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The transformer neural network has significantly out-shined all other neural network architectures

as the engine behind large language models. We provide a theoretical analysis of the expressivity

of the transformer architecture through the lens of topos theory. From this viewpoint, we show

that many common neural network architectures, such as the convolutional, recurrent and graph

convolutional networks, can be embedded in a pretopos of piecewise-linear functions, but that the

transformer necessarily lives in its topos completion. In particular, this suggests that the two network

families instantiate different fragments of logic: the former are first order, whereas transformers

are higher-order reasoners. Furthermore, we draw parallels with architecture search and gradient

descent, integrating our analysis in the framework of cybernetic agents.

1 Introduction

The transformer architecture [45] has achieved incredible success in a broad range of tasks, and has

become the de-facto architecture for deep learning [48]. This is the neural network model that underlies

the remarkable success of virtually all large language models, including ChatGPT [49] and the recent

Claude [3]. To a large extent, the theoretical foundations of its success remain unexplored: there do not

exist conclusive theories of why the transformer has achieved unprecedented success on a broad range

of language understanding, generation and reasoning tasks.

The aim of this paper is to provide a categorical perspective on the architectural differences between

traditional feedforward neural networks and transformers [45]. First, we provide a setting for categorical

deep learning that is stricter than many commonly found in the literature. This ensures that any result

that is true in this category can be understood to be true for a subset of commonly found neural network

architectures. Secondly, we investigate what sets Transformer architectures apart from a topos theoretic

perspective.

Topos theory studies the emergence of logical structures in different settings of mathematics. Through

this lens, we are able to approach the question of expressivity of architecture from a logical perspective.

This allows us to address for the first time the question: what fragment of logic is this network imple-

menting? In particular, we will show that ReLU networks, with only linear and ReLU layers, and gen-

eralisations with tensor contractions, belong to a pretopos, but not necessarily a topos. The transformers

will be shown to be in a co-product completion of the category, which is a topos. The significance of this

is that the internal language of the transformer has a richer quality: it is higher-order. This may provide

a new way to interpret the success of the architecture. Finally, we will define architecture search and

backpropagation in the categorical setting, establishing a lens to reason about learners.

A burden of theorists can be that of providing prescriptive insight to practitioners; the results of this

paper can have actionable consequences on the deployment of neural networks. Specifically, we expect

this work to lead to empirical research towards building neural network architectures that display similar

characteristics as the transformer, i.e. can be factored into choose and evaluate morphisms. Indeed, the
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2 The Topos of Transformer Networks

key takeaway for practitioners in our paper is that what sets the transformer network apart, through the

attention mechanism, seems to be the input-dependent weights. Building layers with this design property

may lead to the discovery of new and better-performing architectures.

Moreover, our theoretical insight may provide guidance on how to explain the networks differently.

In particular, seeing that we show how transformers should be viewed collections of models, an explana-

tion should address the local / contextual nature of the model.

Related Work: In recent work by [12], Category theory was called to be a unifying force in deep

learning theory in analogy to how it brought together geometry in the Erlangen program. We see a

first application of categories in the definition of equivariance via natural transformations in [20], and the

study of expressive sheaf-based neural networks as in [10],[8] and [7]. This line of research is particularly

promising: it provides a natural setting for geometric deep learning devoid of particular assumptions on

the underlying mathematical structure of the data. By abstracting away from the details, the authors go

beyond the heuristics of assigning architectures to data types (recurrent neural networks for time series,

convolutional neural networks for images etc.) and develop a formal theory that matches architectures to

known symmetries of the problem. Such theory opens the possibility of finding appropriate architectures

autonomously.

On the other hand, Applied Category Theory (ACT) has witnessed growing interest for characterisa-

tions of artificial intelligence. [18] first addresses deep learning through categories, by noticing functorial

properties of back propagation. Work by [15] and [14] represent neural networks through the formalisms

of parametric lenses, unifying game theory with deep learning under a common language. [9] provide an

alternative view, which delves into greater granularity: using model categories to define equivariance sig-

natures of networks and realising for the first time that a neural network may have an internal language,

as [41] showed independently. Indeed, [42] proceeds to develop a theory of neural networks which re-

lies on Polynomial Functors. These works enhance the trustworthiness and verification capabilities of

AI systems, as suggested by [31], insofar as they provide complete and granular frameworks for their

deployment.

An underlying effort in this paper will be to select a category for neural networks that encompasses

most commonly used architectures, without generalising excessively what we admit in the definition of a

learner. The standard choice of Euc or Smooth as a category of neural networks, would result in having

fewer or more morphisms than desired. We provide a setting suitable for deep learning in the category

of piece-wise linear functions PL, as studied by [40]. The details of the PL construction can be found in

[51], and [11] for a recent graphical and operadic description of the category. We argue that if the choice

of base category is too coarse, including morphisms that are not generally understood to be components

of neural network architecture, the categorical results cannot be taken to provide insight on the nature of

deep learning. In this work, we err in prudence, only selecting a family of networks (ReLU networks),

but one which captures all main characteristics of these models. Recent work by [33] discusses how the

different categories of neural networks can be related via categorical constructions. Finally, [19] provide

evidence of the utility of applied category theory in deep learning by developing a framework to tailor a

neural architecture around a desired input type.

2 Category of Neural Networks

The main aim of this section will be to establish a setting in which we can compare architectures while

striking the right balance of abstraction and concreteness. We present ReLU networks and provide a

categorical characterisation of them.
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Definition 1 (ReLU Network). An L-layer ReLU network is a function N : Rn → R
m such that

z(l) = σ(W (l)z(l−1)+b(l)), l ∈ [L],

such that, for a vector of layer widths n = [n0, ...,nL+1], with n0 = n,nL+1 = m indicating the number of

neurons at each layer, we have that z(l),b(l) ∈ R
l,W (l) ∈R

nl×nl−1 and σ(xi) = xi iff xi > 0 and σ(xi) = 0

otherwise, i ∈ [nl ] for some l ∈ {1, ...,L}. Note that σ is called an activation function and is applied

elementwise in each entry of the vector. Moreover, we have the two extremal conditions:

N (x) = z(L+1) =W (L+1)z(L)+b(L+1)
,z(0) = x.

Broadly speaking, the following proposition will be a work of translation into category theory from

[43] and [46]. Nevertheless, there is novelty in the proof that this holds for all neural networks with n ∈N

layers.

Proposition 2.1 (ReLU Linear Layer). Each layer of a ReLU feedforward neural network N : Rn →
R

m can be factored into the following diagram in Set:

R
n

R
m

R
n ×{0,1}m

N

sN aN

where sN = id × χ{W T ·−+b>0}, where χ{−>0} is a componentwise characteristic function, assessing

whether a component of the preactivation is greater than zero or not (i.e. active), and aN = diag(−2) ·
(W T ·−1 +b), applies the activation as a linear operation, by diagonalising the {0,1}-vector computed

by χ{W T ·−+b>0}.

Proof. To show that the diagram commutes we go through the computations of sN and aN . For a given

x ∈ R
n, χ{W T ·−+b>0}(x), acting componentwise, provides a {0,1}-vector which takes values 1 exactly

when the ReLU function will be active (the preactivation is greater than 0) and 0 otherwise. This means

that the action of the ReLU function would be equivalent to a diagonal matrix diag(P),P ∈ {0,1}m.

Hence, we view the first function as selecting the appropriate linear transformation to apply in the second

function. This leads us to using the vector as an input of aN (P,x) = diag(P) ·(W T ·x+b)=σ(W T ·x+b)
whenever x ∈ {x ∈R

n : ∀i ∈ [m],W T
i xi +b > 0 ⇐⇒ Pi = 1} , which completes the proof.

In other words, the function sN computes an internal state of the layer and aN applies the appropriate

linear transformation to the network as a result. Notice how this reduces the neural network into a

collection of linear models, each applicable in different parts of a partition of the input space. The set of

activation patterns of the neural network encodes concepts in the input space. We can understand ReLU

networks (and networks with piece-wise linear activations) as stores of linear models, each encoded

by one of the patterns. With this interpretation, we show that this decomposition is valid for general

feed-forward architectures.

Lemma 2.2 (ReLU Neural Networks). Let N (L) : Rn → R
m be a feedforward neural network, made

up of the composition of L layers:

N
(L) =©i∈[L]N

(i,i+1) = N
(L−1,L) ◦N

(L−2,L−1) ◦ ...◦N
(1)
,

where the notation N (l,l+1) refers to the l+1th layer.
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Then there exists a factorisation diagram aN ◦ sN in Set,

R
n

R
m

R
n ×∏i∈[L]{0,1}ni+1

N

sN aN

such that:

aN =

(

L−1

∏
l=0

diag(−L+1−l)W
(L−l)

)

W (1) ·−1 +
L

∑
l=1

L+1−l

∏
h=1

W (L+1−h)diag(−L−h)b
(l−1)+b(L)

and,

sN = id × χ (L)× χ (L−1)× ...× χ (1)

where

χ (l) = 1(0,∞)

(

σ(...σ(σ(−T ·W (1)+b(1)) ·W (2)+b(2))...) ·W (l)+b(l))
)

with 1(0,∞) representing an elementwise indicator function, which outputs 1 if x ∈ (0,∞) and 0 otherwise.

Proof. The definition of a
N (L) follows exactly from the local linear model decomposition of [43], which

provides the construction of how the linear model can be derived from the weights and activation patterns

of the feedforward ReLU network. It remains to show that there exists a function s
N (L) . We prove this

by induction. The base case was the result of Proposition 2.1. The following diagram gives the proof for

the inductive step. By letting N (L) = N (L−1,L) ◦N (L−1) be the application of the Lth layer N (L−1,L)

to the L−1-layered network N (L−1), we obtain the following decomposition:

R
n

R
k

R
m

R
n ×∏i∈[L−1]{0,1}ni+1 R

k ×{0,1}m

R
n ×∏i∈[L]{0,1}ni+1

s
N (L−1)

N (L−1)

s
N (L−1,L)

a
N (L−1,L)

a
N (L−1)

N (L−1,L)

a
N (L−1)×idid×a

N (L−1)◦1(0,∞)s
N (L) a

N (L)

N (L)

where, in particular, we use the fact that χ (l) = 1(0,∞)(a f
(l)
θ

) to explicitly verify:

s
N (L) = (id ×a

N (L−1) ◦1(0,∞))◦ s
N (L−1)

= (id ×a
N (L−1) ◦1(0,∞))◦ (id × χ (L−1)× χ (L−1)× ...× χ (1))

= (id × χ (L)× χ (L−1)× χ (L−1)× ...× χ (1)),

which shows that the case L− 1 implies the L case. Together with Proposition 2.1, this completes the

proof.
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Lemma 2.2 entails the existence of a forgetful functor from a category of feed-forward neural net-

works to the category of piece-wise linear functions PL as described in [40]. This category, will be the

base setting for our categorical theory of architecture; this is motivated by the following theorem.

Proposition 2.3. Let ReLU be the category of ReLU neural networks, with real spaces as objects and

ReLU neural networks N : Rn → R
m as morphisms. Then there exists a forgetful functor into the

category of piece-wise linear functions:

F : ReLU → PL.

Proof. Checking functoriality we need to show that the composition of two ReLU networks is a ReLU

network whose piece-wise linear function is the composition of the respective two piecewise linear func-

tions. This is a consequence of the select-apply decomposition from Lemma 2.2: the select function

defines a partition in the space through the fibers s−1
N , on which we determine the function aN to ap-

ply, which yields a piece-wise linear function. In particular, for two networks N ,N ′ with composition

N ′′ = N ′ ◦N , we have that,

F(N ′ ◦N ) = F((aN ′ ◦ sN ′)◦ (aN ◦ sN )) = F(N ′)◦F(N ),

which are also equal to F(aN ′◦N ◦ sN ′◦N ) = F(N ′′). The morphism is forgetful because it does not

preserve the structure of the neural networks. Many networks can yield the same piece-wise linear

function and are mapped to the same F(N ).

Several works characterise the expressive power of ReLU network [32], [4], [22]. Amongst the goals

of the authors was to provide an upper bound to the depth of a neural network representing exactly a

given piecewise linear function with finitely many parts. The depth has been found to be a function of

the input dimensionality by [25], and is related to the representation of maximum. There are no proofs

that this representation is canonical. However, [47] show that whenever weights are allowed to take

infinite values, there exists a shallow network of depth 3 for every given finite piece-wise linear function.

This is significant insofar it allows us to build a monad in the category or ReLU networks, whenever

these are allowed to have infinity weights.

Theorem 2.4. Consider the subcategory PLfin of PL generated by the piecewise linear functions with

finitely many linear parts. There exists a functor net : PLfin → ReLU that assigns to each of these parts

a functionally equivalent neural network. Moreover, F : ReLU → PLfin and net are an adjoint pair and

form a monad on ReLU, selecting a canonical equivalent network for every network.

Proof. The existence of such a network is in general guaranteed by [21]. However, a functor needs to

map every piece-wise linear function to a unique network. [46] shows that there exists a shallow network

for every deep ReLU network that is unique, up to renaming of neurons and the hyperplanes that generate

the input regions. A lexicographic choice of the weights and biases guarantees the uniqueness of such

network.

We now want to show that the functor S given by

S : ReLU −−−−−−−−−→ ReLU

(N : Rn → R
m) 7→ (S : Rn → R

m)

which selects a shallow network S for each neural network N forms a monad. To do this, we

show the existence of the unit and multiplication natural transformations ε ,µ . The multiplication natural
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transformation follows from the idempotency of the operation: S(S(N )) = S(N ) =S . The unit natural

transformation is given by canonicity, mapping to every morphism in the category, the canonical shallow

network gives the natural transformation ε : 1ReLU =⇒ S, with components in the commuting squares

1ReLU(X) 1ReLU(Y )

S(X) S(Y ).

N

εX

S

εY

where ε are identity morphisms. Indeed, we verify that µ ◦Sµ = µ ◦µS and µ ◦ εS = µ ◦Sε = 1ReLU.

3 Transformers

In this section, we provide a technical note on the transformer [45], a popular architecture that has

grown in popularity. The transformer [45], which relies on the self-attention mechanism [30]; we study

self-attention as it commonly occurs in transformer networks and present a factorisation which will be

instrumental to showing how this network is distinct from other families of neural networks contraction

based families.

Definition 2 (Self-Attention Mechanism and Transformer). For a triplet of matrices WK ∈R
n×k,WQ ∈

R
n×k,WV ∈ R

k′×k and input X ∈ R
n×k

AX = Att(X ;WK ,WQ,WV ) = softmax

(

XW T
Q (XW T

K )T

√
d

)

XW T
V ,

where AX ∈R
n×k′ The transformer is a finite composition of piece-wise linear maps that factors through

the attention mechanism.

This layer type can be understood as performing two actions: first selecting a set of parameters

and, in doing so, parameterise a feed-forward neural architecture; then, using the chosen architecture to

compute an output. We state this formally.

Proposition 3.1. The self-attention mechanism can decomposed into a choice of network parameters

choose : Rn×k → hom(Rn×k
,R

n×k′),

followed by the evaluation of a neural network,

eval : Rn×k ×hom(Rn×k
,R

n×k′)→ R
n×k′

,

where hom(Rn×k,Rn×k′) is the space of neural network layers with input Rn×k and output Rn×k′ .

Proof. Identifying these functions in the general case proves the statement. In particular, we want to

show that the self-attention mechanism is equivalent to the composition of these functions:

R
n×k

R
n×k ×hom(Rn×k,Rn×k′) R

n×k′ .
id×choose eval

T
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This achieved by first noticing that:

vec(T (X)) = vec
(

(XW T
X WKXT )⋆XWV

)

=W T
V ⊗ (XW T

X WKXT )⋆vec(X)

= (WV ⊗AX)vec(X).

where (−)⋆ represents the softmax function and ⊗ is the Kronecker product. The result shows how

the transformer layer can be represented as a linear function, where the coefficients are computed as a

function

choose(x) = (WV ⊗Ax)vec(−),

which outputs a function. Then, the canonical evaluation function is given by:

eval(X , f ) = f (X),

which compose together, resulting in:

eval(X ,choose(X)) = T (X).

The significance of this assertion is that a transformer, and any architecture involving the attention

mechanism as an operator, selects an architecture and evaluates it. Indeed, it does so by determining

the weights of an operator to apply on the left (‘like’ a graph convolution [24]) to a neural network

parametrised by WV . This sheds light on how the attention self-mechanism is distinct from other types

ReLU networks. The characterisation through the composition of choose and eval morphisms to obtain

the following result.

Theorem 3.2 (Expressivity of Transformer Network). A transformer network T is a morphisms in

the topos given by the free cocompletion ΣPL of PL.

Proof. The free cocompletion of a Category is the Yoneda embedding into the category of presheaves

Y : PL → PSh(PL), which is a topos. This category has the exponential objects of PL, obtained as

hom(Rn,hom(−,Rm))∼= hom(Rn,Rm) by Yoneda’s Lemma. Hence, we extend the domain of the afore-

mentioned inclusion from PL to ΣPL. Furthermore, there are morphisms in ΣPL of type η : H →
hom(Rn,Rm). In particular, there are components η = choose in ΣPL from Proposition 3.1, which

are constructed by setting H as a constant functor H : PL ∋ R
n 7→ R

c ∈ Set. This entails that T is in

ΣPL.

The decomposition suggests the need for exponential and evaluation morphisms, which are found

only in the completion of ReLU.

4 Internal Logic of Neural Networks

[41] first introduces the idea that we can build a language on the topos of learners. However, this language

is built to be able to make statements about how the network learns and is being updated. [9] suggest that

a theory can be developed for a given network. In this section, we explore these claims and provide both
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a theoretical construction on how to do develop theories for neural networks and relate this to the field

of explainable artificial intelligence.

The formulation of logic via categories is a vast field (see [35] for an introduction). Under relatively

weak assumptions (the existence of finite products) it is possible to reflect on computing logic in a

category. Using this framework, a pretopos gives birth to a propositional language, whereas a topos can

allow the interpretation of a higher-order logic. Indeed, a topos has a Joyal-Kripke semantics associated

to it [41], which is a construction that allows us to interpret higher-order logic with the internal language

of the topos. By internal language, we mean a correspondence between categorical constructions and

logical propositions. In particular, we see objects as collections of elements of a given type, Subobjects

(ismorphism classes of monomorphisms) are viewed as propositions; in particular, for φ : A → B, B is

understood to be the subobject of elements for which φ is true. Products and coproducts are interpreted

as conjunction and disjunction respectively.

Because category PL of piecewise linear functions form a pretopos [40], we can see how each mor-

phism generates an instance of propositional logic below.

Definition 3 (Language of a Network). Let N : Rn → R
m be a neural network in ReLU. The language

of a network is a signature Σ given by:

• Sorts Sorts(Σ), given by the inputs X1,X2, ...,Xn and the output Y ,

• Function symbols Fun(Σ), given by the linear functions, fω : X1×X2× ...×Xn →Y , with associate

coefficients αω ,βω ,

• Relation symbols Rel(Σ), with r
P
(l)
i

: R → X1 ×X2 × ...×Xn, for all variables, the relation symbol

implement half space conditions that are represented by neurons; for example r
Pi

(l) = 1 ⇐⇒ P
(l)
i =

1, the activation vector in entry i ∈ {1, ..,nl}.

Consequently, we can think of networks as implementing a logical theory in the input space. We

can think of each part of the partition as being represented by an equivalence class under the relation

symbols. Therefore, statments can be of the form: for x1 ∈ X1, ...xn ∈ Xn, if r
P
(1)
1

is true/fase, r
P
(1)
2

is

true/false... r
P
(L)
nL

is true/false such that the truth and falsity of each relation matches with the pattern for

the polyhedron ω , then N implements fω . This construction enhances the explainability of the neural

network. We can now think of the network as a collection of statements about the terms, which can be

simplified as: whenever x ∈ R
n is in region ω the network N behaves as fω : x 7→ αωx+βω .

Notice that for the transformer network, the partition changes at every point, and so does the linear

function. Because the attention mechanism picks an architecture on which we evaluate the input, the

logic of the theory is dependent on the input. From this point of view we are able to distinguish the key

semantic difference between a feedforward architecture and a transformer architecture. Suppose that for

a dataset f (x) = x2 if x > 0 and f (x) = −x if x ≤ 0. The standard architecture can learn one function,

defined piecewise. The transformer on the other hand, can learn two functions f1(x) = x2 and f2(x) =−x,

and learn a rule to select f1 if x > 0, and f2 if x ≤ 0. We argue that this is the notion of context presented

in [48] in the choose morphism. In this sense, we can interpret the choice of architecture parameters as

a bound variable.

5 Architecture Search and Gradient Descent

In this section, we explore how transformers can be understood to be implemented gradient descent,

as authors in the literature claim [48]. In short, this can be derived by viewing gradient descent as a

particular type of choose function.
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To analyse the phenomenon we use actegories. Actegories are instances of higher-categorical struc-

tures describing the action of one monoidal category on a second category. They have been used to study

the behaviour of learning agents in [14].

Definition 4 (Actegory). Let M be a monoidal category. The M-actegory on C is given by the action

of a functor −• =: M ×C → C which preserves the monoid actions on the homsets of the category C.

Specifically, two natural isomorphisms δ : I •X ∼= X ,

ε : (K ⊗N)•X ∼= K • (N •X) satisfying the following commuting diagrams:

((X ⊗Y )⊗Z) ·D (X ⊗Y )• (Z •D)

X • (Y • (Z •D))

(X ⊗ (Y ⊗Z))•D X • (Y ⊗Z)•D

δ

δ

δ

1•δ

monoid associativity

and,

(I ⊗X)•D I • (X •D)

X •D X •D

(X ⊗ I)•D X • (I •D)

δ

ε
monoid identity

δ

ε
monoid identity

all commute.

Actegories are the setting in which [14] define parametric learners. In essence, the structure of the

monoidal category is used as setting to define reparametrisations of the morphisms of C. Below we

describe the Para construction on an M-actegory, which serves as a setting to reason about parametrised

functions, their application and reparametrization. This is a particular instance of a bicategory, the which

is a category weakly enriched in the category Cat: in which every hom object is a category. For a formal

definition, please refer to [27].

Definition 5 (Para Construction [14]). For a (M, I,⊗)-actegory C, the bicategory of parametrisations

on C by the action of M, Para•(C), is given:

• Objects: the same objects as C;

• 1-Cells: morphisms N : θ ×X →Y , for all functions f : X →Y in C, and θ ∈ Ob(M);

• 2-Cells: for a r : θ ′ → θ morphism in M we have the 2-cell ρ : φ =⇒ φ ′ with φ : θ •X →Y and

φ ′ : θ ′ •X →Y such that the following commuting diagram is respected;

θ •X Y

θ ′ •X

r•id
φ ′

φ

ρ
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• 1-Composites: for φ : N •X →Y , and ψ : K •Y → Z we define the composite through:

ψ ◦φ = (K ⊗N)•X →δ K • (N •X)→idK•φ→ K •Y → ψZ

• 2-Composites: ρ1 : φ =⇒ φ ′ and ρ2 : φ ′ =⇒ φ ′′ are inherited by the composition in M: ρ2 ◦ρ1 :

φ =⇒ φ ′′.

Para•(Lens(C)) is the category of parametrised lenses on C, which in [14] is understood to represent

learners. The requirements on C is that it is a reverse differential category. The overall goal of this

formalism is to represent models with parameters that can be updated. Both the forward pass and the

update protocol are compositional processes, in the sense that we can form a category of said learners.

In the present exposition we will focus on architectural aspects of the parametrisation.

The authors of [14] develop a theory of cybernetic agents that unifies constructs within game theory

and deep learning: by parametrising over Smooth, but without specifying the parametrisation. Again,

we choose to parametrise over PL, and choose VectR with ⊗, the usual tensor product, as the action

monoidal actegory. It is important to note that the choice of 1-cells matters: when viewing Para as a

functor, we should associate the N morphisms in a way that reflects the usual learnability of parameters

in neural networks. In other words, we want the parameters θ to be the direct sum of the coefficients

of the linear layers: if f = f1 ◦ReLU ◦ f2 ◦ ... ◦ReLU ◦ fL+1, with fi : Rni → R
ni+1 ∈ mor(VectR) then

θ ∈⊕i=1,...,L R
ni×ni+1 . Indeed, Para⊗(PL) is a VectR-actegory.

A corollary of Theorem 3.2 is that there is a Boolean algebra for every feedforward architecture, and

a collection of Boolean algebras for every transformer architecture, parametrised by the input domain.

See, for instance, [46], who first suggest that ReLU networks induce a Boolean algebra in their domain

of definition. This can be viewed as a functor from the category of morphisms of piece-wise linear

functions, into Bool, which we write as: B : PL→ → Bool. However, we’ve seen that the transformer

does not live in PL generally, but in ΣPL. Then the image of choose : Rn → hom(Rn,Rm) induces a

collection of Boolean algebras S = {B(N ) : N ∈ cod(choose)} via lifting the B functor above to the

category of morphisms in ΣPL. Note that choose is not in PL. This prompts the need for the following

construction.

Proposition 5.1. Let ι : PL → Para⊗(PL) be an inclusion functor, and ΣPL be the free cocompletion of

PL. Then there exists a left Kan extension LanY ι; in particular, functor maps choose morphisms in ΣPL

to choice of parameter spaces and hom(Rn,Rm) to reparameterisations of neural networks.

Proof. Notice that VectR ×PL →֒ Para⊗(PL) is a faithful functor, which follows from the definition

of Para. Hence, we define functor ι : PL →֒ Para⊗(PL) that embeds the category into 1-cells and 1-

composites in a bicategory of parametric piece-wise linear functions. The left Kan extension is visualized

by the commuting diagram below.

PL Para⊗(PL)

ΣPL

ι

LanY ιY

η

LanY ι is a functor that maps all Y (PL) into ι(Para⊗(PL)), meaning that for any morphisms f in PL,

we have that LanY ι(Y ( f )) = ι( f ). There are 1-morphisms in Para⊗(PL) that are not in ι(PL); these

are product morphisms of the monoid action r with the identity morphism, given by r× idRn : θ ×R
n →
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θ ′ ×R
n, which can be viewed as reparametrisation of the neural network. LanY maps morphisms in

hom(hom(Rn,−),hom(Rn,−)) into said reparametrisations, such that the following diagram commutes.

hom(Rn,−) hom(θ ×R
n,−)

hom(Rn,Rm) hom(θ ×R
n,Rm)

hom(Rn,Rm) hom(θ ′×R
n,Rm)

LanY ι(−)

R

LanY ι(−)

ρRm

LanY ι(−)

LanY ι(ρRm )

LanY ι(R)∼=r×idRn

Without loss of generality, we consider the case θ =R
k. See for instance that choose∈ hom(Rk,hom(Rn,Rm))

and the left Kan extension provides LanY ι
(

hom(Rk,hom(Rn,−)
)∼= hom(Rn,Rk ×R

n), a mapping into

choices of parameters space for a neural network in Para⊗(PL) and

LanY ι
(

hom(hom(Rk,Rk′),hom(Rn,−)
)

∼= hom
(

hom(Rk ×R
n, ,Rk′ ×R

n)
)

, which is the class of reparametri-

sations r× id : Rk ×R
n → R

k′ ×R
n.

In other words, the 2-cells of this categories can be viewed both as reparametrisations, whenever

r : θ → θ ∈ mor(VectR) is an endomorphism, and morphisms of architectures when the morphism is of

general type r : θ → θ ′. This induces in the Para construction the 2-cell ρ : φ ′ =⇒ φ for φ : θ ×X →Y

and φ ′ : θ ′×X → Y , where X ,Y,θ ,θ ′ ∈ ob(Para⊗(PL)). This verifies the claims from [48], who argue

that we can view forward passes of a transformer as gradient updates.

Ultimately, this allows us to view transformers as a parametrised collection of neural networks;

the network weights are the function outputs of a choose(−) function, which determines entirely the

architecture. This observation paves the way to questions on which networks are being selected by the

transformer architecture, what do they have in common, how far they are from each other in a suitable

distance, and other questions which have meaningful repercussions in the design and training of these

architectures.

6 Conclusion

We have introduced a theoretical analysis of neural network architectures from the viewpoint of topos

theory, noticing a previously unknwon distinction between two classes of objects: feedforward archi-

tectures and transformer architecture. In the process of proving this distinction, we have divided archi-

tectures into two classes: those that live in a pretopos and those that live in its topos completion. This

distinction enabled us to relate architectures in the topos completion to backpropagation and architecture

search, encoding many known neural architectures within the context of a single design space.

The categorical treatment of architectures has several advantages. Firstly, it allows to equate different

families of architectures, enabling a pragmatic view on which differences are effectively influencing the

expressiveness of the architectural class. Indeed, through the notion of the topos we introduce a new

notion of expressivity, based on which fragment of logic the architecture class is being denominated in.
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Moreover, this paper may provide insight on how to construct architectures that are more expressive

in the above sense. The transformer is just an example of a function living in the completion of PL. The

significance of this paper is that it conjectures how in practice the factorisation through choose and eval

morphisms can be a successful architecture design. Further empirical research could confirm that this is

an architectural choice able to generally improve the performance of architectures across tasks.
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Liò (2022): Sheaf Neural Networks with Connection Laplacians. Topological, Algebraic and Geometric

Learning Workshops 2022.
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