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Abstract—In variational quantum algorithms, constraints are
usually added to the problem objective via penalty terms. For
linear inequality constraints, this procedure requires additional
slack qubits. Those extra qubits tend to blow up the search
space and complicate the parameter landscapes to be navigated
by the classical optimizers. In this work, we explore approaches
to model linear inequalities for quantum algorithms without these
drawbacks. More concretely, our main suggestion is to omit the
slack qubits completely and evaluate the inequality classically
during parameter tuning. We test our methods on QAOA as
well as on Trotterized adiabatic evolution, and present empirical
results. As a benchmark problem, we consider different instances
of the multi-knapsack problem. Our results show that removing
the slack bits from the circuit Hamiltonian and considering them
only for the expectation value yields better solution quality than
the standard approach. The tests have been carried out using
problem sizes up to 26 qubits. Our methods can in principle be
applied to any problem with linear inequality constraints, and are
suitable for variational as well as digitized versions of adiabatic
quantum computing.

Index Terms—Quantum Optimization, Inequality Constraints,
QUBO, QAOA, Adiabatic Quantum Computing

I. INTRODUCTION

Motivation: Combinatorial optimization has many applica-
tions in industry settings, ranging from logistics to production
and more general resource allocation problems. One of the best
studied combinatorial optimization problems is the knapsack
problem. In this work, we specifically focus on the 0/1 multi-
knapsack problem, a binary optimization problem with linear
objective and linear inequality constraints. Several classical
methods exist for solving the problem or finding approxi-
mate solutions [1]–[3]. Like most problems in combinatorial
optimization, the knapsack problem and its variants are NP-
hard, which means that it is unlikely that a polynomial time
algorithm to solve the problem exists. Especially for quantum
computing, dealing with inequality constraints comes with
issues like more qubits and harder convergence.

Recent advances in quantum computing have opened up
new possibilities for solving such optimization problems. The
most prominent approaches for the currently limited quantum
hardware devices are quantum annealing and variational ap-
proaches for the circuit model [4]. Both of these approaches
require the optimization problem in the form of a Hamiltonian,

whose ground state energy is sought utilizing the principles of
quantum mechanics [5]. Variational quantum algorithms train
a parameterized quantum circuit with classical optimizers and
thus tend to handle errors better than other powerful algorithms
such as Shor’s factoring algorithm [6] or Grover’s search [7].
As a consequence, they do not require fully error-corrected
qubits, and therefore have the potential to be useful even with
relatively few physical qubits. However, the power of such
variational quantum algorithms is not fully understood yet.
In order to gain more insights into the usefulness of such
algorithms, implementations for solving various problems,
such as combinatorial optimization or chemical simulation,
have been derived. Several attempts at solving combinato-
rial optimization problems with the help of the Quantum
Approximate Optimization Algorithm (QAOA) have yielded
rather negative results [8]. Therefore, a number of suggestions
for improvement have been developed, such as warm-started
QAOA [9], R-QAOA [10] or improvements of the classical
parameter optimization.

Integer linear programs with inequality constraints such
as the knapsack problem tend to scale rather badly in the
required number of qubits when following straight forward
formulations as Quadratic Unconstrained Binary Optimization
(QUBO) problems with extra variables (slack bits) as given
in [11]. These slack bits are needed to convert inequality
constraints into equality constraints for which one can formu-
late quadratic penalty terms. In the knapsack problem these
inequalities (and thus the slack bits) originate in modeling the
capacity constraint of a knapsack. The incorporation of slack
bits in quantum algorithms comes with two main challenges.
One is simply the requirement of qubits to accurately model
the problem on the quantum hardware, and second is the con-
vergence of the slack bits. It has been shown in earlier works
how these two issues impact the performance of quantum
algorithms [8], [12], [13].

One of the primary problems with the convergence of slack
bits is related to the increased complexity of the optimization
landscape. The addition of slack bits expands the solution
space, making it more difficult for the algorithm to navigate
and find the optimal solution. The presence of a larger so-
lution space can result in a higher number of local optima,
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causing the optimization process to get stuck at sub-optimal
solutions or to converge slowly. This issue becomes more
prominent as the number of slack bits increases and as the
problem size grows. Furthermore, the interaction between
the slack bits and the main variables of the problem can
create intricate dependencies, making it challenging to find
a balance between satisfying constraints and optimizing the
objective function. This can lead to difficulties in converging
to a solution that simultaneously satisfies all constraints and
optimizes the objective function. Additionally, the optimiza-
tion process with slack bits requires careful tuning of various
algorithmic settings, such as the assignment of values to the
slack bits, the selection of classical optimization techniques,
and the choice of termination criteria. Poorly chosen parameter
values or optimization strategies can hinder the convergence of
the algorithm, leading to sub-optimal solutions or premature
convergence.

Related work: There have been a few studies made to
address the issues of slack bits in some recent works. Ko-
retsky et al. introduce a novel technique to embed inequalities
into QAOA, without requiring extra qubits in the Hamiltonian
formulation [14]. They propose to incorporate real-valued
slack variables which are optimized classically, while only
the problem bits are embedded in the quantum circuit. The
technique is helpful in avoiding the binary slack variables, but
requires the QAOA ansatz to find out the ground state of a
changing Hamiltonian, along with the classical optimization
of QAOA angles and the continuous slack variables, at every
iteration of the classical loop. The work of Braine et al. is an
extension to the previous work of Koretsky et al., proposing
to initially optimize the binary and the continuous variables
simultaneously, and then perform an iterative process of fixing
the continuous variables and optimizing the binary variables
with a quantum algorithm [15]. This approach allows for a
correct convergence of the continuous variables, depending on
the binary values. However, the issue of a changing Hamil-
tonian still persists, and at different classical iterations, the
VQE or QAOA ansätze are required to find ground state(s) of
different Hamiltonians. There is also some work for the same
kind of optimization problems (including inequalities) using
quantum annealing. Recently, Montane-Barrera et al. proposed
a technique to convert an inequality (A · x ≥ 0) to a QUBO
without requiring slack bits, by approximating the exponential
of the inequality terms (e−A·x) up to quadratic terms using
Taylor expansion [16]. The authors implement this approach
for the TSP and knapsack problem, and propose an extension
for QAOA. However, this approach requires the coefficients
of the linear and quadratic terms to be pre-optimized in order
to bring the optimal solution of the original combinatorial
optimization problem as close as possible to the ground state of
the cost Hamiltonian. Unfortunately, there is no clear strategy
for finding suitable coefficients. Thus, for a general problem
instance, it becomes difficult to find a Hamiltonian with the
desired ground state.

Key contributions: In this work, we propose hybrid quan-
tum algorithms based on QAOA and Trotterized Adiabatic

Evolution (TAE) which handle inequality constraints in the
classical counterpart without introducing additional slack bits.
This results in a lower number of required qubits, and a better
convergence to the ground state compared to the standard
QUBO formulation with slack bits.

Sec. II introduces the two quantum algorithms, QAOA
and TAE as well as the core idea of evaluating inequalities
classically in a no-slack-QUBO instead of the standard QUBO
formulation for inequality constraints. In Sec. III the multi-
knapsack problem is introduced for which we numerically
evaluate the presented approaches with experiments described
in Sec. IV. We discuss their results in Sec. V and give a
conclusion and outlook in Sec. VI.

II. METHODS

A. Quantum Approximate Optimization Algorithm (QAOA)

QAOA is a popular variational algorithm devised to produce
approximate solutions for combinatorial optimization prob-
lems [17], [18]. Suppose H is an Ising Hamiltonian with
integer coefficients, whose ground state corresponds to the
optimal solution of a combinatorial optimization problem. The
ingredients of QAOA comprise

• the phase separation operator U(H, γ) := e−iγH, where
γ ∈ [0, 2π] is a free parameter and

• the mixing operator U(B, β) = e−iβB arising from the
mixing Hamiltonian B =

∑n
j=1 σ

x
j , where σx

j denotes
the tensor product of σx acting on qubit j with identity
operators acting on all other qubits. Again, β ∈ [0, π] is
a free parameter.

The QAOA quantum circuit is applied to the ground state
of the mixer Hamiltonian (Pauli-X) via alternating parame-
terized mixing and phase separation operators. Note that for
a minimization problem we require either the initial state to
be |−⟩⊗n or the mixer Hamiltonian to be B = −

∑n
j=1 σ

x
j . In

this work, we formulate the QUBO as a minimization problem
and initialize QAOA with |−⟩⊗n. One pair of mixing and
phase separation operator is referred to as one layer. After the
application of p layers of parameterized operators, we arrive
at the variational quantum state

|ψγ,β⟩ =
1∏

l=p

U(B, βl) · U(H, γl) · |−⟩⊗n , (1)

where |−⟩⊗n
= (|0⟩ − |1⟩)⊗n/

√
2n is a uniform superpo-

sition of n qubits. The variational quantum state |ψγ,β⟩ is
parameterized by 2p parameters γ1, . . . , γp ∈ [0, 2π] and
β1, . . . , βp ∈ [0, π]. We then measure in the computational
basis in order to compute the expectation value Fp(γ,β) =
⟨ψγ,β|H |ψγ,β⟩. The parameters γ,β are varied in order to
minimize Fp. Once the optimizer terminates at optimal or close
to optimal parameters γ∗,β∗, we expect to sample an optimal
or close to optimal solution, provided a reasonable number of
measurement shots.
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B. Trotterized Adiabatic Evolution

In this work we also test the trotterized version of the
adiabatic evolution (TAE) for our problem Hamiltonians. In
the literature, TAE is also sometimes referred to as digitized
quantum annealing [19]–[21]. We present a short formal
description of TAE and draw an analogy with QAOA.

Adiabatic quantum computation is inspired from the adia-
batic theorem, which states that if a system is in the nth energy
eigenstate of an initial Hamiltonian Hinit, then the system will
remain in the nth energy eigenstate of the final Hamiltonian
H, provided that the Hamiltonian varies sufficiently slowly
compared to the energy gaps between the nth eigenvalue and
the remaining spectrum of the instantaneous Hamiltonian [20].
This evolution of the Hamiltonian is governed by an annealing
time T and an annealing schedule s(t). The instantaneous
Hamiltonian at any time t (0 ≤ t ≤ T ) is given by

H(t) = (1− s(t)) · Hinit + s(t) · H , (2)

where s(0) = 0 and s(T ) = 1. The initial Hamiltonian Hinit is
chosen such that its ground state can be easily prepared, and
the most obvious and frequent choice is the Pauli-X operator.

The digitized evolution under the action of the Hamiltonian
H(t) over the time T is given by Û(T ), where

Û(T ) = τ exp

[
−i
∫ T

0

H(t) dt

]
≈

l=1∏
l=p

exp [−iH(lδt)δt] , (3)

where p is some large integer also referred to as the number
of Trotter steps and δt = T /p. Note that we have reversed the
indices in the product operator to account for the time-ordering
operator τ , i.e., the first trotter-step (l=1) acts first, followed
by subsequent steps on an initial quantum state. Substituting
the time dependent Hamiltonian from Eq. (2), we have

Û(T ) ≈
l=1∏
l=p

exp [−i((1− s(lδt))Hinit + s(lδt)H) · δt] . (4)

As the above digitization still requires big blocks of quantum
gates, it is desirable to decompose the exponential operators
into smaller blocks. From the Suzuki–Trotter expansion of the
first order we know that for two non-commuting operators Ô1

and Ô2 and a sufficiently small δt, we can decompose the
exponential operator as,

ei(Ô1+Ô2)δt = eiÔ1δteiÔ2δt +O(δt2) , (5)

where O(δt2) is the Trotter error which vanishes for δt→ 0.
Applying the above Trotterization to the time evolution oper-
ator we obtain

Û(T ) ≈
l=1∏
l=p

exp [−i(1− s(lδt))Hinitδt] exp [−is(lδt)Hδt] . (6)

We can now use this as a digitized adiabatic evolution operator
to approximate the ground state of the final Hamiltonian
H. If we take Hinit =

∑n
j=1 σ

x
j , and the initial state as

|−⟩⊗n, we can approximate the ground state |ψ∗⟩ of H as
|ψ∗⟩ ≈ Û(T ) |−⟩⊗n. Using this understanding, we can now
draw an analogy of the above trotterized adiabatic evolution

with QAOA. In Eq. (6), if we substitute (1−s(lδt))·δt −→ βl,
and s(lδt) · δt −→ γl, we can express final quantum state of
QAOA as,

|ψγ,β⟩ =
l=1∏
l=p

exp [−iβlHinit] exp [−iγlH] · |−⟩⊗n . (7)

It can be seen that the above quantum state is identical to
Eq. (1). The number of trotter steps (p) acts as the number
of layers in QAOA. The crucial difference between TAE and
QAOA is that TAE uses fixed time segments while QAOA
relies on variational parameters which need to be optimized by
classical means, necessitating many iterations of the quantum
circuit [20]. We explain the choice of the annealing schedule
s(t) and δt in Sec. II-D.

C. Objective function and QUBO variants

This work is motivated by better modelling and optimizing
linear inequality constraints. In this section, we first present the
conventional method to model inequalities by the introduction
of slack bits into a QUBO. Next, we describe two alternative
ways of dealing with the inequality constraints.

1) Modelling of linear inequality constraints for quantum
algorithms: There exist well known routines to convert
linear equality and inequality constraints to QUBO form [5].
The equality constraints of the type aTx = b (where, x ∈
{0, 1}n, a ∈ Rn, b ∈ R) are modeled as P · (aTx − b)2 with
P ≫ 0, such that the minimization of P · (aTx − b)2 leads
to a solution which satisfies aTx = b. The linear inequality
constraints of the type cTx ≤ d (where c ∈ Zn, d ∈ Z+)
are first converted to an equality constraint by introducing a
slack variable r ∈ Z+, such that cTx + r = d where r ≤ d.
Since the exact value of the positive integer r depends on x,
r acts as a variable and is represented using binary slack bits
as r =

∑⌊log d⌋
b=0 2b · yb, where yb ∈ {0, 1} ∀b. Substituting the

value of r to the newly formed equality constraint, we obtain
cTx+

∑⌊log d⌋
b=0 2b · yb = d. Note that the integer variable r is

discretized such that it ensures r ≤ d. Using these slack bits,
one can easily convert the original inequality constraint to a
penalty QUBO term as

penalty-qubo = P ·

cTx+

⌊log d⌋∑
b=0

2b · yb − d

2

, (8)

where P is again some large positive integer, also known as
the penalty coefficient. Minimization of this QUBO requires
an assignment of x and r in such way that Eq. (8) goes to zero,
and thus satisfies the original inequality constraint cTx ≤ d.
Formally, the full QUBO for an optimization problem with
such an approach can be modeled as follows. Suppose we are
given an optimization problem

min
x∈{0,1}n

f(x) , s.t. cTx ≤ d , (9)

where f : {0, 1}n → R is a quadratic objective function
and c ∈ Zn and d ∈ Z+ define a linear inequality constraint.
The corresponding QUBO for the optimization problem can
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be written as H = f(x) + P ·
(
cTx+

∑⌊log d⌋
b=0 2b · yb − d

)2

.
While the introduction of slack variables presents a conceptu-
ally valid method of incorporating inequality constraints into
the objective function, the performance of most variational
quantum protocols usually suffers significantly. On one hand,
this is because in most protocols, one slack variable corre-
sponds to one additional qubit. The number of qubits is already
one of the limiting resources in most present-day quantum
systems. With additional slack qubits, the range of problems
for which tests can be run on quantum systems or quantum
simulators is even more limited than it is without them. While,
on the other hand, shallow-depth QAOA and VQE are heuristic
methods which are probabilistic at their core. Additional slack
qubits inflate the space from which we sample and it makes
it much harder to find the "the needle in the haystack".

2) Remove slack bits: The convergence of slack bits in
quantum variational algorithms such as QAOA is a major issue
and there have been some attempts in better incorporating
the inequality constraints for quantum algorithms. A novel
technique to embed the inequalities is proposed by Koretsky et
al. [14]. Given an inequality of the form cTx ≤ d, the
inequality gap α = d−cTx is treated as a real-valued variable
which is dependent on x. The variable α is plugged into
the QUBO formulation as a variable and is optimized in the
classical subroutine of the QAOA algorithm, along with the
β and γ parameters, as explained in Sec. II-A. Using this
approach, one can model the optimization problem in Eq. (9)
as a QUBO, given by

H(α) = f(x) + P ·
(
cTx+α− d

)2
, α ≥ 0 , (10)

which needs to go to zero, for the original inequality to
be satisfied. Although this approach helps us to avoid the
slack bits, there are a few other issues which need to be
considered. One of the issues is the number of α-values to
optimize. The optimal solution of Eq. (10) indeed consists
of a single optimal value of α, whose value corresponds to
the inequality gap d − cTx. However, quantum optimization
algorithms such as QAOA or VQE, rely on sampling of several
states via measurement, at each iteration. Since the values of
α depend on x, each distinct sample of x requires a distinct
corresponding α value during the optimization process. Thus,
the number of α parameters to optimize turns out to be
equal to the number of distinct x samples drawn at each
iteration. Another drawback is that the Hamiltonian itself is
changing during the optimization: After each classical iteration
of QAOA, we are expecting the algorithm to approximate the
ground state of a different Hamiltonian, since each iteration
might provide different α values.

Nonetheless, motivated from this work, we approach the
inequality constraints in a similar fashion and try to address
the two issues mentioned above.

a) Computing α and the expectation value: We propose
not to take α’s as variables for the optimization process,
instead compute them on-the-fly for each sample, during each
iteration. In most cases the expectation value for the QAOA

algorithm is computed classically, taking all the samples into
account at each iteration. To compute the expectation value
of the sampled quantum state against the Hamiltonian, one
can equivalently compute the objective function value of the
resultant basis-states and weight them with the corresponding
probabilities ps. Thus, to compute the expectation value for
each sample of the optimization problem in Eq. (9), we
compute αs for each basis state xs as αs = max{0, d−cTxs},
and compute the expectation value Ẽ as

Ẽ =

S∑
s=1

ps ·
[
f(xs) + P ·

(
cTxs + αs − d

)2]
,

=

S∑
s=1

ps ·
[
f(xs) + P ·

(
max{0, cTxs − d}

)2]
,

(11)

where P is some large positive penalty coefficient. This
approach corresponds to a direct evaluation of the inequality
constraint: The penalty term in Eq. (11) ensures that only
the infeasible bitstrings which do not satisfy cTxs ≤ d are
penalized proportional to the excess (cTxs−d)2. The bitstrings
which satisfy cTxs ≤ d are assigned zero penalty. This is in
contrast to the regular encoding using slack bits as shown
in Eq. (8), where even the x-bitstrings which satisfy the
inequality constraint can be assigned some penalty due to non-
convergence of the corresponding slack bits. Note that we are
relying on the fact that this way of computing the expectation
value is done classically.

b) Problem Hamiltonian formulation: The QAOA circuit
requires a problem Hamiltonian to define the parameterized
phase separation operator. For optimization problems with
inequalities of the type cTx ≤ d, we propose

H̃ = f(x) + P · (cTx− d)2 , (12)

i.e., the inequality is treated as an equality in the circuit.
Although the ground state of this Hamiltonian does not
necessarily satisfy the inequality constraint, the evaluation of
the x-bitstrings and minimization of the expectation value in
Eq. (11) can guide the QAOA to the approximate ground state
of the original problem by optimizing the circuit parameters.
This concept can easily be applied to higher dimensional
inequality constraints as well as problem settings involving
other constraints, which can be encoded without requiring
slack bits. The authors of this manuscript are well aware that
this ansatz is not supposed to yield the ground state of the
problem for p→ ∞, since a different Hamiltonian is used in
the QAOA phase separation operator. However, in practise, a
finite number of circuit layers is used and the ground state is
usually only approximated by a final superposition state which
contains the ground state with a sufficiently high probability
that ensures it being sampled at least once. In Sec. V we
show with help of experiments, that this approach can work
very well for the QAOA algorithm.

3) Evaluate only logical bits: In this section, we present
another approach to deal with inequality constraints, which
differs form the standard QAOA only in the expectation
value evaluation. The proposal for this approach is to retain
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the original QUBO for the inequality with slack bits, as
mentioned in Sec. II-C. In doing so, we ensure that the
ground state of the underlying problem Hamiltonian for the
phase separation operator in QAOA corresponds to the optimal
solution of Eq. (9). However, for the computation of the final
expectation value, we use Eq. (11), which ensures that we
only penalize the logical bits (x-bitstrings) which violate the
inequality cTx ≤ d. Logical bits which satisfy cTx ≤ d
regardless of incorrect y-bitstrings, are not penalized, which
is desirable. Once the parameters of the QAOA algorithm
are optimized, the objective function used for evaluating the
resultant bitstrings are given by

F(x) = f(x) + P ·
(
max{0, cTx− d}

)2
. (13)

We provide a schematic diagram of the above mentioned algo-
rithmic three approaches to deal with optimization problems
with linear inequalities, in Fig. 1.

Figure 1. Algorithmic protocols discussed in Sec. II-C. The notations used
for the expectation values and the Hamiltonians are explained in Sec. II-C.

D. Annealing schedule and parameter initialization

The trotterized adiabatic evolution requires the definition of
an annealing schedule s(t), the total annealing time T and the
number of trotter steps p (or, in other words δt, which is equal
to T /p), as shown in Eq. (4). Given a fixed annealing time T ,
the annealing schedule needs to be a function in [0, T ] while
satisfying s(t = 0) = 0 and s(t = T ) = 1. In this work, we
utilize the sinusoidal schedule function s(t) given by

s(t) = sin2

[
π

2
sin2

(
πt

2T

)]
, (14)

The more usual choice of the annealing schedule is a linear
function t/T , however, with our tests we found that the
sinusoidal function worked better. Depending on the number
of trotter steps p one can set up the complete quantum circuit
for TAE. The schedule s(lδt) in Eq. (6) can be substituted as

s(lδt) = sin2

[
π

2
sin2

(
πl

2p

)]
, since δt = T /p . (15)

Hence, for a given trotter step l we can express the annealing
schedule as a function of total trotter steps p. However, Eq. (6)

requires us to provide δt, the trotterization step size, as a
constant input parameter. With the help of experiments, we
estimate δt = 1 and δt = 0.75 to be good candidate values.
Moreover, the value of δt has been worked out also in the
work of Sack and Serbyn [22], where they show that δt = 0.75
works well. Hence, using the sinusoidal schedule and the value
of δt we implement the TAE algorithm, given the total number
of trotter steps p.

As for the QAOA initial parameters, note that we draw
the analogy between the TAE and QAOA parameters β,γ
in Sec. II-B. Thus, we can utilize the discussed annealing
schedule and δt to find good initial parameters for QAOA.
Formally, for any layer l of QAOA we initialize the parameters
as βl = (1− s(lδt)) · δt and γl = s(lδt) · δt. Our results show
that this initialization of initial parameters for QAOA works
much better than random initialization of β and γ.

E. Classical optimizers

To perform the classical parameter optimization in QAOA,
we utilize the gradient-based optimizer Adam [23]. Adam
combines the Adaptive Gradient Algorithm (AdaGrad), that
features an adaptive learning rate, and Root Mean Square
Propagation (RMSProp), where the moving average of the
gradient is used to normalize it. Our implementation of Adam
is based on [24]. We also tested various other optimizers, such
as COBYLA and the BFGS algorithm, for which we used the
predefined implementations from Scipy [25]. These optimizers
performed well only with full state-vector simulation, however
sampling via finite measurements produced premature termi-
nation. Using a finite number of samples always introduces
sampling noise, thus, evaluating the circuit with the same
parameters leads to different results. Among optimizers that
can explicitly deal with noisy data, such as Stochastic Gradient
Descent (SGD) and RMSProp, Adam performed best in our
setting for all objective function variants and scenarios con-
sidered in this work. To apply Adam also to the optimization

0 25 50 75 100 125 150 175 200
Optimizer Iterations
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Adam Sampling, lr=0.1
Adam Statevector, lr=0.1
Adam Sampling, lr=0.01
Adam Statevector, lr=0.01
Adam Sampling, lr=0.001
Adam Statevector, lr=0.001
BFGS Sampling
BFGS Statevector

Figure 2. Objective function (Energy) during optimization for a knapsack
instance with 8 items and a single knapsack, without slack bits (evaluating
H̃p) and p = 3 layers using the Adam and BFGS optimizers. The blue,
orange and green curves denote the Adam optimizer with different learning
rates. The light (dark) colors indicate sampling (full state-vector simulation).
A single-penalty factor of 50 and a sine schedule with δt = 0.75 have been
used (see Secs. II-D and V-B).
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without slack bits, where the objective function is not differ-
entiable (see Eq. (11)), the gradient is evaluated numerically
using finite differences. To save computation time, we added
a stopping criterion to the optimizer to stop evaluation when a
desired convergence in terms of a threshold is reached by the
optimizer. Specifically, the optimization process is terminated
when the following two conditions are fulfilled: The change
in the moving average over the last ω function values is less
than a threshold fω , and the second derivative is positive and
larger than a threshold fsd along all parameter dimensions.
The latter avoids stopping at a plateau where the first and
second derivative vanish. The two conditions are checked
every ω steps and the moving average is calculated among
the last ω functions values, including the current one at step i:
[f(x⃗i), f(x⃗i−ω)]. With the help of several tests, we concluded
that ω = 10, fω = 10, and fsd = 10, workd best. The second
derivative is also evaluated using finite differences. The step
size for numerical calculation of both derivatives is set to
ε = 0.1 in all cases.

The optimal learning rate for the Adam optimizer was found
by investigating the convergence behavior, and we plot the
convergence of different optimizers with discussed parameters
for a knapsack problem instance with 8 items and a single
knapsack, using a QUBO formulation without slack bits, and
p = 3 circuit layers, in Fig. 2. The blue, orange and green
curves show the expectation value of the QAOA objective
function (energy) during optimization for different learning
rates of the Adam optimizer, where the light colors denote
the values for sampling and the dark colors indicate the
results using full state-vector simulation. Overall, a learning
rate of l = 0.01 shows the best results, converging faster
than l = 0.001, and without the instabilities as observed
for l = 0.1. This behavior was observed consistently for all
problem instances tested in this work, and thus, l = 0.01 was
used in all experiments shown here. Using the Adam optimizer
with the settings described here, we also see a decrease in the
final energy with the number of circuit layers for all algorithms
and scenarios, indicating that indeed the approximation of the
ground state improves as expected.

Fig. 2 also illustrates the effect of sampling noise on
the performance and convergence of these optimizers. The
results for the BFGS optimizer are plotted in red, which
works well without sampling noise. This phenomenon of
stability with full-state vector simulation was also observed
with other classical optimizers we considered. However, in
the presence of sampling noise, BFGS stops after only a very
few iterations without having reached a minimum, as shown
by the short light red curve. Considering experiments on real
quantum devices, suffering also from various other sources
of hardware noise on top of the sampling noise, the choice
of appropriate classical optimizers for variational quantum
algorithms becomes even more important. Building on our
promising results for data with sampling noise, we would
propose to use the Adam optimizer also for experiments on
hardware.

III. THE MULTI KNAPSACK PROBLEM

In this section, we give a short overview of the multi-
knapsack problem which we use to test our methods.

A. QUBO Formulation

In the multi-knapsack problem, the task is to distribute
N ∈ N items to M ∈ N knapsacks with capacities cj ∈ N.
Every item i ∈ {0, ..., N − 1} has a weight wi ∈ N and a
knapsack-dependent value vi,j > 0, where j ∈ {0, ...,M−1}.
The objective of the problem is to maximize the value in
the knapsacks without overstepping their respective capacities.
In order to formulate the problem as a QUBO problem, we
introduce binary decision variables xi,j ∈ {0, 1} ∀i, j, such
that xi,j = 1 indicates that item i is assigned to knapsack j.

Using this formalism we can now define the QUBO terms
for all the constraints and the objective term. The summands
of our QUBO formulation are explained below.

1. The objective term is formulated such that our original
maximization objective function is converted to a mini-
mization problem, as shown below.

Hobj = −
∑
∀i

∑
∀j

vi,j · xi,j . (16)

2. For the assignment constraint, we do not need to apply the
usual procedure for inequalities, as for each item, there
are only two scenarios which cover all feasible cases,
namely the item being assigned to one knapsack or to no
knapsack at all, so the quadratic term

Hsingle =
∑
∀j

(∑
∀i

xi,j

)
·

(∑
∀i

xi,j − 1

)
. (17)

serves as a penalty term which is positive if and only if
the assignment constraint is violated.

3a. The capacity ci of each knapsack i ∈ {0, . . . ,M − 1}
should not be exceeded. This may be achieved by intro-
ducing slack bits yi,b with binary expansion, as discussed
above.

Hcapacity =
∑
∀i

∑
∀j

wj · xi,j

+
⌊log2 ci⌋∑

b=0

2b · yi,b

−ci

2

.

(18)

3b. As explained in Sec. II-C2, we can alternatively treat
the inequality constraint as an equality and evaluate the
inequality classically.

H̃capacity =
∑
∀i

∑
∀j

wj · xi,j

− ci

2

. (19)

With the above terms, we can now formulate the complete
QUBO for multi-knapsack optimization problems in two vari-
ants.

• QUBO:

Hp = A ·Hsingle +B ·Hcapacity + C ·Hobj . (20)

• no-slack-QUBO:

H̃p = A ·Hsingle +B · H̃capacity + C ·Hobj . (21)
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The coefficients A,B > 0 are the penalty weights, and
C > 0 is the objective weight. The minimization of Hp results
in an optimal solution to the multi-knapsack problem.

B. Normalization

The penalty coefficients and objective weights of a QUBO
play an important role in deciding the full energy landscape of
the optimization problem. In turn, this influences the perfor-
mance of classical optimizers finding good QAOA parameters.
For the knapsack problem in particular, the QUBO terms
contain the item weights and values which in general leads
to larger absolute numbers than e.g., for the MaxCut problem
and accordingly to much more complicated energy landscapes.
In this work, we normalize the coefficients of the Ising model
to improve the energy landscape for all algorithms including
TAE. Given an Ising model H =

∑
i hiσ

x
i +

∑
ij Jijσ

z
i σ

z
j , we

normalize H with the maximum absolute value of all the co-
efficients νmax = max{max

∀i
|hi|,max

∀ij
|Jij |}. Normalizing the

Hamiltonian can simplify the task of the classical optimizer. In
fact, our experiments show better results with a normalization
factor. However, in general, with normalization we possibly
lose the guarantee that the optimal parameters lie in [0, 2π].

IV. EXPERIMENTAL SETUP

A. Setup

In order to obtain a fair comparison of the different
strategies for dealing with inequality constraints, i.e., QUBO
vs. no-slack-QUBO, we run simulations with the following
settings. In total, 20 (multi) knapsack instances are considered
on a range from 2 qubits (logical qubits in scenario 0) up
to 26 qubits (logical and slack qubits in scenario 19). We
run QAOA and the TAE as described in Sec. II-B, with
the Hamiltonian being normalized and built either from the
standard QUBO (Eq. (20)) or the no-slack-QUBO (Eq (21)).
All computations are made by sampling the the quantum
states via simulations, where the number of samples drawn
is equal to 500 times the number of qubits. For evaluating an
obtained state during the optimization in QAOA, we choose
the expectation value corresponding to the respective problem
Hamiltonian. In the final evaluation, we once include and once
neglect the convergence of the slack bits when running the
algorithms with slack bits, as explained in further detail in
Sec. II-C3. The parameter optimization in QAOA is performed
with the classical optimizer Adam with a learning rate of 0.01
as described in Sec. II-E. For TAE, we run a single pass, i.e.,
no optimization of classical parameters is required. After
performing several tests with different annealing schedules,
we have chosen the best performing setting which is the
sinusoidal schedule with δt = 0.75. For QAOA, we derive the
corresponding angles β,γ from this schedule and use them as
initial parameters. Each setting is repeated 10 times and report
the average performance in Sec. V.

B. Performance metrics

In the following we define the performance metrics used
in our experiments. In practice, the final expectation value is

not a KPI a user in interested in, rather in higher chances
(probability) to receive good solutions to their problem. In
general, the solution to the optimization problem is obtained
after sampling from the final circuit as the bitstring with
the lowest energy. When benchmarking algorithms on small
problems with known optimal solutions, as in this work, the
best solution can be compared with the optimum, and, e.g.,
an approximation ratio could be defined. As discussed in
Sec. V-A, in our experiments, the known optimum was found
in nearly all cases. Thus, to quantify the performance, we use
the total probability to sample optimal bitstrings (in cases there
are several optimal solutions), denoted by Popt, and the total
probability to sample any solution which is 90% optimal, P90.
The latter includes all solutions which are valid (all penalty
terms are equal to zero) and with −Hobj ≥ 0.9 · Vopt, where
Vopt denotes the total value of the optimal item distribution.
These quantities are derived as relative frequencies from the
final distribution of sampled bitstrings:

Popt :=
#optimal solutions

#shots
, P90 :=

#90%-optimal solutions
#shots

.

(22)

V. RESULTS

A. Comparison of algorithms and objective functions

The different variants of objective functions and algorithms
described in the previous sections are compared in terms
of their performance. In Fig. 3, the probability of sampling
the optimal solution, Popt, and the probability of sampling
a solution which is at most 90% optimal, P90 are plotted
against the scenario number in the upper and lower panels,
respectively. The three columns correspond to the different
types of objective functions, i.e., using no slack-bits, using
slack-bits but evaluating only the x-bits and evaluating both
x- & y-bits. The right y-axes shows the problem size in
terms of only x-bits and x+y-bits (dashed gray lines). The
latter problem size increases monotonically with the scenario
number, while the number of x-bits sometimes decreases,
e.g, for scenario 3 and 10. The probabilities are derived as
described in Sec. IV-B. As a minimum baseline the values of
Popt and P90 derived from uniform sampling are shown (solid
black line), where

Popt =
#optimal solutions

2N
, P90 =

#90%-optimal solutions
2N

,

(23)
with N being the number of x-bits. These values correspond
to randomly picking a configuration of items and knapsacks,
which is why we only use the number of x-bits here. The
red circles in Fig. 3 denote the probabilities for QAOA, while
the probabilities for TAE are shown as blue diamonds. Darker
colors indicate a higher number of layers in the circuit. Note
that for TAE, circuits with up to 20 layers have been run. We
show results only for a selected number of layers for visual
clarity. Overall, the performance in terms of Popt and P90

monotonically increases with the number of circuit layers in
nearly all cases. The data points for TAE on scenario 0 without
slack bits (left panels) are an exception, which we discuss in
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Figure 3. Total probability of sampling optimal solutions Popt (upper panels) and 90% optimal solutions P90 (lower panels) vs. scenario number. The
columns indicate different objective functions, from left to right: Discarding slack bits at all, using slack bits, but evaluating only x-bits, and evaluating x- and
y-bits, where we denote the logical bits with x and the slack bits with y. The results for QAOA (red circles) and TAE (blue diamonds) for various numbers
of circuit layers are shown. We use a sinusoidal annealing schedule with δt = 0.75 for TAE and as initial parameters for QAOA. As a baseline, Popt and
P90 for randomly drawing x-bitstrings are plotted as solid black lines. The dashed gray lines denote the problem sizes when counting the number of x-bits
or x+y-bits. Missing points are zero and thus not displayed in the logarithmic scale.

more detail below. The optimal probabilities decrease with the
problem size: when evaluating x-bits (left and middle panels),
the relevant quantity is the number of x-bits (light gray line),
while for the data in the right panels, the problem size is given
as x+y bits (dark gray line). This is expected, as the Hilbert
space size increases, which can also be seen from the uniform
sampling baseline.

The circuits with no slack bits and with evaluation of x-
bits yield values clearly exceeding the random baseline for all
number of layers with optimized parameters (QAOA) and with
at least two layers for TAE. In the case when the slack bits
are also evaluated, the probabilities are much lower and lie
below the baseline in mostly all cases. This reflects the fact,
that a circuit with slack bits can produce optimal solutions in
terms of x-bits, however with non-converged y-bits. Moreover,
the overall state space size is much larger, when the y-bits are
also taken into account, leading to smaller probabilities. For
QAOA, we can see from Fig. 3, that discarding the slack bits

completely, leads to comparable or even better results, even
when the slack bits are not evaluated. Discarding the parameter
optimization in TAE also does not decrease performance when
the number of layers is increased accordingly, for instance,
QAOA with p = 3 and TAE with p = 6 yield nearly equal
probabilities. This holds especially when the slack bits are
used in the circuit, but not evaluated. However, when the
slack bits are discarded, the TAE approach can lead to worse
results in some cases, as for scenario 0. This particular scenario
consists of a single knapsack with capacity c = 10, two items
with weights w = [4, 6] and values v = [19, 16]. The optimal
solution packs the first item into the knapsack, corresponding
to an excess capacity of 6. The Hamiltonian H̃p without slack
bits treats the capacity constraint as an equality and thus
over- and under-filling the knapsacks are penalized equally.
This leads to an invalid solution, in which both items are
packed with an excess capacity of 1, being preferred over the
optimum. In TAE, the ground state of H̃p is approximated,
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which leads to the wrong solution being sampled with higher
probability when the approximation is improved by adding
more layers. This can be clearly seen from the blue data points
for scenario 0 in the left panels of Fig. 3.

Whether the ground states of H̃p and Hp coincide depends
on the specific problem under consideration. In general, TAE
should be used with the full Hamiltonian Hp including slack
bits in the circuit, but only evaluating x-bits. As shown in
the middle panel in Fig. 3, this leads to satisfying results,
clearly adding benefit over standard QAOA. This option needs
more qubits, but TAE is much more efficient than QAOA
in terms of runtime, as the circuit is only executed once.
As a second option, the slack bits can be discarded when
optimizing the angles in QAOA, i.e., in the objective function
(the expectation value computation), the inequality is being
evaluated correctly and thus, the optimal solution will be
preferred, as demonstrated by the QAOA results in the left
panels of Fig. 3. Moreover, using the values of TAE as a
starting point for the parameter optimization already improves
performance compared to initializing the angles with random
values for QAOA.

B. Influence of penalty terms

We now describe our choices for the penalty terms
and the objective weights in Eqs. (20). The penalty QUBO
terms (Hsingle and Hcapacity) are defined such they are always
greater than or equal to zero, and their values are zero iff the
corresponding constraints are satisfied. To avoid optimizing the
objective term at the expense of the penalty terms, we need to
assign higher values for A and B than C. At the same time, we
need to ensure that the penalty coefficients are not too high to
avoid that the complete energy landscape of the optimization
problem is dependent only on the penalty terms of the QUBO.
Hence, we need to find the penalty coefficients such that in all
cases of an infeasible solution the sum of the penalty terms
in the QUBO must be greater than the Hobj value (which is
always non-positive). In this work we take C = 1 for all the
algorithms, and take A and B equal to sum of all weights and
sum of all values, formally

A = B =
∑N−1

j=0
wj +

∑M−1

i=0

∑N−1

j=0
vi,j . (24)

This ensures that even in the worst case when all the items
are inadvertently assigned to some knapsack, the penalty
values for the QUBO in Eq. (20) will still be higher than
the negative objective value. These values for the penalty
QUBO term work well if all feasible solutions can be obtained
by having Hsingle = 0 and Hcapacity = 0, i.e., they are
hard-constraints as in the standard multi-knapsack QUBO in
Eq. (20). However, in the modified QUBO without slack bits,
H̃p from Eq. (21), the term H̃capacity acts as a soft constraint
since there can exist several feasible solutions which do not
satisfy H̃capacity = 0 as the knapsacks are not completely filled.
Hence, assigning similar coefficients in Hsingle and H̃capacity
does not guarantee Hsingle to be always satisfied. We tested
it by optimizing H̃p in Eq. (21) using GUROBI’s quadratic
integer programming solver [26]. Columns 2-4 of Tab. I show

the optimal values for the three QUBO terms when using
A and B from Eq. (24). We can see that equal penalty

Table I
OPTIMAL VALUES FOR EACH QUBO TERM IN H̃p WITH A = B AS IN

EQ. (24), DENOTED BY (A) AND FOR A = 50 ·B, DENOTED BY (50A).

Scen. Hsingle H̃capacity Hobj Hsingle H̃capacity Hobj
(A) (A) (A) (50A) (50A) (50A)

0 0 45 -35 0 45 -35
1 0 0 -2 0 0 -2
2 0 0 -4 0 0 -4
3 0 0 -34 0 0 -34
4 0 0 -30 0 0 -30
5 0 0 -53 0 0 -53
6 0 0 -50 0 0 -50
7 0 0 -51 0 0 -51
8 0 0 -68 0 0 -68
9 0 0 -71 0 0 -71
10 456 114 -85 0 4674 -53
11 472 0 -89 0 4012 -53
12 0 320 -70 0 320 -70
13 0 1216 -67 0 1216 -67
14 0 220 -45 0 220 -45
15 0 1968 -74 0 1968 -74
16 0 0 -68 0 0 -68
17 0 0 -90 0 0 -90
18 0 0 -105 0 0 -105
19 0 0 -87 0 0 -87

coefficients lead to infeasibility in Hsingle qubo terms for some
instances. Since Hsingle models a hard constraint, a higher
penalty coefficient is required. Experimenting with different
penalty coefficients A and B for H̃p we fond that A = 50 ·B
and B =

∑N−1
j=0 wj +

∑M−1
i=0

∑N−1
j=0 vi,j worked the best.

We also used the Gurobi solver again with these new penalty
coefficients to check if the single penalty term was satisfied.
Columns 5-7 of table I show the corresponding optimal values
for the three QUBO terms when using a factor of 50 for A,
i.e., A = 50 ·B.

C. Optimizer iterations

In Sec. V-A we have seen that either the TAE algorithm
with slack bits (but without evaluating them in the end) or
QAOA without slack bits leads to good results. To estimate
differences in circuit runtime, we first consider the number of
iterations which the Adam optimizer needed until convergence
for QAOA, shown in Fig. 4. In general, the optimization
process takes longer for higher number of layers as more
parameters need to be optimized. Moreover, discarding the
slack bits eases the optimization process, as the circuit be-
comes simpler and shallower (see also Fig. 5). Even if the
slack bits are not evaluated in the end, they are considered in
the evaluations during optimization. Depending on the problem
size and complexity, the number of optimizer iterations lies in
a range of 40−100 or increases up to ≈ 400. Moreover, each
iteration round in QAOA also includes time for the classical
optimizer itself on top of the circuit runtime and measurement
time. For TAE, in turn, the circuit only needs to be executed
once. As discussed in Sec. V-A, TAE needs more circuit layers
to perform equally to QAOA, e.g., TAE with p = 6 and QAOA
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with p = 3 show similar results. Thus, the TAE circuit is
longer due to a higher number of layers and a higher number
of qubits, including slack bits. In Fig. 5, the circuit depth is
plotted vs. number of circuit layers with and without slack
bits for scenarios 0, 5, and 9, where n denotes the number of
qubits. The circuit depth increases linearly with the number
of layers and roughly also with the number of qubits, be it
either x- or x+y-bits. Consider scenario 5 as an example: For
TAE, slack bits have to be included and the corresponding
circuit with p = 6 has a depth of 195 (light orange data
points). Running QAOA without slack bits and p = 3 needs
a circuit of depth 60 (dark orange data points), which has to
be run 44 times (green points in Fig. 4). Assuming that the
circuit runtime scales approximately linearly with the circuit
depth, we could assign a runtime T to the circuit with 60
qubits. Then, TAE with slack bits needs about 3.25T , while
QAOA without slack bits takes 44T . In general, the overall
runtime of QAOA will be much longer due to the classical
optimization. However, for near-term devices with only small
number of qubits and capable of running only shallow circuits,

the repeated execution of a smaller circuit as in QAOA might
be beneficial.

VI. CONCLUSION AND OUTLOOK

In this work we have compared different QUBO variants
and objective functions applied to the knapsack problem in
two different algorithmic settings, namely QAOA and TAE.
The standard formulation for the knapsack problem using and
evaluating slack variables does not perform well, yielding
lower success probabilities than uniform sampling for QAOA
and TAE, especially for large scenarios. The best results
are obtained when completely discarding the slack bits and
evaluating the inequality constraint classically, using QAOA:
the overall number of variables is smaller, requiring less qubits
and thus shallower circuits. Moreover, the fraction of optimal
solutions out of all possible bitstrings increases as the size
of the state space is decreases. Although performing well in
many cases, the TAE approach should be used with slack bits
in the circuit, since otherwise it can lead to wrong results,
as discussed in Sec. V-A. Here, the variant that only uses x-
bits in the final evaluation is recommended, still having the
advantage of not relying on convergence of slack bits in the
end.

In summary, QAOA without slack bits is better suited for
near-term quantum devices, needing less qubits and shallower
circuits. The TAE algorithm in turn is expected to run faster
than QAOA (see Sec. V-C) as no iterations are required,
and it is fully quantum, not needing a classical optimization
loop. Thus it might be more useful in the future when longer
circuits can be executed in a meaningful way. Although the
presented extensions of QAOA depict an improvement to the
standard algorithm and QUBO formulation, the success prob-
ability overall decreases with the problem size and becomes
very small already for problems in the range of 20 qubits,
which is still far below any problem size needed in industrial
applications. Thus, further improvements of these approaches
are necessary. Generlly, the performance increases with more
circuit layers, but for TAE we observe no major changes
anymore between p = 10 and p = 20, indicating a saturation.
As shown in [21], TAE can be further improved by adding
counter-diabatic driving terms to the Hamiltonian. QAOA
without slack bits could be combined with other techniques
such as constraint preserving mixers [27], also with extension
to a quantum alternating operator ansatz [28], or counter-
diabatic driving [29]. Moreover, the omission of slack bits
and classical evaluation of inequalities could also be used for
the Variational Quantum Eigensolver (VQE), since the circuit
ansatz for VQE does not require a unitary corresponding to
the problem Hamiltonian. While this ansatz does not work for
quantum annealing, the idea of only evaluating the x-bits can
also be applied there.
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APPENDIX

A. Optimizing Annealing Time in TAE

Given a fixed schedule function s(t) and the number of trotter steps p, the unitary operator in Equation (6) depends on the
annealing time T . In this work we also implement the variational version of TAE, where in, we optimize T . This variational
TAE has also been studied by He et al. in [28]. This approach helps in maintaining the variational aspect of QAOA and
comprises of only a single variational parameter to be optimized by the classical subroutine.

B. Comparison of annealing schedules

We tested different annealing schedules, being used directly in TAE or as initial parameters for QAOA. In Fig. 6, the
probability of sampling the optimal solution is plotted against the scenario number for QAOA and TAE comparing a sinusoidal
schedule with δt = 0.75 (first column), a sinusoidal schedule with δt = 1 (second column) and random angles (third column).
The first row contains results for discarding the slack bits, the second row shows the results for using the slack bits in the
circuit but not evaluating them. We can clearly see that the sinusoidal schedules perform much better than random angles,
not only for TAE, but also for QAOA. Changing the step-size only influences the results without slack bits, where especially
QAOA performs better for δt = 0.75.
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Figure 6. Total probability of sampling optimal solutions Popt for different objective functions (upper and lower panels) vs. scenario number. The columns
indicate different annealing schedules used for TAE and as initial parameters for QAOA. The results for QAOA (red circles) and TAE (blue diamonds) for
various numbers of circuit layers are shown. As a baseline, Popt for randomly drawing x-bitstrings is plotted as a solid black line. Missing points are zero
and thus not displayed in the logarithmic scale.
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C. Knapsack instances

Table II
OVERVIEW OF KNAPSACK INSTANCES

Scen. no. Knapsacks Capacity Items Item values Item weights Log. bits Slack bits Opt. val. No. opt.
0 1 (9) 2 (19, 16) (4, 6) 2 4 19 1
1 1 (3) 4 (4, 4, 1, 2) (2, 2, 2, 3) 4 2 4 2
2 1 (3) 6 (1, 3, 5, 2, 4, 1) (3, 2, 2, 2, 3, 2) 6 2 5 1
3 1 (10) 4 (19, 19, 17, 17) (6, 6, 3, 7) 4 4 36 2
4 1 (8) 5 (15, 15, 16, 17, 17) (2, 6, 5, 5, 4) 5 4 32 2
5 1 (8) 5 (18, 17, 19, 18, 19) (2, 4, 5, 2, 3) 5 4 55 1
6 1 (10) 6 (19, 17, 15, 17, 15, 18) (7, 1, 6, 7, 5, 3) 6 4 50 2
7 1 (8) 6 (19, 18, 16, 18, 17, 16) (6, 7, 4, 3, 3, 2) 6 4 51 1
8 1 (8) 8 (17, 16, 17, 15, 18, 17, 16, 18) (5, 4, 1, 5, 4, 1, 2, 3) 8 4 68 2
9 1 (9) 8 (16, 17, 17, 19, 18, 16, 17, 19) (3, 2, 5, 1, 4, 4, 1, 4) 8 4 72 1

10 2 (11, 8) 3 [(19, 16, 16); (19, 16, 18)] (2, 4, 4) 6 8 53 3
11 2 (8, 11) 3 [(18, 19, 17); (18, 17, 18)] (3, 6, 2) 6 8 55 1

12 2 (9, 9) 4 [(19, 16, 19, 16);
(19, 16, 19, 16)] (4, 6, 4, 6) 8 8 54 4

13 2 (10, 10) 4 [(18, 16, 15, 19);
(16, 17, 15, 16)] (7, 1, 5, 7) 8 8 52 1

14 2 (8, 8) 6 [(15, 15, 18, 15, 15, 18);
(15, 15, 18, 15, 15, 18)] (7, 4, 3, 7, 4, 3) 12 8 66 6

15 2 (8, 8) 6 [(19, 17, 18, 19, 17, 18);
(19, 17, 18, 19, 17, 18)] (5, 5, 5, 5, 5, 5) 12 8 38 2

16 2 (10, 10) 8 [(19, 19, 17, 17, 19, 19, 17, 17);
(19, 19, 17, 17, 19, 19, 17, 17)] (6, 6, 3, 7, 6, 6, 3, 7) 16 8 72 24

17 2 (11, 9) 8 [(19, 19, 17, 15, 19, 15, 16, 15);
(19, 15, 18, 15, 15, 18, 18, 17)] (1, 6, 4, 5, 7, 3, 4, 5) 16 8 91 3

18 2 (9, 10) 9
[(15, 18, 15, 17, 16, 18,
16, 16, 15); (18, 15, 18,
17, 16, 16, 19, 18, 17)]

(3, 5, 2, 3, 2, 6, 5, 2, 7) 18 8 105 5

19 2 (8, 9) 9
[(18, 15, 15, 16, 17, 16,
19, 15, 17); (18, 15, 16,
16, 16, 18, 15, 19, 15)]

(1, 5, 1, 1, 5, 7, 7, 5, 3) 18 8 103 1

20 3 (9, 9, 9) 6
[(19, 16, 19, 16, 19, 16);
(19, 16, 19, 16, 19, 16)
(19, 16, 19, 16, 19, 16)]

(4, 6, 4, 6, 4, 6) 18 12 73 54

21 3 (9, 10, 11) 6
[(19, 16, 19, 17, 17, 19);
(16, 17, 19, 17, 18, 16)
(15, 16, 19, 17, 17, 19)]

(7, 6, 7, 5, 5, 4) 18 12 92 1
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