
ar
X

iv
:2

40
3.

18
39

4v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

7 
M

ar
 2

02
4

Vertex corrections to conductivity in the Holstein model:

A numerical–analytical study
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Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

The optical-conductivity profile carries information on electronic dynamics in interacting quantum
many-body systems. Its computation is a formidable task that is usually approached by invoking the
single-particle (bubble) approximation and neglecting the vertex corrections. Their importance re-
mains elusive even in model Hamiltonian calculations. Here, we combine analytical arguments with
our recent breakthroughs in numerically exact and approximate calculations of finite-temperature
real-time correlation functions to thoroughly assess the importance of vertex corrections in the
one-dimensional Holstein polaron model. We find, both analytically and numerically, vanishing
vertex corrections to optical conductivity in the limits of zero electron–phonon interaction, zero
electronic bandwidth, and infinite temperature. Furthermore, our numerical results show that ver-
tex corrections to the electron mobility also vanish in many parameter regimes between these limits.
In some of these cases, the vertex corrections still introduce important qualitative changes to the
optical-conductivity profile in comparison to the bubble approximation even though the self-energy
remains approximately local. We trace these changes back to the bubble approximation not fully
capturing a time-limited slow-down of the electron on intermediate time scales between ballistic and
diffusive transport. We find that the vertex corrections are overall most pronounced for interme-
diate electron–phonon interaction and may increase or decrease the bubble-approximation mobility
depending on the values of model parameters.

I. INTRODUCTION

Charge carrier transport in semiconducting materi-
als is the key physical process behind the operation of
many semiconductor electronic and optoelectronic de-
vices [1, 2]. Under typical operating conditions, the car-
rier density is low, and their transport is limited by the
interaction with phonons [3, 4]. Quantifying the ability
of a carrier to cover long distances, the phonon-limited
electron (dc) mobility is the primary factor determining
device performance. On the other hand, the frequency
profile of the dynamical (ac) mobility, which is propor-
tional to the optical conductivity, carries information on
charge dynamics on various time and length scales, thus
providing fundamental insights into the mechanisms of
carrier transport [5–7]. While the dc and ac mobility are
nowadays experimentally accessible [5], reliable theoreti-
cal results for these quantities are rather scarce.
Within the linear-response theory [8], transport prop-

erties are encoded in the two-particle current–current
correlation function, which is, however, seldom calcu-
lated exactly. One usually calculates it in the so-called
independent-particle (single-particle or bubble) approx-
imation [9, 10], which expresses it entirely in terms of
single-particle quantities (the so-called bubble term), and
neglects two-particle correlations (commonly referred to
as vertex corrections). The bubble term is, in principle,
much easier to evaluate than the vertex corrections, and
the bubble approximation is commonly employed both in
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first-principles studies of transport properties [9, 11, 12]
and in many model Hamiltonian calculations [13–17].

Understanding how the vertex corrections influence
transport properties is an arduous task whose solution
has been attempted in just a few instances. Historically
the first one is the impurity scattering in metals, where
the Green’s functions in the Born approximation are used
for the calculation of the ladder diagrams, whose contri-
bution to the dc conductivity is comparable to the bub-
ble term [10, 18]. These diagrams are responsible for the
dominant contribution to dc resistivity from the large-
angle scattering within the semiclassical Boltzmann ap-
proach in the presence of diluted impurities. Another
well-studied case is the disorder scattering in two dimen-
sions, where the maximally-crossed diagrams give a di-
vergent contribution to resistivity at low temperatures
even in the presence of weak disorder [19, 20]. Concerning
the electron–phonon models, the contribution of vertex
corrections to conductivity [21–25] was, so far, studied
only for weak interaction. In classic papers from 1960s,
vertex corrections to conductivity stemming from scat-
tering on acoustic phonons were calculated by summing
the ladder diagrams [25]. Within the Fröhlich model,
vertex corrections originating from scattering on optical
phonons were shown to be negligible at low temperatures
and for weak electron–phonon coupling [24, 25]. It is a
challenge to determine the importance of vertex correc-
tions outside the weak-coupling limit and, to the best of
our knowledge, this was not done before neither for the
Fröhlich model nor for the Holstein model, on which we
focus in this study.

Transport properties of interacting electron–phonon
models have been commonly studied either by approx-
imately calculating the current–current correlation func-
tion [26–34] or by starting from (possibly approximate)
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single-particle spectral functions [15, 17, 35–39] and using
the bubble approximation [13–17]. However, elucidating
the role of vertex corrections requires genuine numerically
exact approaches that provide results on both single-
particle and two-particle correlation functions at finite
temperatures. While imaginary-axis quantum Monte
Carlo (QMC) approaches are formulated directly in the
thermodynamic limit [40–43], the uncertainties associ-
ated with the procedure of numerical analytical contin-
uation [44–48] cast doubts on the reliability of real-axis
results thus obtained. It is therefore of paramount im-
portance that numerically exact methods used to study
vertex corrections be formulated directly on the real-time
or real-frequency axis [49]. Calculations of the dc mobil-
ity are particularly challenging for such methods because
of finite-size effects (e.g., Lanczos diagonalization-based
methods [50–52]) or maximum simulation time that is not
sufficiently long to fully capture carrier’s diffusive motion
(e.g., real-time QMC [53] or density matrix renormaliza-
tion group [54, 55]).

There are three very recent advances that facilitate
our present study. First, we developed the numerically
exact momentum-space hierarchical equations of motion
(HEOM) method for calculating both single- and two-
particle correlation functions [56, 57]. This method pro-
vides dc mobilities whose uncertainties due to the finite-
size effects are controllable and can be suppressed in a
wide range of model parameters. Second, we developed
the real-axis path integral QMC method which can pro-
vide real-time current–current correlation function for
weak and intermediate electron–phonon coupling at el-
evated temperatures [53, 56]. For lower temperatures or
stronger coupling, valuable information can be still ob-
tained for the short time correlations, before the sign
problem sets in. Finally, we also have at our disposal
the dynamical mean-field theory (DMFT), a computa-
tionally inexpensive method, producing close-to-exact re-
sults for the spectral functions of the Holstein polaron in
the thermodynamic limit, even in one dimension, in the
whole parameter space [39]. This can be used for reliable
calculations of conductivity without vertex corrections,
as all the results to be presented demonstrate that the
DMFT ac mobility practically coincides with the one cal-
culated in the bubble approximation within the HEOM
method.

In this study, we first develop analytical arguments
demonstrating that the vertex corrections vanish in the
limits of vanishing electron–phonon interaction, vanish-
ing electronic bandwidth (the atomic limit), and infinite
temperature. We then proceed to numerically analyze
their importance in parameter regimes between these
limits for three values of phonon energy (intermediate,
low, and high with respect to the bare electron’s ki-
netic energy) and at temperatures which are not too low
for HEOM (to minimize finite-size effects) and QMC (to
avoid severe sign problem) calculations. For intermediate
phonon frequency and moderate electron–phonon cou-
pling, the numerically exact dynamical mobility assumes

a two peak structure: the Drude-like peak is accompanied
by another peak at finite frequency. At higher temper-
atures, this peak is centered away from ω0, and can be
ascribed to a temporally limited slow-down of the carrier
during the crossover between ballistic and diffusive trans-
port regime. This slow-down is not fully captured by the
bubble approximation, and the corresponding dynamical-
mobility profile features only the Drude-like peak. On
the other hand, at low temperatures, the finite-frequency
peak is positioned exactly at ω0, and is recovered also
within the bubble approximation because it corresponds
to the optical transitions between the quasiparticle and
the satellite peaks in single-particle spectral function. In
all these cases, the numerically exact dc mobility is some-
what larger than that in the bubble approximation. For
low phonon frequency and moderate interaction, we find
that the dynamical-mobility profile bears qualitative sim-
ilarities to that for intermediate phonon frequency. In-
terestingly, the peak at zero frequency persists, and the
numerically exact dc mobility is somewhat smaller than,
yet comparable to the one in the bubble approximation.
Only as ω0 is further decreased, is the dc mobility ex-
pected to decrease to the values much bellow the bubble-
approximation result. For high phonon frequency, avail-
able HEOM results do not indicate a large discrepancy
in comparison to DMFT.
The paper is structured as follows. Section II provides

an overview of the Holstein model and methods we use
to study its transport properties. Section III exposes the
readers to the analytical results and illustrative numerical
examples demonstrating vanishing vertex corrections in
the above-listed limiting cases. The in-depth analytical
arguments are deferred for Appendices B–D. We analyze
our numerical results and present our main findings on
the importance of vertex corrections in Sec. IV. Section V
summarizes our results.

II. MODEL AND METHODS

A. Formalism: Holstein model and its transport
properties

We examine the Holstein model on the one-dimensional
(1D) lattice comprised of N sites with periodic bound-
ary conditions. In the momentum space, its Hamiltonian
reads as

H = He +Hph +He−ph

=
∑

k

εkc
†
kck + ω0

∑

q

b†qbq

+
g√
N

∑

kq

c†k+qck

(
bq + b†−q

)
.

(1)

The electronic and phononic wave numbers k and q may
assume any of the N allowed values 2πn/N (n is an
integer) in the first Brillouin zone (−π, π]. The free-
electron Hamiltonian He describes electrons in a band
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whose dispersion εk = −2t0 cos k originates from the
nearest-neighbor hopping of amplitude t0. The opera-

tor c†k (ck) creates (annihilates) an electron in the state
with wave number k. The free-phonon Hamiltonian Hph

describes dispersionless optical phonons of frequency ω0,
with b†q (bq) creating (annihilating) a phonon of momen-
tum q. The interaction termHe−ph is characterized by its
strength g. In the following, we set the lattice constant
al, the elementary charge e0, and physical constants ~,
and kB to unity. As a convenient measure of the electron–
phonon interaction strength, we use the dimensionless
parameter

λ =
g2

2t0ω0
. (2)

We consider the dynamics of a single spinless electron
in the band, which is determined by the current–current
correlation function (normalized to the electron number)

Cjj(t) =
〈j(t)j(0)〉K

〈Ne〉K
. (3)

In Eq. (3), Ne =
∑

k c
†
kck denotes the electron-number

operator, and the expectation values are evaluated in the
grand-canonical ensemble defined by temperature T =
β−1 and chemical potential µF (K = H − µFNe)

〈A〉K =
Tr{Ae−βK}
Tr e−βK

. (4)

The current operator reads as

j =
∑

k

jkc
†
kck, (5)

with

jk = −2t0 sin k. (6)

We assume that µF lies far below the bottom of the band
(formally, µF → −∞), i.e., the electron density is low. A
reasoning analogous to that in Refs. [37, 39, 58] shows
that the dominant contributions to the expectation val-
ues entering Eq. (3) as µF → −∞ read as

〈j(t)j(0)〉K = eβµF
Tr1e{eiHtje−iHtje−βH}

Zph
, (7)

〈Ne〉K = eβµF
Z

Zph
, (8)

where Zph = Trph e
−βHph denotes the free-phonon parti-

tion sum, the trace Tr1e is taken over states containing
a single electron (and an arbitrary number of phonons),
while

Z = Tr1ee
−βH (9)

is the corresponding partition sum. Equation (3) is then
recast as

Cjj(t) = 〈j(t)j(0)〉H,1 =
Tr1e{eiHtje−iHtje−βH}

Z
. (10)

The real part of the frequency-dependent mobility (for
ω 6= 0) is [10]

Re µ(ω) =
1− e−βω

2ω

∫ +∞

−∞

dt eiωtCjj(t), (11)

and the corresponding dc mobility is

µdc =
1

T

∫ +∞

0

dt Re Cjj(t)

= −2

∫ +∞

0

dt t Im Cjj(t).

(12)

While the dynamical-mobility profile encodes informa-
tion on carrier dynamics on all time and length scales, a
more intuitive understanding of carrier transport can be
gained from the evolution of the carrier’s spread

∆x(t) =
√
〈[x(t)− x(0)]2〉H,1, (13)

where x is the carrier position operator. The growth
rate of the spread is determined by the time-dependent
diffusion constant

D(t) =
1

2

d

dt
[∆x(t)]2 =

∫ t

0

ds Re Cjj(s), (14)

which varies from 0 at short times to its long-time limit
D∞, for which the Einstein relation D∞ = µdcT holds.
The carrier’s dynamics then changes from short-time bal-
listic dynamics, when ∆x(t) ∝ t, to long-time diffusive
dynamics, when ∆x(t) ∝

√
t.

B. Single-particle (bubble) approximation

Cjj(t) is a four-point (two-particle) correlation func-
tion, which can be expressed as [combine Eqs. (3)
and (5)]:

Cjj(t) =

∑
k′k jk′jk

〈
c†k′(t)ck′ (t)c†k(0)ck(0)

〉

K

〈Ne〉K
. (15)

Its evaluation in the most general many-body setup is a
formidable task. This remains true even when we limit
ourselves to a single electron in the system [Eq. (10)],
which represents an important case that has been suc-
cessfully solved only very recently using the HEOM for-
malism [57, 59].
Quite generally [60], the two-particle correlation func-

tion in Eq. (15) can be formally decomposed into the
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sum of products of two single-particle correlation func-
tions plus a remainder containing genuine two-particle
correlations (denoted as ∆2):

Cjj(t) =
1

〈Ne〉K

∑

k′k

jk′jk

{〈
c†k′ (t)ck′(t)

〉

K

〈
c†k(0)ck(0)

〉

K
+

δk′k

〈
c†k(t)ck(0)

〉

K

〈
ck(t)c

†
k(0)

〉

K
+

∆2

[〈
c†k′(t)ck′ (t)c†k(0)ck(0)

〉

K

]}
.

(16)

The Kronecker delta in the second term on the RHS of
Eq. (16) comes from momentum conservation. The first
term on the RHS of Eq. (16) is O(eβµF), and is thus neg-
ligible in the µF → −∞ limit with respect to the remain-
ing two terms, which are both O(1). The single-particle
(or bubble) approximation additionally neglects the ∆2

term, so that the current–current correlation function in
this approximation reads as

Cbbl
jj (t) = − 1

〈Ne〉K
∑

k

j2kG>(k, t)G<(k, t)∗. (17)

Here, the greater and lesser single-particle Green’s func-
tions read as

G>(k, t) = −i〈ck(t)c†k(0)〉K

= −i

∫ +∞

−∞

dω e−iωt A(k, ω)

1 + e−βω
,

(18)

G<(k, t) = i〈c†k(0)ck(t)〉K

= i

∫ +∞

−∞

dω e−iωtA(k, ω)

eβω + 1
.

(19)

The first equalities in Eqs. (18) and (19) are the text-
book definitions, while the second equalities use the
fluctuation–dissipation theorem [18] to express G>/< in
terms of the spectral function A(k, ω), which is normal-

ized so that
∫ +∞

−∞
dωA(k, ω) = 1. In the limit µF → −∞,

we can ensure that the spectral weight occurs at finite fre-
quencies by defining A(k, ω) = A(k, ω−µF), see the Sup-
plemental Material of Ref. 39. Equations (18) and (19)
then become (we exploit µF → −∞)

G>(k, t) = −ieiµFt

∫ +∞

−∞

dω e−iωtA(k, ω), (20)

G<(k, t) = ieβµFeiµFt

∫ +∞

−∞

dω e−iωte−βωA(k, ω). (21)

Remembering that 〈Ne〉K = −i
∑

k G<(k, t = 0), and
performing the Fourier transformation of Eq. (17), we
obtain the well-known results [10, 13, 17] for the dynam-
ical mobility

Re µbbl(ω) = 4πt20
1− e−βω

ω
×

∑
k sin

2 k
∫ +∞

−∞ dν e−βνA(k, ω + ν)A(k, ν)
∑

k

∫ +∞

−∞ dν e−βνA(k, ν)
,

(22)

and the dc mobility

µbbl
dc =

4πt20
T

∑
k sin

2 k
∫ +∞

−∞ dν e−βνA(k, ν)2

∑
k

∫ +∞

−∞ dν e−βνA(k, ν)
(23)

in the bubble approximation. The computation of trans-
port properties in the bubble approximation thus re-
duces to the computation of the carrier’s spectral func-
tion A(k, ω).

C. Hierarchical equations of motion

The HEOM method is a numerically exact density-
matrix technique providing access to the dynamics of
the system of interest (here, electrons) that is linearly
coupled to a collection of harmonic oscillators (here,
phonons) [61, 62]. The method has been recently
extended to computations of various real-time finite-
temperature correlation functions of the operators act-
ing on the system of interest [31, 59, 63–65]. The
method is ultimately based on the formally exact re-
sults of the Feynman–Vernon influence functional the-
ory [66] (though the details do depend on the correlation
function). In Appendix A, we summarize such formally
exact results for the current–current correlation func-
tion [Eq. (10)] [57] and the Green’s function [Eqs. (20)
and (21)] [56] of the Holstein model. These results can
serve as a convenient starting point for analytical studies
in various limits, see Sec. III. The actual computations
are, however, performed numerically, by recasting the for-
mally exact result as a hierarchy of dynamical equations
for the correlation function we consider (the hierarchy
root) and auxiliary quantities needed to fully take the
interactions into account (deeper hierarchy layers). The
hierarchy is, in principle, infinite, and has to be truncated
at a certain maximum depth D.
The applications of the HEOM method to the Hol-

stein model featuring a single oscillator per site [67] have
been hindered by the numerical instabilities of the trun-
cated hierarchy [68, 69], which ultimately stem from the
finite number of oscillators on a finite lattice. Within
our recently developed momentum-space HEOM [56], we
have resolved this issue in a wide range of the model’s
parameter space by devising a physically motivated hi-
erarchy closing [57]. At the same time, we have lowered
the computational requirements with respect to the com-
monly used real-space HEOM by exploiting the model’s
translational symmetry. We summarize the momentum-
space HEOM for the current–current correlation func-
tion [Eq. (10)] [57] and the Green’s function [Eqs. (20)
and (21)] [56] in Sec. SI of Ref. 70.
Numerical uncertainties in HEOM results can be due

to the finite chain length N , finite maximum depth
D, and finite maximum propagation time tmax. We
found [57] that finite-size effects can be controlled by fol-
lowing the relative accuracy with which the optical sum
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rule
∫ +∞

−∞ dω Re µ(ω) = −π〈He〉H,1 is satisfied. We con-

cluded [57] that the convergence with respect to D can
be enhanced by taking the arithmetic average of HEOM
results for two consecutive depths D−1 and D (provided
that D is sufficiently large, so that the relative accura-
cies with which the optical sum rule is satisfied at the two
depths almost coincide). The time tmax should be suffi-

ciently long, so that the integrals T−1
∫ tmax

0 dsRe Cjj(s)

and −2
∫ tmax

0
ds s Im Cjj(s), whose tmax → +∞ limit

defines µdc [Eq. (12)], have entered into saturation as a
function of tmax. In practice, we always choose N,D, and
tmax that are sufficiently large so that: (i) the optical sum
rule is satisfied with relative accuracy . 10−4, and (ii)
the relative difference between the values of µdc obtained
using the two expressions in Eq. (12) is . 0.1. Based on
(ii), we estimate that the relative uncertainty of HEOM
results for the dc mobility is . 10%.

For stronger g or at higher T , we generally need smaller
N , shorter tmax, and larger D. However, it is difficult to
give an a priori estimate of N,D, and tmax based on
the values of model parameters. As an illustration, we
typically use N ∼ 100, D = 2 − 3, and ω0tmax & 500 for
small g and T , N ∼ 10, D ∼ 7, and ω0tmax ≃ 300 at
intermediate g and T , and N ≤ 7, D ≥ 12, and ω0tmax .
100 for large g and T . The HEOM results to be presented
are publicly available as a dataset [71].

D. Real-time quantum Monte Carlo

We also employ path-integral QMC to evaluate the
numerically exact current–current correlation function
Cjj(t), and the same quantity within the bubble approxi-
mation Cbbl

jj (t). This method can produce reliable results
for imaginary times and for real times that are not too
long. For longer real times, the statistical error of Monte
Carlo procedure becomes very large due to dynamical
sign problem and the results could not be obtained. The
results obtained using QMC are used to cross-check the
results obtained using HEOM, for model parameters and
times when both methods give results, as well as to com-
plement HEOM results for some cases where the results
could not be obtained using HEOM.

The path-integral QMC method used in this work is in
many aspects the same as the methods that we employed
in Refs. 53 and 56. It is based on path-integral represen-
tation of the correlation function, where Suzuki–Trotter
expansion is used to decompose the (real- or imaginary-
time) evolution operator (eiHt or e−βH) into evolution
operators over small time intervals. Unlike in Ref. 53,
where the decomposition is performed to the operators
e−βH , eiHt and e−iHt, here we apply it to the operators
e−(β−it)H and e−iHt, which allows as to perform either
real or imaginary time calculations using the same com-
putational code. As in Ref. 53, in the path-integral rep-
resentation, we make use of either the momentum or site
representation for electronic single-particle states. Ap-

propriate choice of the representation reduces the sign
problem and enables the calculations for longer real time.
For weaker electron-phonon interaction, the momentum
representation of electronic states is more convenient in
that respect, while the site representation is more conve-
nient for stronger electron-phonon interaction.
We use QMC to calculate the quantities Cjj(t) [as de-

fined in Eq. (3)], G>(k, t) [as defined in Eq. (18)], G<(k, t)
[see Eq. (19)] and 〈Ne〉K [see Eq. (8)]. With these quan-
tities at hand, we can then also evaluate Cbbl

jj (t) using
Eq. (17).

E. Dynamical mean-field theory

The DMFT is an approximate, yet nonperturbative
method which can treat the models with local interac-
tions [72]. The DMFT establishes a mapping between
the lattice problem and the impurity problem, supple-
mented with a self-consistency condition. For the Hol-
stein model, the polaron impurity model can be effi-
ciently solved in a form of the continued fraction expan-
sion [35]. While this mapping is exact in the infinite-
dimensional limit, it remains applicable in the finite-
dimensional case as well, yielding approximate results
characterized by momentum-independent self-energy. It
was recently shown that this method yields remarkably
accurate single-particle properties of the Holstein po-
laron, regardless of the dimensionality of the system,
while demanding minimal computational resources [39].
Therefore, it can also be used for the calculation of the
optical conductivity within the bubble approximation.

III. ANALYTICAL INSIGHTS INTO THE
LIMITS WITH VANISHING VERTEX

CORRECTIONS

Using different analytical arguments, this Section iden-
tifies the limits in which vertex corrections to conduc-
tivity vanish. The main analytical results accompa-
nied with numerical examples are briefly summarized in
Secs. III A–III C, while the corresponding technical de-
tails are provided in Appendices B–D.

A. Limit of vanishing electron–phonon interaction
(g → 0)

In Appendix B, we first demonstrate that the lowest-
order terms in the expansions of Cjj(t) [Eq. (10)] and
Cbbl

jj (t) [Eq. (17)] in powers of small g are identical. We
then use these terms to partially resum the perturbation

series for C
(bbl)
jj (t) in the g → 0 limit by employing the

second-order cumulant expansion approach [17, 37, 73],
which becomes exact in this limit. The final expressions
needed to evaluate the weak-coupling second-order cumu-
lant result are provided in Eqs. (B17) and (B19)–(B23).
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FIG. 1. Time dependence of the (a) real and (b) imagi-
nary part of Cjj computed using HEOM (solid line), DMFT
(dashed line), and Eqs. (B17) and (B19) (dash-dotted line,
label ”wcl+CE2”). HEOM computations use N = 160 and
D = 2, wcl+CE2 computations use N = 1009, whereas the
DMFT results are in the thermodynamic limit (N → ∞).
The inset of panel (b) shows the dynamical mobility obtained
using the above approaches. The inset of panel (a) compares
DMFT result for N → ∞ with HEOM and finite-chain DMFT
results, both of which use N = 160. The model parameters
are t0 = 1, ω0 = 1, λ = 1/100, and T = 1.

Figures 1(a) and 1(b) present a numerical example sup-
porting our analytical conclusion that the vertex correc-
tions vanish in the g → 0 limit. We compare Cjj(t)
computed using HEOM, DMFT (in the thermodynamic
limit), and the weak-coupling second-order cumulant ex-
pansion (label ”wcl+CE2”, obtained on a long, but finite
chain). While the dynamics predicted by the cumulant
method almost perfectly agrees with the DMFT result, a
small hump in the HEOM result for ReCjj(t) appearing
around t0t ∼ 150 suggests that it exhibits weak finite-
size effects. This is further corroborated by the inset
of Fig. 1(a), which shows that HEOM and DMFT re-
sults on a finite chain (as implemented in Ref. 39) exhibit
qualitatively (and also quantitatively) similar deviations
from the infinite-chain DMFT result for 150 < t0t < 200.
The HEOM, DMFT (N → ∞), and cumulant dynamical-
mobility profiles virtually coincide and assume a Drude-
like shape, see the inset of Fig. 1(b).

B. Limit of vanishing electronic coupling (t0 → 0)

One can demonstrate that the vertex corrections van-
ish in the limit t0 → 0 by establishing the equality
of the first non-zero terms in expansions of Cjj(t) and
Cbbl

jj (t) in powers of small t0. Since the current oper-
ator itself is linear in t0 [Eqs. (5) and (6)], the lowest-
order term in expansions of both Cjj(t) and Cbbl

jj (t) as

t0 → 0 is of the order of t20. As a starting point, one can
again take the formally exact expressions from which the
HEOM are derived (Appendix A), in which all operators
e−αHe(α = β,±it) are replaced by the unit operator.
The procedure summarized in Sec. SII of Ref. 70 leads to
[nph = (eβω0 − 1)−1]

Cjj(t) = Cbbl
jj (t) ≈ 2t20×

exp

{
−2

g2

ω2
0

[
(2nph + 1)− (nph + 1)e−iω0t − nphe

iω0t
]}

.

(24)

While this proves that the vertex corrections vanish in the
limit t0 → 0, the expression in Eq. (24) is periodic in real
time with period 2π/ω0. Thus, the current–current cor-
relation function does not decay to zero as real time goes
to infinity. Hence, one would obtain infinite dc mobility
by integrating Eq. (24) over t. This issue has been recog-
nized in the literature [74–77]. To circumvent it, we find
it convenient to perform the polaronic (Lang–Firsov) uni-
tary transformation [78] of the Holstein Hamiltonian and
evaluate the current–current correlation function in the
t0 → 0 limit in the polaronic frame. Using the Matsub-
ara Green’s function formalism [10], we eventually obtain
an expression for Cjj(t) that decays as t

−3 at long times
t, which is sufficiently fast to render the time integral of
Cjj(t), and thus the dc mobility, finite. While we defer
all the details for Appendix C, here, we only present the
final result for the current–current correlation function

Cjj(t) = Cbbl
jj (t) ≈

2t20
β

t(β − it)
√
c0

I1[−2(β − it)
√
c0]J1(2t

√
c0)

I1(−2β
√
c0)

×

exp

{
−2

g2

ω2
0

[
2nph + 1− (nph + 1)e−iω0t − nphe

iω0t
]}

,

(25)

where c0 is defined in Eq. (C35), while I1 (J1) is the
(modified) Bessel function of the first kind of order 1.

In Figs. 2(a)–2(c) we present a numerical example that
supports our analytical proof that vertex corrections van-
ish in the limit t0 → 0. We present ReCjj(t) for g = 1,
ω0 = 1, T = 1 and different values of t0 calculated using
QMC, QMC within the bubble approximation and using
analytical formula given in Eq. (25). The results clearly
demonstrate that the analytical formula and bubble ap-
proximation results converge towards numerically exact
QMC results as t0 decreases towards zero.
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FIG. 2. (a)–(c): Real part of the real time current-current cor-
relation function for the Holstein model for different values of
the parameter t0. Other parameters are set to g = 1, ω0 = 1,
T = 1. The results labeled as ’QMC’ were obtained using
QMC simulations, the results labeled as ’bubble QMC’ were
obtained from QMC simulations within the bubble approxi-
mation, while the results labeled as ’analytic’ were obtained
using Eq. (25).

C. Limit of infinite temperature (β → 0)

In the limit of infinite temperature, it is permissible to
treat phonons as classical harmonic oscillators. Further-
more, at sufficiently high temperatures, single-particle
correlation functions become local (Fig. 3 provides illus-
trative examples), and their dynamics becomes primarily
determined by local (on-site) processes. In Appendix D,
we derive that the exact and bubble-approximation cor-
relation functions are identical in the β → 0 limit:

Cjj(t) = Cbbl
jj (t) ≈ 2t20e

−σ2t2−iσ2βt. (26)

Here,

σ2 = g2 coth(βω0/2) ≈ 2g2/(βω0) (27)

is the variance of the thermal fluctuations in the on-site
energy ε = g(b† + b) evaluated in the equilibrium state
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FIG. 3. (a1)–(c1): Real part of the real time current-current
correlation function for the Holstein model for different val-
ues of the temperature T . Other parameters are set to g = 1,
ω0 = 1, t0 = 1. The results labeled as ’QMC’ were obtained
using QMC simulations, the results labeled as ’QMC bub-
ble’ were obtained from QMC simulations within the bubble
approximation, while the results labeled as ’analytic’ were
obtained using Eq. (26). (a2)–(c2): Time dependence of the
absolute value of the quantity snm(t) (defined in the text)
that describes correlations between annihilation and creation
operators at lattice sites n and m. The results are presented
for the same model parameters as in (a1)–(c1).

e−βHph

Zph
of free phonons.

We support these analytical results with a numerical
example, obtained from QMC simulations, presented in
Figs. 3(a1)–3(c2). The results presented in Figs. 3(a1)–
3(c1) show that the bubble approximation result and the
analytical result given by Eq. (26) converge towards the
numerically exact result as T increases. In Figs. 3(a2)–
3(c2) we present the absolute value of the quantity
snm(t) =

〈
cn(t)c

†
m

〉
K
, where cn (c†m) is the annihila-

tion (creation) operator for an electron at site n (m).
This quantity was obtained from Fourier transform to
real space of the quantity G>(k, t) [see Eq. (18)] and can
be used as a measure of spatial correlations in the system.
It can be seen from Figs. 3(a2)–3(c2) that at higher tem-
peratures the spatial correlations for n−m 6= 0 become
smaller and eventually practically negligible. This con-
firms the assumption of locality of the correlations used in
our analytical derivation. One should nevertheless note
that unrealistically high temperatures (which would be
certainly above the melting point in a real material) are
needed for full vanishing of spatial correlations.
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IV. IMPORTANCE OF VERTEX
CORRECTIONS: ANALYSIS OF NUMERICAL

RESULTS

Having identified the limiting cases in which the ver-
tex corrections vanish, here we combine numerical results
emerging from different methods at our disposal to an-
alyze the importance of vertex corrections in parameter
regimes between these limits. A detailed summary of the
parameter regimes examined is provided in Table S1 of
Ref. 70.
The numerically exact dynamics on short time scales

can be computed using QMC in essentially any param-
eter regime. On the other hand, the crossover from the
short-time ballistic to the long-time diffusive dynamics,
and thus the dynamical-mobility profile down to ω = 0,
can be captured using the HEOMmethod, which in prac-
tice works best when the hierarchy closing strategy de-
veloped in Ref. 57 is effective. This is the case for not
too strong interaction (λ . 1), at moderate temperatures
(1 . T/t0 . 10), and for ω0/t0 ≤ 2. The results of the
two numerically exact methods (HEOM and QMC) will
be compared to the results stemming from the bubble ap-
proximation, which, in principle, needs numerically exact
single-particle properties. While these are available from
appropriate HEOM-method computations [56], we have
recently demonstrated that the DMFT, which is formu-
lated directly in the thermodynamic limit, provides close-
to-exact single-particle properties of the Holstein model
in the whole parameter space at a much smaller com-
putational cost [39]. The very good agreement between
HEOM and DMFT spectral functions translates into the
very good agreement between the current–current cor-
relation functions and dynamical-mobility profiles com-
puted using HEOM (within bubble approximation) and
DMFT, as shown in Figs. 4(a)–4(c) for different phonon
frequencies ω0. We have checked that a similar level of
agreement persists for all parameters where HEOM bub-
ble computations are performed. We thus conclude that
the DMFT results can be practically taken as the exact
bubble-approximation results, which are available in the
whole parameter space.

A. Comparison of typical features of numerically
exact and bubble-approximation results in time and

frequency domains

In Figs. 5(a1)–5(c3) we compare the numerically exact
and bubble-approximation dynamics of Re Cjj , the car-
rier spread ∆x, and the diffusion constant D, as well
as the corresponding dynamical-mobility profiles. We
perform the comparison in three representative cases
spanning the range from slow-phonon [ω0/t0 = 1/3 in
(b1)–(b3)] to intermediate-phonon [ω0/t0 = 1 in (a1)–
(a3)] and fast-phonon [ω0/t0 = 3 in (c1)–(c3)] regimes.
We choose the intermediate electron–phonon interaction
(λ = 1/2), which unveils the most commonly observed

differences between the numerically exact and bubble-
approximation results. Figures S1–S3 of Ref. 70 sum-
marize similar comparisons in other parameter regimes
examined (see also Table S1).
In Appendix A, we prove that the exact and bubble-

approximation current–current correlation functions are
identical at t = 0 in all parameter regimes. Fig-
ures 5(a1)–5(c1) additionally demonstrate that their
short-time dynamics are also identical. The very good
agreement between the two dynamics persists beyond the
very initial time scales, when the dynamics is ballistic
so that Cjj,bal(t) = Cjj(0), ∆xbal(t) =

√
Cjj(0)t, and

Dbal(t) = Cjj(0)t. Figures 5(a2)–5(c2) suggest that the
numerically exact and bubble-approximation dynamics
closely follow one another as long as ∆x(t) . 1, i.e., the
carrier spread is smaller than the lattice constant. In pa-
rameter regimes analyzed in Fig. 5, the agreement is good
for t0t . 1, which is the time scale characteristic for the
transfer of a free electron between neighboring sites. This
translates into the very good agreement between the two
dynamical-mobility profiles in the high-frequency region
ω/t0 & 2π, see the insets of Figs. 5(a1)–5(c1).
On intermediate time scales, the numerically exact re-

sults in Figs. 5(a) and 5(b) predict a time-limited slow-
down of the carrier [negative values of Re Cjj(t), de-
crease of D(t)] that is followed by a steady increase in
the diffusion constant until it saturates to its long-time
limit. On the other hand, in the regimes analyzed here,
the results in the bubble approximation do not display
any transient slow-down of the carrier, and the diffusion
constant is a monotonically increasing function of time.
As a consequence, the dynamical-mobility profile in the
bubble approximation has only the Drude-like peak cen-
tered at ω = 0 (qualitatively similar as in the g → 0
limit analyzed in Sec. III A), while the numerically exact
dynamical-mobility profile additionally develops a finite-
frequency peak. In the regimes analyzed here, the nu-
merically exact dynamical-mobility profile still has a lo-
cal maximum at ω = 0. Namely, rewriting Eq. (11) as

Re µ(ω) = 2 tanh(βω/2)
ω

∫ +∞

0 dt cos(ωt)Re Cjj(t), one re-
alizes that ω = 0 is a stationary point of the dynamical-
mobility profile [Re µ(ω) ∝ ω2 as ω → 0]. The convexity
of Re µ(ω) around ω = 0 then follows from the sign of
the corresponding second derivative that reads as [79]

(
d2

dω2
Re µ(ω)

)

ω=0

=

− β

{D∞β2

6
+ 2

∫ +∞

0

dt t [D∞ −D(t)]

}
.

(28)

In Figs. 5(a) and 5(b), the function D∞ − D(t) is non-
negative for t ≥ 0, and ω = 0 is a local maximum. In
general, the sign of D∞ − D(t) can change with t, and
direct analytical arguments based on Eq. (28) cannot be
developed. It is then notable that our HEOM results sug-
gest that ω = 0 remains a local maximum of Re µ(ω) in
all parameter regimes amenable to HEOM computations,
see Figs. S1–S3 of Ref. 70.
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FIG. 4. Time dependence of Re Cjj computed within the bubble approximation using numerically exact HEOM spectral
functions (solid black lines) and approximate DMFT spectral functions (dashed red lines) for t0 = 1 and (a) ω0 = 1, T = 1; (b)
ω0 = 1/3, T = 1; (c) ω0 = 3, T = 5. The electron–phonon interaction strength in all three panels is λ = 1/2. The insets display
the corresponding dynamical-mobility profiles computed within the bubble approximation using HEOM and DMFT spectral
functions. HEOM spectral functions are computed using (a) N = 10, D = 6, (b) N = 10, D = 8, and (c) N = 7, D = 12.
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FIG. 5. Comparison of numerically exact (labels ”HEOM” and ”QMC”) and bubble-approximation (label ”DMFT”) results
for time evolution of (a1)–(c1) Re Cjj , (a2)–(c2) ∆x, and (a3)–(c3) D(t). In all panels, t0 = 1, λ = 1/2, while the remaining
model parameters are: (a1)–(a3) ω0 = 1, T = 1, (b1)–(b3) ω0 = 1/3, T = 1, (c1)–(c3) ω0 = 3, T = 5. Vertical dotted lines
indicate time t = 1. The insets of (a1)–(c1) compare dynamical-mobility profiles in the numerically exact approach and in the

bubble approximation. Dotted lines in (a2)–(c2) show the carrier spread in the short-time ballistic (∆xbal(t) =
√

Cjj(0)t) and

long-time diffusive (∆xdiff(t) =
√

2µHEOM

dc
T t) regimes, while double dash-dotted lines show ∆x(t) = 1. The inset of panel (b3)

shows the fit of DHEOM(t) to the exponentially decaying function f(t) = a0−a1e
−t/a2 (magenta dots) for 50 ≤ t ≤ 300. Fitting

parameters are a0 = 0.895, a1 = 0.251, a2 = 97.1. HEOM results in (a1)–(a3) are obtained using N = 13, D = 6, while the
results displayed in (b1)–(b3) [(c1)–(c3)] are obtained by performing the arithmetic average of HEOM results for N = 10, D = 7
and N = 10, D = 8 [N = 7, D = 11 and N = 7, D = 12]. QMC results are displayed with the associated statistical error bars
and are obtained using N = 10 in (a1), N = 7 in (b1), and N = 10 in (c1).

While the long-time saturation of DHEOM(t) is ap-
parent in Fig. 5(a3), Fig. 5(b3) might suggest that the
corresponding tmax is not sufficiently long to guarantee
that the relative uncertainty of DHEOM [or µHEOM

dc =

DHEOM/T ] is below or of the order of the target ten-
percent accuracy (Sec. II C). To exclude this possibility,
we fit DHEOM(t) in Fig. 5(b3) for t ≥ 50 (when all the
transients have certainly vanished) to the exponentially
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saturating function f(t) = a0−a1 e
−t/a2 . The high qual-

ity of the fit is apparent from the inset of Fig. 5(b3), and
the relative difference between DHEOM and a0 is well be-
low 10%.
Differently from the situation in Figs. 5(a) and 5(b), in

Fig. 5(c), the bubble-approximation dynamical-mobility
profile qualitatively resembles its numerically exact coun-
terpart. Both profiles display relatively broad peaks
at integer multiples of ω0 that originate from peaks
in Re Cjj(t) at integer multiples of 2π/ω0. The bub-
ble approximation predicts peaks without internal struc-
ture, whereas numerically exact results predict struc-
tured peaks. Such peaks may be ascribed to a more
complicated dynamics of Re Cjj , which becomes nega-
tive after the first peak. A word of caution is in order
here as we have established [57] that our HEOM results
for ω0/t0 = 3 may not be entirely reliable due to possible
problems with the HEOM closing strategy for ω0/t0 ≥ 2.
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FIG. 6. Comparison of numerically exact (labels ”HEOM”
and ”QMC”) and bubble-approximation (label ”DMFT”) dy-
namics of Re Cjj for t0 = 1, ω0 = 1, λ = 2, and T = 1. The
results labeled ”atomic limit” are obtained using Eq. (29).
The inset shows time-dependent carrier spread ∆x(t) com-
puted numerically exactly and within the bubble approxima-
tion. HEOM computations use N = 10, D = 8. QMC results
are displayed with the associated statistical error bars and are
obtained for N = 10.

Finally, in contrast to the regimes studied in Figs. 5(a)
and 5(b), there are situations in which the bubble ap-
proximation does partially capture the time-limited slow-
down of the carrier. This typically happens for strong in-
teraction and at not too high temperatures. One example
(ω0/t0 = 1, λ = 2, T/t0 = 1) is analyzed in Fig. 6, whose
inset shows the short-time dynamics of the carrier spread.
While in Figs. 5(a) and 5(b) the carrier slows down hav-
ing covered more than a lattice constant, the slow-down
in Fig. 6 happens over the time interval in which ∆x re-
mains well below a single lattice constant. This suggests
that the dynamics shown in Fig. 6 predominantly reflects
on-site phonon-assisted processes. It is thus not surpris-
ing that the short-time bubble-approximation dynamics

can be qualitatively (and to a large extent quantitatively)
reproduced by the atomic-limit formula [Eq. (25)] cor-
rected so that it reproduces the value of Cjj(t = 0):

Cjj(t) = Cjj(0)×

exp

{
−2

g2

ω2
0

[
(2nph + 1)− (nph + 1)e−iω0t − nphe

iω0t
]}

,

(29)

compare the lines labeled ”DMFT” and ”atomic limit” in
Fig. 6. [We have checked that, on time scales analyzed in
Fig. 6, the attenuating time-dependent prefactor enter-
ing Eq. (25) does not introduce any quantitative changes
to the result of Eq. (29).] The numerically exact dynam-
ics shows that the slow-down is prolonged with respect
to the bubble-approximation results, meaning that the
latter captures the temporal slow-down only partially.

B. Vertex corrections to the dc mobility

The importance of vertex corrections to the dc mobil-
ity will be quantified by the relative deviation of the dc
mobility in the bubble approximation from the numeri-
cally exact result, i.e.,

δµvtx
dc =

µHEOM
dc − µDMFT

dc

µHEOM
dc

. (30)

The results in the bubble approximation can be consid-
ered to carry no intrinsic numerical error because they
follow from the DMFT equations formulated directly in
the thermodynamic limit, see also Fig. 4. On the other
hand, the relative uncertainty that should accompany
HEOM results for the dc mobility does not surpass 10%,
as discussed in Sec. II C and Ref. 57. In other words,
whenever |δµvtx

dc | . 0.1, one can regard the vertex correc-
tions to the dc mobility as unimportant.
Figures 7(a1)–7(c2) provide an overall picture of the

importance of the vertex corrections to the dc mobility
for different values of ω0/t0, λ, and T/t0. Interestingly,
in most of the parameter regimes examined for ω0/t0 = 1
and 1/3, δµvtx

dc falls in the gray-shaded regions delimit-
ing the aforementioned range |δµvtx

dc | . 0.1, in which the
vertex corrections to the dc mobility can be regarded as
vanishing. Our scarce results for ω0/t0 = 3 might sug-
gest that the vertex corrections to the dc mobility are
more important than in the other two cases analyzed in
Fig. 7. However, possible problems with HEOM results
for ω0/t0 ≥ 2 [57] prevent us from giving a definite state-
ment on the importance of the vertex corrections to the
dc mobility in the case of fast phonons.
In parameter regimes analyzed in Figs. 5(a) and 5(b),

the vertex corrections to the dc mobility can be deemed
important as δµvtx

dc is around 0.5 and 0.2, respectively.
On the other hand, while δµvtx

dc ≈ −0.4 points towards
significant vertex corrections to the dc mobility for pa-
rameters in Fig. 5(c), the overall shape of the dynamical-
mobility profile suggests that their importance may be
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FIG. 7. (a1)–(c1): Temperature dependence of the dc mobility computed using the HEOM (full symbols connected by dashed
lines) and DMFT (empty symbols connected by dotted lines) for different strengths of the electron–phonon interaction λ
and fixed phonon frequency ω0. (a2)–(c2): Temperature dependence of the quantity δµvtx

dc [Eq. (30)], which quantifies the
importance of vertex corrections to the dc mobility, for different values of λ and fixed ω0. Gray regions in (a2)–(c2) delimit the
range δµvtx

dc ∈ [−0.1, 0.1] in which the vertex corrections to the dc mobility can be considered as vanishing. ω0 is equal to 1 in
(a1) and (a2), 1/3 in (b1) and (b2), and 3 in (c1) and (c2), while t0 = 1 in all panels.

much smaller for the ac mobility. The vertex corrections
in Figs. 5(a) and 5(b) are positive, i.e., µHEOM

dc > µDMFT
dc .

The dominant contribution to µDMFT
dc comes from the

dynamics on short time scales t0t . 1, on which the ap-
proximate and numerically exact results agree quite well
[see also Eq. (12)]. This is most conveniently seen from
Figs. 5(a3)–5(c3) showing the dynamics of D. The sub-
sequent slow-down of the carrier is fully compensated by
the speed-up of the carrier [ReCjj(t) > 0, D(t) increases
with t] on somewhat longer time scales. Ultimately, the
effects of the transient slow-down are overpowered by the
speed-up, so that the numerically exact dc mobility be-
comes larger than the approximate one.
Our results for λ = 1/2 in Fig. 7(a2) and for λ = 1 in

Fig. 7(b2) suggest that the vertex corrections to the dc
mobility decrease with temperature for the parameters
studied. However, even at the highest temperatures ac-
cessible in these two cases, the numerically exact results
(and the bubble-approximation results, too) are not close
to the results in the infinite-temperature limit analyzed
in Sec. III C. Also, one should keep in mind that even
when the vertex corrections to the dc mobility can be
considered as vanishing [e.g., for λ = 1/8 in Figs. 7(a2)
and 7(b2)], there may be important differences be-
tween the numerically exact and bubble-approximation
dynamical-mobility profiles (see also Figs. S1 and S2 of
Ref. 70).
Having all these things considered, in the following

three sections we discuss in more detail specific results

related to the importance of vertex corrections for the
three values of ω0/t0 studied.

C. Intermediate-frequency phonons (ω0/t0 = 1)

For λ = 1/100 and at all temperatures examined,
our numerical results show vanishing vertex corrections
to the dc mobility, as demonstrated both numerically
in Fig. 7(a2) and analytically in Sec. III A. The small
nonzero values of δµvtx

dc can be attributed to the weakly
pronounced finite-size effects in the HEOM results, see
also Fig. 1. The vertex corrections to dc mobility are
also small for λ = 1/8. However, as the temperature is in-
creased, the dynamical-mobility profile develops a finite-
frequency peak qualitatively similar to that discussed in
Fig. 5(a), see Fig. S1 of Ref. 70.
Although the vertex corrections to the dc mobility

for λ = 1/2 become insignificant at the highest tem-
peratures considered, see Fig. 7(a2), the differences be-
tween the numerically exact and bubble-approximation
dynamics of ReCjj and dynamical-mobility profiles per-
sist, as shown in Fig. 5(a) and Fig. S1 of Ref. 70. Fig-
ure S1 additionally suggests that the carrier slow-down
becomes less pronounced and shifts towards later times
as the temperature is decreased, meaning that the finite-
frequency peak in the numerically exact Re µ(ω) then
shifts towards lower frequencies. Also, in the inset of
Fig. 4(a), we observe a nascent atomic-limit-like peak in
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FIG. 8. Dynamical-mobility profile computed using HEOM
and DMFT for t0 = ω0 = 1, λ = 1/2, and T = 0.4. HEOM
computations use N = 29, D = 4.

the bubble-approximation optical response at ω0, indicat-
ing the presence of a more pronounced peak at ω0 at even
lower temperatures (T/t0 < 1). These expectations are
confirmed in Fig. 8, which compares the numerically ex-
act and bubble-approximation dynamical-mobility pro-
files at T/t0 = 0.4. Both HEOM and DMFT results show
that the finite-frequency peak is centered exactly around
ω0. This peak can be associated with the transitions
between the quasiparticle and the satellite peak in the
single-particle spectral function. While Fig. 8 indicates
that the vertex corrections to the dc mobility remain
important at lower temperatures, we note that reaching
lower temperatures is problematic for the HEOMmethod
here, mainly because of the system size necessary to min-
imize finite-size effects.

Figure 7(a2) suggests that the vertex corrections to
the dc mobility for λ = 1 are overall smaller than for
λ = 1/2. The numerically exact dynamics of Re Cjj dis-
plays similar features as in Figs. 5(a1) (λ = 1/2) and 6
(λ = 2), see also Fig. S1 of Ref. 70. Setting λ = 1 and
increasing T , the overall decrease of ReCjj towards zero
becomes generally faster, so that the difference between
µdc and µDMFT

dc stemming from the carrier slow-down
becomes more pronounced than that caused by the sub-
sequent speed-up. This argument can explain positive
(negative) vertex corrections at the lower (upper) end of
the temperature range considered for λ = 1 in Fig. 7(a2).
In a similar vein, we argue that the vertex corrections to
the dc mobility are not substantial for λ = 2. Namely,
at a fixed temperature T , the overall decrease of Re Cjj

towards zero is faster for stronger interaction. Therefore,
for sufficiently strong g, we may expect that the features
specific to the numerically exact result will not appre-
ciably affect µdc, which is then primarily determined by
ReCjj(t) up to times at which the corresponding bubble-
approximation and numerically exact results agree well,

see also Fig. 6.

D. Slow phonons (ω0/t0 = 1/3)

For λ = 1/100, the vertex corrections are negligible.
For λ = 1/8, the vertex corrections are very small at
T/t0 = 1, but with increasing temperature, a character-
istic two-peak structure emerges in the numerically exact
dynamical-mobility profile, see Fig. S2 of Ref. 70. Inter-
mediate interactions λ = 1/2 [Fig. 5(b1)] and λ = 1
(Fig. 9) bring about the appearance of the two-peak
structure also at T/t0 = 1. For λ = 1, the finite-
frequency peak is centered around ω = 2t0, in agree-
ment with earlier numerically exact studies in the slow-
phonon regime [80]. While the bubble approximation
partially captures the time-limited carrier slow-down at
T/t0 = 1, compare Fig. 9 with Fig. 6, it does not cap-
ture the finite-frequency absorption feature, see the inset
of Fig. 9. To elucidate the origin of this feature, the
assumption of strictly on-site phonon dynamics underly-
ing the atomic-limit-like Eq. (29) (which reproduces the
bubble-approximation result reasonably well, similarly as
in Fig. 6) has to be relaxed, as has been done by Schubert
et al. [80]. Their analysis attributes the 2t0 absorption
feature to the optical transition between the symmetric
and antisymmetric states of the electron residing on two
neighboring sites, over which phonon dynamics is consid-
ered. Figure S2 of Ref. 70 shows that the finite-frequency
peak remains around 2t0 also at higher temperatures, in
agreement with earlier results [80].
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FIG. 9. Time dependence of Re Cjj computed within the
HEOM, DMFT, and QMC for t0 = 1, ω0 = 1/3, λ = 1, and
T = 1. The QMC results are displayed without the associated
statistical error bars for visual clarity. The inset compares the
corresponding dynamical-mobility profiles computed within
HEOM and DMFT. HEOM computations use N = 7, D = 11
and 12 (arithmetic average). QMC simulations use N = 7.

Despite important differences in the overall dynamics
of Cjj , see Fig. 9, the results summarized in Fig. 7 show
that the bubble approximation correctly predicts the or-
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der of magnitude of the dc mobility. However, as we ap-
proach the adiabatic limit ω0 → 0, the exact result for the
dc mobility tends to zero (phonon motion is effectively
frozen and an electron experiences a random potential
in one dimension where it cannot move over a large dis-
tance due to the effect of Anderson localization), while
the bubble approximation result keeps a finite value [18].
Therefore, in this limit, vertex corrections are most pro-
nounced. They give negative contribution to dc mobility
which completely cancels out the bubble-approximation
result (so that δµvtx

dc → −∞). The fact that the results
presented in Fig. 7 show positive or somewhat negative
vertex corrections implies that the system is still rela-
tively far from the adiabatic limit in these cases. We il-
lustrate this in Fig. S4 Ref. 70 where we compare Cjj(t)
and D(t) for certain parameter values with the adiabatic-
limit result for these quantities. The figure confirms that
these quantities are far from their adiabatic-limit val-
ues. Adiabatic-limit results are obtained using a very
computationally efficient Monte Carlo procedure that ex-
ploits the fact that phonon momentum is negligible in the
adiabatic limit. This procedure is described in detail in
Sec. SV of Ref. 70.
In the strong-interaction regime λ = 2, and at T/t0 =

1, the DMFT captures the time-limited slow-down ob-
served in QMC data quite well, see Fig. 10(a) and com-
pare to Fig. 9. The short-time dynamics of ReCjj is also
very well reproduced by the atomic-limit-like Eq. (29).
The DMFT dynamical-mobility profile displays atomic-
limit-like peaks at integer multiples of ω0. As the tem-
perature is increased from T/t0 = 1 to 10, the peaks
become smoothed out, and their envelope changes from
a function displaying a finite-frequency local maximum
and a zero-frequency local minimum to a function dis-
playing only a zero-frequency local maximum, see the in-
sets of Figs. 10(a) and 10(b). This finite-frequency peak
of the envelope, appearing at sufficiently low tempera-
tures, is the well-known polaron peak because the shape
of the envelope of the dynamical-mobility profile com-
pares reasonably well with the high-temperature (small-
ω0) limit of the Reik formula [Eq. (29) of Ref. 77 in which
sinhx ≈ tanhx ≈ x, with x = const × βω0 ≪ 1], which
reads as

Re µ(ω) =

√
πt20
σω

[
exp

(
− (ω − 2εpol)

2

4σ2

)
−

exp

(
− (ω + 2εpol)

2

4σ2

)]
.

(31)

Here, εpol = g2/ω0 is the polaron binding energy, and
σ is defined in Eq. (27). Even at the highest tempera-
tures studied, QMC results predict a protracted tempo-
rally limited slow-down of the electron, pointing towards
possibly nontrivial negative vertex corrections to the dc
mobility (because the intensity of the possible atomic-
limit-like features appearing at integer multiples of 2π/ω0

decreases quickly with time, which is compatible with the
rather wide DMFT optical response).
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FIG. 10. Time dependence of ReCjj computed within DMFT
and QMC for t0 = 1, ω0 = 1/3, λ = 2, and (a) T = 1, (b) T =
10. Solid brown lines represent the results of the atomic-limit
Eq. (29). The insets compare the corresponding dynamical-
mobility profiles with those evaluated using the Reik formula
[Eq. (31)]. QMC simulations use N = 7.

E. Fast phonons (ω0/t0 = 3)

HEOM results are available only in a limited por-
tion of the parameter space, characterized by sufficiently,
but not excessively high temperatures and interaction
strengths.

We first compare numerically exact and bubble-
approximation results in the weak-coupling regime λ =
1/8 and T/t0 = 10, see Fig. 11(a). While the bubble-
approximation result predicts a monotonically increas-
ing diffusion constant [Re Cjj(t) > 0], the numerically
exact result predicts a time-limited slow-down of the car-
rier motion after it has covered a single lattice constant
(for 1 ≤ t0t ≤ 2, when ∆x & 1), similarly to what
we observed in Figs. 5(a) and 5(b) for smaller values
of ω0/t0. Interestingly, both numerically exact and ap-
proximate results predict a local maximum in Re Cjj(t)
around 2π/ω0, which is typical for the atomic limit.
With this in mind, the reasonable overall agreement be-
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FIG. 11. Time dependence of ReCjj computed using HEOM
(solid black lines), DMFT (dashed red lines), and QMC (full
circles) for t0 = 1, ω0 = 3 and (left panel) λ = 1/8, T = 10,
(right panel) λ = 1, T = 5. QMC results are accompanied
with their statistical error bars. The insets show (a) the
carrier spread, and (b) the dynamical-mobility profile com-
puted using HEOM and DMFT. HEOM computations use
(a) N = 10, D = 8, (b) N = 5, D = 20 and 21 (arithmetic
average). QMC simulations use (a) N = 10, (b) N = 7.

tween the numerically exact and approximate dynamical-
mobility profiles, similar to our observations in Fig. 5(c),
is not surprising, see Fig. S3 of Ref. 70. The vertex cor-
rections to the dc mobility may be considered as van-
ishing, see Fig. 7(c), as expected in the limit of weak
electron–phonon coupling. The potential problems with
our HEOM closing are exacerbated at a lower temper-
ature (T/t0 = 5), where our results predict significant
vertex corrections, contrary to expectations for small λ.
For λ = 1 and T/t0 = 5, see Fig. 11(b), the bub-

ble approximation again predicts strictly non-negative
Re Cjj(t) with peaks at integer multiples of 2π/ω0. On
the other hand, numerically exact results show that
the peaks’ centers are generally shifted towards some-
what earlier times, while Re Cjj(t) may assume nega-
tive values. This is clearly observed for the first peak,
whose intensity within the numerically exact framework

is smaller than the intensity of its bubble-approximation
counterpart. As a consequence, the numerically ex-
act dynamical-mobility spectrum is qualitatively differ-
ent from its bubble-approximation counterpart, which
has equidistant peaks at integer multiples of ω0.

F. Insights from the imaginary-time domain
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FIG. 12. Imaginary-time current–current correlation func-
tion for t0 = 1, ω0 = 1/3, and λ = 1/2 at temperatures (a)
T = 0.1 and (b) T = 1. The QMC results obtained from a
full calculation and by making use of the bubble approxima-
tion are presented. The inset of the top panel shows a zoom
to the region where the difference between numerically exact
and bubble approximation results is most pronounced.

It is known that the extraction of transport proper-
ties from imaginary-axis data for the current–current
correlation function can often be unreliable as it leans
on procedures for numerical analytical continuation. In
Fig. S5 of Ref. 70, we compare some of our results for
dc mobility, which entirely follow from real-axis data, to
the corresponding results of Ref. 41, which follow from
imaginary-axis QMC data. Nevertheless, one may hope
to gain insights into the importance of vertex correc-
tions by comparing the imaginary-time current–current
correlation functions computed numerically exactly and
within the bubble approximation. We have done this by
computing, on the one hand, the quantity Cjj(−iτ) [see
Eq. (3)] for 0 ≤ τ ≤ β, and, on the other hand, the
quantities G>(k,−iτ) [see Eq. (18)] and G<(k,−iτ) [see
Eq. (19)], which are needed to obtain Cbbl

jj (−iτ) in accor-
dance with Eq. (17). The computations were performed
using QMC. It is easier to obtain these quantities in imag-
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inary time than in real time because the dynamical sign
problem occurs only for real times.
For the investigated values of parameters when T/t0 ≥

1 we find that the differences between Cjj(−iτ) and
Cbbl

jj (−iτ) are very small. They typically differ by less
than 1% and this difference is typically below or compa-
rable to the statistical error of QMC results. One such
example is presented in Fig. 12(b). These results should
be contrasted with our conclusions reached by analyz-
ing real-time results in the very same parameter regime,
see Figs. 5(b) and 7(b2). We can thus conclude that
good agreement between numerically exact and bubble
approximation results in imaginary time does not imply
that the same level of agreement will be present in real
time.
When the temperature is lowered to T/t0 = 0.1, the

differences between numerically exact and bubble ap-
proximation results becomes noticeable, see Fig. 12(a).
The inset of that panel shows a zoom to the region where
this difference is most significant. In this region, the dif-
ference is above 5%, while the statistical error of QMC re-
sults is on the order of 0.5%, hence we are confident that
the difference observed is above the level of statistical
noise. While these data point towards non-negligible ver-
tex corrections, a definitive conclusion could be reached
only if we had access to the corresponding real-time data.

V. SUMMARY AND OUTLOOK

In summary, we presented a detailed analysis of the
importance of vertex corrections for charge transport in
the one-dimensional Holstein model. Our analytical re-
sults demonstrate that the vertex corrections vanish in
the weak-interaction, atomic, and infinite-temperature
limits, which is supported by numerical results. The nu-
merically exact HEOM calculations were performed for
three phonon frequencies: intermediate ω0/t0 = 1, low
ω0/t0 = 1/3, and high ω0/t0 = 3.
For ω0/t0 = 1, as the electron–phonon coupling is in-

creased, a characteristic two-peak profile of the numeri-
cally exact optical conductivity emerges instead of a sin-
gle Drude peak. At low temperatures, the other peak is
centered precisely at ω = ω0 and is also captured within
the bubble approximation because it corresponds to the
transitions between the quasiparticle and the first satel-
lite peak in the single-particle spectral density. At higher
temperatures, the peak shifts to ω > ω0. Then, the two-
peak structure in optical conductivity, which cannot be
reproduced in the bubble approximation, is traced back
to a downturn in the time-dependent diffusion constant
D(t) at intermediate time scales. Interestingly, for strong
interactions, such a slow-down of charge carrier is ob-
served also in the bubble approximation, but at shorter
times. In this case, it is primarily governed by the on-site
phonon-assisted processes and not by the vertex correc-
tions. This observation is compatible with the absence of
vertex corrections in the atomic limit. Both at low and

at high temperatures, we find that the vertex corrections
either do not affect or increase the dc mobility by few
tens of percent in comparison to the bubble term.

Interestingly, for ω0/t0 = 1/3 and for moderate
electron–phonon interaction, the optical-conductivity
profile looks qualitatively similar as for ω0/t0 = 1. We
find that the peak at zero frequency persists, giving the
dc mobility that is somewhat smaller, but still compa-
rable to the one obtained in the bubble approximation.
The height of this peak is expected to diminish as the
frequency is lowered further, approaching the adiabatic
limit. However, this calculation is not feasible within our
implementation of the HEOM method, and is generally
challenging for numerically exact methods on the market.

The HEOM solution in the bubble approximation al-
most coincides with the DMFT solution for optical con-
ductivity for all available parameter values. Hence, our
results demonstrate that the vertex corrections can be
substantial also in the cases where the single-particle
correlations are almost local, in agreement with previ-
ous findings on the Hubbard model [49]. Our results
also illustrate the challenges in numerical analytical con-
tinuation of the imaginary axis data: in all parameter
regimes the difference between the full and bubble corre-
lation functions in imaginary time is minuscule, and yet
the difference in optical conductivity can be large.

To our knowledge, in this work we have presented,
so far, the most comprehensive study of vertex correc-
tions to conductivity on a specific model of the electron–
phonon interaction. However, there are several challenges
left for future work. It would be interesting to calculate
the charge transport in higher dimensions and make a
comparison to the one-dimensional case. Also, micro-
scopic calculations for lower phonon frequencies and for
models with nonlocal electron–phonon interactions are
highly desirable, especially in connection with real-world
materials.
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Appendix A: Formally exact expressions for the electronic dynamics

It is convenient to switch from the electronic creation and annihilation operators, which act in the Fock space
for the electrons, to their counterparts acting in the subspaces containing at most one electron. The corresponding

replacements c†k → |k〉〈vac| and ck → |vac〉〈k|, where the state |vac〉 contains no electrons, are appropriate in the limit
of low carrier concentration we are interested in.
We first summarize the formally exact result for the dynamics of the current–current correlation function in Eq. (10),

which can be expressed as

Cjj(t) = Tr1e{jι(t)} =
∑

k

jk〈k|ι(I)(t)|k〉, (A1)

where

ι(t) =
1

Z
Trph

{
e−iHtje−βHeiHt

}
. (A2)

In Ref. 57, we derived that the interaction-picture counterpart of the purely electronic operator ι(t) reads as

ι(I)(t) = T e−[Φ1(t)+Φ2(β)+Φ3(t,β)]j
e−βHe

Ze
. (A3)

The corresponding influence phases are given as

Φ1(t) =
∑

qm

∫ t

0

ds2

∫ s2

0

ds1 V
(I)
q (s2)

× e−µm(s2−s1)

×
[
cm + cm

2
V

(I)
−q (s1)

× +
cm − cm

2
V

(I)
−q (s1)

◦

]
,

(A4)

Φ2(β) =−
∑

qm

∫ β

0

dτ2

∫ τ2

0

dτ1
CV −q(τ1)

× eiµm(τ2−τ1)cm
CV q(τ2),

(A5)

Φ3(t, β) =− i
∑

qm

∫ t

0

ds

∫ β

0

dτ V (I)
q (s)×

× e−µmseiµm(β−τ)cm
CV −q(τ),

(A6)

where the purely electronic operator Vq reads as

Vq =
∑

k

|k + q〉〈k|, (A7)

while the coefficients cm and µm (m = 0, 1) are

c0 =

(
g√
N

)2

(1 + nph), µ0 = +iω0, nph =
1

eβω0 − 1
, (A8)
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c1 =

(
g√
N

)2

nph, µ1 = −iω0. (A9)

For later use, we introduce the index m defined by µm = µ∗
m. In other words, 0 = 1 and vice versa. The hyperoperators

entering Eqs. (A4)–(A6) are defined by their action on an arbitrary operator O which is as follows:

V C O = V O, (A10a)
CV O = OV, (A10b)

V × O = V O −OV, (A10c)

V ◦ O = V O +OV. (A10d)

The operators Vq in the real-time and imaginary-time interaction picture are defined as

V (I)
q (t) = eiHetVqe

−iHet, V q(τ) = eHeτVqe
−Heτ . (A11)

The time-ordering sign T in Eq. (A3) orders the hyperoperators so that one first applies imaginary time-dependent
hyperoperators that are mutually antichronologically ordered (descending imaginary-time instants) and subsequently
applies real time-dependent hyperoperators that are mutually chronologically ordered (ascending real-time instants).
The so-called electronic partition sum entering Eq. (A3) is defined as

Ze =
Z

Zph
= Tre

{
T e−Φ2(β)e−βHe

}
, (A12)

where Zph = Trphe
−βHph is the free-phonon partition sum.

Concerning single-particle quantities, it is convenient to redefine them as follows

G>(k, t) = G>(k, t)e−iµFt

= −i
Tr0e{eiHt|vac〉〈k|e−iHt|k〉〈vac|e−βH}

Zph

= −i
Trph

{
eiHpht

〈
k
∣∣e−iHt

∣∣ k
〉
e−βHph

}

Zph

= −ie−iεkt
〈
k
∣∣∣T e−ϕ1(t)

1e

∣∣∣ k
〉
,

(A13)

G<(k, t) =
G<(k, t)e−iµFt

〈Ne〉K

= i
Tr1e{|k〉〈vac|eiHt|vac〉〈k|e−iHte−βH}

Z

= i
Trph

{
eiHpht

〈
k
∣∣e−iHte−βH

∣∣ k
〉}

Z

= ie−iεkt

〈
k

∣∣∣∣T e−[ϕ1(t)+ϕ2(β)+ϕ3(t,β)]
e−βHe

Ze

∣∣∣∣ k
〉
.

(A14)

The redefinition embodied in the first equalities of Eqs. (A13) and (A14) is fully compatible with the frequency shift
used to transform Eqs. (18) and (19) into Eqs. (20) and (21), respectively. It also introduces a different normalization
for G<, −i

∑
k G

<(k, t = 0) = 1, which explicitly shows we consider a single electron, while the current–current
correlation function in the bubble approximation is expressed as [cf. Eq. (17)]

Cbbl
jj (t) = −

∑

k

j2kG
>(k, t)G<(k, t)∗. (A15)

In Ref. 56, we derived that the influence phases for single-particle quantities read as

ϕ1(t) =
∑

qm

∫ t

0

ds2

∫ s2

0

ds1V
(I)
q (s2)

C

× e−µm(s2−s1)cmV
(I)
−q (s1)

C ,

(A16)
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ϕ2(β) = Φ2(β), (A17)

ϕ3(t, β) =− i
∑

qm

∫ t

0

ds

∫ β

0

dτ V (I)
q (s)C

× e−µmseiµm(β−τ)cm
CV −q(τ).

(A18)

As the first illustration of the utility of these formally exact results, we prove the equality Cjj(t = 0) = Cbbl
jj (t = 0).

Because of Φ1(t = 0) = Φ3(t = 0, β) = 0, see Eqs. (A4) and (A6), Eqs. (A1) and (A3) imply that

Cjj(t = 0) =
∑

k

jk

〈
k

∣∣∣∣T e−Φ2(β)j
e−βHe

Ze

∣∣∣∣ k
〉

=
∑

k

jk

〈
k

∣∣∣∣jT e−Φ2(β)
e−βHe

Ze

∣∣∣∣ k
〉

=
∑

k

j2k

〈
k

∣∣∣∣T e−Φ2(β)
e−βHe

Ze

∣∣∣∣ k
〉
.

(A19)

Since the hyperoperators in Φ2(β) act on the operator je−βHe/Ze from the right-hand side, see Eq. (A5), the current
operator can be moved in front of T e−Φ2(β). Because of ϕ1(t = 0) = ϕ3(t = 0, β) = 0, see Eqs. (A16) and (A18),
Eqs. (A15), (A13), and (A14) imply that

Cbbl
jj (t = 0) =

∑

k

j2k

〈
k

∣∣∣∣T e−ϕ2(β)
e−βHe

Ze

∣∣∣∣ k
〉
. (A20)

The right-hand sides of Eqs. (A19) and (A20) are identical because of Eq. (A17).

Appendix B: Evaluation of Cjj(t) and Cbbl

jj (t) in the g → 0 limit

1. Equality of the lowest-order terms

Let us start from the lowest-order term in the bubble result [Eq. (A15)], which we derive by separately considering
G>(k, t) [Eq. (A13)] and G<(k, t) [Eq. (A14)] in the lowest-order approximation. Up to the second order in g, we
have

[G>(k, t)]2 = −ie−iεkt [1− 〈k|ϕ1(t)1e|k〉] , (B1)

[G<(k, t)]2 = ie−iεkt
e−βεk

Ze
[1− 〈k|ϕ1(t)1e|k〉−

〈k|ϕ2(β)1e|k〉 − 〈k|ϕ3(t, β)e
−β(He−εk)|k〉

]
,

(B2)

where we have used the relation

〈k|ϕ2(β)e
−β(He−εk)|k〉 = 〈k|ϕ2(β)1e|k〉 (B3)

and a similar relation for 〈k|ϕ1(t)e
−β(He−εk)|k〉. The time-ordering sign can be safely omitted because the hyper-

operators entering Eqs. (B1) and (B2) are already properly ordered. Therefore, up to the second order in g, the
current–current correlation function in the bubble approximation reads as

[Cbbl
jj (t)]2 =

∑

k

j2k
e−βεk

Ze
[1− 〈k|ϕ2(β)1e|k〉−

2Re 〈k|ϕ1(t)1e|k〉 − 〈k|ϕ3(t, β)e
−β(He−εk)|k〉∗

] (B4)

where we have observed that the matrix element 〈k|ϕ2(β)1e|k〉 is purely real.
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We proceed to find the expression for the full current–current correlation function [Eq. (A1)] up to the second order
in g. Because of Eqs. (A17) and (B3), together with [j,He] = 0, we can start from

[Cjj(t)]2 =
∑

k

j2k
e−βHe

Ze
[1− 〈k |ϕ2(β)1e| k〉−

〈
k
∣∣∣Φ1(t)j

−1
k je−β(He−εk)

∣∣∣ k
〉
−

〈
k
∣∣∣Φ3(t, β)j

−1
k je−β(He−εk)

∣∣∣ k
〉]

.

(B5)

In the following two paragraphs, we demonstrate that

∆1(k, t) =
〈
k
∣∣∣Φ1(t)j

−1
k je−β(He−εk)

∣∣∣ k
〉
− 2Re 〈k|ϕ1(t)1e|k〉 = 0 (B6)

and

∆3(k, t) =
〈
k
∣∣∣Φ3(t, β)j

−1
k je−β(He−εk)

∣∣∣ k
〉
− 〈k|ϕ3(t, β)e

−β(He−εk)|k〉∗ = 0. (B7)

Collectively, Eqs. (B4), (B5), (B6), and (B7) show that, in the lowest order in the electron–phonon coupling g, the
expressions for the full and bubble current–current correlation function coincide. Since these terms are the most
important ones in the limit g → 0, we can conclude that there are no vertex corrections in the limit of vanishing g.
We first prove that ∆1(k, t) = 0. We start from

〈
k
∣∣∣Φ1(t)j

−1
k je−β(He−εk)

∣∣∣ k
〉
=
∑

qm

∫ t

0

ds2

∫ s2

0

ds1 e
−µm(s2−s1)

[
cm〈k|V (I)

q (s2)V
(I)
−q (s1)|k〉+ cm〈k|V (I)

−q (s1)V
(I)
q (s2)|k〉−

cm

〈
k
∣∣∣V (I)

−q (s1)j
−1
k je−β(He−εk)V (I)

q (s2)
∣∣∣ k
〉
− cm

〈
k
∣∣∣V (I)

q (s2)j
−1
k je−β(He−εk)V

(I)
−q (s1)

∣∣∣ k
〉]

.

(B8)

Since V †
q = V−q [see Eq. (A7)], one observes that the first two summands within the square brackets in Eq. (B8) are

complex conjugates of one another, and the same applies to the last two summands. On the other hand,

〈k|ϕ1(t)1e|k〉 =
∑

qm

∫ t

0

ds2

∫ s2

0

ds1 cme−µm(s2−s1)〈k|V (I)
q (s2)V

(I)
−q (s1)|k〉, (B9)

so that the following equation holds

∆1(k, t) =
〈
k
∣∣∣Φ1(t)j

−1
k je−β(He−εk)

∣∣∣ k
〉
− 2Re 〈k|ϕ1(t)1e|k〉 =

− 2Re
∑

qm

∫ t

0

ds2

∫ s2

0

ds1 cme−µm(s2−s1)
〈
k
∣∣∣V (I)

q (s2)j
−1
k je−β(He−εk)V

(I)
−q (s1)

∣∣∣ k
〉
.

(B10)

An explicit calculation of the matrix element in Eq. (B10) gives

∆1(k, t) = −2Re
∑

qm

∫ t

0

ds2

∫ s2

0

ds1 cmei(εk−εk−q+iµm)(s2−s1)
jk−q

jk
e−β(εk−q−εk). (B11)

The following sum over q should be performed (with q′ = k − q)

∑

q

jk−qe
−(β+it)εk−q =

∑

q′

jq′e
−(β+it)εq′ . (B12)

The second sum in Eq. (B12) is equal to zero because j−q = −jq, while ε−q = εq. This proves Eq. (B6).
Let us now prove that ∆3(k, t) = 0. We start from

〈
k
∣∣∣Φ3(t, β)j

−1
k je−β(He−εk)

∣∣∣ k
〉
=i
∑

qm

∫ t

0

ds

∫ β

0

dτ cme−µmseiµm(β−τ)×
[
〈k|V −q(τ)V

(I)
q (s)|k〉 −

〈
k
∣∣∣V (I)

q (s)j−1
k je−β(He−εk)V −q(τ)

∣∣∣ k
〉]

.

(B13)
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On the other hand, using Eq. (A18), we find that

〈k|ϕ3(t, β)e
−β(He−εk)|k〉∗ = i

∑

qm

∫ t

0

ds

∫ β

0

dτ cme−µmse−iµm(β−τ)
〈
k
∣∣∣V q(−τ)e−β(He−εk)V

(I)
−q (s)

∣∣∣ k
〉

= i
∑

qm

∫ t

0

ds

∫ β

0

dτ cme−µmse−iµm(β−τ)
〈
k
∣∣∣V −q(β − τ)V (I)

q (s)
∣∣∣ k
〉

= i
∑

qm

∫ t

0

ds

∫ β

0

dτ cme−µmse−iµmτ
〈
k
∣∣∣V −q(τ)V

(I)
q (s)

∣∣∣ k
〉

= i
∑

qm

∫ t

0

ds

∫ β

0

dτ cme−µmseiµm(β−τ)
〈
k
∣∣∣V −q(τ)V

(I)
q (s)

∣∣∣ k
〉

(B14)

Writing the first equality in Eq. (B14), we used µ∗
m = µm, as well as V −q(τ) = V q(−τ). In going from the first

to the second equality in Eq. (B14), we performed the dummy-index change q → −q,m → m, and observed that
V −q(−τ)e−βHe = e−βHeV −q(β − τ). The third equality is obtained from the second by the integral variable change

β − τ → τ . The last equality in Eq. (B14) follows from the identity cme−iµmτ = cmeiµm(β−τ), which can be checked
by direct inspection. Equations (B13) and (B14) imply that

∆3(k, t) =
〈
k
∣∣∣Φ3(t, β)j

−1
k je−β(He−εk)

∣∣∣ k
〉
− 〈k|ϕ3(t, β)e

−β(He−εk)|k〉∗

= −i
∑

qm

∫ t

0

ds

∫ β

0

dτ cme−µmseiµm(β−τ)
〈
k
∣∣∣V (I)

q (s)j−1
k je−β(He−εk)V −q(τ)

∣∣∣ k
〉
.

(B15)

An explicit calculation of the matrix element in Eq. (B15) leads to

∆3(k, t) = −i
∑

qm

∫ t

0

ds

∫ β

0

dτ cmei(εk−εk−q+iµm)seiµmβe(εk−q−εk−iµm)τ jk−q

jk
e−β(εk−q−εk). (B16)

The same reasoning as in Eq. (B12) proves that ∆3(k, t) = 0.

2. Second-order cumulant expansion

Still, Eqs. (B4) or (B5) do not suffice to obtain an expression for Cjj(t) in the weak-coupling limit. To that end, the
perturbation series for Cjj(t) in powers of g has to be (at least partially) resummed. We [17] and other groups [37]
have recently promoted the second-order cumulant expansion as a computationally viable and accurate approach to
resum the perturbation series for time-dependent quantities in the limit g → 0. The second-order cumulant expansion
starts from Eq. (B4) and produces the following expression for Cjj(t):

Cjj(t) = Cbbl
jj (t) ≈

∑

k

j2k
e−βεk

Ze
e−〈k|ϕ2(β)1e|k〉×

e−2Re 〈k|ϕ1(t)1e|k〉−〈k|ϕ3(t,β)e
−β(He−εk)|k〉∗ .

(B17)

Up to now, we have not discussed the electronic partition sum Ze, which has its own perturbation expansion in g
that up to the second order reads as

Ze =
∑

k

e−βεk [1− 〈k|ϕ2(β)1e|k〉] . (B18)

Performing the second-order cumulant resummation in Eq. (B18), we obtain the following expression for Ze:

Ze =
∑

k

e−βεke−〈k|ϕ2(β)1e|k〉. (B19)

We note that Eq. (B17) suggests that the unnormalized equilibrium occupation of state |k〉 is proportional to
e−βεke−〈k|ϕ2(β)1e|k〉, so that Ze given in Eq. (B19) ensures the correct normalization of equilibrium occupations.
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We finally list the explicit expressions for the matrix elements needed to evaluate Eqs. (B17) and (B19):

〈k|ϕ1(t)1e|k〉 =
g2

N

∑

q

[
(1 + nph)

−ei∆ε−(k,q)t + i∆ε−(k, q)t+ 1

∆ε−(k, q)2
+ nph

−ei∆ε+(k,q)t + i∆ε+(k, q)t+ 1

∆ε+(k, q)2

]
, (B20)

〈k |ϕ2(β)1e| k〉 =
g2

N

∑

q

[
(1 + nph)

−eβ∆ε−(k,q) + β∆ε−(k, q) + 1

∆ε−(k, q)2
+ nph

−eβ∆ε+(k,q) + β∆ε+(k, q) + 1

∆ε+(k, q)2

]
, (B21)

〈k|ϕ3(t, β)e
−β(He−εk)|k〉 = g2

N

∑

q

e−βεk−q

e−βεk

{
nph

[ei∆ε−(k,q)t − 1][e−β∆ε−(k,q) − 1]

∆ε−(k, q)2
+

(1 + nph)
[ei∆ε+(k,q)t − 1][e−β∆ε+(k,q) − 1]

∆ε+(k, q)2

}
,

(B22)

where

∆ε±(k, q) = εk − εk−q ± ω0. (B23)

Appendix C: Evaluation of Cjj(t) and Cbbl
jj (t) in the t0 → 0 limit

Here, we rewrite the Holstein Hamiltonian in the site representation and partition it into the zeroth-order term and
the perturbation term as appropriate in the limit t0 → 0:

H = H0 +H1, (C1)

where (p enumerates lattice sites)

H0 = ω0

∑

p

b†pbp + g
∑

p

c†pcp
(
bp + b†p

)
, (C2)

while

H1 = −t0
∑

p

∑

γ=±1

c†p+γcp. (C3)

We perform a unitary transformation of the Hamiltonian

H̃ = eSHe−S (C4)

with

S = − g

ω0

∑

p

c†pcp
(
bp − b†p

)
. (C5)

The action of the unitary transformation on the electron operators is

eScpe
−S = cpXp, (C6)

with

Xp = exp

[
g

ω0

(
bp − b†p

)]
, (C7)

while its action on phonon operators is

eSbpe
−S = bp −

g

ω0
c†pcp. (C8)
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Limiting the discussion on the Hilbert space of states that contain one electron, the transformed Hamiltonian takes

the form H̃ = H̃0 + H̃1, with

H̃0 = − g2

ω0
+ ω0

∑

p

b†pbp, (C9)

H̃1 = −t0
∑

pγ

Xp+γ,pc
†
p+γcp. (C10)

We introduced the notation

Xp+γ,p = X†
p+γXp = exp

[
g

ω0

(
bp − b†p − bp+γ + b†p+γ

)]
. (C11)

The transformed current operator reads as

j̃ = eSje−S = −it0
∑

pγ

γc†p+γcpXp+γ,p. (C12)

We denote by z the (real or imaginary) time (where z = t for real time and z = −iτ for imaginary time). We make
use of the identity

〈j(z)j(0)〉K = 〈j̃(z)j̃(0)〉K̃ (C13)

and we use Eq. (C12) to obtain

Cjj(z) = − 1

〈Ne〉K̃
t20

∑

ps
γ,δ=±1

γδ
〈
c†p(z)cp+γ(z)Xp,p+γ(z)c

†
s(0)cs+δ(0)Xs,s+δ(0)

〉
K̃
. (C14)

All the averages and time evolutions in Eq. (C14) should be in principle taken with respect to the operator K̃. We
are, however, interested in the limit of small t0, and we would like to obtain the first nonzero term with respect to t0.
We note that the factor in front of the sum gives us the ∼ t20 term. The expansion of the time evolution operator for
real z (the situation is similar in other cases) is of the form

e−iK̃z = e−iK̃0zT exp

[
−i

∫ z

0

ds eiK̃0sH̃1e
−iK̃0s

]
= e−iK̃0z [1 +O(t0)] , (C15)

that is, its first nonzero term is of order ∼ 1 and the remaining terms are of order ∼ t0 and smaller. The same is the

case for e−βK̃ operator. Therefore, to obtain the first nonzero term in Eq. (C14) it is sufficient to take the terms of

order ∼ 1 in the expansion of all operators e±iK̃z and e−βK̃ . This is equivalent to replacing the K̃ operator with the

K̃0 operator. All the averages in Eq. (C14) can then be obtained by applying the Wick’s theorem. We thus obtain
〈
c†p(z)cp+γ(z)Xp,p+γ(z)c

†
s(0)cs+δ(0)Xs,s+δ(0)

〉
K̃

≈
〈
c†p(z)cp+γ(z)Xp,p+γ(z)c

†
s(0)cs+δ(0)Xs,s+δ(0)

〉
K̃0

=
〈
c†p(z)cp+γ(z)c

†
s(0)cs+δ(0)

〉
K̃0

〈Xp,p+γ(z)Xs,s+δ(0)〉K̃0
.

(C16)

By applying the Wick’s theorem to the term with electronic operators we obtain
〈
c†p(z)cp+γ(z)c

†
s(0)cs+δ(0)

〉
K̃0

=
〈
c†p(z)cs+δ(0)

〉
K̃0

〈
cp+γ(z)c

†
s(0)

〉
K̃0

+
〈
c†p(z)cp+γ(z)

〉
K̃0

〈
c†s(0)cs+δ(0)

〉
K̃0

≈ δp,s+δδs,p+γ

〈
c†p(z)cp(0)

〉
K̃0

〈
cp+γ(z)c

†
p+γ(0)

〉

K̃0

.

(C17)

The first term on the right hand side of the first equality is proportional to the number of carriers, while the second
term is proportional to the square of the number of carriers. Hence, in the limit of small carrier concentration it is
the first term that dominates. Eventually,

Cjj(z) =
1

〈Ne〉K̃0

t20
∑

pγ

〈
c†p(z)cp(0)

〉
K̃0

〈
cp+γ(z)c

†
p+γ(0)

〉

K̃0

〈Xp,p+γ(z)Xp+γ,p(0)〉K̃0
. (C18)
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We now show that the result of Eq. (C18) is recovered in the bubble approximation in which, upon neglecting the
term proportional to the square of carrier density, one obtains

Cbbl
jj (z) = − 1

〈Ne〉K̃
t20

∑

ps
γ,δ=±1

γδ
〈
c†p(z)cs+δ(0)

〉
K

〈
cp+γ(z)c

†
s(0)

〉
K

= − 1

〈Ne〉K̃
t20

∑

ps
γ,δ=±1

γδ
〈
c†p(z)cs+δ(0)X

†
p(z)Xs+δ(0)

〉
K̃

〈
cp+γ(z)c

†
s(0)Xp+γ(z)X

†
s (0)

〉
K̃
.

(C19)

Following the same reasoning as above, the leading term in the expansion of Cbbl
jj (z) in powers of t0 → 0 is obtained by

replacing all averages and time evolutions with respect to K̃ with those with respect to K̃0. Similarly as in Eq. (C17),
we obtain

Cbbl
jj (z) =

1

〈Ne〉K̃0

t20
∑

pγ

〈
c†p(z)cp(0)

〉
K̃0

〈
cp+γ(z)c

†
p+γ(0)

〉

K̃0

〈
X†

p(z)Xp(0)
〉
K̃0

〈
Xp+γ(z)X

†
p+γ(0)

〉

K̃0

. (C20)

We finally note that

〈Xp,p+γ(z)Xp+γ,p(0)〉K̃0
=
〈
X†

p(z)Xp+γ(z)X
†
p+γ(0)Xp(0)

〉

K̃0

=
〈
X†

p(z)Xp(0)
〉
K̃0

〈
Xp+γ(z)X

†
p+γ(0)

〉

K̃0

,
(C21)

where the first equality stems from Eq. (C11), while the second equality follows from the fact that phonon operators
acting on different sites p and p+γ commute. From Eqs. (C18), (C20), and (C21), we conclude that Cjj(z) = Cbbl

jj (z)
as t0 → 0.
In the remainder of this Appendix, we provide explicit expression for Cbbl

jj (z) to show that the corresponding DC
mobility is finite. The phonon term from Eq. (C21) is given as

〈Xp,p+γ(z)Xp+γ,p(0)〉K̃0
= exp

{
−2

g2

ω2
0

[
2nph + 1− (nph + 1)e−iω0z − nphe

iω0z
]}

. (C22)

In the limit of low carrier density, the electronic term from Eq. (C20) reads as

〈
c†p(z)cp(0)

〉
K̃0

〈
cp+γ(z)c

†
p+γ(0)

〉

K̃0

= nF. (C23)

where nF is the occupation of single-particle electronic state given by the Fermi–Dirac function. It follows from
Eqs. (C20), (C22) and (C23) that Cbbl

jj (z) does not decay to zero as real time goes to infinity. Hence, one would

obtain infinite dc mobility by integrating Cbbl
jj (z). To circumvent this issue, we make again use of the fact that the

leading term in the limit of small t0 is approximately the same when all averages and time evolutions are taken either

with respect to K̃0 or K̃. Therefore, we now make use of
〈
c†p(z)cp(0)

〉
K̃0

≈
〈
c†p(z)cp(0)

〉
K̃
,
〈
cp(z)c

†
p(0)

〉
K̃0

≈
〈
cp(z)c

†
p(0)

〉
K̃
. (C24)

To evaluate the terms
〈
c†p(z)cp(0)

〉
K̃

and
〈
cp(z)c

†
p(0)

〉
K̃

for the Hamiltonian given by Eqs. (C9) and (C10) (where the

irrelevant shift −g2/ω0 in H̃0 is neglected), we make use of the Matsubara Green’s function formalism to evaluate the

self-energy stemming from the perturbation H̃1 to the Hamiltonian H̃0. The overall approach is very similar to that
developed in Ref. 33, see in particular its Appendix B. To first order in interaction we obtain the self-energy

Σ
(1)
p±1,p(ω) = −t0e

− g2

ω2
0
(2nph+1)

, (C25)

which in the momentum representation reads

Σ
(1)
k (ω) = −2teff cos(k) (C26)

with

teff = t0e
− g2

ω2
0
(2nph+1)

. (C27)
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It can be seen from Eq. (C26) that first order self-energy describes the formation of bands due to renormalized
electronic coupling teff . This term, however, does not have an imaginary part and therefore it does not lead to energy
level broadening. Hence it is not expected that it will provide energy dissipation of electronic system, which is a
requirement for finite dc mobility to occur. For this reason, we proceed to evaluate the self-energy term arising from
second order terms in interaction. We obtain that the dominant second order term is the local term

Σ(2)(ω) = 2t20
i

2π

∫ +∞

−∞

dω1X
>(ω1)G

R(ω − ω1), (C28)

where GR is the retarded Green’s function, and X>(ω) =
∫
dt eiωtX>(t) with

X>(t) = −i exp

{
−2

g2

ω2
0

[
2nph + 1− (nph + 1)e−iω0t − nphe

iω0t
]}

. (C29)

We can further transform Eq. (C28) into the form (we now omit superscripts R, 2 for brevity)

Σ(ω) = 2t20
i

2π

∫ +∞

−∞

dω1X
>(ω1)G(ω − ω1) (C30)

that is amenable to the self-consistent treatment in conjunction with the Dyson equation

[ω − Σ(ω)]G(ω) = 1. (C31)

Making use of the identities

ea cos θ =
+∞∑

l=−∞

Il(a)e
ilθ (C32)

where Il is the modified Bessel function of the first kind of order l and

(nph + 1)e−iω0t + nphe
iω0t = 2

√
nph(nph + 1) cos

[
ω0

(
t+ i

β

2

)]
, (C33)

we recast Eq. (C30) as

Σ(ω) =

+∞∑

l=−∞

clG(ω + lω0), (C34)

with cl given by

cl = 2t20e
−2 g2

ω2
0

(2nph+1)
e−l

βω0
2 Il

[
4
g2

ω2
0

√
nph(nph + 1)

]
. (C35)

Equations (C31) and (C34) can be solved using a self-consistent procedure. Alternatively, these equations can be
solved analytically by introducing an additional approximation that the dominant term in the sum in Eq. (C34) is the
l = 0 term. This is a reasonable assumption as one might expect that both G(ω) and Σ(ω) should have maximal values
in the region around ω = 0. This assumption can always be checked by comparing the result with the self-consistent
solution of Eqs. (C31) and (C34). Under this assumption, Eqs. (C31) and (C34) reduce to a single quadratic equation
for G(ω) and we obtain the corresponding spectral function as

A(ω) = − 1

π
ImG(ω) =

√
4c0 − ω2

2πc0
θ(4c0 − ω2). (C36)

From the relation between the spectral function and the correlation functions of creation and annihilation operators,
we obtain

1

〈Ne〉K̃
〈
c†p(z)cp(0)

〉
K̃

〈
cp+γ(z)c

†
p+γ(0)

〉

K̃
=

∫
dω e−β(ω−iz)A(ω)∫
dω e−βωA(ω)

∫
dω e−iωzA(ω). (C37)
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The integrals in previous equation are all of the form

f(z) =
2

πa2

∫ a

−a

dω e−zω
√
a2 − ω2 = − 2

az
I1(−az), (C38)

with a = 2
√
c0. The integral is solved by introducing the substitution ω = a cos t, by making use of

In(u) = 1
π

∫ π

0
dθ eu cos θ cos(nθ), and by using the identity Iν(z) − Iν+2(z) = 2 ν+1

z Iν+1(z). Combining
Eqs. (C18), (C24), (C22), (C36), and (C37), we finally obtain the expression given in Eq. (25), where Jn denotes the
Bessel function of the first kind of order n.
It is worth investigating the asymptotic behavior of the prefactor in front of the exponential term in Eq. (25) when

real time t tends to infinity z = t → +∞. The time dependence of this prefactor is determined by the term

g(t) =
I1[−2(β − it)

√
c0]J1(2t

√
c0)

t(β − it)
. (C39)

As t → +∞, making use of J1(x) = −iI1(−ix), we have

g(t) ∼ J1(−2t
√
c0)J1(2t

√
c0)

t2
. (C40)

Asymptotic behavior of the Bessel function when x → +∞ is

J1(x) ∼
√

2

πx
cos

(
x− 3π

4

)
. (C41)

Consequently, g(t) ∼ t−3 as t → +∞. This is sufficiently fast convergence to make the time integral of the Cjj(t)
finite, which then leads to finite dc mobility.

Appendix D: Evaluation of Cjj(t) and Cbbl

jj (t) in the β → 0 limit

To prove that there are no vertex corrections in the infinite-temperature limit, it is instrumental to first analyze in
more detail the single-site limit of the Holstein Hamiltonian in which phonons can be treated as classical harmonic
oscillators. The appropriate Hamiltonian reads as (the oscillator mass is set to unity)

h =
p2

2
+

ω2
0

2
x2

︸ ︷︷ ︸
hph(x,p)

+Cxc†c, (D1)

where x and p are respectively the classical coordinate and momentum of the oscillator, while C = g
√
2ω0. The

greater Green’s function can be expressed as [see also Eq. (A13)]

G>(t) = −ieiµFt

∫
dx dp e−βhph(x,p)e−iCxt

∫
dx dp e−βhph(x,p)

= −ieiµFt

∫
dx e−β

ω2
0x2

2 −iCxt

∫
dx e−β

ω2
0x2

2

= −ieiµFte−
σ2t2

2 . (D2)

In the same vein, the lesser Green’s function can be expressed as [see also Eq. (A14)]

G<(t) = ieiµFteβµF

∫
dx dp e−βhphe−βCxe−iCxt

∫
dx dp e−βhph

= ieiµFteβµF

∫
dx e−β

ω2
0x2

2 e−βCxe−iCxt

∫
dx e−β

ω2
0x2

2

= ieiµFteβµFe
σ2

2 (β+it)2 . (D3)

The electron number is

〈c†c〉K = eβµFe
σ2β2

2 . (D4)

Let us now consider an N -site chain and start from Eq. (17) determining Cbbl
jj (t). Because of the locality of single-

particle correlation functions at high temperatures, we can replace G>(k, t) and G<(k, t) by the single-site expressions
derived in Eqs. (D2) and (D3), respectively. The remaining sum in the numerator of Eq. (17) is readily evaluated
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using Eq. (6),
∑

k j
2
k = 2t20N . The total electron number 〈Ne〉K is N times the electron number per site, which is

derived in Eq. (D4). Collecting all pieces together, we obtain the result embodied in Eq. (26).
We continue by applying the same approximations to Eq. (10) defining Cjj(t). Because of the assumed locality and

classicality of phonons, we can approximate the Hamiltonian [Eq. (1)] as

H ≈
∑

r

(
p2r
2

+
ω2
0

2
x2
r

)

︸ ︷︷ ︸
Hph(x,p)

+C
∑

r

xrc
†
rcr, (D5)

where x and p respectively denote (classical) coordinates and momenta of oscillators. Since the traces in Eq. (10) are
to be evaluated over the single-electron subspace, we can replace c†rcr → |r〉〈r|, so that

e−αH ≈ e−αHph(x,p)
∑

r

e−αCxr |r〉〈r|. (D6)

Inserting Eq. (D6) (with α = β,±it) into Eq. (10), one obtains

Cjj(t) =

∫
dx dp e−βHph(x,p)

∑
r1r

|〈r1|j|r〉|2 e−itCxr1 e−(β−it)Cxr

∫
dx dp

∑
r e

−βHph(x,p)e−βCxr
. (D7)

Because of the current operator in the real-space representation is j = −it0
∑

rγ |r+ γ〉〈r|, we have r1 = r+ γ, where

γ = ±1, and Eq. (D7) is recast as

Cjj(t) =

t20
∑

r

∑
γ=±1

[∫
dxr e

−β
ω2
0x2

r
2 e−(β−it)Cxr

] [∫
dxr+γ e−β

ω2
0x2

r+γ
2 e−itCxr+γ

]∏
s/∈{r,r+γ}

∫
dxs e

−β
ω2
0x2

s
2

∑
r

[∫
dxr e−β

ω2
0x2

r
2 e−βCxr

]∏
s6=r

∫
dxs e−β

ω2
0x2

s
2

. (D8)

The integrals in the numerator have been evaluated in the single-site limit, see Eqs. (D2) and (D3). Upon inserting
the corresponding results in Eq. (D8), and performing the remaining sums (which produce the factor of 2N in the
numerator and N in the denominator), one immediately obtains Eq. (26).
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D. Tanasković, Cumulant expansion in the Hol-
stein model: Spectral functions and mobility,
Phys. Rev. B 107, 125165 (2023).

[18] H. Bruus and K. Flensberg, Many-Body Quantum Theory

in Condensed Matter Physics: An Introduction (Oxford
University Press, 2004).

[19] J. Rammer, Quantum Transport Theory (Perseus Books,
1998).

[20] L. P. Gor’kov, A. I. Larkin, and D. E. Khmel’nitskii, Par-
ticle conductivity in a two-dimensional random potential,
JETP Lett. 30, 228 (1979).

[21] K. Baumann and J. Ranninger, Quantum theory of trans-
port coefficients. i, Ann. Phys. 20, 157 (1962).

[22] T. Holstein, Theory of transport phenomena in an
electron-phonon gas, Ann. Phys. 29, 410 (1964).

[23] G. Eliashberg, Transport equation for a degenerate sys-
tem of Fermi particles, Sov. Phys. JETP 14, 886 (1962).

[24] D. C. Langreth and L. P. Kadanoff, Pertur-
bation theoretic calculation of polaron mobility,
Phys. Rev. 133, A1070 (1964).

[25] G. D. Mahan, Mobility of polarons,
Phys. Rev. 142, 366 (1966).

[26] Y.-C. Cheng and R. J. Silbey, A unified the-
ory for charge-carrier transport in organic crystals,
J. Chem. Phys. 128, 114713 (2008).

[27] F. Ortmann, F. Bechstedt, and K. Hannewald, Theory of
charge transport in organic crystals: Beyond Holstein’s
small-polaron model, Phys. Rev. B 79, 235206 (2009).

[28] O. S. Barǐsić, Calculation of excited polaron states in the
Holstein model, Phys. Rev. B 69, 064302 (2004).

[29] G. L. Goodvin, A. S. Mishchenko, and M. Berciu,
Optical conductivity of the Holstein polaron,
Phys. Rev. Lett. 107, 076403 (2011).
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D. Tanasković, Spectral functions of the Hol-
stein polaron: Exact and approximate solutions,
Phys. Rev. Lett. 129, 096401 (2022).

[40] G. De Filippis, V. Cataudella, A. S. Mishchenko,
N. Nagaosa, A. Fierro, and A. de Candia, Crossover
from super- to subdiffusive motion and mem-
ory effects in crystalline organic semiconductors,
Phys. Rev. Lett. 114, 086601 (2015).

[41] A. S. Mishchenko, N. Nagaosa, G. De Filippis, A. de Can-
dia, and V. Cataudella, Mobility of Holstein po-
laron at finite temperature: An unbiased approach,
Phys. Rev. Lett. 114, 146401 (2015).

[42] A. S. Mishchenko, L. Pollet, N. V. Prokof’ev,
A. Kumar, D. L. Maslov, and N. Nagaosa, Po-
laron mobility in the “beyond quasiparticles” regime,
Phys. Rev. Lett. 123, 076601 (2019).

[43] Y.-C. Wang and Y. Zhao, Diagrammatic quan-
tum Monte Carlo toward the calculation of trans-
port properties in disordered semiconductors,
J. Chem. Phys. 156, 204116 (2022).

[44] G. Baym and N. D. Mermin, Determina-
tion of Thermodynamic Green’s Functions,
J. Math. Phys. 2, 232 (2004).

[45] H. J. Vidberg and J. W. Serene, Solving the Eliash-
berg equations by means of n-point Padé approximants,
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Vertex corrections to conductivity in the Holstein model:

A numerical–analytical study

Veljko Janković,∗ Petar Mitrić,† Darko Tanasković,‡ and Nenad Vukmirović§

Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

SI. HEOM

For the sake of completeness, here, we present the equations that we solve to obtain numerically exact and bubble-
approximation results for the current–current correlation function and the dynamical-mobility profile.

A. Dynamical equations of the HEOM for Cjj(t)

As we have discussed in Ref. 1, the totally symmetric (q = 0) phonon mode does not affect the dynamics of
Cjj = Tre{jι(t)}, which follows from the evolution of the purely electronic operator

ι(t) = Z−1Trph{e−iHtje−βHeiHt} (S1)

The operator ι(t) is at the root of the hierarchy of dynamical equations, whose higher-order members ι
(n)
n (t) describe

the dynamics of n−phonon assisted processes determined by the vector n = {nqm|q 6= 0;m = 0, 1} of non-negative

integers nqm that obey
∑′

qm
nqm = n. The total momentum exchanged between the electron and phonons in the

phonon-assisted process described by n is kn =
∑′

qm
qnqm. In the following, primed sums over q exclude the q = 0

term. By virtue of the translational symmetry, the only non-zero matrix elements of ι
(n)
n (t) are 〈k|ι(n)n (t)|k+ kn〉, and

their time evolution is governed by

∂t〈k|ι(n)n (t)|k + kn〉 =
− i(εk − εk+kn

+ µn)〈k|ι(n)n (t)|k + kn〉

+ i
∑′

qm

√
(1 + nqm)cm 〈k − q|ι(n+1)

n
+
qm

(t)|k + kn〉

− i
∑′

qm

√
(1 + nqm)cm 〈k|ι(n+1)

n
+
qm

(t)|k + kn + q〉

+ i
∑′

qm

√
nqmcm 〈k + q|ι(n−1)

n
−
qm

(t)|k + kn〉

− i
∑′

qm

√
nqm

cm√
cm

〈k|ι(n−1)

n
−
qm

(t)|k + kn − q〉

+
[
∂t〈k|ι(n)n (t)|k + kn〉

]

close
.

(S2)

In Eq. (S2), µn = ω0

∑′
q(nq0 − nq1). The operator ι

(n)
n (t) couples to analogous operators at depths n± 1, which are

characterized by vectors n
±
qm whose components are

[
n
±
qm

]
q′m′ = nq′m′ ± δq′qδm′m. The coefficients cm are defined

in Eqs. (A8) and (A9) of Appendix A. The last term on the right-hand side of Eq. (S2) represents the closing term,
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which renders the HEOM truncated at the maximum depth D numerically stable. In Ref. 1, we have checked that
the following closing term

[
∂t〈k|ι(n)n (t)|k + kn〉

]

close
=

− δn,D
1

2

(
τ−1
k + τ−1

k+kn

)
〈k|ι(n)n (t)|k + kn〉

(S3)

stabilizes the HEOM in Eq. (S2) without compromising final results for the dynamical-mobility profile. The closing
term comprises the rates at which the electron is scattered out of the free-electron state |k〉

τ−1
k = 2π

g2

N

∑′

q

[(1 + nph)δ(εk − εk−q − ω0)

+nphδ(εk − εk−q + ω0)] ,

(S4)

which can be computed analytically in the limit N → ∞.

B. Dynamical equations of the HEOM for G≷(k, t)

The dynamics of the current–current correlation function in the bubble approximation follows from the dynamics
of G>(k, t) and G<(k, t) as defined in Eqs. (A13) and (A14) of Appendix A. Both quantities can be computed by
solving the same set of dynamical equations that have been presented in Ref. 2 and read as

∂tG
(≷,n)
n (k − kn, t) =

− i(εk−kn
+ µn)G

(≷,n)
n (k − kn, t)

+ i
∑′

qm

√
1 + nqm

√
cm G

(≷,n+1)

n
+
qm

(k − kn − q, t)

+ i
∑′

qm

√
nqm

√
cm G

(≷,n−1)

n
−
qm

(k − kn + q, t)

+ [∂tG
(≷,n)
n (k − kn, t)]close.

(S5)

To ensure that G≷ decays to zero at sufficiently long times, we use the closing term [∂tG
(≷,n)
n (k − kn, t)]close. Its

form after truncation of Eq. (S5) at the maximum depth D can be derived along the lines presented in Ref. 1. The
final expression for the closing term is analogous to that presented in Eq. (S3) and reads as

[∂tG
(≷,n)
n (k − kn, t)]close =

− δn,D
1

2
τ−1
k−kn

G(≷,n)
n (k − kn, t) ,

(S6)

where τk is defined in Eq. (S4).
The propagation of Eq. (S5) is additionally stabilized by transferring to the rotating-wave frame and solving

equations for the envelope G̃
(≷,n)
n (t) defined as

G(≷,n)
n (k − kn, t) = exp [−i(εk−kn

+ µn)t]×
G̃(≷,n)

n (k − kn, t).
(S7)

We note that the HEOM in Eq. (S5) has a smaller number of equations than the HEOM we solved in Ref. 2. This
reduction in HEOM size is possible because the part of the dynamics governed by the zero-momentum phonon mode

can be solved analytically. Additionally, this implies G≷(k, t) 6= G
(≷,0)
0 (k, t), and we now establish the relationship

between the quantity of our interest G≷(k, t) and the quantity at the root of the hierarchy G
(≷,0)
0 (k, t). The q = 0

phonon mode couples to the unit operator in the subspace containing a single electron, i.e., Vq=0 = 11e, meaning
that the action of the corresponding q = 0 components of the influence phases ϕ1(t) and ϕ3(t, β) [see Eqs. (A16) and
(A18) of Appendix A] can be evaluated analytically. The analytical procedure is, up to prefactors N−1, identical to
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that presented in Sec. SII, and produces the following final results for G≷(k, t):

G>(k, t) = G̃
(>,0)
0 (k, t)e−iεkt

× exp

[
−
∑

m

cm
e−µmt + µmt− 1

µ2
m

]

= G̃
(>,0)
0 (k, t)e−iεkt exp

[
− g2

ω2
0N

(1 + 2nph)

]

× exp

[
g2

ω2
0N

(
(1 + nph)e

−iω0t + nphe
iω0t + iω0t

)]
,

(S8)

G<(k, t) = G̃
(<,0)
0 (k, t)e−iεkt

× exp

[
−
∑

m

cm
µ2
m

(
e−µmt + µmt− 1

)
]

× exp

[
∑

m

cm
µ2
m

(e−µmt − 1)(1 − eiβµm)

]

= G̃
(<,0)
0 (k, t)e−iεkt exp

[
− g2

ω2
0N

(1 + 2nph)

]

× exp

[
g2

ω2
0N

(
nphe

−iω0t + (1 + nph)e
iω0t + iω0t

)]
.

(S9)

C. Initial conditions

The initial condition under which the HEOM for G> [Eq. (S5)] is solved reads as [2]

G(>,n)
n (k − kn, 0) = −iδn,0. (S10)

The initial conditions under which the HEOM for ι(t) [Eq. (S2)] and G< [Eq. (S5)] is solved is determined by
the equilibrium state of the interacting electron–phonon system [1, 2]. In Ref. 2, we derived that the hierarchical
representation of this state is obtained by propagating the following imaginary-time HEOM:

∂τ 〈k|σ(n)
n (τ)|k + kn〉 =

− (εk + µn)〈k|σ(n)
n (τ)|k + kn〉

+
∑′

qm

√
(1 + nqm)cm〈k − q|σ(n+1)

n
+
qm

(τ)|k + kn〉

+
∑′

qm

√
nqmcm〈k + q|σ(n−1)

n
−
qm

(τ)|k + kn〉.

(S11)

Equations (S11) are propagated from τ = 0 to τ = β with the initial condition 〈k|σ(n)
n (τ)|k + kn〉 = δn,0, which is

representative of the electron–phonon system at infinite temperature. The initial condition for the propagation of
Eq. (S2) then reads as

〈k|ι(n)n (0)|k + kn〉 = Z−1
e ×

(−2J) sin(k)〈k|σ(n)
n (β)|k + kn〉,

(S12)

while the initial condition for the propagation of Eq. (S5) governing the dynamics of G< is

G(<,n)
n (k − kn, 0) = Z−1

e × i
〈
k
∣∣∣σ(n)

n (β)
∣∣∣ k + kn

〉
. (S13)

The so-called electronic partition sum Ze = Z/Zph entering Eqs. (S12) and (S13) reads as

Ze =
∑

p

〈p|σ(0)
0 (β)|p〉. (S14)
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D. Propagation algorithm

The HEOM embodied in Eq. (S2) is propagated using the scheme originally proposed in Ref. 3. We use the
fourth-order Wilkins–Dattani scheme with the time step ω0∆t = (1 − 2) × 10−2, depending on the values of model
parameters.

When the HEOM embodied in Eq. (S5) is recast as the HEOM for the envelope G̃≷ [Eq. (S7)], it becomes a system
of first-order linear differential equations with time-dependent coefficients. Because of its non-constant coefficients,
the resulting HEOM for the envelope is propagated using the fourth-order Runge–Kutta algorithm [4] with the time
step ω0∆t = (1− 2)× 10−2, depending on the values of model parameters.

SII. VANISHING VERTEX CORRECTIONS IN THE LIMIT t0 → 0: INSIGHTS FROM FORMALLY
EXACT EXPRESSIONS

Starting from the formally exact expressions of Appendix A, this section presents the proof of the equality Cjj(t) =
Cbbl

jj (t) in the limit t0 → 0.

As argued in the main text, the dominant term in the expansion of Cjj(t) and Cbbl
jj (t) in powers of small t0 is

proportional to t20. This term can be obtained from the formally exact expressions by replacing all operators e−αHe

by the unit operator 11e in the subspace containing a single electron. In particular, this means that all the real-
time/imaginary-time hyperoperators entering the expressions for influence phases become time-independent, which
makes the time-ordering sign ineffective and permits us to perform the real-time and/or imaginary-time integrals and
sums over q analytically.
Let us first consider how these simplifications are reflected in the influence phases ϕ1(t), ϕ2(β), and ϕ3(t, β) governing

the single-particle dynamics. The phase ϕ1(t) [Eq. (A16) of Appendix A] simplifies to

ϕ1(t) =

[
∑

q

V C
q V C

−q

][
∑

m

cm
µ2
m

(
e−µmt + µmt− 1

)
]
. (S15)

Because of VqV−q = 11e, we can replace sum over q by N , meaning that ϕ1(t) acts as a scalar that reads as

ϕ1(t) = − g2

ω2
0

×
[
(1 + nph)e

−iω0t + nphe
iω0t + iω0t− (1 + 2nph)

]
.

(S16)

In the same vein,

ϕ2(t) = β
g2

ω0
, (S17)

while

Ze = Ne−βg2/ω0 , (S18)

where the factor N comes from the trace of the unit matrix that replaces the operator e−βHe in Eq. (A12) of
Appendix A. We thus see that the action of ϕ2(β) is cancelled by the normalization Ze. The result for ϕ3(t, β) reads
as

ϕ3(t, β) =

[
∑

q

V C
q

CV−q

][
∑

m

cm
µ2
m

(e−µmt − 1)(eiβµm − 1)

]
. (S19)

Since ϕ3(t, β) acts on the unit operator in Eq. (A14) of Appendix A, it effectively acts as a scalar (Vq11eV−q =
VqV−q = 11e) whose value reads as

ϕ3(t, β) =
g2

ω2
0

(
e−iω0t − eiω0t

)
. (S20)

We finally obtain

Cbbl
jj (t) =

1

N

∑

k

j2k e−ϕ1(t)−ϕ1(t)
∗−ϕ3(t,β)

∗

. (S21)
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Since the terms in the exponent do not depend on k, one uses

N−1
∑

k

j2k = N−1Tr1e{j2} = 2t20 (S22)

to finally arrive at

Cbbl
jj (t) = 2t20 e

−ϕ1(t)−ϕ1(t)
∗−ϕ3(t,β)

∗

. (S23)

We now turn to Cjj(t), starting from

Φ1(t) =
g2

ω2
0

coth

(
βω0

2

)
[1− cos(ω0t)]

(
1

N

∑

q

V ×
q V ×

−q

)
+

g2

ω2
0

[sin(ω0t)− iω0t]

(
1

N

∑

q

V ×
q V ◦

−q

)
.

(S24)

The action of the hyperoperator 1
N

∑
q V

×
q V ×

−q on the current operator j reduces to

1

N

∑

q

V ×
q V ×

−qj = 2j (S25)

because of

1

N

∑

q

VqjV−q =
1

N

∑

qp

jp−q|p〉〈p| = 0, (S26)

which follows from N−1
∑

q e
iq = 0 (under PBCs). In other words, one can replace 1

N

∑
q V

×
q V ×

−q by 2 in Eq. (S24).

Along the same line, we conclude that 1
N

∑
q V

×
q V ◦

−q can be replaced by 0 in Eq. (S24). We can thus replace the

original Φ1(t) by the scalar that reads as

Φ1(t) =
g2

ω2
0

(2nph + 1)
[
2− eiω0t − e−iω0t

]
. (S27)

In a similar manner,

Φ3(t, β) = −2
g2

ω2
0

i sin(ω0t)

(
1

N

∑

q

V ×
q

CV−q

)
. (S28)

Using the same reasoning as above, we find that

1

N

∑

q

V ×
q

CV−qj = −j, (S29)

so that the influence phase Φ3(t, β) effectively acts as the following scalar:

Φ3(t, β) =
g2

ω2
0

(
eiω0t − e−iω0t

)
. (S30)

Collecting all pieces together, we remain with

Cjj(t) =
1

N
Tre{j2}e−Φ1(t)−Φ3(t,β). (S31)

The equality Cjj(t) = Cbbl
jj (t) then follows from Eqs. (S16), (S20), (S27), and (S30).
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SIII. SUMMARY OF THE PARAMETER REGIMES EXAMINED

(ω0/t0, λ)
Method

HEOM QMC
HEOM
bubble

QMC
bubble DMFT

(

1, 1

100

)

[1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
(

1, 1

8

)

[1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
(

1, 1

2

)

[0.4, 10] [0.2, 10] [0.4, 10] [0.2, 10] [0.2, 10]
(1, 1) [2, 10] [1, 10] [2, 10] [1, 10] [1, 10]
(1, 2) × [1, 10] × [1, 10] [1, 10]
(

1

3
, 1

100

)

[1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
(

1

3
, 1

8

)

[1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
(

1

3
, 1

2

)

[1, 10] [0.1, 10] [1, 10] [0.1, 10] [0.1, 10]
(

1

3
, 1
)

[1, 5] [1, 10] [1, 5] [1, 10] [1, 10]
(

1

3
, 2
)

× [1, 10] × [1, 10] [1, 10]
(

3, 1

8

)

[5, 10] [2, 10] [5, 10] [2, 10] [2, 10]
(

3, 1

2

)

[2, 10] [1, 10] [2, 10] [1, 10] [1, 10]
(3, 1) [2, 10] [1, 10] [2, 10] [1, 10] [1, 10]
(3, 2) × [1, 10] × [1, 10] [1, 10]

TABLE S1. Summary of parameter regimes [determined by pairs (ω0/t0, λ)] and numerical methods that are used to assess
the importance of vertex corrections. For each parameter regime and each method, we provide the minimum (Tmin/t0) and
maximum (Tmax/t0) temperature at which we performed computations. The choice of parameter values is largely dictated by
the feasibility of HEOM and HEOM bubble computations. We emphasize that the DMFT results for the dynamical mobility
are available for all values of ω0/t0, λ, and T , and the same applies to QMC and QMC bubble results for short-time dynamics
of Cjj . For λ = 2, HEOM and HEOM bubble computations could be performed only on short time scales [comparable to those
accessible by QMC (bubble), see also Sec. III.F of Ref. 1], which is indicated by ”×”.
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SIV. EXTENSIVE COMPARISONS OF HEOM AND DMFT RESULTS

A. Intermediate-frequency phonons (ω0/t0 = 1)
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FIG. S1. Comparison of HEOM (solid lines) and DMFT (dashed lines) results for (a)–(d) the dynamical-mobility profile,
(e)–(h) the real part of the current–current correlation function Cjj(t), and (i)–(l) the diffusion constant D(t). In all panels,
t0 = ω0 = 1. The strength of the electron–phonon interaction is determined by the cited values of λ, while the temperatures
are T = 1, 2, 5, and 10. The insets in panels (a)–(d) zoom in the dynamical-mobility profiles for the highest temperatures
considered (T = 5 and 10).
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B. Slow phonons (ω0/t0 = 1/3)
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FIG. S2. Comparison of HEOM (solid lines) and DMFT (dashed lines) results for (a)–(d) the dynamical-mobility profile,
(e)–(h) the real part of the current–current correlation function Cjj(t), and (i)–(l) the diffusion constant D(t). In all panels,
t0 = 1, ω0 = 1/3. The strength of the electron–phonon interaction is determined by the cited values of λ, while the temperatures
are T = 1, 2, 5, and 10. The insets in panels (a)–(d) zoom in the dynamical-mobility profiles for the highest temperatures
considered (T = 5 and 10).
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C. Fast phonons (ω0/t0 = 3)
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FIG. S3. Comparison of HEOM (solid lines) and DMFT (dashed lines) results for (a) and (b) the dynamical-mobility profile,
(c) and (d) the real part of the current–current correlation function Cjj(t), and (e) and (f) the diffusion constant D(t). In
all panels, t0 = 1, ω0 = 3. The strength of the electron–phonon interaction is determined by the cited values of λ, while the
temperatures are T = 2, 5, and 10. The inset in panel (a) zooms in the dynamical-mobility profile for the highest temperatures
considered (T = 5 and 10).
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SV. REAL-TIME QMC IN THE LIMIT ω0 → 0

Phonon momentum can be neglected in the adiabatic limit. For this reason QMC methodology becomes much
simpler in this case and can be efficiently performed to obtain the relevant quantities in real time. In this section, we
first derive the relevant equations and then present selected results for Cjj(t) and D(t) in the adiabatic limit.
The Holstein Hamiltonian in this limit takes the form

H =
∑

ij

hij({q})c†icj +
∑

i

1

2
mω2

0q
2
i , (S32)

where

hij({q}) = −t0(δi,j+1 + δi,j−1) + g
√
2mω0qiδij . (S33)

The operator ci is the electron annihilation operator at site i, qi is the coordinate of the phonon at site i, m is the
oscillator mass, the symbol {q} denotes all phonon coordinates, while phonon momenta pi and the corresponding

kinetic energy
p2
i

2m were neglected. With the substitution of variables xi = qiω0
√
m, the Hamiltonian reduces to

H =
∑

ij

hij({x})c†icj +
∑

i

1

2
q2i , (S34)

with

hij({x}) = −t0(δi,j+1 + δi,j−1) + 2
√
λt0qiδij . (S35)

We evaluate the correlation function [see Eq. (10) of the main paper]

Cjj(t) =
Tr
(
e−z1Hje−z2Hj

)

Tr e−βH
(S36)

(with z1 = β − it, z2 = it) by expressing the trace in the basis
∣∣{x}n{x}

〉
, where

∣∣n{x}

〉
are the eigenstates of h({x})

with phonon coordinates {x} treated as classical variables. The matrix element of the Hamiltonian in this basis reads

〈
{x}n{x}

∣∣H
∣∣{y}m{y}

〉
= δ({x} − {y})δmn

[
εm({x}) +

∑

i

1

2
x2
i

]
, (S37)

where εm({x}) are the eigenvalues of h({x}). Consequently, we find

〈
{x}n{x}

∣∣e−zH
∣∣{y}m{y}

〉
= δ({x} − {y})δmne

−z[εm({x})+
∑

i
1
2x

2
i ]. (S38)

The trace in the numerator in Eq. (S36) reads

Tr
(
e−z1Hje−z2Hj

)
=

∫
d{x}

∑

m{x}

〈
{x}m{x}

∣∣e−z1Hje−z2Hj
∣∣{x}m{x}

〉
(S39)

which leads to

Tr
(
e−z1Hje−z2Hj

)
=

∫
d{x}

∑

m{x}n{x}

〈
{x}m{x}

∣∣e−z1Hj
∣∣{x}n{x}

〉 〈
{x}n{x}

∣∣e−z2Hj
∣∣{x}m{x}

〉
(S40)

and eventually

Tr
(
e−z1Hje−z2Hj

)
=

∫
d{x}e−β

∑
i

1
2x

2
i

∑

m{x}n{x}

e
−βεm{x} e

it
(
εm{x}

−εn{x}

)

×

〈
m{x}

∣∣j
∣∣n{x}

〉 〈
n{x}

∣∣j
∣∣m{x}

〉
,

(S41)

as well as

Tr
(
e−βH

)
=

∫
d{x}e−β

∑
i

1
2x

2
i

∑

m{x}

e
−βεm{x} . (S42)
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The correlation function given in Eq. (S36) can then be evaluated by sampling the phonon coordinates as Gaussians
with standard deviation σ2 = 1

β and performing the summation of the terms in the numerator and denominator. These

summations are much less demanding than the summations in full Monte Carlo simulations because the number of
phonon coordinates in this case is equal to the number of sites, while in full Monte Carlo simulations it is equal to
the number of sites times the number of timesteps. The summations in Eqs. (S41) and (S42) can be interpreted as
averages over classical phonon coordinates {x}. One should, however, note that the assumption of classical phonons
was not introduced in the derivation. It is the neglect of phonon momentum that led to the expression which can be
interpreted this way.
Next, we also give expression for the quantities 〈Ne〉K, G<(k, t) and G>(k, t) which are needed to evaluate Cbbl

jj (t)
in accordance with Eq. (17) of the main paper. We obtain

G>(k, t) = −ieiµFt

∫
d{x}e−β

∑
i

1
2x

2
i

∑
m{x}

e
−iεm{x}

t|cmk({x})|2
∫
d{x}e−β

∑
i

1
2x

2
i

, (S43)

G<(k, t) = ie(β+it)µF

∫
d{x}e−β

∑
i

1
2x

2
i

∑
m{x}

e
−(β+it)εm{x} |cmk({x})|2

∫
d{x}e−β

∑
i

1
2mω2

0x
2
i

, (S44)

〈Ne〉K = eβµF

∫
d{x}e−β

∑
i

1
2x

2
i

∑
m{x}

e
−βεm{x}

∫
d{x}e−β

∑
i

1
2x

2
i

, (S45)

where cmk({x}) is the overlap of the electronic state of momentum |k〉 and the electronic state
∣∣m{x}

〉
given as

cmk({x}) =
〈
k
∣∣m{x}

〉
.

In Fig. S4 we present Cjj(t) and D(t) for two parameters sets
(
λ = 1

2 , T = 1, t0 = 1
)
and (λ = 1, T = 2, t0 = 1).

The numerically exact results obtained using HEOM are presented, as well as the results in the adiabatic limit obtained
as described in this section. As expected, the exact results for ω0 = 1/3 are closer to the adiabatic limit results than
the exact results for ω0 = 1. Nevertheless, both of these sets of results are still quite far from the adiabatic limit
results. As discussed in the main paper, this is consistent with the fact that vertex corrections for these parameter
sets are not very strong. We also present the bubble approximation results in the adiabatic limit. These results
which yield a non-zero mobility strongly differ from the exact results which give a zero mobility, in accordance with
expectations.
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FIG. S4. The current-current correlation function Cjj(t) and the diffusion constant D(t) for two parameters sets
(

λ = 1

2
, T = 1

)

and (λ = 1, T = 2) (t0 = 1 in both cases). The results labeled as ’HEOM’ denote the numerically exact results obtained using
the hierarchical equations of motion method for two values of phonon frequncies ω0 = 1 and ω0 = 1/3, the results labeled as
’adiabatic limit’ denoted the results obtained in the adiabatic limit using the methodology described in this section, while the
results labeled as ’adiabatic bubble’ are the results obtained with the bubble approximation in the adiabatic limit.

SVI. COMPARISON OF THE RESULTS FOR DC MOBILITY OBTAINED FROM REAL-TIME AND
IMAGINARY-TIME COMPUTATIONS

Figure S5 compares some of our HEOM and DMFT results for µdc, both of which follow from real-axis computations,
with the corresponding results of Ref. 5, which were extracted from imaginary-axis data using numerical analytical
continuation. While all the results are virtually the same in the weak-interaction regime λ = 1/100, the results of
Ref. 5 seem to severely underestimate µdc (by approximately an order of magnitude) in the intermediate-interaction
regime λ = 1/2.

1 2 5 10T
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10
1

10
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µ d
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HEOM, λ=1/100

HEOM, λ=1/2

DMFT, λ=1/100
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IA QMC, λ=1/100

IA QMC, λ=1/2

FIG. S5. Comparison of HEOM (full symbols), DMFT (empty symbols), and imaginary-axis QMC (crosses) results of Ref. 5
for the temperature dependent dc mobility. The model parameters are t0 = ω0 = 1 and λ = 1/100 and 1/2.
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