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Abstract

Robust Principal Component Analysis (RPCA) and its associated non-convex relaxation methods
constitute a significant component of matrix completion problems, wherein matrix factorization strate-
gies effectively reduce dimensionality and enhance computational speed. However, some non-convex
factorization forms lack theoretical guarantees. This paper proposes a novel strategy in non-convex
quasi-norm representation, introducing a method to obtain weighted matrix quasi-norm factorization
forms. Especially, explicit bilinear factor matrix factorization formulations for the weighted logarithmic
norm and weighted Schatten-q quasi norms with q = 1, 1/2, 2/3 are provided, along with the estab-
lishment of corresponding matrix completion models. An Alternating Direction Method of Multipliers
(ADMM) framework algorithm is employed for solving, and convergence results of the algorithm are
presented.

keywords: Robust principal component analysis; Schatten-q quasi norm; Logarithmic quasi norm;
bilinear factor matrix factorization

1 Introduction

In the realm of modern data analysis and signal processing, techniques for data decomposition and reg-
ularization play a pivotal role. These methodologies not only furnish indispensable tools for unraveling
the underlying structure of data but also find wide-ranging applications across various domains, including
recommendation systems [1], image processing [2, 3], medical image analysis [4], intelligent transportation
[5], and robust principal component analysis (RPCA) [6]. RPCA, also referred to as low-rank and sparse
matrix decomposition in [7], [8], or robust matrix completion in [9], aims to recover a low-rank matrix
X ∈ R

n×m and a sparse matrix S ∈ R
n×m from corrupted observations M = X+S∈

R
n×m as follows:

min
X

λrank(X) + ‖S‖0, s.t. X + S −M = 0, (1)

where | · |0 denotes the ℓ0-norm, and λ > 0 represents a regularization parameter. However, solving (1) is
NP-hard. Consequently, an effective approach to tackle this challenge is to relax (1) into a convex problem.
To derive a more generalized model, [9] extends (1) into the following framework:

min
X

λ‖X‖∗ + ‖S‖1, s.t. PΩ(X + S −M) = 0. (2)

Here, PΩ represents the projection onto the index set Ω, and M denotes the observed matrix. Wright
et al. [10] and Candès et al. [6] have shown that under certain mild conditions, the convex relaxation
formulation (2) can effectively recover the low-rank and sparse matrices X∗ and S∗ with high probability.

In pursuit of improved recovery efficacy, researchers have explored various non-convex representa-
tion techniques to bring the model closer to low-rank solutions. Apart from the classical nuclear norm
relaxation, numerous recent studies have put forth effective and computationally tractable non-convex
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relaxation methods[11, 12, 13, 14, 15, 16, 17, 18, 19]. [13] proposes a robust matrix completing model
based on Schatten-q norm (q < 1), where Schatten-q norm is defined as follows:

‖X‖Sq
=





min{m,n}
∑

i=1

σq
i





1/q

,

where σi denotes the i-th singular value of the matrix X . In comparison with the nuclear norm, the
Schatten-q quasi-norm with 0 < q < 1 is closer to approximating the rank function [11, 12]. The loga-
rithmic determinant (log det) function yields a smaller value than the nuclear norm, thus employing it to
approximate the rank function results in enhanced low-rank performance [19]. Essentially, the logarithmic
determinant involves applying the logarithm function to each singular value and summing them up:

‖X‖pL =

min{m,n}
∑

i=1

log(σp
i + ǫ).

Kang et al. [19] leverage this property and devise an Alternating Direction Method of Multipliers (ADMM)
algorithm to address recovery problems. Re-weighting strategies have been widely employed in matrix
contexts [17], this strategy enhances the effectiveness of the shrinkage operator.

However, the aforementioned models involve non-convex relaxation methods that operate directly on
singular value vectors, necessitating matrix singular value decomposition, which incurs significant com-
putational costs. Despite numerous attempts at fast SVD computation, such as partial SVD [20], the
performance of these methods still falls short for many practical applications [21]. It has been observed
that representing relaxation functions in the form of matrix factorizations can effectively reduce the di-
mensionality of data and offer computational advantages [14, 16, 18]. [18] propose a factorization form of
the nuclear norm, termed the BM equation:

‖X‖∗ = min
A∈Rm×d,B∈Rn×d,X=ABT

1

2

(

‖A‖2F + ‖B‖2F
)

. (3)

Replacing the nuclear norm in (2), [22] propose a corresponding model and employ an ADMM method to
solve it. Furthermore, Shang et al. [14] extend the concept of matrix factorization to Schatten-q norms,
offering matrix factorization forms for q = 0.5 and q = 2/3. They propose corresponding factorization
models based on this theory and validate the recovery performance. Additionally, Chen et al. [16] present
a factorization form of the logarithmic determinant, significantly enhancing computational efficiency.

Chen et al. [23] introduced a reweighted nuclear norm factorization form. However, in the factorization
form proposed by [23], the weights are not freely selectable; rather, they must be determined based on the
singular values of the raw matrix, which is also referred to as the “deep prior.” In practical applications
of matrix recovery, fulfilling the “deep prior” condition is nearly impossible. Hence, exploring a weighted
matrix factorization form where the weights W are independent of the matrix to be recovered represents
an area for further research.

Moreover, integrating the re-weighted strategy with non-convex representations such as Schatten-q
norms or Logarithmic norms currently lacks theoretical models and effective algorithms. Consequently,
designing the factorization form of re-weighted quasi-norms emerges as a research topic worthy of explo-
ration, which not only extends the theory of matrix recovery problems but also holds promise for diverse
application prospects.

We summarize the main contributions of this work as follows:

• We investigate the relationship between the weight matrix and the singular value vector, and provide
an analytical strategy for matrix-weighted quasi norms.

• For Schatten-q norms (q = 1, 0.5, and 2/3) and Logarithmic norms, we demonstrate the existence of
their factorization forms and provide specific formulations.

• We establish the matrix completion models for Schatten-q norms (q = 1, 0.5, and 2/3) and Loga-
rithmic norms, utilizing an ADMM framework algorithm for their solution. Additionally, we provide
convergence results for this algorithm.
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The remaining structure of this article is as follows. Section 2 presents the relevant knowledge of
manifold optimization and matrix theory required for the study. Section 3 delves into the action of the
weight matrix on the original singular value matrix in the strategy of weighted quasi-nuclear norms and
establishes relevant inequalities, extending the discussion to complex matrices and quaternion matrices.
Section 4 investigates the factorization forms of weighted Schatten-q norms with q = 1, 0.5, 2/3, and
the Logarithmic norm, providing the corresponding factorization formulations. Section 4 establishes the
corresponding low-rank matrix recovery models and solution methods for q = 1, q = 0.5, and q = 2/3
in Schatten-q norm and Logarithmic norm. It offers detailed analytical solutions to each subproblem
and provides convergence analysis to the Karush-Kuhn-Tucker (KKT) point of the problem under mild
conditions.

2 Preliminaries

For proposing the factorization strategy for weighted quasi-norms, we rely on certain results from manifold
optimization and matrix analysis. Initially, we revisit some foundational concepts of manifold optimization,
as outlined in [24].

Definition 2.1. Let M be a subset of a linear space E. We say M is an embedded submanifold if either
of the following holds:

1. M is an open subset of E, then, we call M an open submanifold. If M = E, we also call it a linear
manifold.

2. For a fixed integer k ≥ 1 and for each x ∈ M there exists a neighborhood U of x in E and a smooth
function h : U → R

k such that

(a) if y ∈ U , then y ∈ M if and only if h(y) = 0;

(b) rank Dh(x) = k, where Dh represents the derivative of h.

Such a function h in Definition 2.1 is called a local defining function for M at x. This characterization
implies that the manifold is locally homeomorphic to a k-dimensional Euclidean space. In our study, we
primarily concentrate on the Stiefel manifold.

Definition 2.2. The set of all column-orthogonal matrices of the same size is referred to as the Stiefel
manifold, denoted as

St(n, p) = {X ∈ R
n×p : XTX = Ip}.

Its corresponding local defining function is h(X) = XTX − Ip.

Clearly, St(n, p) is an embedded submanifold owing to the existence of the local defining function h.
Tangent spaces can be utilized to elucidate the local properties of the manifold.

Definition 2.3. Let M be a subset of a linear space E. For all x ∈ M, define

TxM = {c′(0) : c : [0, 1] → M is smooth around 0 and c(0) = x}.

We call TxM the tangent space to M at x. Vectors in TxM are called tangent vectors to M at x.

The definition of the tangent space above may not be clear and intuitive. [24] provides a clear expression
for TXSt(n, p) as follows:

TXSt(n, p) = {V ∈ R
n×p : XTV + V TX = 0}. (4)

Definition 2.4 (Riemann manifold). An inner product on TxM is a bilinear, symmetric, and positive
definite function 〈·, ·〉x : TxM × TxM → R. Such an inner product 〈·, ·〉x is called a smooth variation
on M with x if the function x → 〈V (x),W (x)〉x is smooth from M to R for any two smooth vector fields
V,W on M. A manifold with smooth variations is called a Riemannian manifold.

As described in [24, Chapter 7], St(n, p) is a Riemannian manifold. Optimal conditions for nonsmooth
optimization on Riemannian manifolds were discussed in [25]. Firstly, we recall some definitions of the
subdifferential in Riemannian manifolds.
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Definition 2.5 (Chart [24]). Let M be a manifold. If U ⊂ M and a smooth function φ : U → R
d

satistying:

• φ(U) is an open set in R
d,

• φ is invertible between U and φ(U),

then we call (U, φ) is a chart of M.

According to [24, Chapter 8], we know that every point x in the embedded manifold M possesses a
chart (U, φ) such that x ∈ U . The concept of Lipschitz continuity on a manifold is defined as follows, as
per [25, Lemma 3.1]:

Definition 2.6 (Lipschitz Continuity on Manifolds [25]). If for any x ∈ M ⊂ R
m, function F : Rm → R

satisfies that F ◦ φ−1 is Lipschitz continuous in the φ(V ), where (V, φ) is a chart of M which contains x,
then the function F is locally Lipschitz continuous on the manifold M.

Similar to optimization analysis in Euclidean spaces, with Lipschitz continuity, we can introduce gen-
eralized Clarke subdifferentials.

Definition 2.7 (Generalized Clarke Subdifferential [26]). For a locally Lipschitz function F on M, the
Riemannian generalized directional derivative at point x ∈ M in direction v is defined as

F ◦(x, v) = lim sup
y→x,t↓0

F ◦ φ−1(φ(y) + tDφ(x)[v]) − F ◦ φ−1(φ(y))

t
,

where (U, φ) is the chart at x of manifold M. The generalized Clarke subdifferential of F at x ∈ M is
denoted as ∂F (x) and is defined as

∂F (x) = {ξ ∈ TxM : 〈ξ, v〉 ≤ F ◦(x, v), ∀v ∈ TxM}.

Definition 2.8 (Definition 5.2 [25]). For a locally Lipschitz function F , if

• the limit F ′(x; v)
.
= limt↓0

F (x+tv)−F (x)
t exists for all v ∈ TxM, and

• F ′(x; v) = F ◦(x; v) for all v ∈ TxM,

then F is regular along TxM at x ∈ M.

In fact, when the function F is regular along TxM at x ∈ M, the generalized Clarke subdifferential of
F on M can be expressed concisely as:

Lemma 2.1 (Theorem 5.1 (iii) [25]). Let M be an embedded submanifold of Rm. F is Lipschitz continuous
at x ∈ M, and F̄

.
= F |M. If F is regular along TxM at x ∈ M, then we have ∂F̄ (x) = ProjTxM(∂F (x)),

where Proj is the projection operator.

Lemma 2.2 (Lemma 5.1 [25]). Let F = F1 + F2 be a function on R
m, where F1 is convex and F2 is

continuously differentiable. Then F is regular along TxM for any x ∈ M.

For unconstrained optimization problems on manifolds M, we can derive first-order necessary condi-
tions based on [25, Theorem 4.1].

Lemma 2.3 (Theorem 4.1 [25]). If x∗ is a local minimum solution to the problem minx∈M F (x), then
0 ∈ ∂F (x∗).

To derive the factorization strategy for the weighted quasi-norm, we require some analytical tools
concerning the singular value vectors. Let’s introduce some notation regarding singular values. For a
matrix X ∈ R

m×n, its singular value decomposition (SVD) is given by X = UΣV T , where Σ = diag(σ)
and σ ∈ R

minm,n represents the singular value vector. To simplify notation, we use σ(X) to denote the
singular value vector function of the matrix X .

Lewis [27] provided a differential expression for compositions of singular value vectors and absolutely
symmetric.
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Definition 2.9. A generalized function p : R
n → [−∞,+∞] is called absolutely symmetric if p(γ) =

p(σ(diag(γ))) holds for any vector γ ∈ R
n.

Lemma 2.4 (Corollary 2.5 [27]). If the function p is absolutely symmetric, then

∂(p ◦ σ)(X) = {Udiag(µ)V T : µ ∈ ∂f(σ(X)), X = Udiag(σ(X))V T is the SVD of X}.

Shang et al. [14] provided the following factorization forms for Schatten-q norms.

Lemma 2.5. For a matrix X ∈ R
m×n with rank(X) = r ≤ d, the factorization form of the Schatten-0.5

norm is:

‖X‖S1

2

= min
A∈Rm×d,B∈Rn×d,X=ABT

1

4
(‖A‖∗ + ‖B‖∗)2 .

The factorization form of the Schatten-2/3 norm is:

‖X‖S2

3

= min
A∈Rm×d,B∈Rn×d,X=ABT

(‖A‖2F + 2‖B‖∗
3

)
3

2

.

Another non-convex function that possesses a bilinear factor matrix formulation is the Logarithmic
norm [16].

Lemma 2.6. For a matrix X ∈ R
m×n with rank(X) = r ≤ d, the factorization form of the Logarithmic

Norm is:
2‖X‖1/2L = min

A∈Rm×d,B∈Rn×d,X=ABT
‖A‖1L + ‖B‖1L.

3 Factorization Strategy

In this section, we will establish the factorization strategy for the weighted Schatten-q norm and the
weighted logarithmic norm. We begin by providing the definition of the block diagonal matrix form.

Definition 3.1. A matrix X ∈ R
n×n is said to have a block diagonal matrix form if it can be written as

X =











X1 0 . . . 0
0 X2 . . . 0

0 0
. . . 0

0 0 . . . Xr











,

where Xi ∈ R
ni×ni , 1 ≤ i ≤ r with

∑r
i=1 ni = n. We say that such a matrix X has the form (n1, . . . , nr).

The following lemma establishes the connection between symmetric matrices and diagonal matrices.

Lemma 3.1. Let A ∈ R
n×n be a symmetric matrix and S be a diagonal matrix in the form of

S =











s1I1 0 . . . 0
0 s2I2 . . . 0

0 0
. . . 0

0 0 . . . srIr











,

where s1, . . . , sr are nonzero distinct real numbers, Ii is an ni × ni identity matrix for i = 1, . . . , r with
∑r

i=1 ni = n. If AS is symmetric, then A and S have the same form (n1, . . . , nr).

Proof. Let

A =











A11 A12 . . . A1r

A21 A22 . . . A2r

. . . . . .
. . . . . .

Ar1 Ar2 . . . Arr











,
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where Aij ∈ R
ni×nj . Since AS, A, and S are all symmetric, we have AS = SA, i.e.,











s1A11 s2A12 . . . srA1r

s1A21 s2A22 . . . srA2r

. . . . . .
. . . . . .

s1Ar1 s2Ar2 . . . srArr











= AS = SA =











s1A11 s1A12 . . . s1A1r

s2A21 s2A22 . . . s2A2r

. . . . . .
. . . . . .

srAr1 srAr2 . . . srArr











,

Hence, for i 6= j, it holds siAij = sjAij , which together with si 6= sj 6= 0, implies Aij = 0. So, A has the
form (n1, . . . , nr).

Let k be a positive integer. The following lemma demonstrates the uniqueness of the 1/kth power form
of symmetric positive definite matrices.

Lemma 3.2. Let A,B ∈ R
n×n be two symmetric positive definite matrices. If Ak = Bk for some positive

integer k, then A = B.

Proof. Let λi and xi for 1 ≤ i ≤ n be the eigenvalues and corresponding eigenvectors of A. It follows from
Ak = Bk that

0 = (Bk − λk
i I)xi =

k−1
∑

t=0

λt
iB

k−1−t(B − λiI)xi, i = 1, . . . , n.

which yields (B − λiI)xi = 0 for any 1 ≤ i ≤ n since the matrix
∑k−1

t=0 λt
iB

k−1−t is symmetric positive
definite. This means (λi, xi) is also an eigenpair of B. Since A and B are symmetric positive definite, their
spectral decompositions have the same rank-one decomposition, thus A = B.

We will now present some properties of symmetric positive definite matrices with block diagonal matrix
forms.

Lemma 3.3. Let A ∈ R
n×n be a symmetric positive definite matrix with the eigenvalue decomposition

A = USUT . If A has the form (n1, . . . , nr), then US1/kUT and US−1/kUT with some positive integer k
also have the form (n1, . . . , nr).

Proof. Denote the form of A as diag(△i, 1 ≤ i ≤ r). Then △i is also symmetric positive definite, and

diag(△1/k
i , 1 ≤ i ≤ r) has the form (n1, . . . , nr), whose kth power is A. Since (US1/kUT )k = USUT = A,

by Lemma 3.2, US1/kUT = diag(△1/k
i , 1 ≤ i ≤ r) has the form (n1, . . . , nr). On the other hand, since the

inverse of a matrix is unique, US−1/kUT = diag(△−1/k
i , 1 ≤ i ≤ r) also has the form (n1, . . . , nr).

Lemma 3.4. Let A ∈ R
n×n be a symmetric positive definite matrix with the eigenvalue decomposition A =

USUT . If UŜSUT has the form (n1, . . . , nr), in which Ŝ = diag(1/(Sii+ ǫS
1/2
ii )) or Ŝ = diag(1/(Sii+ ǫ)),

then US−1ŜUT and USUT also have the form (n1, . . . , nr).

Proof. First, let UŜSUT with Ŝ = diag(1/(Sii + ǫS
1/2
ii )) have the form (n1, . . . , nr). From the definition

of Ŝ we know every element in diag(ŜS) less than 1. Hence, U(((ŜS)−1 − I)/ǫ)UT is positive definite. By
Lemma 3.3 we know U(ŜS)−1UT , U(((ŜS)−1 − I)/ǫ)UT and U(((ŜS)−1 − I)/ǫ)−2UT all have the form
(n1, . . . , nr) by sequently. By simple calculation, it is clear that S = (((ŜS)−1 − I)/ǫ)−2, which shows
A = USUT has the form (n1, . . . , nr). Similarly, By Lemma 3.3 we know US1/2UT has the same form as
USUT , (n1, . . . , nr). Actually, by Galois theory, the roots of a quartic equation can be expressed using
algebraic operations involving addition, subtraction, multiplication, division, exponentiation, and roots.
This means that we could denote the solution of equation x4 + ǫx3 = y as

x = f̂(y, ǫ,+,−,×,÷, k
√
·, ˆ).

Also, we know
UŜS−1UT = Uf̂(S1/2, ǫ,+,−,×,÷, k

√
·, ˆ)UT .

Therefore, by Lemma 3.3, UŜS−1UT has form (n1, . . . , nr). The proof for the case of Ŝ = diag(1/(Sii+ǫ))
is similar.

Let Z denote the set of nonnegative integers. We present the main result of this section in the following
theorem.
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Theorem 3.1. Let W ∈ R
n×n and Σ ∈ R

r×r be diagonal matrices with non-decreasing diagonal elements,
i.e.,

W11 ≥ W22 ≥ · · · ≥ Wnn > 0, Σ11 ≥ Σ22 ≥ · · · ≥ Σrr > 0,

and let P̃ ∈ R
n×r be a column orthogonal matrix (n ≥ r). If (2− q)/q ∈ Z, then

‖W−1P̃Σ‖qSq
≥

r
∑

i=1

(

Σii

Wii

)q

.

and

‖W−1P̃Σ‖1/kL ≥
r
∑

i=1

log

(

(

Σii

Wii

)1/k

+ ǫ

)

, k = 1, 2.

Proof. Let h(P̃ ) = ‖W−1P̃Σ‖qSq
and St(n, r) = {P̃ ∈ R

n×r| P̃T P̃ = Ir}. We define

P ∈ argmin
P̃∈St(n,r)

h(P̃ ).

Then 0 ∈ ∂h(P ) from Lemma 2.3.

Note that the function h(P̃ ) = p ◦ σ(W−1P̃Σ), where p(x) =
∑

i |xi|q or p(x) =
∑

i log(x
1/k
i + ǫ).

Since W,Σ have non-zero diagonal elements, the matrix W−1PΣ has linearly independent columns, i.e.,
full column rank, thus σ(W−1PΣ) has no zero elements. This means the function p is differentiable and
Lipschitz continuous in the neighborhood of σ(W−1PΣ). By [28, Corollary 7.6] we know (p ◦ σ) is Fréchet
derivative and Lipschitz continuous on W−1PΣ. Therefore, It follows from Lemma 2.4 that

∂(p ◦ σ) = {U∇p(σ(W−1PΣ))V T },

where W−1PΣ = USV T is the SVD of W−1PΣ. Thus, we have

∂h(P ) = {W−1Up̂ŜV TΣ}, (5)

where

p̂ =



















q, if p(x) =
∑

i

|xi|q,

1

k
, if p(x) =

∑

i

log(x
1/k
i + ǫ),

, Ŝ =



















Sq−1, if p(x) =
∑

i

|xi|q,

diag

(

1

Sii + ǫS
1−1/k
ii

)

, if p(x) =
∑

i

log(x
1/k
i + ǫ).

(6)

We denote F = p̂UŜV T . Also, by Lemma 2.2, h is regular along TPSt(n, r), and by Lemma 2.1, we have

0 ∈ ∂h(P ) = ProjTP St(n,r)(∂h(P )), (7)

using the representation of the tangent space on the Stiefel manifold from (4). From (7), we have

0 ∈ argmin
Z∈Rn×r

‖Z −W−1FΣ‖2F , s.t. PTZ + ZTP = 0. (8)

The KKT condition of (8) is ∃Λ ∈ R
r×r such that

2(ZT −W−1FΣ) + PΛ + PΛT = 0, PTZ + ZTP = 0.

By (8), we know ZT = 0 is an optimal solution, thus we can deduce

W−1FΣ = P
Λ + ΛT

2
. (9)

From (5) and (6), we have

F = p̂UŜV T = p̂USV TV ŜS−1V T = p̂W−1PΣV ŜS−1V T , (10)

7



and
F = p̂UŜV T = p̂US−1ŜUTUSV = p̂US−1ŜUTW−1PΣ. (11)

Combining (9) and (11), it holds

p̂PTW−1US−1ŜUTW−1PΣ2 =
Λ+ ΛT

2
, (12)

which is a symmetric matrix. Note that Σ is classified by singular values into the form (n1, . . . , ns), i.e.,

Σ =











σ1I1
σ2I2

. . .

σsIs











,

where σ1 > σ2 > · · · > σs, and I1, . . . , Is are n1, . . . , ns-dimensional identity matrices, respectively. It fol-
lows from (12) and Lemma 3.1 that the matrix PTW−1US−1ŜUTW−1P has the same block-diagonal form,
(n1, . . . , ns), as Σ, since S−1Ŝ is diagonal. Therefore, we can exchange Σ with PTW−1US−1ŜUTW−1P ,
i.e.,

Λ + ΛT

2
= p̂ΣPTW−1US−1ŜUTW−1PΣ. (13)

Also, it holds
UTW−1P = UTW−1PΣΣ−1 = UT (USV T )Σ−1 = SV TΣ−1. (14)

Combining (13) and (14), we can see that

Λ + ΛT

2
= p̂ΣPTW−1US−1ŜUTW−1PΣ = p̂V SŜV T , (15)

which is invertible. When p(x) =
∑

i log(x
1/2
i + ǫ) or p(x) =

∑

i log(xi + ǫ), by Lemma 3.4, we know

that V S−1ŜV T is invertible and has the same block-diagonal form (n1, . . . , ns) as P
TW−1US−qUTW−1P

and Σ. When p(x) =
∑

i |xi|q, SŜ = Sq, by Lemma 3.3 and (2 − q)/q ∈ Z, we know that V S−1ŜV T =
V Sq−2V T ,Σ have the same form (n1, . . . , ns). Therefore,

V S−1ŜV TΣ = ΣV S−1ŜV T . (16)

Similarly, from (9), (10), and (16), we have

P
Λ + ΛT

2
PT = p̂W−2PΣV S−1ŜV TΣPT = p̂W−2PΣ2V S−1ŜV TPT .

It follows from (15) that
PV SŜV TPT = W−2PΣ2V S−1ŜV TPT .

Noting that PTP = I, moving the right-hand side to the left and multiplying by PT , we can see that

W−2PΣ2PT = PV S2V TPT

is symmetric. By Lemma 3.1, we know PΣ2PT has the same block-diagonal form asW−1, thusW−1PΣ2PT

is symmetric. Define
P̂ = [P, P⊥],

where P⊥ is the complementary orthogonal basis of P . Therefore,

P̂TW−1P̂

[

Σ2

0

]

= P̂TW−1P̂

[

Σ2

0

]

P̂T P̂ = P̂TW−1PΣ2PT P̂

is symmetric. By Lemma 3.1, we know P̂TW−1P̂ has the same block-diagonal form as diag(Σ2, 0), denoted
as (n1, . . . , ns, ns+1), where ns+1 is the size of the zero matrix. Therefore,

P̂TW−1P̂

[

Σ
0

]
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is symmetric and

P̂TW−1P̂ =











△̃1

△̃2

. . .

△̃s+1











,

where the size of △̃i is the same ni (1 ≤ i ≤ s + 1). Since the Schatten-q norm is a unitarily invariant
function, we have

‖W−1PΣ‖qSq
= ‖P̂TW−1P̂

[

Σ
0

]

‖qSq
=

∥

∥

∥

∥

∥

∥

∥

∥

∥











σ1△̃1

. . .

σs△̃s

0











∥

∥

∥

∥

∥

∥

∥

∥

∥

q

Sq

=
s
∑

i=1

σi‖△̃i‖qSq
. (17)

Since a unitary transformation does not change the singular values of a positive definite matrix, the singular
values of △̃i (1 ≤ i ≤ s) are r elements of (W−1

11 ,W−1
22 , . . . ,W−1

nn ). If we set Σii = 0, r < i ≤ n, then (17)
can be rewritten as

‖W−1PΣ‖qSq
=

n
∑

i=1

(

Σii

Wπ(i)π(i)

)q

≥
r
∑

i=1

(

Σii

Wii

)q

,

where π is a permutation operator, and the last inequality comes from the rearrangement inequality.
Similarly, since Logarithmic Norm is a unitarily invariant function, we have

‖W−1PΣ‖1/2L = ‖P̂TW−1P̂

[

Σ
0

]

‖1/2L =

s
∑

i=1

‖σi△̃i‖1/2L . (18)

Let fi(x) = log((Σii/x)
1/2 + ǫ) for x > 0, we know f ′

i+1(x) − f ′
i(x) ≥ 0 by simple calculation. Then from

the generalization of rearrangement inequality in [29] and (18), we can get

‖W−1PΣ‖1/2L =

r
∑

i=1

log

(

(

Σii

Wπ(i)π(i)

)1/2

+ ǫ

)

≥
r
∑

i=1

log

(

(

Σii

Wii

)1/2

+ ǫ

)

,

where π is a permutation operator.

4 Factorization Forms of Weighted Schatten-q Norms

In this section, we establish the specific factorization forms of the weighted Schatten-q norms with q =
1, 0.5, 2/3, and the weighted Logarithmic norm using the factorization strategy provided in the previous
section.

To simplify notation and provide clear definitions, we present the expressions for the weighted Schatten-
q norms and the weighted Logarithmic norm.

Definition 4.1. Let X ∈ R
n×m, q > 0, and W = diag(W11,W22, . . . ,Wtt) with t = min{m,n} be a given

descending weighted diagonal matrix. Let X = UΣV T be the SVD of X. Then, the corresponding weighted
Schatten-q norm of X is defined as

‖X‖Sq,W =

(

t
∑

i=1

Σq
ii

W q
ii

)1/q

.

The corresponding weighted Logarithmic norm is defined as

‖X‖1/2L,W =
t
∑

i=1

log

(

(

Σii

Wii

)1/2

+ ǫ

)

.
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Here, if W = I and the domain is the real field, the above definitions are the Schatten-q norm and the
Logarithmic norm.

We will prove that the factorization forms of the weighted Schatten-q norms for q = 1, 0.5, 2/3 and
Logarithmic norm have explicite expressions.

Theorem 4.1. Let W ∈ R
r×r be a non-decreasing diagonal matrix, i.e.,

W11 ≥ W22 ≥ · · · ≥ Wrr > 0.

For X ∈ R
m×n with singular values σi (1 ≤ i ≤ rank(X)), if r ≥ rank(X), then we have

(1)
rank(X)
∑

i=1

σi

Wii
= min

A∈Rm×r,B∈Rn×r,X=ABT

1

2
(‖AW−1‖2F + ‖B‖2F ),

(2)
rank(X)
∑

i=1

(

σi

Wii

)
1

2

= min
A∈Rm×r,B∈Rn×r,X=ABT

1

2
(‖AW−1‖∗ + ‖B‖∗),

(3)
rank(X)
∑

i=1

(

σi

Wii

)
2

3

= min
A∈Rm×r,B∈Rn×r,X=ABT

1

3
(‖AW−1‖2F + 2‖B‖∗),

(4)

‖X‖1/2L,W = min
A∈Rm×r,B∈Rn×r,X=ABT

1

2
(‖AW−1‖1L + ‖B‖1L).

Proof. The singular value decomposition of the matrix X is given by

X = UΣXV T .

First, we prove that the left-hand side of conclusions (1), (2), and (3) respectively are greater than or equal
to the right-hand side. Let WX be the matrix obtained by extracting the first rank(X) rows and columns
of W . Define

Ã =
[

UΣ
1

2

XW
1

2

X 0

]

, B̃ =
[

V Σ
1

2

XW
− 1

2

X 0

]

,

then for cases (1), (2) and (4), we have

(1)
rank(X)
∑

i=1

σi

Wii
=

1

2
(‖ÃW−1‖2F + ‖B̃‖2F ) ≥ min

X=ABT

1

2
(‖AW−1‖2F + ‖B‖2F ).

(2)
rank(X)
∑

i=1

(

σi

Wii

)
1

2

=
1

2
(‖ÃW−1‖∗ + ‖B̃‖∗) ≥ min

X=ABT

1

2
(‖AW−1‖∗ + ‖B‖∗).

(4)

‖X‖1/2L,W =
1

2
(‖ÃW−1‖1L + ‖B̃‖1L) ≥ min

X=ABT

1

2
(‖AW−1‖1L + ‖B‖1L).

For case (3), we define

Â =
[

UΣ
1

3

XW
2

3

X 0

]

, B̃ =
[

V Σ
2

3

XW
− 2

3

X 0

]

,

then we have

rank(X)
∑

i=1

(

σi

Wii

)
2

3

=
1

3
(‖ÂW−1‖2F + 2‖B̂‖∗) ≥ min

X=ABT

1

3
(‖AW−1‖2F + 2‖B‖∗).
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Now, for any A,B such that ABT = X , let their singular value decompositions be:

A = UAΣAV
T
A , B = UBΣBV

T
B .

Here, VA is a square matrix. It can be derived that

UAΣAV
T
A VBΣBU

T
B = X =⇒ ΣAV

T
A VBΣB = UT

AUΣXV TUB. (19)

Also,
UT
AU = UT

AUΣXV TV Σ−1
X = ΣAV

T
A BTV Σ−1

X ,

which implies

UTUAU
T
AU =Σ−1

X V TBVAΣAΣAV
T
A BTV Σ−1

X

=Σ−1
X V TBVAΣAU

T
AUAΣAV

T
A BTV Σ−1

X

=Σ−1
X V TXTXVΣ−1

X = I

‘This means UT
AU is columns orthogonal matrix, and also we know UT

BV is columns orthogonal matrix
too.
Now, let’s prove conclusions (1), (2), and (3):
Conclusion (1):
Since the Frobenius norm is a unitarily invariant function, we have

1

2
(‖AW−1‖2F + ‖B‖2F ) =

1

2
(‖ΣAV

T
A W−1‖2F + ‖ΣB‖2F )

≥1

2
(‖ΣAW

−1
A ‖2F + ‖ΣB‖2F )

=
1

2
(‖W−1

A ΣA‖2F + ‖V T
A VBΣB‖2F )

≥‖W−1
A ΣAV

T
A VBΣB‖∗,

where the first inequality comes from case q = 2 in Theorem 3.1 and WA = diag(Wii, 1 ≤ i ≤ rank(ΣA)),
the second equality is due to V T

A being an orthogonal matrix, and the last inequality comes from (3).
According to (19), we know that

1

2
(‖AW−1‖2F + ‖B‖2F ) ≥ ‖W−1

A UT
AUΣX‖∗. (20)

Since UT
AU is a column orthogonal matrix, by case q = 1 in Theorem 3.1 and (20), we have

1

2
(‖AW−1‖2F + ‖B‖2F ) ≥ ‖W−1

A UT
AUΣX‖∗ ≥

rank(X)
∑

i=1

σi

Wii
.

Combining the fact that the left-hand side of Conclusion (1) is greater than or equal to the right-hand
side, this proves Conclusion (1).
Conclusion (2):
Since the nuclear norm is a unitarily invariant function, we have

1

2
(‖AW−1‖∗ + ‖B‖∗) =

1

2
(‖ΣAV

T
A W−1‖∗ + ‖ΣB‖∗)

≥1

2
(‖ΣAW

−1
A ‖∗ + ‖ΣB‖∗)

=
1

2
(‖W−1

A ΣA‖∗ + ‖V T
A VBΣB‖∗)

≥‖W−1
A ΣAV

T
A VBΣB‖

1

2

S 1

2

,
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where the first inequality comes from by case q = 1 in Theorem 3.1, the second equality is due to V T
A

being an orthogonal matrix, and the last inequality comes from factorization form of Schatten-0.5 norm
in Lemma 2.5. According to (19) and UT

BV is a column orthogonal matrix, we know that

1

2
(‖AW−1‖∗ + ‖B‖∗) ≥ ‖W−1

A UT
AUΣX‖

1

2

S 1

2

≥
rank(X)
∑

i=1

(

σi

Wii

)
1

2

, (21)

where the last inequality holds since UT
AU is a column orthogonal matrix and case q = 0.5 in Theorem

3.1 holds. Combining the fact that the left-hand side of Conclusion (2) is greater than or equal to the
right-hand side, this proves Conclusion (2).
Conclusion (3):
Since the nuclear norm and Frobenius norm are unitarily invariant functions, we have

1

3
(‖AW−1‖2F + 2‖B‖∗) =

1

3
(‖ΣAV

T
A W−1‖2F + 2‖ΣB‖∗)

≥1

3
(‖ΣAW

−1
A ‖2F + 2‖ΣB‖∗)

=
1

3
(‖W−1

A ΣA‖2F + 2‖V T
A VBΣB‖∗)

≥‖W−1
A ΣAV

T
A VBΣB‖

2

3

S 2

3

,

where the first inequality comes from case q = 2 in Theorem 3.1, the second equality is due to V T
A being an

orthogonal matrix, and the last inequality comes from factorization form of Schatten-2/3 norm in Lemma
2.5. According to (19) and UT

BV is a column orthogonal matrix, we know that

1

3
(‖AW−1‖2F + 2‖B‖∗) ≥ ‖W−1

A UT
AUΣX‖

2

3

S 2

3

≥
rank(X)
∑

i=1

(

σi

Wii

)
2

3

, (22)

where the last inequality holds since UT
AU is a column orthogonal matrix and case q = 2 in Theorem

3.1 holds. Combining the fact that the left-hand side of Conclusion (3) is greater than or equal to the
right-hand side, this proves Conclusion (3).
Conclusion (4):
Since the Logarithmic norm and Frobenius norm are unitarily invariant functions, we have

1

2
(‖AW−1‖1L + ‖B‖1L) =

1

2
(‖ΣAV

T
A W−1‖1L + ‖ΣB‖1L)

≥1

2
(‖ΣAW

−1
A ‖1L + ‖ΣB‖1L)

=
1

2
(‖W−1

A ΣA‖1L + ‖V T
A VBΣB‖1L)

≥‖W−1
A ΣAV

T
A VBΣB‖1/2L ,

where the first inequality comes from Logarithmic norm case in Theorem 3.1 with k = 1, the second equality
is due to V T

A being an orthogonal matrix, and the last inequality comes from Lemma 2.6. According to
(19) and UT

BV is a column orthogonal matrix, we know that

1

2
(‖AW−1‖1L + ‖B‖1L) ≥ ‖W−1

A UT
AUΣX‖1/2L ≥ ‖X‖1/2L ,

where the last inequality is from Logarithmic norm case in Theorem 3.1 with k = 2.

5 Algorithms and convergence result

We replace the nuclear norm in (2) with the factorization forms of weighted Schatten-q norms or the
Logarithmic norm, where the non-convex representation enhances the low-rank recovery capability of the
model. The model is stated as follows:

minλ(h1(AW
−1) + h2(B)) + ‖S‖1, s.t. ABT = X, PΩ(X + S −M) = 0. (23)
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Here, h1 and h2 have different definitions under different non-convex representations.

weighted nuclear norm: h1(AW
−1) =

1

2
‖AW−1‖2F , h2(B) =

1

2
‖B‖2F ,

weighted Schatten-0.5 norm: h1(AW
−1) =

1

2
‖AW−1‖∗, h2(B) =

1

2
‖B‖∗,

weighted Schatten-2/3 norm: h1(AW
−1) =

1

3
‖AW−1‖2F , h2(B) =

2

3
‖B‖∗,

weighted Logarithmic norm: h1(AW
−1) =

1

2
‖AW−1‖1L, h2(B) =

1

2
‖B‖1L.

We use an ADMM framework algorithm to solve (23). In order to ensure explicit solutions for subproblems
within this framework, we employ two relaxation variables, and then (23) could be rewritten as

minλ(h1(Â) + h2(B̂)) + ‖PΩ(S)‖1, s.t. ABT = X, X + S −M = 0, Â = AW−1, B̂ = B. (24)

The corresponding augmented Lagrangian function is:

Lρ(A,B, S,X, Â, B̂;Y1, Y2, Y3, Y4) =λ(h1(Â) + h2(B̂)) + ‖PΩ(S)‖1 + 〈Y1, Â−AW−1〉+ 〈Y2, B̂ −B〉
+ 〈Y3, AB

T −X〉+ 〈Y4, X + S −M〉+ ρ

2
‖Â−AW−1‖2F

+
ρ

2

(

‖B̂ −B‖2F + ‖ABT −X‖2F + ‖X + S −M‖2F
)

. (25)

Hence we could establish the following algorithm to solve (24): Actually, the updating of every variable in

Algorithm 1 Matrix recovery based on Weighted factorization form

1: Input: Parameters λ, observed matrix and index set M,Ω, initial points
X0, Â0, B̂0, S0, A0, B0, Y 0

i , ρ
0, 1 ≤ i ≤ 3.

2: For k = 0, 1, . . . , compute the following iterative steps:
3: Ak+1 = argminLρk(Xk, Sk, A,Bk, Âk, B̂k;Y k

i , 1 ≤ i ≤ 3).

4: Bk+1 = argminLρk(Xk, Sk, Ak+1, B, Âk, B̂k;Y k
i , 1 ≤ i ≤ 3).

5: Sk+1 = argminLρk(Xk, S, Ak+1, Bk+1, Âk, B̂k;Y k
i , 1 ≤ i ≤ 3).

6: Xk+1 = argminLρk(X,Sk+1, Ak+1, Bk+1, Âk, B̂k;Y k
i , 1 ≤ i ≤ 3).

7: Âk+1 = argminLρk(Xk+1, Sk+1, Ak+1, Bk+1, Â, B̂k;Y k
i , 1 ≤ i ≤ 3).

8: B̂k+1 = argminLρk(Xk+1, Sk+1, Ak+1, Bk+1, Âk+1, B̂;Y k
i , 1 ≤ i ≤ 3).

9: Y k+1
1 = Y k

1 + ρk(Âk+1 −Ak+1W−1).

10: Y k+1
2 = Y k

2 + ρk(B̂k+1 −Bk+1).
11: Y k+1

3 = Y k
3 + ρk(Ak+1Bk+1 −Xk+1).

12: Y k+1
4 = Y k

4 + ρk(Xk+1 + Sk+1 −M).
13: ρk+1 = µρk.

algorithm 1 is proximal point operator Proxth1
(·), which is

Proxth(X) = argmin
Y ∈Rn×m

{

th(Y ) +
1

2
‖Y −X‖2F

}

, ∀X ∈ R
n×m.

Specifically, we present the update of each variable as follows:

Ak+1 = (ρkXk(Bk)T + ρÂkW−1 + Y k
1 W

−1 − Y k
3 (B

k)T )× (ρkBk(Bk)T + ρkW−2)−1,

Bk+1 = (ρk(Ak+1)TAk+1 + ρkI)−1 × (ρk(Ak+1)TXk + ρB̂k + Y k
2 − (Ak+1)TY k

3 ),

Sk+1 = PΩ(Prox(ρk)−1‖·‖1
(M −Xk − Y k

4

ρk
)) + PΩc(M −Xk − Y k

4

ρk
),

Xk+1 =
1

2ρk
(Y k

3 − Y k
4 + ρkAk+1(Bk+1)T + Sk+1 −M),

Âk+1 = Prox(ρk)−1λh1
(Ak+1W−1 − Y k

1

ρk
),

B̂k+1 = Prox(ρk)−1λh2
(Bk+1 − Y k

2

ρk
).
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Here, the analytical expression of the proximal point operator mentioned above is provided as follows:

Proxt‖·‖1
(Y ) = max(Y − t, 0),

Proxt‖·‖2

F
(Y ) =

Y

1 + t
,

Proxt‖·‖∗
(Y ) = Udiag(max(σ(Y )− t, 0))V T , Y = Udiag(σ(Y ))V T is SVD,

Proxt‖·‖1

L
(Y ) = ULt,ǫ(diag(σ(Y )))V T , Y = Udiag(σ(Y ))V T is SVD,

where Lt,ǫ(y) denotes the logarithmic singular value thresholding (LSVT) operator, which is defined in
[19], and its entry-wise form is

△ = (y − ǫ)2 − 4(t− yǫ), Lt,ǫ(y) =











0, △ ≤ 0,

argmin
x∈{0, 1

2
(y−ǫ+

√
△)}

1

2
(x− y)2 + t log(x+ ǫ), △ > 0.

Before proving the convergence of Algorithm 1, we need to demonstrate that the iterative sequences of the
variables A, B, S, X , Â, B̂, Yi, 1 ≤ i ≤ 4 are bounded.

Lemma 5.1. Let (Ak, Bk, Sk, Xk, Âk, B̂k, Y k
i , 1 ≤ i ≤ 3) denote the iterative sequences generated by

Algorithm 1. If {Y k
3 } is bounded, then {(Ak, Bk, Sk, Xk, Âk, B̂k, Y k

i , 1 ≤ i ≤ 3)} is bounded.

Proof. The proof of the cases “weighted nuclear norm”, “weighted Schatten-0.5 norm”, and “weighted
Schatten-2/3 norm” are similar to the [14], with the only difference being the inclusion of the weight
matrix W . Therefore, we omit the corresponding proof. In the case “weighted Logarithmic norm”, from
the update of Â in Algorithm 1, we have

0 ∈ ∂λ‖Âk+1‖1L + ρk(Âk+1 −Ak+1W−1) + Y k
1 .

Note that ρk(Âk+1 −Ak+1W−1) + Y k
1 = Y k+1

1 , then according to Lemma 2.4, we have

−Y k+1
1 ∈ λU∂(log(| · |+ ǫ))|SV T ,

where USV T = Âk+1 is SVD and

∂(log(|x|+ ǫ)) =











1

x+ ǫ
, x > 0,

[−1

ǫ
,
1

ǫ
], x = 0.

Therefore, we know

‖Y k+1
1 ‖2 ≤ λ‖(S + ǫI)−1‖2 ≤ λ

ǫ
.

This indicates that the variable Y (1) is bounded. Similarly, the boundedness of variable Y (2) can be proved.
On the other hand, notice that ρk(Âk −AkW−1) = Y k

1 − Y k−1
1 , we can obtain

〈Y k
1 ,

Y k
1 − Y k−1

1

ρk−1
〉+ ρk

2
‖Âk −Ak(Ŵ )−1‖2F − 〈Y k−1

1 ,
Y k
1 − Y k−1

1

ρk−1
〉 − ρk−1

2
‖Âk −Ak(Ŵ )−1‖2F

=
ρk + ρk−1

2(ρk−1)2
‖Y k

1 − Y k−1
1 ‖2F .
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Similarly, we can prove

〈Y k
2 ,

Y k
2 − Y k−1

2

ρk−1
〉+ ρk

2
‖B̂k −Bk‖2F − 〈Y k−1

2 ,
Y k
2 − Y k−1

2

ρk−1
〉 − ρk−1

2
‖B̂k −Bk‖2F

=
ρk + ρk−1

2(ρk−1)2
‖Y k

2 − Y k−1
2 ‖2F ,

〈Y k
3 ,

Y k
3 − Y k−1

3

ρk−1
〉+ ρk

2
‖Ak(Bk)T −Xk‖2F − 〈Y k−1

3 ,
Y k
3 − Y k−1

3

ρk−1
〉 − ρk−1

2
‖Ak(Bk)T −Xk‖2F

=
ρk + ρk−1

2(ρk−1)2
‖Y k

3 − Y k−1
3 ‖2F .

〈Y k
4 ,

Y k
4 − Y k−1

4

ρk−1
〉+ ρk

2
‖Xk + Sk −M‖2F − 〈Y k−1

4 ,
Y k
4 − Y k−1

4

ρk−1
〉 − ρk−1

2
‖Xk + Sk −M‖2F

=
ρk + ρk−1

2(ρk−1)2
‖Y k

4 − Y k−1
4 ‖2F .

Therefore,

Lρk(Ak+1, Bk+1, Sk+1, Xk+1, Âk+1, B̂k+1;Y k
i , 1 ≤ i ≤ 4)

≤Lρk(Ak, Bk, Sk, Xk, Âk, B̂k;Y k
i , 1 ≤ i ≤ 4)

=Lρk(Ak, Bk, Sk, Xk, Âk, B̂k;Y k−
i , 1 ≤ i ≤ 4) +

4
∑

i=1

ρk + ρk−1

2(ρk−1)2
‖Y k

i − Y k−1
i ‖2F ,

noting that (Y k, 1 ≤ i ≤ 3) is bounded and (ρk + ρk−1)/(2(ρk−1)2) is a geometric series, we know that
Lρk(Ak+1, Bk+1, Sk+1, Xk+1, Âk+1, B̂k+1;Y k

i , 1 ≤ i ≤ 4) is bounded. By continuously using the definition

of L, i.e., (25), we can successively obtain Â, B̂, A,B,X, S are bounded.

Below we prove the convergence of Algorithm 1.

Theorem 5.1. Let (Ak, Bk, Sk, Xk, Âk, B̂k, Y k
i , 1 ≤ i ≤ 4) be the iterative sequence generated by Algorithm

1. If {Y k
3 } is bounded, then {(Ak, Bk, Sk, Xk, Âk, B̂k, Y k

i , 1 ≤ i ≤ 4)} is a Cauchy sequence, and its limit
is the KKT point of (24).

Proof. Note that ρk is a geometric series, we have

∞
∑

k=0

‖Âk −Ak(W )−1‖F =

∞
∑

k=0

1

ρk
‖Y k

1 − Y k−1
1 ‖F < ∞,

which implies
lim
k→∞

‖Âk −Ak(W )−1‖F = 0, (26)

similarly,
lim
k→∞

‖B̂k −Bk‖F = 0, lim
k→∞

‖AkBk −Xk‖F = 0, lim
k→∞

‖Xk + Sk −M‖F = 0. (27)

On the other hand, we have

ρk(Ak+1W−1 − Âk − Y k
1 W

−1)

=ρk(Ak+1 −Ak)W−2 + ρk(AkW−1 − Âk)− Y k
1 W

−1,

=ρk(Ak+1 −Ak)W−2 +
ρk

ρk−1
(Y k+1

1 W−1 − Y k
1 )− Y k

1 W−1, (28)

and

ρk(Ak+1Bk −Xk)(Bk)T − Y k
3 (B

k)T

=ρk(Ak+1 −Ak)Bk(Bk)T + ρk(AkBk −Xk)(Bk)T − Y k
3 (B

k)T

=ρk(Ak+1 −Ak)Bk(Bk)T +
ρk

ρk−1
(Y k

3 − Y k−1
3 )(Bk)T − Y k

3 (B
k)T . (29)
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By using the update rule of A, we know that the left-hand side of (28) and (29) are the gradients of the
update function of A, which is 0 during the update. Therefore, the left-hand side of (28) and (29) sums
to 0, yielding

∞
∑

k=1

‖Ak+1 −Ak‖F ≤
∞
∑

k=1

1

ρk
φ < ∞,

where

φ = max{
(

µ(Y k+1
1 W−1 − Y k

1 )− Y k
1 W

−1 + µ(Y k
3 − Y k−1

3 )(Bk)T
)

(W−2 +Bk(Bk)T )−1, k ≥ 1} < ∞.

This proves that A is a Cauchy sequence. Similarly, we can prove that B is a Cauchy sequence. Further-
more, using (26) and (27), we can prove that Â, B̂, and X,S are Cauchy sequences. Utilizing the lower
semicontinuity property of the subdifferential of the Logarithmic norm, nuclear norm or Frobenius norm,
we can show that the limit point (A∞, B∞, S∞, X∞, Â∞, B̂∞, Y ∞

i , 1 ≤ i ≤ 4) satisfies

0 ∈ ∂λh1(Â
∞) + Y ∞

1 , 0 ∈ ∂λh2(B̂
∞) + Y ∞

2 ,

PΩc(Y ∞
4 ) = 0, 0 ∈ ∂‖PΩ(S

∞)‖1 + PΩ(Y
∞
4 ),

Â∞ = A∞(W )−1, B̂∞ = B∞, A∞(B∞)T = X∞, X∞ + S∞ −M = 0.

This proves that the limit point of the iterative sequence is the KKT point of (25).

Theorem 4.1 indicates that when the first rank(X) elements of the weighted matrix W are close to the
corresponding singular values of matrix X , the expressions (1), (2), (3) and (4) in Theorem 4.1 are close
to rank(X), representing that the weighted Schatten-q norm and Logarithmic norm are good relaxations
of the rank function. Therefore, an important problem in weighted matrix low-rank recovery is how to
determine a sufficiently good weight matrix W . Fortunately, [14] and [16] have shown that when the weight
matrix W is the identity matrix, the corresponding matrix recovery model has good recovery performance.
Therefore, when X is the output of an unweighted matrix recovery model, i.e., when the weighted matrix
W 0 is the identity matrix, the result of the recovery is X , which can be considered close to the original
matrix to be recovered. In the proposed method for determining the new weight matrix, we consider the
singular value decomposition of X as X = UΣV T , and then define the singular values Σ as the new weight
matrix W 1, which leads to better matrix recovery. We summarize the above idea into Algorithm 2.

Algorithm 2 Reweighted quasi norm matrix Recovery

Input. Observed matrix M ∈ R
n×m, observation set Ω, parameters λ, ǫ > 0, and rank r.

Step 0. Initialize W 0 = Ir . Iteratively perform the following steps for k = 0, 1, . . . :
Step 1. Call the algorithm 1 for matrix recovery with weight matrix W k, obtaining the output Xk.
Step 2. Perform singular value decomposition of Xk to obtain the singular value matrix Σk. Update

W k+1 = max
{

Σk, ǫ
}

,

and update k → k + 1.
Output. Xk.

The numerical experiments will be presented in future work.
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