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Abstract

This paper introduces the combination of an advanced double layer model
with electrochemical kinetics to explain electrolyte effects on the alkaline
hydrogen evolution reaction. It is known from experimental studies that
the alkaline hydrogen evolution current shows a strong dependence on the
concentration and identity of cations in the electrolyte, but is independent
of pH. To explain these effects, we formulate the faradaic current in terms of
the electric potential in the double layer, which is calculated using a mean-
field model that takes into account the cation and anion sizes as well as the
electric dipole moment of water molecules. We consider that the Volmer step
consists of two activated processes: a water reduction sub-step and a sub-
step in which OH– is transferred from the interface to the electrolyte bulk.
Either of these sub-steps may limit the rate. The developed models for these
sub-steps qualitatively explain experimental observations, including cation
effects, pH-independence, and the trend reversal between gold and platinum
electrodes. We also assess the quantitative accuracy of the water reduction-
limited current model; we suggest that the predicted functional relationship
is valid as long as the hydrogen bonding structure of water near the electrode
is sufficiently maintained.
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1. Introduction

The rate of electrochemical reactions is intimately linked to the struc-
ture of the double layer [1–9]. The common understanding of the relation
between the double layer and kinetics is still based on Frumkin’s idea. In his
work [10], Frumkin relates the current to the potential in the reaction plane,
which he calculates using the Gouy-Chapman-Stern double layer model [11].
Over the last couple of decades, continuum models of the double layer have
advanced significantly [12–15], achieving reasonable success in describing the
double layer capacitance [16–18]. Recently, studies have explored the usage
of such models in the context of kinetics for oxygen evolution [19] and carbon
dioxide reduction [20]. Here, we focus on the alkaline hydrogen evolution re-
action. Its comparatively simple reaction mechanism allows us to develop an
intuitive model without relying on quantum chemical calculations. By com-
bining Frumkin’s approach with the double layer model of Iglič et al. [14], we
explain experimentally observed electrolyte effects. In addition, where pre-
vious studies mostly make qualitative comparisons with experimental data
[19, 20], we identify the regime in which our model demonstrates the correct
functional relationship.

Let us first review the mechanism of hydrogen evolution in alkaline media
on metal electrodes. The reaction mechanism consists of two consecutive
elementary steps. The first one is the so-called Volmer step, where a hydrogen
atom is adsorbed on the catalyst surface:

H2O+ e− + ∗ −−⇀↽−− H∗ +OH−, (1)

with ∗ denoting a free adsorption site on the catalyst. In the literature, it is
usually understood that the hydroxide ion (OH– ) on the right-hand side is
located in the electrolyte bulk. The Volmer step may be followed by the Tafel
step, where adsorbed hydrogen atoms combine into molecular hydrogen:

2H∗ −−⇀↽−− H2 + 2 ∗, (2)

or by the Heyrovsky step, in which water molecules react with adsorbed
hydrogen atoms to form molecular hydrogen and hydroxide ions:

H∗ +H2O+ e− −−⇀↽−− H2 +OH− + ∗. (3)
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The overall reaction rate is usually limited by the slow water reduction steps,
i.e. the Volmer step [5, 21–23] or the Heyrovsky step [5, 23].

The alkaline hydrogen evolution current shows a strong dependence on
the concentration and identity of cations in the electrolyte. At moderately al-
kaline pH, increasing the cation bulk concentration yields a larger current [6].
The current is also larger for more weakly hydrated cation species [7, 24, 25].
Various studies explain these effects in terms of the cation concentration in
the double layer [5, 8]. The interfacial cation concentration is presumed to
be larger for larger bulk concentrations and more weakly hydrated species,
which pack more tightly in the double layer [12]. For example, it is smaller
in Li+-based electrolytes than in Na+ based electrolyes. The model of Koper
[26] suggests that the presence of cations in the double layer decreases the
activation barrier of the water reduction step by changing the electric poten-
tial at the reaction plane, akin to Frumkin’s idea. However, Koper did not
compute this electric potential, and could therefore not compare the theory
to experimental data.

At strongly alkaline pH, increasing the cation concentration starts to have
an adverse effect [5]. This turning point occurs at a lower pH for platinum
electrodes than for gold [5], and the observed cation trends are reversed
between gold and platinum [7]. Bender et al. [7] rationalize the trend reversal
by splitting the Volmer step into two sub-steps: a water reduction sub-step,

H2O+ e− + ∗ −−⇀↽−− H∗ +OH− (interface), (4)

and a sub-step in which OH– is transferred from the interface to the elec-
trolyte bulk,

OH− (interface) −−⇀↽−− OH− (bulk). (5)

Considering strongly alkaline conditions, Bender et al. propose that for gold,
the reaction rate is limited by the water reduction sub-step (4), whereas for
platinum, the rate is limited by the OH– transfer sub-step (5).

Contrary to the Nernstian shift of 59mV/pH (at room temperature) ob-
served for hydrogen evolution in acidic media, the alkaline hydrogen evolution
current is pH-independent in the regime corresponding to a rate-limiting wa-
ter reduction sub-step [8, 27]. In the regime where it is proposed that OH–

transfer hampers the rate, the current does depend on pH [6, 8, 27].
In this work, we develop expressions for the water reduction-limited cur-

rent and the OH– transfer-limited current in terms of the electric potential
in the double layer, which is computed from the mean-field model of Iglič
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Figure 1: Water dipoles, anions and cations on a grid. Note that the grid considered in
the theory is in fact three-dimensional. Here, the specific case γ+ = 1 and γ− = 23 is
shown. γ± is defined in Eq. (6) in the main text. In this work, we consider the case that
there are no lattice vacancies. Reprinted from Iglič et al. [14] under a CC-BY 4.0 license.

et al. [14]. The model for the water reduction-limited current explains the
pH-independence and cation trends on gold electrodes, and quantitatively de-
scribes the data in Li+-based electrolytes. The simple model we propose for
the OH– transfer-limited current considers the transfer as another activated
process; this model reproduces the reversed trends observed on platinum elec-
trodes. In our analysis we focus on the Volmer step, but a similar approach
can be taken for the Heyrovsky step.

2. Methods

In this section we first summarize the double layer model that we will use
to calculate the electric potential in the double layer. We then connect the
electric potential to the electrode potentials used in electrochemical kinetics,
and derive expressions for the hydrogen evolution current density on gold
and platinum electrodes.

2.1. Double layer model

In the model of Iglič et al. [14], ions and dipolar water molecules are
placed on a three-dimensional lattice (Figure 1). The lattice spacing a is
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defined such that when all lattice sites are filled by water molecules, their
concentration equals the number density of pure water, 55.5M. This gives
a ≈ 0.31 nm.

Ion species may occupy several sites. The effective size γ of an ion is the
number of sites occupied by an ion and its hydration shell,

γ± =

(
d±
a

)3

(6)

where d± are the diameters of the solvated cat- or anions. Typically, ions
with a small radius such as Li+ have a larger hydration shell than ions with a
large radius such as Cs+ [28]. Based on the hydration number of ions [29] and
estimated ion sizes from dielectric decrement [30] we choose γ+ = 4, 5, 6, 7
to correspond roughly to Cs+, K+, Na+ and Li+. We also choose γ− = 2
for hydroxide ions and other anions, as anions are typically more weakly
hydrated [29, 30].

In the mean-field approximation, it can be shown [12, 13, 15] that the
electric potential ϕ extending into the electrolyte is described by the one-
dimensional Poisson’s equation,

− ∂

∂x

(
ε
∂ϕ

∂x

)
= e0(n+ − n−). (7)

Here, ε is the dielectric permittivity, which depends non-linearly on the local
electric field E = −∂ϕ/∂x due to the polarization of dipolar water molecules
[31]:

ε = ε∞ +
nwp

E
L(βpE), (8)

where ε∞ ≈ 1.8 is the optical permittivity of water [29], β = 1/kBT the
inverse temperature, and L(z) = coth(z) − 1/z the Langevin function. The
effective dipole moment of water molecules, p, is fitted such that the per-
mittivity attains the value for pure water at E = 0. n± are the cation and
anion number densities, and nw is the number density of water molecules; the
superscript ∗ indicates bulk values. The ionic and water number densities
depend on the local electric potential and electric field as

n± = n∗
±

e∓βe0ϕ

χ∗
w
sinhβpE

βpE
+ γ+χ∗

+e
−βe0ϕ + γ−χ∗

−e
βe0ϕ

nw = n∗
w

sinhβpE
βpE

χ∗
w
sinhβpE

βpE
+ γ+χ∗

+e
−βe0ϕ + γ−χ∗

−e
βe0ϕ

(9)
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where χ∗
± = n∗

±a
3 the dimensionless bulk number densities, and χ∗

w = 1 −
γ+χ

∗
+ − γ−χ

∗
−.

We only consider alkaline electrolytes with monovalent ions. The cation
bulk concentration c∗+ is a parameter that can be chosen to match experi-
mental conditions. The pH determines the bulk concentration of hydroxide
anions: c∗OH− = 10−14+pH M. In order to vary the electrolyte pH and cation
concentration independently, we add anions of some other monovalent species
such that the total bulk concentration of anions c∗− equals the bulk cation
concentration c∗+, as required by electroneutrality. Hence, in this model, the
pH does not affect the structure of the double layer. Number densities and
concentrations are related as n = NAc, with NA Avogadro’s number.

Iglič et al. [14] specify the boundary condition of the Poisson equation in
terms of the surface charge. To apply the model in the context of kinetics,
we need to specify the boundary condition in terms of the potential at the
electrode, ϕ0. To do this, we need to realize that Equation (7) describes
the potential in the electrolyte only up to the plane of closest approach for
electrolyte ions, located at x = x2. Between the electrode surface at x = 0
and x = x2 there are no charges, so the potential profile is linear. Given ϕ0

and the potential at x2, ϕ2, the boundary condition at x2 reads

ϕ2 − ϕ0 = −E(x2)x2. (10)

In this work, we only consider negative electrode charges. Due to the strong
electric forces, only cations approach the electrode surface. Hence, x2 =
d+/2. The boundary condition in the bulk is ϕ = 0 by choice of potential
reference. The numerical implementation to solve the double layer model
(Eq. 7) with its boundary condition (Eq. 10) is discussed in Appendix B.

The mean-field model captures several features of the double layer that
the Gouy-Chapman-Stern model ignores. First, ion concentrations attain a
saturation value of n± → 1/(a3γ±) as exp(∓βe0ϕ) → ∞. Second, the per-
mittivity ε decreases as the electric field E increases, down to a limiting value
of ε∞. This phenomenon is known as dielectric saturation [31]. However, the
model ignores the hydrogen bonding structure of water. Besides, solvation
shells are highly dynamic and complex [28, 32], but are only captured by a
size parameter here.

2.2. Potentials

The double layer model computes the electric potential ϕ(x) in the elec-
trolyte, given an electric potential ϕ0 applied at the electrode. However, in

6



electrochemical kinetics, we usually deal with the electrode potential E. To
connect double layer models to kinetics, we need to relate ϕ0 to E. This
connection is made by noting that the electrode potential is essentially the
electrochemical potential of electrons in the electrode [33],

E = − µ̃e

e0
= −µe

e0
+ ϕ0, (11)

where µ̃ denotes an electrochemical potential and µ a chemical potential.
Note again that the zero of the electric potential is chosen in the electrolyte
bulk.

At the point of zero charge (pzc), ϕ0 = 0, and so2

Epzc = −µe

e0
. (12)

Hence, we may also write
E = Epzc + ϕ0. (13)

The pzc is experimentally accessible by capacitance measurements.
Electrode potentials are usually denoted in reference to the standard hy-

drogen electrode (SHE) or reversible hydrogen electrode (RHE) – the latter
reference potential depends on the electrolyte pH. One can convert between
the scales as

E(vs. RHE) = E(vs. SHE) + 59mV × pH. (14)

2.3. Kinetics

Now that we have a way to calculate the electric potential in the double
layer given the electrode potential, we derive expressions for the hydrogen
evolution current density in terms of the electric potential.

We first derive an expression for the current density in terms of the electric
potential when the water reduction sub-step is rate-determining. Next, we
consider the case where the transfer of OH– from within the double layer to
electrolyte bulk limits the rate.

2In this discussion we neglect any metal surface potentials [34] for simplicity. Simula-
tions of Huang et al. [35] suggest that the surface potential of the metal does not depend
strongly on the applied potential, and so this simplification does not qualitatively affect
our results.
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reaction coordinate

G

Gi

Gf

G‡

∆‡G

∆rG

H2O+ e− H∗ +OH−

−e0δϕ0

−e0δϕ
′

Figure 2: Free energy G along the reaction coordinate of the water reduction sub-step
(4). The dash-dotted lines show how the free energy curves change due to a change in the
potential at the electrode δϕ0. G‡ is the free energy of the transition state; Gi and Gf the
free energy of the initial and final states, respectively. ∆‡G is the activation energy in the
cathodic (reduction) direction. ∆rG is the free energy of the reaction step.

Note that the double layer model describes the system in equilibrium,
whereas theories of kinetics describe non-equilibrium situations. However,
according to Delahay [1], the double layer structure is not changed much
at low current densities. We use this approximation here to explore the
connection between the double layer structure and kinetics.

2.3.1. Water reduction

In the water reduction sub-step (4), an electron is transferred from the
electrode to a water molecule near the electrode surface. The water molecule
thereby splits into an adsorbed hydrogen atom and a solvated hydroxide ion.
We assume that the oxygen atom of the water molecule remains fixed in a
position x′ ≈ 0.28 nm [36] near the electrode surface.

We describe the initial and final states of the reaction with parabolic
potential energy surfaces as a function of some reaction coordinate, as is
common in classical transition state theory [11, 34] – see Figure 2. Our aim
is now to express the activation energy ∆‡G in terms of the applied electrode
potential and quantities from the double layer model.
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To start, the free energies of the equilibrium initial and final state may be
written in terms of the electrochemical potentials of the species participating
in the reaction [1]. In our case, we consider reaction sub-step (4):

Gi = µH2O + µe − e0ϕ0

Gf = µH∗ + µOH− − e0ϕ
′ (15)

where ϕ0 is the electric potential at the electrode and ϕ′ is the electric poten-
tial at the reaction plane. Note that in contrast to the common approach of
deriving the Butler-Volmer equation [11], where the double layer is ignored,
here both the initial and final states depend on electric potentials in the
double layer.

From the expressions of Gi,f it follows that the reaction energy of the
water reduction sub-step (4) is

∆rG = Gf −Gi

= µH∗ + µOH− − µH2O − µe + e0(ϕ0 − ϕ′).
(16)

We will assume that the chemical potentials are independent of the applied
electrode potential. Because the chemical potential of a species depends on
its concentration [37], this assumption implies that we assume the concentra-
tions of H*, OH– and H2O to be independent of the electrode potential. For
hydrogen evolution with a rate-determining Volmer step as considered here,
the coverage of H* is likely to be small regardless of the applied potential.
On the other hand, OH– is repelled more strongly from the electrode at po-
tentials increasingly negative to the pzc, and the concentration of H2O could
be affected by the number of cations accumulating in the double layer. For
simplicity, we will neglect these dependencies here, and focus on the effect of
the electric potential on the reaction alone. We return to the effect of this
simplification when we discuss the results of our model (Sec. 3.1).

A variation in the applied potential of δϕ0 then only results in a corre-
sponding change in the potential at the reaction plane of δϕ′. The reaction
energy changes accordingly by

δ(∆rG) = e0δ(ϕ0 − ϕ′). (17)

We can now invoke the Bell-Evans-Polanyi (BEP) principle (Appendix A) to
find the corresponding change in activation energy. Integrating these small
changes with the pzc (where ϕ0 = ϕ′ = 0) as reference point, we obtain

∆‡G = (∆‡G)pzc + αe0(ϕ0 − ϕ′), (18)
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where (∆‡G)pzc is the activation energy barrier at the pzc, and α the transfer
coefficient. Such a form for the activation energy is usually found in Frumkin-
corrected Butler-Volmer theory [1]. Commonly, α ≈ 1

2
[11].

With the above expression for the activation energy, we express the ca-
thodic current density as

j = −2e0n̄H2O

βh
exp(−β∆‡G). (19)

The prefactor is not qualitatively relevant, but is motivated as follows. The
reaction rate should be proportional to the surface number density of water
molecules, n̄H2O ≈ 5 nm−2 [38]. The 1/βh comes from absolute rate theory
[11] – h is Planck’s constant. The factor 2 is due to the transfer of two
electrons in the hydrogen evolution reaction, assuming a Volmer-Heyrovsky
mechanism [22]. Again, with a mechanism where the Volmer step is rate-
determining, the H* coverage is likely low and we can neglect the dependence
on the availability of free adsorption sites.

We further assume that the cathodic (hydrogen evolution) current dom-
inates the total current and thus neglect any anodic contribution. This as-
sumption is reasonable for gold in particular, on which hydrogen oxidation is
highly unfavorable [27]. However, even in the experiments on platinum elec-
trodes that we will compare our model to, hydrogen oxidation is suppressed,
as the evolved hydrogen gas quickly escapes from the electrolyte. With the
activation energy of Eq. (18), we can thus write the current density as

j = −2e0n̄H2O

βh
exp

(
− β(∆‡G)pzc − αβe0(ϕ0 − ϕ′)

)
. (20)

where (∆‡G)pzc and α are free parameters.
In conclusion, we derived the current density by considering how the ac-

tivation energy depends on the difference in electrostatic potential energy
between initial and final states. The interfacial electric field may addition-
ally alter the electronic structure of reactants, which may in turn affect the
reaction rate. This effect is neglected here.

Finally, an important difference between our approach and that of Koper
[26] is that Koper interprets the effect of the cation more locally, rather
than a mean-field potential at the reaction plane. Qin et al. [22] show that
the Volmer step energy barrier is not affected by whether a cation directly
coordinates the reaction intermediate or not – contrary to results for carbon
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dioxide reduction [4]. This finding suggests that the electrolyte effects on
hydrogen evolution may be well-described by variations in the mean-field
interfacial electric potential, which is what we consider in this work.

2.3.2. Hydroxide ion transfer

Upon the completion of the water reduction sub-step (4), we are left
with an OH– ion in the reaction plane. The transfer of OH– to the bulk
may occur by ‘bond flipping’ or ‘proton shuttling’ in a network of hydrogen
bonded water molecules [39, 40]. However, this water structure might be
destroyed by strong electric fields [2, 3] or the presence of weakly hydrated
cations [40–42], making the transport process less efficient. If the water
structure is altered by such factors, it needs to be reorganized [41] in order
to transfer the OH– ion to the electrolyte bulk.

We propose a simple model, in which we regard the OH– transfer sub-
step as another activated process. We will apply the BEP principle to derive
an expression for the rate of OH– transfer through the double layer. The
initial state of this transfer step is OH– at the electrode surface (i.e., at x′),
and the final state is OH– in the bulk, where ϕ = 0. The reaction energy of
the OH– transfer step is therefore

∆rG = Gf −Gi

= µOH−(x=x′) − µOH−(bulk) + e0ϕ
′ (21)

We neglect any potential-dependence in the difference between the chemical
potential of µOH− at x = x′ and in the bulk. According to the BEP principle,
the activation energy is then

∆‡G = (∆‡G)pzc + α̃e0ϕ
′ (22)

and so the current density can be written

j = −Ae−α̃βe0ϕ′
. (23)

Here, A is some potential-independent prefactor, and α̃ is a kind of transfer
coefficient for the transfer of OH– .

2.4. Alkaline hydrogen evolution on gold and platinum

In order to explain the different trends for the alkaline hydrogen evolution
reaction observed on gold and platinum electrodes, we propose the energy
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∆‡G

∆‡G

I II

III

I II

III

(a) Au

(b) Pt

Figure 3: Proposed energy landscape over the course of the reaction for the Volmer step
on (a) gold and (b) platinum. The numbers I-III denote intermediate states throughout
the reaction, defined as follows. I: H2O+ e−; II: OH– (x = x′)+H*, III: OH– (bulk)+H*.
Hence, the first barrier is for water reduction, and the second barrier for OH– transfer.

landscape shown in Fig. 3, which builds on the ideas of Bender et al. [7]. For
gold, the transfer of OH– presents a barrier that is rather small as compared
to water reduction and does not affect the overall activation energy.

We interpret the high current density on platinum electrodes measured in
experiments as being due to a much lower water reduction energy barrier.3

For platinum, we therefore consider that the activation energy is dominated
by the OH– transfer energy barrier. Note that the water reduction barrier
depends on the electric potential in the double layer through Eq. (18) and
the OH– transfer barrier depends on the electric potential through Eq. (22).

Another difference between gold and platinum electrodes is their point of

3The situation is complicated by the existence of multiple adsorbed hydrogen species
on Pt – see Schmickler and Santos [34], Ch. 14 for a discussion.
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zero charge: the pzc of Au(111) is Epzc,Au(111) = 0.51V vs. SHE; for Pt(111)
Epzc,Pt(111) = 0.30V vs. SHE [43]. Both these measurements were obtained
in acidic NaClO4 electrolytes; we assume that these pzc values are also good
approximations for the pzc values in alkaline pH.

3. Results and discussion

In the following, we first discuss the behavior of the electric potential
and ion concentrations in the double layer as computed by solving Eq. (7)
with Eq. (10) as boundary condition. We then compute the current density
using the relevant values for the electric potential, and compare the results
to experimental data.

3.1. Double layer structure

Central to our approach is the behavior of the electric potential in the
double layer. Figure 4a and b show the electric potential profiles obtained
from the double layer model for various cation bulk concentrations c∗+ and
effective cation sizes γ+ at ϕ0 = −1V. We observe that the potential decays
faster for higher cation bulk concentrations, and for smaller effective cation
sizes. Smaller cations pack more tightly in the double layer, shielding the
surface charge more effectively.

From such potential profiles, we can read off the potential at the reaction
plane ϕ′ at x′ ≈ 0.28 nm, see Sec. 2.3.1. Let us consider how ϕ′ behaves
with the electrode potential E. From E we find ϕ0 by Eq. (13), which defines
our boundary condition. Figure 4c and d show the behavior of ϕ′ against E
on gold electrodes for various c∗+ and γ+. We see that smaller cation bulk
concentrations and larger cations yield a larger ϕ′. As a result, the potential
difference ϕ0 − ϕ′ increases with increasing cation bulk concentration c∗+ and
decreasing cation size γ+.

Next, we study the interfacial cation concentration. Figure 5a shows
that the interfacial cation concentration near the electrode surface takes an
almost constant value at electrode potentials far from the pzc, regardless of
the bulk concentration. Various studies [5, 6, 8] presume that an increase in
the interfacial cation concentration with increasing bulk concentration and
with more negative electrode potentials is responsible for the kinetic cation
effects. Based on the results of this mean-field model, though, it is unlikely
that cation effects can be explained by the interfacial cation concentration
alone.
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Figure 4: (a-b) Potential profiles at ϕ0 = −1V calculated from the double layer model for
varying cation bulk concentration c∗+ (a) and effective cation size γ+ (b). (c-d) Potential
at the reaction plane ϕ′ calculated for gold electrodes for various c∗+ (c) and for various γ+
(d), plotted against the electrode potential on SHE scale. The potential at the electrode
ϕ0 is shown with a black line. Unless otherwise specified in the legends, γ+ = 6 and c∗+ =
100mM. In figures (c-d), the value for the pzc used is for gold electrodes (Epzc,Au(111) =
0.51V vs. SHE).

Finally, the concentration of OH– in the double layer is plotted against
E for various bulk pH values in Figure 5b. At an electrode potential of
−1V vs. SHE, the OH– concentration is around the order of 10−15 M,
meaning that 1µm3 of electrolyte contains about one OH– ion. At such
homeopathic concentrations, the number of OH– molecules in the double
layer (at most a few nm thick) is essentially zero. Hence, our assumption
that the concentration of OH– is independent of the electrode potential is
reasonable for sufficiently negative potentials. Modelling the concentration
of OH– at non-equilibrium conditions is left for future work.
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Figure 5: (a) Cation concentration at the plane of closest approach c+(x2) against the
electrode potential, calculated for various c∗+. (b) Hydroxide ion concentration at x2

against the electrode potential, computed for various values of the bulk pH. Parameters:
Epzc,Au(111) = 0.51V vs. SHE, γ+ = 6, and unless otherwise specified in the legend,
c∗+ = 100mM.

3.2. Trends on gold

Recall that for hydrogen evolution on gold, we expect that the rate is
limited by the water reduction sub-step (4) (Sec. 2.4). The current density
is thus described by Eq. (20). Figure 6 shows the current density as com-
puted from Eq. (20) and the double layer model. We took pH 11, a cation
concentration of c∗+ = 100mM and γ+ = 6 (corresponding to Na+), unless
otherwise indicated in the legend. We also chose (∆‡G)pzc = 1.37 eV and
α = 1

2
to obtain realistic current density values.

As expected from the behavior of ϕ0 − ϕ′ discussed before, the current
density also increases with increasing cation bulk concentration (Fig. 6a) and
with decreasing cation effective size (Fig. 6b). These trends are qualitatively
the same as those in the experimental data from Goyal and Koper [6, 25],
which is reprinted in Fig. 7a and b. Note that the experimental conditions
match the parameters in the model calculations. An increase in current with
decreasing cation effective size was also reported by Ringe et al. [20] for
carbon dioxide reduction, based on a double layer model similar to the one
used here.

Interestingly, for a single choice of (∆‡G)pzc and α, the calculated current
density values match the data rather well, even across different experiments.
Nevertheless, there are some quantitative differences. Consider the cation
bulk concentration series, for example. Between c∗+ = 5mM and 250mM,
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Figure 6: Hydrogen evolution current density on gold, calculated according to Eq. (20)
where (∆‡G)pzc = 1.37 eV and α = 1

2 . (a) Current density for various cation bulk concen-
trations c∗+, shown on the RHE scale for pH 11. (b) Current density for various effective
cation sizes, shown on the RHE scale for pH 11. (c) pH-independent current density on
the SHE scale. Unless indicated otherwise in the legend, c∗+ = 100mM and γ+ = 6.

the simulated current density increases significantly, whereas the measured
current density does not increase as much. On the other hand, increasing c∗+
from 250mM to 1000mM leads to a small increase in the simulations, whereas
a big increase is measured experimentally. We will analyze the quantitative
performance of the model in more detail in Sec. 3.4.

The current according to Eq. (20) is independent of the bulk pH. Figure
7c shows the current on the SHE scale for γ+ = 6 and c∗+ = 100mM. The
predicted pH-independence agrees with experimental data of Strmcnik et al.
[27]. However, Goyal and Koper [6] do measure a pH effect on gold electrodes,
as shown by the reprinted plot in Fig. 7c. In this data, the onset of hydrogen
evolution shifts to more negative potentials for higher pH. This may be due
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(a) (b)

(c)

Figure 7: Experimentally obtained voltammograms (current density vs. electrode poten-
tial) showing various electrolyte effects for the alkaline HER on gold electrodes. For all
experiments, the electrode rotation rate is 2500 rpm, and the scan rate 25mV/s. (a) Cation
concentration series on Au(111) for NaClO4 in 1mM NaOH (pH 11). (b) Cation species
series on a polycrystalline gold electrode with a cation bulk concentration of c∗+ = 100mM
at pH 11. (c) pH series on Au(111) for x M NaOH and (0.1 − x) M NaClO4, where
x = 0.1, 0.01, 0.001 and 0.0001, corresponding to pH 13, 12, 11 and 10 respectively. Note
that the electrode potential is on the NHE (Normal Hydrogen Electrode) scale, equivalent
to SHE. Figures (a) and (c) are reprinted from Goyal and Koper [6] under a CC BY 4.0
license. Figure (b) is reprinted from Goyal and Koper [25] with permission from AIP
Publishing.
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to a bulk pH-dependence of the (non-equilibrium) concentration of interfacial
OH– .

It is also possible to express the current density using Marcus theory.
The derivation and the corresponding results are shown in Appendix C.1.
The qualitative behavior is the same as in Fig. 6, and the above discussion
applies to these results as well.

3.3. Trends on platinum

Next, we calculate the current density on platinum electrodes, where we
expect that OH– transfer through the double layer limits the rate. Hence,
we use Eq. (23), and Epzc for platinum. Figure 8 shows the result for various
cation bulk concentrations, cation species, and pH. Fig. 8a and b show that
the cation species and concentration trends are reversed compared to gold.

The reversal of the cation species trend on platinum is consistent with
experimental data of Bender et al. [7], which is reprinted in Figure 9. Fur-
thermore, Monteiro et al. [5] showed that the current density decreases for
larger cation concentrations on platinum at pH 11 and higher. This obser-
vation agrees with the reversed cation concentration trend predicted by the
model introduced here. Hence, although the model is rather simple – we only
considered OH– transfer as an activated process – it qualitatively reproduces
the experimentally observed reversal of cation trends.

It is interesting to note that Monteiro et al. [5] also report a reversal of
the cation species trend on gold electrodes at large negative overpotentials.
In the diagram of Figure 3, such a trend reversal can be expected on gold
electrodes if the water reduction barrier is lowered so far (by a large value of
ϕ0 − ϕ′) that the OH– transfer barrier dominates.

An important step towards developing a more quantitatively accurate
model will be to include some notion of the water structure, and how it is
affected by various cations and the electric field. In addition, the rate of OH–

transfer in the double layer rate likely depends on the bulk pH [25], which may
explain the observed pH-dependence [27] on platinum electrodes. Finally,
it remains unclear how the accumulation of OH– in the double layer can
limit the reaction rate – the effect of interfacial OH– on the water reduction
reaction energetics needs to be clarified.
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Figure 8: Calculated hydrogen evolution current density with OH– transfer as rate-
determining step. (a) Current density against electrode potential on RHE scale for var-
ious cation bulk concentrations c∗+. (b) Current density for various effective ion sizes
γ+. Unless otherwise indicated in the legend, c∗+ = 100mM and γ+ = 6. Parameters:

APt =
2e0n̄H2O

βh exp(−βC), with C = 0.87 eV – note that this is merely a convenient form
with little physical meaning. The potential range was chosen similarly to the Pt data in
Fig. 9.

Figure 9: Experimental voltammograms showing the cation species trends on poly-
crystalline gold (Au) and polycrystalline platinum (Pt) in 0.1M electrolytes (pH 13).
Reprinted with permission from Bender et al. [7]. Copyright 2022 American Chemical
Society.

3.4. Quantitative comparison

Lastly, we consider the relationship between j and ϕ0−ϕ′ in more detail.
Taking the base-10 logarithm of Eq. (20), we obtain a Tafel-like relation

log |j| = a− b(ϕ0 − ϕ′). (24)

Here, the parameters a and b contain all potential-independent parameters,
most of which we do not know (e.g., the exponential prefactor). b is related
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to the transfer coefficient α as

b =
αβe0
ln 10

. (25)

To further evaluate the validity of our model, we look for a relationship
like Eq. (24) in experimental data. We use the data of Goyal and Koper
[25], who measured the hydrogen evolution current for different cation con-
centrations, cation species, and pH at various electrode potentials. For each
combination of experimental conditions, we compute ϕ0−ϕ′ from the double
layer model. Based on Eq. (24) we then expect a linear relation between
the measured current density j and the calculated ϕ0−ϕ′. Data for different
electrolytes should fall on the same line, assuming that a does not depend
on the electrolyte composition.

In Figure 10, the current density measured by Goyal and Koper is plotted
against ϕ0 − ϕ′ as calculated from our mean-field model for the different
experimental conditions. The subfigures a, b, and c show data for Li+-,
Na+- and K+-based electrolytes, each for various concentrations. For each
concentration, a series of data points at four different electrode potentials is
shown. Data for pH 11 is shown with open symbols, whereas data for pH 13
is represented with filled symbols.

The data for Li+ electrolytes in Fig. 10a falls on a straight line, demon-
strating the validity of Eq. (20). From a linear fit we obtain the transfer
coefficient α = 0.39. The linear fit is indicated with a black line, and it is
reproduced in subfigures b and c as well. In contrast to the Li+ data, the
data points for Na+ and K+ do not collapse on one line. Moreover, for K+

the pH 13 data shows a much larger current than the pH 11 data, whereas
the Na+ data shows a slightly higher current for the pH 11 data.

To explain why the model only describes the data for Li+, we note that
Li+ is a ‘water-structure-making’ ion, whereas Na+ and especially K+ break
the water structure [42]. A broken water structure would hamper OH– trans-
port. We suggest that our model for the water reduction-limited current is
accurate as long as the water structure is maintained (so that OH– transfer
is not hampered), similar to what has been suggested by Ringe [8]. An-
other consideration is that the smaller solvation shell of Na+ and K+ allows
for more short-ranged interactions between cation and reactant. The large
solvation shell of Li+ may only allow long-ranged electrostatic interactions,
which are the focus of our model.

The current measurements on platinum electrodes from Monteiro et al.
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[5] can be analyzed in a similar way (see Appendix C.2). The data for
Li+ at pH 13 again collapses on one line (with α = 0.36), whereas the data
for pH 11 shows a slight deviation. The K+ data for pH 9 with low cation
concentrations seems to fit the trend of Li+ at pH 13. The other data, in
particular the behavior with pH, is not explained by our model; it may be
necessary to include the mass transport of OH– , as described by Goyal and
Koper [25].

The described behavior is qualitatively similar for different choices of
parameters. Because Ringe et al. [20] use rather different values for x2, we
show the results for our model with their values of x2 in Appendix C.3.
This parameter choice brings the K+ data at pH 13 more in line with the
Li+ data. However, since the accuracy of the model does not improve for the
other data, the evidence is insufficient to conclude that these parameters are
more realistic.

4. Conclusion and outlook

In this work we developed expressions for the alkaline hydrogen evolution
current density in terms of the electric potential in the double layer, which
was computed using a mean-field double layer model. We assume that the
Volmer step can be split into two sub-steps, the water reduction sub-step
(4) and the OH- transfer sub-step (5). The model for the water reduction-
limited sub-step explains the increase of the current with the cation bulk
concentration and more weakly hydrated cation species. It also correctly
predicts the pH-independence of the water reduction-limited current. With
the simple model we proposed for the OH– transfer-limited current, we can
reproduce the experimentally observed cation trend reversal between gold
and platinum electrodes.

Moreover, the model for the water reduction-limited current describes
the current in Li+-based electrolytes with the correct functional form. In
agreement with previous research, we propose that this model is valid when
the water structure is sufficiently maintained as to support the transfer of
OH– . When the water structure is destroyed, the transfer of OH– limits the
rate.

The approach taken here provides simple analytic expressions and an
intuitive physical view. In addition, the theory can serve as a reference point
for deeper investigations. Further research should focus on elucidating OH–
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Figure 10: The logarithm of the measured current density on gold electrodes, log |j|,
against the potential drop in the double layer, ϕ0 − ϕ′, computed from the double layer
model for the corresponding experimental conditions. Data obtained from Goyal and
Koper [25]. Subfigure labels indicate the cation species. Open symbols: pH 11, filled
symbols: pH 13. Parameters: γ+ = 7 for Li+, 6 for Na+, 5 for K+. The fit of the Li+

data in subfigure (a) with α = 0.39 is shown as a black line in all subfigures.
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transfer through the interfacial water structure, and how it affects the overall
reaction rate.
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Appendix A. Bell-Evans-Polanyi principle

Bell [44] and Evans and Polanyi [45] independently derived a principle
that relates a change in reaction energy to a change in the activation energy.
Consider the free energy diagram in Fig. A.1a. Imagine that some parameter
(here: the electrode potential) is tuned, causing the reactant curve to shift
down, without changing its overall shape. This shift changes the reaction
energy by an amount δ(∆rG) > 0. Note that the reaction energy is negative
in this diagram, and the shift makes the reaction energy less negative. By
studying the geometrical construction in Figure A.1b (similar to the one in
Bard and Faulkner [11]), we find that the transition state energy increases
by αδ(∆rG), i.e.

∆‡Gf → ∆‡Gf + αδ(∆rG). (A.1)

Conversely, the backward activation energy changes as

∆‡Gb → ∆‡Gb − (1− α)δ(∆rG). (A.2)
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In the context of electrode kinetics, the parameter α (0 < α < 1) is known
as the transfer coefficient [11].

In this work, the curves of the initial and final states both depend on the
electrode potential, through ϕ0 and ϕ′ respectively – see Fig. 2. However, we
can still apply the construction shown in Fig. A.1, as long as we vertically
shift the reactant and product curves in Fig. 2 such that the product curves
corresponding to different electrode potentials coincide. Because we only
deal with energy differences and not absolute energies, we can still apply the
Bell-Evans-Polanyi principle in the same way.

reaction coordinate

G

∆‡Gf

∆‡Gb

∆rG δ(∆rG)

(1− α)δ(∆rG)

δ(∆rG)

αδ(∆rG)

(a) (b)

reactant product

Figure A.1: (a) Free energy G over the course of a reaction. ∆‡Gf,b are the forward and
backward activation energies. ∆rG is the reaction energy in the forward direction. When
tuning a certain parameter, the free energy surface changes from the solid line to the
dash-dotted line, which changes the reaction energy by an amount δ(∆rG). (b) Zoom of
(a) around the transition state.

Appendix B. Numerical implementation

To solve the double layer model numerically, we first introduce dimen-
sionless quantities. To this end we use an inverse length scale denoted as
κ,

κ =

√
βe2

εwa3
(B.1)

with εw ≈ 78.5ε0 the bulk permittivity of water. Using κ we define the
dimensionless potential y1, electric field y2, spatial coordinate ζ, rescaled
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permittivity ε̃, dimensionless dipole moment magnitude p̃, and dimensionless
number density χi as

y1 = βe0ϕ, (B.2)

y2 =
βe0
κ

∂ϕ

∂x
, (B.3)

ζ = κ(x− x2), (B.4)

ε̃ =
ε

εw
, (B.5)

p̃ =
κp

e0
, (B.6)

χi = nia
3. (B.7)

where p is the magnitude of the effective dipole moment of water.
To fit an effective value for p, Booth [31] considers pure bulk water, where

E = 0. Taking the limit of Equation (8) in the main text as E → 0, the bulk
value is found as

εw = ε∞ +
1

3
βp2nw. (B.8)

Hence,

p =

√
3(εw − ε∞)

βnw

, (B.9)

where nw = 1/a3 = 55.5 M × NA. This expression gives p ≈ 1.58 ×
10−29 C m = 4.75D.

For the numerical solution of the boundary value problem we use SciPy’s
solve bvp function [46]. To solve Eq. (7) with solve bvp we must rewrite
the equation as a system of two first order differential equations. To this end
we define

F1 = −
∑
i

ziχi (B.10)

F2 = −p̃y2L(p̃y2)χw

∑
i

ziγiχi (B.11)

G1 = ε̃∞ (B.12)

G2 = p̃2χwL′(p̃y2) (B.13)

G3 = p̃2L2(p̃y2)χw (1− χw) (B.14)

25



where L′(x) = dL(x)/dx, L2(x) = (L(x))2, and zi the charge number of the
various species (+1 for cations, −1 for anions, 0 for water). The dimensionless
number densities χi are defined in accordance with Eq. (9). The system of
first-order differential equations is then

∂y1
∂ζ

= y2

∂y2
∂ζ

=
F1 + F2

G1 +G2 +G3

.

(B.15)

The nondimensionalized boundary conditions are (see Eq. 10){
y1(ζend) = 0

y1(0) = βe0ϕ0 + y2(0)κx2,
(B.16)

where we chose ζend to correspond to x = 100 nm, i.e. far away in the
electrolyte as compared to the double layer thickness. As initial ζ-axis we
chose a logarithmically spaced axis so that there are more points in the double
layer region and less points in the bulk electrolyte. Note that ϕ0 is calculated
from the electrode potential E as described in Sec. 2.2.

To obtain a solution for a metal surface at arbitrary ϕ0, we first solve at
the pzc (ϕ0 = 0) and then sweep to the desired potential in steps of 0.01 V,
each time using the solution as initial condition for the next iteration. From
the solutions y1, y2, the relevant physical quantities ϕ, E, ci = ni/NA, and ε
were calculated and used as described in the main text.

Appendix C. Additional results

Below we discuss the additional results that are referred to in the main
text.

Appendix C.1. Marcus theory

In the main text we used the Bell-Evans-Polanyi principle to derive an
expression for the activation energy; this approach is also referred to as
Frumkin-Butler-Volmer theory. Another way to express the activation energy
is using Marcus theory [11], which yields

∆‡G =
(λ+∆rG)2

4λ
, (C.1)
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where λ is the reorganization energy.
We may write the reaction energy in Eq. (16) in a more convenient form

by recognizing the pzc (Eq. 12) and the equilibrium electrode potential of
the water reduction sub-step of the Volmer step

EV1 =
1

e0
(µH∗ + µOH− − µH2O) (C.2)

where OH– is located in the reaction plane. It follows that

∆rG = e0(ϕ0 − ϕ′ + (Epzc − EV1)). (C.3)

Inserting ∆rG from Eq. (C.3) in Eq. (C.1), we can express the current
density from Eq. (19) as

j = −2e0n̄H2O

βh
exp

(
− β

4λ

(
λ+ e0(ϕ0 − ϕ′ + (Epzc − EV1)

)2)
(C.4)

where λ is a free parameter. To evaluate the expression, we also need a value
for EV1. This value could in principle be extracted from quantum chemical
simulations, but does not qualitatively affect the results. Hence, we choose
EV1 = 0V vs. SHE for simplicity.

The resulting current density on gold for various concentrations, cation
species, and pH is shown in Fig. C.2. The experimental conditions are again
taken to be the same as in Fig. 7.

Appendix C.2. Quantitative analysis for platinum

The same analysis as in Sec. 3.4 can be made for the platinum data
measured by Monteiro et al. [5]. The result is shown in Fig. C.3. The black
line fits the Li+ data at pH 13; the fitting value for the transfer coefficient is
α = 0.36.

Appendix C.3. Quantitative analysis with different parameters

In the main text we obtained the distance of closest approach x2 from
x2 = d+/2, with d+ calculated from Eq. (6). Here, we consider the case
where x2 is specified independently of γ+. We use the values given by Ringe
et al. [20], which are based on experiments and a fit of their model to kinetic
data. The values of x2 used in the main text and those used by Ringe et al.
are compared in Table C.2.

27



0.6 0.4 0.2
E vs. RHE / V

2.0

1.5

1.0

0.5

0.0

j /
 m

A 
cm

2

(a)

c *
+  / mM

5
250
500
1000

0.6 0.4 0.2
E vs. RHE / V

2.0

1.5

1.0

0.5

0.0

j /
 m

A 
cm

2

(b)

+
4
5
6
7

1.2 1.0 0.8
E vs. SHE / V

1.00

0.75

0.50

0.25

0.00

j /
 m

A 
cm

2

(c)

Figure C.2: Hydrogen evolution current density on gold, calculated with Eq. (C.4) and
setting λ = 4.35e0. (a) Current density for various cation bulk concentrations c∗+, shown
on the RHE scale for pH 11. (b) Current density for various effective cation sizes, shown
on the RHE scale for pH 11. (c) pH-independent current density on the SHE scale. Unless
indicated otherwise in the legend, c∗+ = 100mM, pH 11, and γ+ = 6.

28



1.0 0.8 0.6 0.4
0 ′ / V

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

lo
g|

j| 
/ A

 c
m

2

(a) Li +

pH
11
13

c *
+  / mM

5
25
50
100

c *
+  / mM

5
25
50
100

1.0 0.8 0.6 0.4
0 ′ / V

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

lo
g|

j| 
/ A

 c
m

2

(b) K +

pH
9
10
11
12

c *
+  / mM

5
25
50
100

c *
+  / mM

5
25
50
100

Figure C.3: The logarithm of the measured current density on platinum electrodes, log |j|,
against the potential drop in the double layer, ϕ0 − ϕ′, computed from the double layer
model using the corresponding experimental conditions. Data obtained from Monteiro
et al. [5]. Subfigure labels indicate the cation species. Parameters: γ+ = 7 for Li+, 5 for
K+. The fit of the Li+ data at pH 13 (with α = 0.36) is shown as a black line in both
subfigures.
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Figure C.4 shows the results analogous to those in Fig. 10, but now using
the new values of x2 to calculate ϕ0−ϕ′. The data is visualized according to
the same legend as in Fig. 10.

The data for Li+ still falls on one line with α = 0.67. The most important
difference between the results in the main text and the result in Fig. C.4 is
that here the data for K+ at pH 13 lies more in line with the data for Li+.
However, as remarked in the main text, the different concentrations still do
not fall on the same line.

We do not use the values of x2 from Ringe et al. in the results presented in
the main text for the following reasons. First, this choice reduces the number
of parameters in our model. Second, the large differences between the values
of x2 of Ringe et al. leads to a much larger difference in ϕ0 − ϕ′ for various
effective ion sizes. As a result, the difference in current between various cation
species is much larger than what is observed in the experimental data (Fig.
7b). Finally, the fact that only one additional data set follows the expected
trend is not enough evidence to conclude that this set of parameters is more
realistic.
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Figure C.4: The logarithm of the measured current density on gold electrodes, log |j|,
against the potential drop in the double layer, ϕ0 − ϕ′, computed from the double layer
model using the corresponding experimental conditions and the values of x2 from Ringe
et al. [20]. Data obtained from Goyal and Koper [25]. For the legend, see Fig. 10. The
black line is a linear fit of the data for Li+, corresponding to α = 0.67.
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General constants

Boltzmann constant, kB 1.38× 10−23 J/K
Elementary charge, e0 1.6× 10−19 C
Avogadro’s number, NA 6.02× 1023 /mol
Vacuum permittivity, ε0 8.85× 10−11 F/m

Electrolyte model

Temperature, T 298 K
Inverse temperature, β (kBT )

−1

Permittivity of pure water [29], εw 78.5ε0
Number density of pure water, (dw)

−3 55.5 M ×NA

Lattice spacing, a dw
Cation eff. size factor, γ+ 4, 5, 6, 7
Anion eff. size factor, γ− 2
Optical permittivity of water [14], ε∞ 1.332

Effective dipole moment, p

√
3a3(εw − ε∞)

β

Effective ion diameter, d± (γi)
1/3a

Distance of closest approach, x2 d+/2
Cation bulk concentration, c∗+ parameter
Hydroxide ion concentration, c∗OH− 10−14+pH

Metal

pzc of Au(111) [43]
Epzc,Au(111) 0.51V vs. SHE
pzc of Pt(111) [43]
Epzc,Pt(111) 0.3V vs. SHE

Table B.1: Parameter table for the implemented double layer model.
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Ion x2 (this work) x2 (from [20])

Cs+ 2.46 3.5
K+ 2.65 4.1
Na+ 2.82 5.2
Li+ 2.97 5.8

Table C.2: Comparison of the distance of closest approach x2 for various ion species used
in this work and the work of Ringe et al. [20].
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