1) =: A13, γ6n+1ǫ1ǫ2ǫ3 7→ (−2,−1, 3) =: A14.

With the new coordinates it is straightforward to verify that IV(A) = 24. Now we give one
(out of many possible) unimodular triangulation of A into 24 integer simplices with unit integer
volume:

〈A1, A2, A3, A12〉 , 〈A1, A2, A11, A12〉 , 〈A1, A3, A8, A9〉 , 〈A1, A3, A8, A14〉 ,
〈A1, A3, A10, A12〉 , 〈A1, A3, A10, A14〉 , 〈A1, A9, A10, A12〉 , 〈A1, A9, A10, A14〉 ,
〈A1, A9, A11, A12〉 , 〈A2, A3, A4, A10〉 , 〈A2, A3, A10, A12〉 , 〈A3, A4, A10, A14〉 ,
〈A3, A7, A8, A9〉 , 〈A3, A7, A8, A13〉 , 〈A5, A6, A8, A11〉 , 〈A5, A6, A11, A12〉 ,
〈A5, A7, A8, A11〉 , 〈A6, A8, A11, A12〉 , 〈A7, A8, A9, A10〉 , 〈A7, A8, A10, A11〉 ,
〈A7, A9, A10, A11〉 , 〈A8, A9, A10, A14〉 , 〈A8, A10, A11, A12〉 , 〈A9, A10, A11, A12〉 .

For the polytopes B+
j , we take 1 as the origin, and pick basis vectors e1 = ǫ1 − 1, e2 =

ǫ2j−1
1 ǫ3 − 1, and e3 = γ2j−2ǫ1 − 1. Again, we check that the simplex

〈

1, ǫ1, ǫ
2j−1
1 ǫ3, γ2j−2ǫ1

〉

corresponding to this basis has integral volume 1. With respect to this basis, the lattice points
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on B+
j are taken to the following coordinates:

1 7→ (0, 0, 0) =: B1, ǫ1 7→ (1, 0, 0) =: B2,

ǫ2j−1
1 ǫ3 7→ (0, 1, 0) =: B3, ǫ2j1 ǫ3 7→ (1, 4,−5) =: B4,

γ2j−2ǫ1 7→ (0, 0, 1) =: B5, γ2j−2ǫ
2
1 7→ (1, 1,−1) =: B6,

γ2j 7→ (0, 1,−1) =: B7, γ2jǫ1 7→ (1, 3,−4) =: B8.

With the new coordinates it is straightforward to verify that IV(B+
j ) = 24. Now we give a

unimodular triangulation of B into 9 integer simplices with unit integer volume:

〈B1, B2, B5, B6〉 , 〈B1, B2, B6, B8〉 , 〈B1, B5, B6, B7〉 ,
〈B1, B6, B7, B8〉 , 〈B3, B4, B5, B6〉 , 〈B3, B4, B5, B7〉 ,
〈B4, B5, B6, B8〉 , 〈B4, B5, B7, B8〉 , 〈B5, B6, B7, B8〉 .

For the polytopes B−
j , we take 1 as the origin, and pick basis vectors e1 = ǫ1 − 1, e2 =

ǫ2j−1
1 ǫ−1

3 − 1, and e3 = γ2j−1 − 1. Again, we check that the simplex
〈

1, ǫ1, ǫ
2j−1
1 ǫ−1

3 , γ2j−1

〉

corresponding to this basis has integral volume 1. With respect to this basis, the lattice points
on B−

j are taken to the following coordinates:

1 7→ (0, 0, 0) = B1, ǫ1 7→ (1, 0, 0) = B2,

ǫ2j−1
1 ǫ−1

3 7→ (0, 1, 0) = B3, ǫ2j1 ǫ−1
3 7→ (1, 4,−5) = B4,

γ2j−1 7→ (0, 0, 1) = B5, γ2j−1ǫ1 7→ (1, 1,−1) = B6,

γ2jǫ
−1
1 7→ (0, 1,−1) = B7, γ2j 7→ (1, 3,−4) = B8.

We observe that B+
j and B−

j are taken to the same polytope. So we also have IV(B−
j ) = 9 and

a unimodular triangulation of B−
j .

Finally, for simplices C+
j and C−

j , we only have to verify that they have integral volume 1,
which is straightforward. �

Proposition 4.6. The sail SK of the biquadratic field K = Kn is given by

SK =
⋃

m∈Z3

ǫm1

1 ǫm2

2 ǫm3

3



A ∪
3n
⋃

j=1

B+
j ∪

3n
⋃

j=1

B−
j ∪

6n+1
⋃

j=2

C+
j ∪

6n+1
⋃

j=1

C−
j



 .

Proof. By Proposition 4.3, each of the polytopes A,B±
j , C

±
j are contained in the some hyperplane

TrK/Q(δ(−)) = 1 with δ ∈ O∨,+
K . It follows from Lemma 2.9 that these polytopes are contained

in the sail SK . It remains to check that there are no missing pieces. This can be proved by
showing that the union of these polytopes have no boundary.

To do this, we matching the faces of a polytope to another. With the help of the characteri-
sation of the polytopes in the proof of Lemma 4.5, we list the faces of the polytopes by lattice
point elements they contain. We shall write the matching face’s label in square brackets.

Here are the faces of the polytope A (and their matching faces):
(A-I) 〈1, ǫ1, ǫ6n+1

1 ǫ2〉, [(C−
6n+1-II)]

(A-II) 〈ǫ1, ǫ6n+1
1 ǫ2, ǫ

6n+2
1 ǫ2〉, [ǫ1(C−

6n+1-III)]
(A-III) 〈ǫ6n+1

1 ǫ3, ǫ2ǫ3, ǫ1ǫ2ǫ3〉, [ǫ6n+1
1 ǫ3(C+

6n+1-IV)]
(A-IV) 〈ǫ6n+1

1 ǫ3, ǫ
6n+2
1 ǫ3, ǫ1ǫ2ǫ3〉, [ǫ6n+2

1 ǫ3(C+
6n+1-I)]

(A-V) 〈1, ǫ1, γ6nǫ1〉, [(B+
3n-II)]

(A-VI) 〈ǫ6n+1
1 ǫ3, ǫ

6n+2
1 ǫ3, γ6nǫ

2
1〉, [ǫ21(B

+
3n-IV)]

(A-VII) 〈ǫ2ǫ3, ǫ1ǫ2ǫ3, γ6n+1ǫ2ǫ3〉, [ǫ2ǫ3(B−
3n-II)]

(A-VIII) 〈ǫ6n+1
1 ǫ2, ǫ

6n+2
1 ǫ2, γ6n+1ǫ1ǫ2ǫ3〉, [ǫ21ǫ2ǫ3(B

−
3n-IV)]

(A-IX) 〈ǫ1, ǫ6n+1
1 ǫ3, γ6nǫ1, γ6nǫ

2
1〉, [ǫ1(B+

3n-V)]
(A-X) 〈ǫ6n+1

1 ǫ2, ǫ1ǫ2ǫ3, γ6n+1ǫ2ǫ3, γ6n+1ǫ1ǫ2ǫ3〉, [ǫ1ǫ2ǫ3(B−
3n-V)]
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(A-XI) 〈1, ǫ6n+1
1 ǫ2, ǫ

6n+1
1 ǫ3, ǫ2ǫ3, ρǫ2, γ6nǫ1, γ6n+1ǫ2ǫ3〉, [ǫ−1

1 (A-XII)]
(A-XII) 〈ǫ1, ǫ6n+2

1 ǫ2, ǫ
6n+2
1 ǫ3, ǫ1ǫ2ǫ3, ρǫ1ǫ2, γ6nǫ

2
1, γ6n+1ǫ1ǫ2ǫ3〉. [ǫ1(A-XI)]

Here are the faces of the polytopes B+
j (and their matching faces):

(B+
j -I) 〈1, ǫ1, γ2j−2ǫ1〉, [(B+

j−1-II) if j ≥ 2, ǫ−1
1 ǫ3(B−

1 -III) if j = 1]
(B+

j -II) 〈1, ǫ1, γ2jǫ1〉, [(B+
j+1-I) if j ≤ 3n− 1, (A-V) if j = 3n]

(B+
j -III) 〈ǫ2j−1

1 ǫ3, ǫ
2j
1 ǫ3, γ2j−2ǫ

2
1〉, [ǫ21(B

+
j−1-IV) if j ≥ 2, ǫ1ǫ3(B−

1 -I) if j = 1]

(B+
j -IV) 〈ǫ2j−1

1 ǫ3, ǫ
2j
1 ǫ3, γ2j〉, [ǫ−2

1 (B+
j+1-III) if j ≤ 3n − 1, ǫ−2

1 (A-VI) if j = 3n]

(B+
j -V) 〈1, ǫ2j1 ǫ3, γ2j , γ2jǫ1〉, [ǫ−1

1 (B+
j+1-VI) if j ≤ 3n− 1, ǫ−1

1 (A-IX) if j = 3n]

(B+
j -VI) 〈ǫ1, ǫ2j−1

1 ǫ3, γ2j−2ǫ1, γ2j−2ǫ
2
1〉, [ǫ1(B+

j−1-V) if j ≥ 2, ǫ3(B−
1 -VI) if j = 1]

(B+
j -VII) 〈1, ǫ2j−1

1 ǫ3, γ2j−2ǫ1, γ2j〉, [ǫ−1
1 (B+

j -VIII)]

(B+
j -VIII) 〈ǫ1, ǫ2j1 ǫ3, γ2j−2ǫ

2
1, γ2jǫ1〉. [ǫ1(B+

j -VII)]

Here are the faces of the polytopes B−
j (and their matching faces):

(B−
j -I) 〈1, ǫ1, γ2j−1〉, [(B−

j−1-II) if j ≥ 2, ǫ−1
1 ǫ−1

3 (B+
1 -III) if j = 1]

(B−
j -II) 〈1, ǫ1, γ2j+1〉, [(B−

j+1-I) if j ≤ 3n− 1, ǫ−1
2 ǫ−1

3 (A-VII) if j = 3n]

(B−
j -III) 〈ǫ2j−1

1 ǫ−1
3 , ǫ2j1 ǫ−1

3 , γ2j−1ǫ1〉, [ǫ21(B
−
j−1-IV) if j ≥ 2, ǫ1ǫ−1

3 (B+
1 -I) if j = 1]

(B−
j -IV) 〈ǫ2j−1

1 ǫ−1
3 , ǫ2j1 ǫ−1

3 , γ2j+1ǫ
−1
1 〉, [ǫ−2

1 (B−
j+1-III) if j ≤ 3n− 1, ǫ−2

1 ǫ−1
2 ǫ−1

3 (A-VIII) if j = 3n]

(B−
j -V) 〈1, ǫ2j1 ǫ−1

3 , γ2j+1ǫ
−1
1 , γ2j+1〉, [ǫ−1

1 (B−
j+1-VI) if j ≤ 3n− 1, ǫ−1

1 ǫ−1
2 ǫ−1

3 (A-X) if j = 3n]

(B−
j -VI) 〈ǫ1, ǫ2j−1

1 ǫ−1
3 , γ2j−1, γ2j−1ǫ1〉, [ǫ1(B−

j−1-V) if j ≥ 2, ǫ−1
3 (B+

1 -VI) if j = 1]

(B−
j -VII) 〈1, ǫ2j−1

1 ǫ−1
3 , γ2j−1, γ2j+1ǫ

−1
1 〉, [ǫ−1

1 (B−
j -VIII)]

(B−
j -VIII) 〈ǫ1, ǫ2j1 ǫ−1

3 , γ2j−1ǫ1, γ2j+1〉. [ǫ1(B−
j -VII)]

Here are the faces of the polytopes C+
j (and their matching faces):

(C+
j -I) 〈ǫ−1

1 , 1, ǫ−j
1 ǫ2〉, [(C+

j+1-II) if j ≤ 6n, ǫ−6n−2
1 ǫ−1

3 (A-IV) if j = 6n+ 1]

(C+
j -II) 〈ǫ−1

1 , 1, ǫ−j+1
1 ǫ2〉, [(C+

j−1-I) if j ≥ 3, ǫ−1
1 (C−

1 -I) if j = 2]

(C+
j -III) 〈ǫ−1

1 , ǫ−j
1 ǫ2, ǫ

−j+1
1 ǫ2〉, [ǫ−1

1 (C+
j−1-IV) if j ≥ 3, ǫ−2

1 (C−
1 -IV) if j = 2]

(C+
j -IV) 〈1, ǫ−j

1 ǫ2, ǫ
−j+1
1 ǫ2〉. [ǫ1(C+

j+1-III) if j ≤ 6n, ǫ−6n−1
1 ǫ−1

3 (A-III) if j = 6n + 1]

Here are the faces of the polytopes C−
j (and their matching faces):

(C−
j -I) 〈1, ǫ1, ǫj−1

1 ǫ2〉, [(C−
j−1-II) if j ≥ 2, ǫ1(C+

2 -II) if j = 1]

(C−
j -II) 〈1, ǫ1, ǫj1ǫ2〉, [(C−

j+1-I) if j ≤ 6n, (A-I) if j = 6n+ 1]

(C−
j -III) 〈1, ǫj−1

1 ǫ2, ǫ
j
1ǫ2〉, [ǫ−1

1 (C−
j+1-IV) if j ≤ 6n, ǫ−1

1 (A-II) if j = 6n+ 1]

(C−
j -IV) 〈ǫ1, ǫj−1

1 ǫ2, ǫ
j
1ǫ2〉. [ǫ1(C−

j−1-III) if j ≥ 2, ǫ21(C
+
2 -III) if j = 1]

Since all faces are matched, the proposition is established. �

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. From Proposition 4.4, we see that the elements 1, ρ, γj are indeed inde-
composable. On the other hand, Proposition 4.6, the sail SK of K is given by the union of the
polytopes A, B±

j , C±
j and their translates by totally positive units. Since the polytopes A, B±

j ,
C±
j all have integer distance 1 and admits unimodular triangulations, we use Theorem 2.6 and

conclude that all the indecomposable elements lie on the sail SK . Finally, using the character-
isation of these polytopes in the proof of Lemma 4.5, we see that the polytopes A, B±

j , C±
j

contains only translates of 1, ρ, γj by totally positive units, and no other lattice points. So the
list of indecomposable elements is complete.

Concerning the growth of ι(K) with respect to the discriminant, we use (4.5) and the fact
that xn is well approximated by (1+

√
5

2 )n. Recalling that w = log(1+
√
5

2 ), it is easily verified that
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for n ∈ N0 we have

(24n + 6)w − 1

5
≤ log(x24n+6 − 3) ≤ (24n + 6)w.

It follows that

(48n + 12)w − 1

5
+ log 16 ≤ log∆K ≤ (48n + 12)w + log 16.

A rough approximation of the constants above then gives a bound
log ∆K

8w
≤ ι(K) ≤ log∆K

8w
+ 1. �
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