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ON THE EXISTENCE OF A SECOND POSITIVE SOLUTION TO

MIXED LOCAL-NONLOCAL CONCAVE-CONVEX CRITICAL

PROBLEMS

STEFANO BIAGI AND EUGENIO VECCHI

Abstract. We prove the existence of a second positive weak solution for mixed
local-nonlocal critical semilinear elliptic problems with a sublinear perturbation
in the spirit of [1].

1. Introduction

Let Ω ⊂ Rn be an open and bounded set with smooth enough boundary ∂Ω.
We consider the following mixed local-nonlocal perturbed critical semilinear elliptic
problem:

(Pε)







Lεu = λup + u2
∗−1 in Ω,

u > 0 in Ω,
u = 0 in Rn \Ω,

where λ > 0 is a positive real parameter, p ∈ (0, 1) and

Lε := −∆+ ε (−∆)s, s ∈ (0, 1), ε ∈ (0, 1].

Along the paper it will sometimes be useful to denote the above problem as (Pε)λ
to make it clear the choice of the parameter. Here, (−∆)s with s ∈ (0, 1) denotes
the fractional Laplacian which acts in smooth enough functions as

(−∆)su(x) = 2P.V.

ˆ

Rn

u(x)− u(y)

|x− y|n+2s
dy = 2 lim

δ→0+

ˆ

{|x−y|≥δ}

u(x)− u(y)

|x− y|n+2s
dy.

We neglect the normalization constant Cn,s > 0 usually appearing in front of the
integral because we are not interested in asymptotics as s→ 1−.

The above boundary value problem falls in the framework of the so called
concave-convex problems whose model and most famous example is the one consid-
ered in the paper [1]:

(ABC)







−∆u = λup + u2
∗−1 in Ω,

u > 0 in Ω,
u = 0 on ∂Ω.
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2 S.BIAGI AND E.VECCHI

Without any aim of completeness, we mention that (ABC) has been generalized to
various directions, either allowing for different operators either considering different
boundary conditions, see e.g. [32, 24, 22, 7].

Before entering into the details related to (Pε)λ, let us spend a few more words
on Lε. The operator L1 (i.e. with ε = 1) is a special instance of a wide more general
class of operators whose study began in the ’60s, see [14] and [21] for generaliza-
tions, in connection with the validity of a maximum principle. On the other hand,
the operator L1 can be seen as the infinitesimal generator of a stochastic process
obtained as a superposition of a Brownian motion and a Lévy flight, and hence
there is a vast literature which establishes several regularity properties adopting
probabilistic techniques, see e.g. [23] and the references therein.
More recently, the study of regularity properties related to this operator (and its
quasilinear generalizations) has seen an increasing interest, mainly adopting more
analytical and PDEs approaches, see, e.g., [8, 20, 27, 28, 30, 31, 37, 4, 38]. It is
worth mentioning that the operator Lε (usually with ε = 1) seems to be of interest
in biological applications, see, e.g. [29] and the references therein.
The operator L1 has a also variational nature and it is associated to the energy

E(u) :=

ˆ

Ω

|∇u|2

2
dx+

1

2

¨

R2n

|u(x)− u(y)|2

|x− y|n+2s
dx dy.

defined on a suitable space functions for which we refer to Section 2. It is clear
that

E(λu) = λ2E(u), for every λ ∈ R,

but there is a lack of scaling invariance, namely,

E(ut) =
1

2

ˆ

Ω
|∇u|2 +

t2s−2

2

¨

R2n

|u(x)− u(y)|2

|x− y|n+2s
dx dy for every t > 0,

where ut(x) := t(n−2)/2u(x), which typically preserves the L2-gradient norm.
Among other aspects, this phenomenon is responsible of the following fact: the

best Sobolev constant in the natural mixed Sobolev inequality is never achieved and
it coincides with the one coming from the purely local one. We notice that some-
thing similar happens when dealing with mixed Hardy-type inequalities, see [11].
An interesting consequence of the absence of mixed Aubin-Talenti functions natu-
rally affects PDEs with critical term. Indeed, when dealing with critical variational
problems for −∆, it is well known that a major role is played by the best Sobolev
constant, for example being a threshold of validity of Palais-Smale condition, and
this is usually achieved by testing the critical equation with the Aubin-Talenti func-
tions. An analogous procedure can be followed in the mixed setting as well, but
the lack of invariance previously mentioned can create troubles, see e.g [10, 13, 25].
We stress that something similar may happen with non-homogeneous operators
like the (p, q)-Laplacian, see [33].

Following the approach recently used in [13] for the case of mild singular and
critical mixed problems, we are now interested in the following classical problem:

Find values of the parameter λ for which (Pε)λ admits one or more positive weak
solutions.

We refer to Definition 2.2 for the precise definition of weak solution of (Pε)λ.
Differently from [10] and [13], here we are in presence of a sublinear perturbation
(λup with p ∈ (0, 1)) of the critical term (u2

∗−1).
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For ε = 1, a first step towards an answer has been recently made in [2, Theorem
1.2] and [36, Theorem 1.1] where the following has been proved:

Theorem 1.1. Let Ω ⊂ Rn (with n ≥ 3) be a bounded open set with smooth enough
boundary, and let p ∈ (0, 1). Then, there exists Λ > 0 such that

a) problem (P1)λ admits at least one weak solution for every 0 < λ ≤ Λ;
b) problem (P1)λ does not admit weak solutions for every λ > Λ.

Moreover, for λ ∈ (0,Λ), the solution is minimal and increasing w.r.t. to λ.

We stress that the the above results actually holds in the supercritical case as
well. For sake of completeness, we recall that the existence of the first positive
solution in [2] is obtained by means of a sub/supersolution scheme as in [1]. We
also note that, if we fix ε ∈ (0, 1], the above result holds for a threshold Λε now
depending on ε.
We also mention that concave-convex problems in the mixed local-nonlocal setting
has been previously studied in [26]: there, the leading operator is a combination
of p-Laplacian and fractional p-Laplacian and the existence of weak solutions is
proved under the assumption p > n, being the interest of the authors to study the
limiting problem as p→ +∞.

Our first result is somehow complementary to Theorem 1.1 stated above and it
is the counterpart of [1, Theorem 2.2] in the mixed local-nonlocal setting.

Theorem 1.2. Let ε ∈ (0, 1] be fixed. Then, there exists a constant Mε > 0 such
that, for every λ ∈ (0,Λε), problem (Pε)λ,ε has at most one solution uλ with

‖uλ,ε‖L∞(Rn) ≤Mε.

Note that the if the unique solution of Theorem 1.2 exists, it has to be the
minimal one found in Theorem 1.1.

Following the seminal paper [1], it is natural to wonder whether a second positive
solution exists or not for all λ ∈ (0,Λ). A similar question has been answered in
[36] for sublinear perturbations of a subcritical nonlinearity, so leaving the critical
case unsolved.

To better understand the difficulties one has to face in the case of mixed operators
like Lε, let us briefly recall the method employed in [1] to find a second positive
solution of (ABC):

i) show that the first solution found is a minimizer of the functional naturally
associated with (ABC) in C1-topology;

ii) thanks to the famous result by Brezis and Nirenberg [18], one inherits that
the first solution is actually a minimizer in the H1-topology;

iii) prove the validity of the Palais-Smale condition under a certain value pro-
portional to the best Sobolev constant, here making use of the Aubin-
Talenti functions;

iv) find a second positive solution of mountain-pass-type.

Despite i) can still be proved in our case, the above scheme finds a first obstacle
once a result like the one in [18] is needed. To this aim, and thanks to the recent
regularity results proved in [3] and [38], we establish the following
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Theorem 1.3. Let Φ : X 1,2(Ω) → R defined as

(1.1) Φ(u) :=
1

2
ρ(u)2 −

ˆ

Ω
F (x, u) dx,

where F (x, u) :=
´ u
0 f(x, s) ds and with f satisfying that

(1.2) |f(x, u)| ≤ Cf (1 + |u|2
∗−1).

Let u0 ∈ X 1,2(Ω) be a local minimizer of Φ in the C1-topology. Then, u0 is a local
minimizer in the X 1,2-topology.

Theorem 1.3 allows to achieve ii) as well, but a new difficulty arises once iii) has to
be faced, the main reason being the lack of scaling invariance, and its consequences
on the mixed Sobolev inequality, previously discussed. A similar issue occurred
in the recent [13] when dealing with mild singular problems, and it is the main
reason to consider Lε instead of L1 because, roughly speaking, the presence of the
parameter ε allows us to adjust the lack of scaling invariance, at least for small
enough ε. In this way, we are able to fully follow the above scheme proving the
following

Theorem 1.4. Let Ω ⊂ Rn (with n ≥ 3) be a bounded open set with smooth enough
boundary, and let p ∈ (0, 1) be fixed.

Then, there exist λ⋆ > 0 and ε0 ∈ (0, 1) such that problem (Pε)λ admits a second
positive solutions for every ε ∈ (0, ε0) and for every λ ∈ (0, λ⋆).

As it clearly appears from the statement, there is a first price to pay once con-
sidering Lε, because the existence is not proved for every λ. Less evident is the
second fee we have to pay. Let us briefly describe it: the first solution found in
Theorem 1.1 can still be found once L1 is replaced with Lε but now it implicitly
depends on ε and this forces to carefully keep track of the dependence on ε of many
ingredients like L∞-bounds and so on.
As in [13], the key result to be proved is Lemma 5.2 and we want to explicit mention
that a careful inspection of its proof shows that a better result can be obtained, this
time with big restrictions on both the dimension n and the fractional parameter s:

Corollary 1.5. Let n = 3 and s ∈
(

0, 12
)

. Then problem (Pε)λ admits at least two
positive weak solutions for every λ ∈ (0,Λ).

Finally, once the existence of (at least) two solutions of problem (Pε)λ has been
established (at least for ε small enough), by exploiting Theorem 1.2 and by pro-
ceeding essentially as in [1] we can prove the following qualitative result.

Theorem 1.6. Let ε ∈ (0, 1] be fixed, and assume that Ω is star-shaped. Then,

‖vλ,ε‖L∞(Ω) → +∞ as λ→ 0+,

where vλ,ε ∈ X 1,2(Ω) is any weak solution of problem (Pε)λ distinct from its mini-
mal solution uλ,ε (see Theorem 1.1 and Lemma 2.6).

Plan of the paper: The paper is organized as follows:

• In Section 2 we collect all the relevant notation, definitions and preliminary
results needed for the proof of our main results.
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• In Section 3 we briefly study the purely sublinear counterpart of problem
(Pε)λ (starting from the results proved in [12]); in particular, we establish
some uniform bounds of the unique solution wλ,ε of this problem which will
be used subsequent sections, and we establish Theorem 1.2.

• In Section 4 we prove Theorem 1.3.
• In Section 5 we prove Theorem 1.4.
• Finally, in Section 6 we give the proof of Theorem 1.6.

2. Preliminaries

In this section we collect some preliminary definitions and results which will be
used throughout the rest of the paper. First of all, we review some basic properties
of the fractional Sobolev spaces, and we properly introduce the adequate functional
setting for the study of mixed local-nonlocal operators; we then give the precise
definition of weak sub/supersolution of problem (Pε)λ, and we establish some qual-
itative properties of the solutions of this problem (provided they exist). Finally, we
spend a few words the applicability of Theorem 1.1 (established in the case when
ε = 1) to our ε-dependent operator Lε.

i) Sobolev spaces of fractional order. We begin this section by collecting a few
basic facts fractional Sobolev spaces, which are naturally related to the fractional
Laplacian (−∆)s; we refer to [34] for a thorough introduction to this topic.

Let ∅ 6= O ⊆ Rn be an arbitrary open set. The fractional Sobolev space Hs(O)
(of order s ∈ (0, 1)) is the subset of L2(O) defined as follows

Hs(O) :=
{

u ∈ L2(O) : [u]2s,O =

¨

O×O

|u(x)− u(y)|2

|x− y|N+2s
dx dy < +∞

}

.

We then list the few basic properties of Hs(O) we will exploit in this paper.

a) Hs(O) is a real Hilbert space, with the scalar product

〈u, v〉s,O :=

¨

O×O

(u(x)− u(y))(v(x) − v(y))

|x− y|N+2s
dx dy (u, v ∈ Hs(O)).

b) C∞
0 (O) is a linear subspace of Hs(O); in addition, in the particular case

when O = Rn, we have that C∞
0 (Rn) is dense in Hs(Rn).

c) If O = Rn or if O has bounded boundary ∂O ∈ C0,1, we have the continuous
embedding H1(O) →֒ Hs(O), that is, there exists c = c(n, s) > 0 s.t.

(2.1)

¨

O×O

|u(x)− u(y)|2

|x− y|n+2s
dx dy ≤ c ‖u‖2H1(O) for every u ∈ H1(O).

In particular, if O ⊆ Rn is a bounded open set (with no regularity assump-
tions on ∂O) and if u ∈ H1

0 (O), setting û = u · 1O ∈ H1(Rn) we have

(2.2)

¨

R2n

|û(x)− û(y)|2

|x− y|n+2s
dx dy ≤ β

ˆ

O
|∇u|2 dx,

where β > 0 is a suitable constant depending on n, s and on |Ω|. Here and
throughout, | · | denotes the n-dimensional Lebesgue measure.
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ii) The space X 1,2(Ω). Now we have briefly recalled some basic facts regarding
fractional Sobolev spaces, we are in a position to introduce the adequate functional
setting for the study of mixed local-nonlocal operators.

Let then Ω ⊆ Rn be a bounded open set Lipschitz boundary ∂Ω. We define the
space X 1,2(Ω) as the completion of C∞

0 (Ω) with respect to the global norm

ρ(u) :=
(

‖|∇u|‖2L2(Rn) + [u]2s,Rn

)1/2
, u ∈ C∞

0 (Ω).

Due to its relevance in the sequel, we also introduce a distinguished notation for
the cone of the non-negative functions in X 1,2(Ω): we set

X 1,2
+ (Ω) := {u ∈ X 1,2(Ω) : u ≥ 0 a.e. in Ω}.

Since this norm ρ is induced by the scalar product

Bρ(u, v) :=

ˆ

Rn

∇u · ∇v dx+ 〈u, v〉s,Rn

(where · denotes the usual scalar product in Rn), the space X 1,2(Ω) is a real Hilbert
space; most importantly, since Ω is bounded and ∂Ω is Lipschitz, by combining the
above (2.1) with the classical Poincaré inequality we infer that

ϑ−1‖u‖H1(Rn) ≤ ρ(u) ≤ ϑ‖u‖H1(Rn) for every u ∈ C∞
0 (Ω),

where ϑ > 1 is a suitable constant depending on n, s and on |Ω|. Thus, ρ(·) and
the full H1-norm in Rn are actually equivalent on the space C∞

0 (Ω), so that

X 1,2(Ω) = C∞
0 (Ω)

‖·‖H1(Rn)

= {u ∈ H1(Rn) : u|Ω ∈ H1
0 (Ω) and u ≡ 0 a.e. in Rn \ Ω}.

(2.3)

We explicitly observe that, on account of (2.3), the functions in X 1,2(Ω) naturally
satisfy the nonlocal Dirichlet condition prescribed in problem (Pε)λ, that is,

u ≡ 0 a.e. in Rn \ Ω for every u ∈ X 1,2(Ω).

Remark 2.1 (Properties of the space X 1,2(Ω)). For a future reference, we list in
this remark some properties of the function space X 1,2(Ω) which will be repeatedly
exploited in the rest of the paper.

1) Since both H1(Rn) and H1
0 (Ω) are closed under the maximum/minimum

operation, it is readily seen that

u± ∈ X 1,2(Ω) for every u ∈ X 1,2(Ω),

where u+ = max{u, 0} and u− = max{−u, 0}.

2) Since we are assuming that ∂Ω is smooth, from (2.3) we see that a function
u ∈ H1(Rn) ∩ C(Ω) belongs to the space X 1,2(Ω) if and only if

u ≡ 0 pointwise on Rn \Ω.

3) On account of (2.2), for every u ∈ X 1,2(Ω) we have

(2.4) [u]2s,Rn =

¨

R2n

|u(x)− u(y)|2

|x− y|n+2s
dx dy ≤ β

ˆ

Ω
|∇u|2 dx.
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As a consequence, the norm ρ is globally equivalent on X 1,2(Ω) to the H1
0 -

norm: in fact, by (2.4) there exists a constant Θ > 0 such that

(2.5) ‖|∇u|‖L2(Ω) ≤ ρ(u) ≤ Θ‖|∇u|‖L2(Ω) for every u ∈ X 1,2(Ω).

4) By the (local) Sobolev inequality, for every u ∈ X 1,2(Ω) we have

Sn‖u‖
2
L2∗ (Ω) = ‖u‖2L2∗ (Rn) ≤

ˆ

Rn

|∇u|2 dx ≤ ρ(u)2.

This, together with Hölder’s inequality (recall that Ω is bounded), proves
the continuous embedding X 1,2(Ω) →֒ Lq(Ω) for every 1 ≤ q ≤ 2∗.

5) By combining (2.5) with the compact embedding of H1
0 (Ω) →֒ Lq(Ω) (hold-

ing true for every 1 ≤ q < 2∗), we derive that also the embedding

X 1,2(Ω) →֒ Lq(Ω) is compact for every 1 ≤ q < 2∗.

As a consequence, if {uk}k is a bounded sequence in X 1,2(Ω), it is possible
to find a (unique) function u ∈ X 1,2(Ω) such that (up to a sub-sequence)
a) un → u weakly in X 1,2(Ω);
b) un → u strongly in Lq(Ω) for every 1 ≤ q < 2∗;
c) un → u pointwise a.e. in Ω.

Clearly, since both un (for all n ≥ 1) and u identically vanish out of Ω, see
(2.3), we can replace Ω with Rn in the above assertions b)-c).

We will exploit these properties without any further comment.

We now observe that, since the leading operator of (Pε)λ is given by the ε-de-
pendent operator Lε = −∆ + ε(−∆)s, it follows that the bilinear form naturally
associated with Lε is the following

Bε(u, v) =

ˆ

Rn

∇u · ∇v dx+ ε 〈u, v〉s,Rn ;

in its turn, this form Bε induces the ε-dependent quadratic form

ρε(u) = ‖|∇u|‖2L2(Rn) + ε [u]2s (for u ∈ X 1,2(Ω)).

While in this perspective it should seem more natural to use the norm ρε in place of
ρ on the space X 1,2(Ω), it is readily seen that these two norms are indeed equivalent
on X 1,2(Ω) (and equivalent to the H1

0 -norm), uniformly with respect to ε: in fact,
taking into account (2.5) (and since 0 < ε ≤ 1), we have

(2.6) ‖|∇u|‖H1
0 (Ω) ≤ ρε(u) ≤ ρ(u) ≤ Θ‖|∇u|‖H1

0 (Ω)

for some Θ > 0 only depending on n, s. On account of (2.6), we can indifferently
use ρε(·), ρ(·) and the H1

0 -norm to define the topology of the space X 1,2(Ω), and
this choice does not produce any dependence on ε ∈ (0, 1].

Notation. We conclude this second part of the section with a short list of notation,
which will be used in the sequel; here, as usual, ε ∈ (0, 1] is a fixed parameter.

1) Given any open set O ⊆ Rn (not necessarily bounded), we set

a) Bε,O(u, v) =

ˆ

O
∇u · ∇v dx+ ε 〈u, v〉s,Rn (for u, v ∈ X 1,2(Ω));

b) Qε,O(u) = Bρε,O(u, u) (for u ∈ X 1,2(Ω)).

Since X 1,2(Ω) ⊆ H1(Rn) (see (2.3)), the above forms Bε,O and Qε,O are well-de-
fined; moreover, again by taking into account (2.3) we have
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• Bε,Ω(u, v) = Bε,Rn(u, v) ≡ Bε(u, v) for all u, v ∈ X 1,2(Ω);
• Qε,Ω(u) = Qε,Rn(u) ≡ ρε(u) for all u ∈ X 1,2(Ω).

2) Given any bounded open set O ⊆ Rn, we set

‖u‖H1
0 (O) := ‖|∇u|‖L2(O) =

(

ˆ

O
|∇u|2 dx

)1/2
.

iii) Weak sub/supersolutions of problem (Pε)λ. Thanks to all the prelimi-
naries reviewed so far, we are ready to provide the precise definition of weak sub/su-
persolutions of problem (Pε)λ. Actually, for a reason which will be clear later on,
we consider the more general problem

(2.7)

{

Lεu = f(x, u) in Ω

u = 0 in Rn \Ω

where f : Ω× R → R is an arbitrary Carathéodory function satisfying the growth
condition (1.2), that is, there exists a constant C > 0 such that

|f(x, t)| ≤ C(1 + |t|2
∗−1) for a.e. x ∈ Ω and every t ∈ R.

Clearly, problem (Pε)λ is of the form (2.7), with the choice f(x, t) = λtp + t2
∗−1.

Definition 2.2. Let f : Ω × R → R be a Carathéodory function satisfying the
growth condition (1.2). We say that a function u ∈ X 1,2(Ω) is

a) a weak subsolution (resp. supersolution) of problem (2.7) if we have

(2.8)
Bρ(u, ϕ) ≤ [resp. ≥]

ˆ

Ω
f(x, u)ϕdx

for every test function ϕ ∈ C∞
0 (Ω),ϕ ≥ 0 in Ω.

b) a weak solution of problem (2.7) if u is both a weak subsolution and a weak
supersolution of the same problem;

c) a weak subsolution (resp. supersolution, solution) of problem

(2.9)











Lεu = f(x, u) in Ω

u > 0 in Ω

u = 0 in Rn \Ω

if u is a weak subsolution (resp. supersolution, solution) of problem (2.7) in
the sense already specified, further satisfying

u > 0 a.e. in Ω.

Now we have introduced Definition 2.2, we prove a regularity result for solutions
of problem (2.7) which will be used in the sequel.

Theorem 2.3. Let f : Ω × R → R be a Carathéodory function satisfying the
growth condition (1.2), and suppose that there exists a weak solution u0 ∈ X 1,2(Ω)
of problem (2.7) (in the sense of Definition 2.2). Then, we have

(2.10) u ∈ C1,α(Ω) for some α ∈ (0, 1).

Proof. First of all we observe that, since the function f satisfies the growth condi-
tion (1.2), we can apply [38, Theorem 1.1], ensuring that u0 ∈ L∞(Ω); from this,
again by exploiting condition (1.2), we derive that

(2.11) g(x) := f(x, u(x)) ∈ L∞(Ω).
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On account of (2.11), and since Ω has smooth boundary, we can then invoke the
global regularity result for the weak solutions of the Lε - Dirichlet problem

{

Lεu = g in Ω

u = 0 in Rn \ Ω

proved in [3, Theorem 1.1], from which we derive (2.10). This ends the proof. �

To make the paper self-contained, we finally state a strong maximum principle
and Hopf Lemma which is a mere combination of results already appearing in the
literature, see [3, 8, 12].

Theorem 2.4. Let u ∈ X 1,2(Ω) ∩ C1(Ω) be a weak supersolution of

(2.12)

{

Lεu = 0 in Ω,

u = 0 in Rn \ Ω.

We also assume that u 6≡ 0 in Ω. Then

i) u > 0 pointwise in Ω and u = 0 pointwise in ∂Ω;
ii) ∂ν < 0 pointwise on ∂Ω (where ν is the outer exterior normal at ∂Ω).

Proof. We first observe that, since u ∈ X 1,2(Ω) ∩ C1(Ω), by Remark 2.1 we have

(2.13) u ∈ H1(Rn) and u ≡ 0 pointwise in Rn \ Ω;

moreover, since u is a weak supersolution of (2.12), we also have

(2.14) Bε(u, ϕ) ≥ 0 ∀ ϕ ∈ C∞
0 (Ω), ϕ ≥ 0 in Ω.

Gathering (2.13)-(2.14), we are then entitled to apply the Weak Maximum Principle
for Lε in [8, Theorem 1.2], ensuring that u ≥ 0 pointwise in Rn; as a consequence,
since u ≥ 0, u 6≡ 0 in Ω and since u ≡ 0 on Rn \ Ω (see (2.13)), by combining the
Strong Maximum Principle in [12, Theorem 3.1] (applied here with f ≡ 0) and the
Hopf lemma in [3, Theorem 1.2] (remind that u ∈ C1(Ω)), we conclude that

u > 0 pointwise in Ω and ∂νu < 0 on ∂Ω.

This ends the proof. �

Lemma 2.5. Let n > 3 and h = h(x) ∈ Lp(Ω) with p > n
2 . Assume that there

exists a weak solution u ∈ X 1,2(Ω) of the Dirichlet problem
{

Lεu = h in Ω,
u = 0 in Rn \ Ω.

Then u ∈ L∞(Rn) and

‖u‖L∞(Rn) ≤ C ‖h‖Lp(Ω),

for some positive constant C > 0 independent of ε.

Proof. It is enough to closely follow the proof of [8, Theorem 4.7] in the case ε = 1.
Take δ > 0 to be chosen later on and define the functions

ũ :=
δ u

K
and ṽ :=

δ h

K
,
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whereK = K(u, h,Ω, p, n) := ‖u‖L2∗ (Ω)+‖h‖Lp(Ω). One can now perform the same

computations made in [8, Theorem 4.7], getting rid of the nonlocal part thanks to
[8, Equation (4.47)], reaching the following:

(2.15) u(x) ≤
K

δ
=

‖u‖L2∗ (Ω) + ‖h‖Lp(Ω)

δ
, for every x ∈ Ω,

where δ > 0 has been chosen conveniently small but independently of ε. Now, by
Sobolev and Hölder inequalities, and testing the equation with u itself, we get

Sn ‖u‖
2
L2∗ (Ω)

≤ |Ω|1/q ‖u‖L2∗ (Ω) ‖h‖Lp(Ω),

where 1
2∗ + 1

p + 1
q = 1 are the Hölder exponents. Therefore,

‖u‖L2∗ (Ω) ≤
|Ω|1/q

Sn
‖h‖Lp(Ω),

which combined with (2.15) gives the desired conclusion. �

iv) First positive solution to (Pε)λ. We conclude this section of preliminaries
by spending a few words on the applicability of Theorem 1.1 (which is proved in
the case when ε = 1) to our operator Lε.

In the case ε = 1, the existence of a first positive solution is proved in [2] by
means of a classical sub and supersolution scheme that can be performed in the
same way even replacing L1 with Lε. In particular, one can define

(2.16) Λε := sup {λ > 0 : (Pε)λ admits a weak solution } .

One then has to show what follows:

a) Λε is well defined and Λε < +∞;
b) problem (Pε)λ admits a weak solution for every 0 < λ ≤ Λε.

For every fixed 0 < ε ≤ 1, assertions a) - b) can be proved exactly as in [2]. In
particular, following the proof of [2, Theorem 1.1], where the authors used a recent
result in critical point theory proved in [35], there exists µ♯,ε > 0 (a priori depending
on ε in a not explicit way) such that a first solution of (Pε)λ (for 0 < λ < µ♯,ε) is
obtained as a critical point over the set

M =
{

v ∈ X 1,2(Ω) : ‖v‖L∞(Ω) ≤ r, u ≥ 0 a.e. in Ω
}

.

This is the reason why we need the following

Lemma 2.6. There exists µ♯ > 0 independent of ε such that (Pε)λ possesses a
minimal weak solution ūλ,ε ∈ X 1,2(Ω) ∩ L∞(Ω) for every 0 < λ ≤ µ♯ and every
ε ∈ (0, 1), which is increasing w.r.t. λ and further satisfying that

(2.17) ‖ūλ,ε‖L∞(Ω) ≤ C,

where C > 0 is independent of ε.

Proof. As already discussed, Theorem 1.1 applies to our problem (Pε)λ, the role of
ε being immaterial; as a consequence, there exists Λε > 0 such that problem (Pε)λ
possesses a minimal weak solution

ūλ,ε ∈ X 1,2(Ω)

for every 0 < λ ≤ Λε; moreover, if 0 < λ1 < λ2 < Λε, we have

ūλ1,ε ≤ ūλ2,ε a.e. in Ω.
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We claim that there exists a constant λ♯ > 0, independent of ε ∈ (0, 1), such that

(2.18) Λε ≥ λ♯.

Indeed, let ε ∈ (0, 1) be fixed. By arguing as in the proof of [2, Theorem 1.2] we
see that there exists Λε ≥ µ♯,ε, where µ♯,ε > 0 satisfies the following property (see,
precisely, the proof of [2, Lemma 3.9]):

(⋆) for every 0 < λ < λ♯,ε there exist 0 < r1 < r2 such that

Cε(r
2∗−2 + λrp−1) ≤ 1 for all r ∈ [r1, r2];

here, Cε > 0 is a positive constant such that, for every h ∈ Lp(Ω) (with p > n/2)
and every weak solution u ∈ X 1,2(Ω) of the problem

(2.19)

{

Lεu = h in Ω

u = 0 in Rn \ Ω

we have the a - priori estimate

(2.20) ‖u‖L∞(Rn) ≤ Cε‖h‖Lp(Ω)

(the existence of such a constant follows from [8, Theorem 4.7]). Hence, the lower
bound λ♯,ε depends on ε only through the constant Cε in estimate (2.20). On the
other hand, by Lemma 2.5, the constant Cε can be chosen independently of ε: this
means, precisely, that there exists C0 > 0 such that

‖u‖L∞(Rn) ≤ C0‖h‖Lp(Ω)

for every h ∈ Lp(Ω) (with p > n/2), every weak solution u ∈ X 1,2(Ω) of (2.19) and
every ε ∈ (0, 1]. Hence, if we choose µ♯ > 0 in such a way that (⋆) holds with C0

in place of Cε (that is, if we choose the very same constant considered in [2] and
corresponding to the case ε = 1), we conclude that (2.18) is satisfied.

We now turn to prove (2.17). To this end we notice that, by proceeding exactly as
in the proof of [2, Theorem 1.1] (and by recalling that our constant µ♯ is precisely
the one considered in [2] and corresponding to the case ε = 1), there exists a
solution wλ,ε ∈ X 1,2(Ω) of problem (Pε)λ satisfying the a-priori estimate

‖wλ,ε‖L∞(Ω) ≤ r,

where r ∈ [r1, r2] is arbitrarily chosen, and r1 < r2 are as in (⋆) (and they depend
on the fixed λ); thus, by the minimality property of ūλ,ε we infer that

0 ≤ ūλ,ε ≤ wλ,ε ≤ r a.e. in Ω,

and this readily gives the desired (2.17). �

Remark 2.7. Arguing exactly as in [2, Proof of Theorem 1.2] one can also realize

that there exists Λ⋆ > 0 (indicated there as λ̃), depending on the first Dirichlet
eigenvalue of L1 (see e.g. [9]) but independent of ε, such that

Λε ≤ Λ⋆.
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3. Purely sublinear problems and the proof of Theorem 1.2

In this short section we investigate the purely sublinear problem

(3.1)







Lεu = λup in Ω,
u > 0 in Ω,
u = 0 in Rn \ Ω,

To be more precise, we establish/review some results which will be used (as funda-
mental tools) in the proof of Theorem 1.4, and we demonstrate our first main result,
namely Theorem 1.2.

To begin with, we prove the following proposition.

Proposition 3.1. Let ε ∈ (0, 1] be fixed. Moreover, let λ > 0 and p ∈ (0, 1).
Then, the following assertions hold.

i) There exists a unique weak solution wλ,ε ∈ X 1,2(Ω) of problem (3.1), which
is the unique global minimizer of the functional

(3.2) Jλ,ε(u) =
1

2
ρε(u)

2 −
λ

p+ 1

ˆ

Ω
|u|p+1 dx.

Moreover, Jλ,ε(wλ,ε) < 0.

ii) wλ,ε ∈ C
1,α(Ω) for every α ∈ (0, 1), and ∂νwλ,ε < 0 on ∂Ω.

iii) There exists ε0 > 0 with the following property: given any ball BR(x0) ⊆ Ω
and any 0 < r ≤ min{1, R}, for every 0 < ε ≤ ε0 we have

wλ,ε ≥ c2 a.e. on Br(x0),

for some constant c2 > 0 independent of ε.

We explicitly stress that, since problem (3.1) is of the form (2.7) (with f = λtp),
the definition of weak solution of (3.1) is given in Definition 2.2.

Proof. We prove separately the three assertions.

i) To begin with, by using [12, Theorem 1.2] with the choice f(t) = λtp (notice that
this theorem certainly applies to the operator Lε, the role of ε being immaterial)
we immediately get the existence of a unique weak solution

wλ,ε ∈ X 1,2(Ω) ∩ L∞(Ω)

of problem (3.1); moreover, owing to [12, Proposition 6.2] (which also can be applied
to the ε - dependent operator Lε), we know that this wλ,ε satisfies

(3.3) Jλ,ε(wλ,ε) = min
ϕ∈X 1,2(Ω)

Jλ,ε(ϕ) and Jλ,ε(wλ,ε) < 0.

ii) Since f(t) = λtp clearly satisfies the growth condition (1.2) (with Cf = 1), the
regularity up the boundary of wλ,ε follows from Theorem 2.3; this, jointly with the
fact that wλ,ε > 0 in Ω, allows us to apply 2.4, obtaining

∂νwλ,ε < 0 pointwise on ∂Ω.

iii) The proof of this assertion is split into three steps, and it is very similar to that
of [13, Proposition 3.7]; we present it in detail for the sake of completeness.

Step 1). In this first step, we prove that

(3.4) ‖wλ,ε‖H1
0 (Ω) ≤ λ

1
1−p c for all ε ∈ (0, 1].
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for some constant c > 0 only depending on Ω and on p.
Indeed, since wλ,ε ∈ X 1,2(Ω) is a weak solution of problem (3.1) (in the sense of

Definition 2.2), by choosing wλ,ε as a test function in (2.8), we get

‖wλ,ε‖
2
H1

0 (Ω) ≤ ρε(wλ,ε)
2 =

λ

p+ 1

ˆ

Ω
wp+1
λ,ε dx

(using Hölder’s and Poincaré inequality)

≤
λ|Ω|1−

p+1
2

p+ 1
‖wλ,ε‖

p+1 ≤ λ c(Ω, p)‖wλ,ε‖
p+1
H1

0 (Ω)
,

where c(Ω, p) > 0 is a suitable constant only depending on Ω and on p. From this,
since wλ,ε 6≡ 0 (and since 0 < p < 1), we immediately derive the claimed (3.4).

Step 2). In this second step we prove that, as ε→ 0+, we have

a) wλ,ε → wλ weakly in X 1,2(Ω);
b) wλ,ε → wλ strongly in Lm(Ω) for every 1 ≤ m < 2∗;

where wλ ∈ H1
0 (Ω) is the unique solution of the purely local problem

(3.5)











−∆u = λup in Ω,

u > 0 in Ω,

u = 0 in Rn \ Ω,

To this end, we let {εj}j ⊆ (0, 1] be any sequence converging to 0 as j → +∞,
and we arbitrarily choose a subsequence {εjk}k of {εj}j . On account of (3.4), and
using Remark 2.1 - 5), we know that there exists some function w̄ ∈ X 1,2(Ω) such
that, as k → +∞ and up to possibly choosing a further subsequence,

• wλ,εjk
→ w̄ weakly in X 1,2(Ω);

• wλ,εjk
→ w̄ strongly in Lm(Ω) for every 1 ≤ m < 2∗;

from this, since wλ,ε is a global minimizer for Jλ,ε (see (3.3)), we get

Jλ(w̄) =
1

2
‖w̄‖2H1

0 (Ω) −
λ

p+ 1

ˆ

Ω
|w̄|p+1 dx

≤ lim inf
k→+∞

Jλ,εjk (wλ,εjk
)

≤ lim inf
k→+∞

Jλ,εjk (ϕ) = Jλ(ϕ) for every ϕ ∈ H1
0 (Ω),

and thus w̄ is a global minimizer for the functional Jλ naturally associated with
the purely local, singular problem (3.5). As a consequence, since Jλ as a unique
global minimizer which is the unique solution wλ of (3.5) (that is, assertion i) also
holds in the purely local case, see [19]), we derive that

w̄ = wλ.

Due to arbitrariness of the sequence {εj}j ⊆ (0, 1] of its subsequence {εjk}k, and
since the limit is always the same, we conclude the validity of a) - b).

Step 3) In this last step, we complete the proof of the assertion. First of all we
observe that, since wλ,ε is a weak solution of problem (3.1), we readily derive that
wλ,ε is a also weak supersolution (in the sense of Definition 2.2) of Lεu = 0 in Ω;
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thus, by [13, Proposition 3.3] (and since wλ,ε ≥ 0 a.e. in Rn) we get

(3.6) wλ,ε ≥ c

(

 

Br(x0)
wQ
λ,ε dx

)1/Q

a.e. on Br(x0),

where Q, c > 0 do not depend on ε. On the other hand, since by Step 2) we know
that wλ,ε → wλ as ε→ 0 strongly in Lm(Ω) for every 1 ≤ m < 2∗, we have

(3.7) lim
ε→0+

 

Br(x0)
wQ
λ,ε dx =

 

Br(x0)
wQ
λ dx.

Gathering (3.6)-(3.7), and recalling that wλ is the unique solution of (3.5) (hence,
wλ > 0 a.e. in Ω), we can then fined some ε0 > 0 such that

wλ,ε ≥
c

2

(

 

Br(x0)
wQ
λ dx

)1/Q

> 0

a.e. in Br(x0) and for every 0 < ε ≤ ε0. This ends the proof. �

We now turn to prove our first main result, namely Theorem 1.4. Before doing
this, we establish the following auxiliary lemma.

Lemma 3.2. Let 0 < ε ≤ 1, λ > 0 be fixed, and let wλ,ε ∈ X 1,2(Ω) be the unique
solution of problem (3.1) (whose existence and uniqueness is guaranteed by Proposi-
tion 3.1). Then there exists a positive constant β = βλ,ε > 0 such that

(3.8) ρε(ϕ)
2 − λp

ˆ

Ω
wp−1
λ,ε ϕdx ≥ βλ,ε

ˆ

Ω
ϕ2 dx, for all ϕ ∈ X 1,2(Ω).

Proof. We first remind that, on account of Proposition 3.1 - i), the function wλ,ε is
the unique, global minimizer of the functional Jλ,ε in (3.2), that is,

Jλ,ε(wλ,ε) = min
u∈X 1,2(Ω)

Jλ,ε(u);

this, together with the fact that wλ,ε ∈ C1(Ω), see Proposition 3.1 - ii), ensures that
the second variation of the functional Jλ,ε at wλ,ε is non-negative, namely

(3.9) ρε(ϕ)
2 − pλ

ˆ

Ω
wp−1
λ,ε ϕ

2 dx ≥ 0 for every ϕ ∈ X 1,2(Ω).

As a consequence, we get

λ1(Lε − λ pwp−1
λ,ε )

= inf
{

ρε(ϕ)
2 − λ p

ˆ

Ω
wp−1
λ,ε ϕ

2 dx : ϕ ∈ X 1,2(Ω), ‖ϕ‖L2(Ω) = 1
}

≥ 0.
(3.10)

With (3.10) at hand, to prove (3.8) it then suffices to show that

(3.11) λ1(Lε − λ pwp−1
λ,ε ) > 0;

in fact, if (3.11) holds, the desired (3.8) follows with the choice

βλ,ε = λ1(Lε − λ pwp−1
λ,ε ).

Hence, we turn to prove (3.11). To this end, we argue by contradiction assuming
that (3.11) is not true; thus, by (3.10) we necessarily have that

λ1(Lε − λ pwp−1
λ,ε ) = 0.
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Taking into account Proposition 3.1 - ii), and reminding that wλ,ε > 0 pointwise in

Ω (as wλ,ε ∈ C1(Ω)), we can find some δ = δλ,ε > 0 such that

wλ,ε(x) ≥ δλ,ε dist(x, ∂Ω) for every x ∈ Ω;

from this, by arguing exactly as in [1, Remark 3.1], we infer the existence of a non-
negative eigenfunction associate with λ1(Lε − a(x)); this means, precisely, that
there exists a function ψλ,ε ∈ X 1,2(Ω), ψλ,ε 	 0, such that

Bε(ψλ,ε, ϕ)− λ p

ˆ

Ω
wp−1
λ,ε ψλ,ε dx = 0 for every ϕ ∈ X 1,2(Ω).

Now, choosing ϕ = wλ,ε in the above identity, we get

(3.12) Bε(ψλ,ε, wλ,ε) = λ p

ˆ

Ω
wp
λ,εψλ,ε dx;

on the other hand, if we choose ϕ = ψλ,ε as a test function for the equation solved
by wλ,ε appearing in problem (3.1) (see Definition 2.2), we have

(3.13) Bε(ψλ,ε, wλ,ε) = λ

ˆ

Ω
wp
λ,εψλ,ε dx.

Gathering (3.13) - (3.12), we then conclude that

λ

ˆ

Ω
wp
λ,εψλ,ε dx = λ p

ˆ

Ω
wp
λ,εψλ,ε dx

which is a contradiction, since p ∈ (0, 1) (also recall that wλ,ε > 0 pointwise in Ω,
and that ψλ,ε 	 0). This ends the proof. �

With Lemma 3.2 at hand, we can provide the

Proof of Theorem 1.2. Let ε ∈ (0, 1] be fixed, and let βε = β1,ε > 0 be as in Lemma
3.2, with λ = 1. Moreover, let Mε > 0 be such that

(3.14) pM2∗−1
ε < βε.

We now prove that, with this choice of Mε, assertion 1) is satisfied.
To this end, we argue by contradiction assuming that, for some fixed λ ∈ (0,Λε),

there exists a second solution vλ,ε of problem (Pε)λ such that

(3.15) ‖vλ,ε‖L∞(Rn) ≤Mε.

By Theorem 1.1 (which can be applied to Lε, see Lemma 2.6), we know that there
exists a minimal solution uλ,ε of problem (Pε)λ; hence, we have

vλ,ε = uλ,ε + gε,

for some function gε ∈ X 1,2(Ω), gε ≥ 0 in Ω.
We now define the auxiliary function ζε : R

n → R as

ζε(x) := λ1/(1−p) w1,ε(x),

where w1,ε is the unique solution of the purely sublinear problem (3.1) with λ = 1.
A direct computation shows that ζ weakly solves

(3.16) Lεζε = λ ζpε in Ω.

On the other hand, since uλ,ε is a weak solution of problem (Pε)λ (hence, in partic-
ular, uλ,ε > 0 a.e. in Ω), this function is a weak supersolution of problem (3.1) (in
the sense of Definition 2.2 with f(t) = λtp); as a consequence, since we have already
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observed that ζ solves (3.1), we can use [2, Lemma 3.11] (which can certainly be
applied to the operator Lε, the role of ε being immaterial), obtaining

(3.17) ζε = λ1/(1−p)w1,ε ≤ uλ,ε in Rn.

With all this at hand we can now conclude. First,

Lεvλ,ε = Lε(uλ,ε + gε)

= λ(uλ,ε + gε)
p + (uλ,ε + gε)

2∗−1 (vλ,ε is a solution of (Pε)λ)

≤ λupλ,ε + λp up−1
λ,ε gε + (uλ,ε + gε)

2∗−1 (by concavity of t 7→ tp);

as a consequence, we have

Lεgε ≤ λupλ,ε + λp up−1
λ,ε gε + (uλ,ε + gε)

2∗−1 − Lεuλ,ε

= λupλ,ε + λp up−1
λ,ε gε + (uλ,ε + gε)

2∗−1 − λupλ,ε − u2
∗−1

λ,ε

= λp up−1
λ,ε gε + (uλ,ε + gε)

2∗−1 − u2
∗−1

λ,ε

≤ pwp−1
1,ε gε + (uλ,ε + gε)

2∗−1 − u2
∗−1

λ,ε (by (3.17), and since 0 < p < 1)

≤ pwp−1
1,ε gε + pM2∗−1

ε gε (by (3.15))

< pwp−1
1,ε gε + βε gε (by (3.14)).

Summing up, the function gε satisfies (in the weak sense on Ω)

Lεgε − pwp−1
1,ε gε < βεgε.

Testing it with g itself, and using (3.8) (with λ = 1), we get

βε

ˆ

Ω
g2ε dx ≤ ρε(gε)

2 − p

ˆ

Ω
wp−1
1,ε gε dx < βε

ˆ

Ω
g2ε dx,

which is a contradiction. �

4. Proof of Theorem 1.3

In this section we show that the famous result [18, Theorem 1] still holds in the
mixed local-nonlocal setting. The proof is a quite simple adaptation of the original
proof by Brezis and Nirenberg and the major role is played by the recent regularity
results established in [3] and [38].

Proof of Theorem 1.3. By assumption, u0 ∈ X 1,2(Ω) is a local minimizer for Φ in
the C1-topology; this means, precisely, that there exists some r > 0 such that

(4.1) Φ(u0) ≤ Φ(u0 + v), for all v ∈ C1
0 (Ω) s.t. ‖v‖C1(Ω) ≤ r.

It follows that the Euler-Lagrange equation satisfied by u0 is
{

Lεv = f(x, v) in Ω,

v = 0 in Rn \Ω;

as a consequence, since (by assumption) f satisfies the growth condition (1.2), from
Theorem 2.3 we derive that u0 ∈ C1,α(Ω) for some α ∈ (0, 1). In view of this fact,
from now on we may assume without loss of generality that

u0 = 0.
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We now argue by contradiction, assuming that u0 is not a local minimizer for Φ
in the X 1,2-topology ; thus, for every δ > 0 there exists vδ ∈ X 1,2(Ω) such that

(4.2) ρε(vδ) < δ and Φ(vδ) < Φ(0).

We explicitly notice that use of ρε(·) to define an open neighborhood of u0 = 0 in
(4.2) is motivated by the fact that, since ε ∈ (0, 1), by (2.6) we have

‖u‖H1
0 (Ω) ≤ ρε(u) ≤ ρ(u) ≤ Θ‖u‖H1

0 (Ω)

for some Θ > 0 only depending on n, s; as a consequence, the norm ρε(·) is globally
equivalent to ρ(·) (and to the H1

0 -norm), uniformly w.r.t. ε.

Now, since the closed set Kδ = {u ∈ X 1,2(Ω) : ρε(u) ≤ δ} ⊆ is weakly sequen-
tially compact, and since Φ is weakly lower semincontinuous and bounded from
below (by the growth assumption (1.2) on f), we can find wδ ∈ Kδ such that

Φ(wδ) = min
u∈Kδ

Φ(u).

In particular, by (4.2) we get

(4.3) Φ(wδ) ≤ Φ(vδ) < Φ(0) for every δ > 0.

We then claim that

(4.4) i) wδ ∈ C1
0 (Ω) and ii) lim

δ→0
wδ = 0 in the C1(Ω)-topology.

Taking this claim for granted for a moment, we can immediately complete the proof
of the theorem: in fact, owing to (4.4), we see that there exists δ0 > 0 such that

‖wδ‖C1(Ω) ≤ r for every 0 < δ < δ0,

where r > 0 is as in (4.1); thus, by (4.1) (and since we are assuming u0 = 0) we
infer that Φ(0) ≤ Φ(wδ) for every 0 < δ < δ0, but this clearly contradicts (4.3).

We then turn to prove (4.4), and we proceed by steps.

Step I). In this first step we prove that there exist δ0 > 0 and a constant c0 > 0,
independent of δ, such that the following estimate holds:

(4.5) ‖wδ‖L∞(Ω) ≤ c0 for every 0 < δ < δ0.

To this end we first notice that, since wδ is a global minimizer for Φ on Kδ, by the
Lagrange Multiplier Theorem, there exists µδ ∈ R such that

(4.6) Bε(wδ, ϕ)−

ˆ

Ω
f(x,wδ)ϕdx = µδ Bε(wδ, ϕ) for all ϕ ∈ X 1,2(Ω).

If ρε(vδ) < δ (that is, if wδ ∈ int(Kδ)), then µδ = 0; if, instead, ρε(vδ) = δ (that is,
if wδ ∈ ∂Kδ), by choosing ϕ = vδ in (4.6) we derive that

µδ δ
2 = Bε(wδ, wδ) = Bε(wδ , wδ)−

ˆ

Ω
f(x,wδ)wδ dx

= Φ(wδ) +

ˆ

Ω
F (x,wδ) dx−

ˆ

Ω
f(x,wδ)wδ dx

(using (4.3), and since Φ(0) = 0)

<

ˆ

Ω

(

F (x,wδ) dx−

ˆ

Ω
f(x,wδ)wδ

)

dx ≤ 0,
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where we have used the growth condition (1.2). Summing up, we derive that µδ ≤ 0
and that wδ ∈ X 1,2(Ω) is a of the Dirichlet problem

(4.7)







Lεu =
f(x, u)

1− µδ
in Ω,

u = 0 in Rn \Ω

(in the sense of Definition 2.2). Now, since f satisfies the growth condition (1.2)
and since µδ ≤ 0, it is readily seen that the function

(4.8) gδ(x, t) =
f(x, t)

1− µδ
(x ∈ Ω, t ∈ R)

satisfies the same growth condition (1.2), with the same constant Cf > 0; we are
then entitled to apply [38, Theorem 1.1], thus giving

(4.9) ‖wδ‖L∞(Ω) ≤ κ0

(

1 +

ˆ

Ω
|wδ|

2∗β dx
)

1
2∗(β−1)

,

where β = (2∗ + 1)/2 and κ0 > 0 is a constant independent of δ. With (4.9) at
hand, to complete the proof of (4.5) we need to show that

(4.10)

ˆ

Ω
|wδ|

2∗β dx ≤ c

for some constant c > 0 independent of δ, provided that δ is sufficiently small. To
prove (4.10), we closely follow the approach in [38, Lemma 3.2]: defining

ϕ(t) :=











−βT β−1(t+ T ) + T β, t ≤ −T

|t|β, −T < t < T

βT β−1(t− T ) + T β, t ≥ T.

(with T > 0), and arguing exactly as in [38, Lemma 3.2], we get

(4.11)
(

ˆ

Ω
|ϕ(wδ)|

2∗ dx
)2/2∗

≤ cβ
(

ˆ

Ω
|wδ|

2∗ dx+

ˆ

Ω
(ϕ(wδ))

2|wδ|
2∗−2 dx

)

,

which is exactly to [38, Equation (3.5)] (here, c > 0 is a constant only depending
on n,Ω and on the constant Cf ). On the other hand, we have

ˆ

Ω
(ϕ(wδ))

2|wδ|
2∗−2 dx

=

ˆ

{|wδ|≤1}
(ϕ(wδ))

2|wδ |
2∗−2 dx+

ˆ

{|wδ|>1}
(ϕ(wδ))

2|wδ|
2∗−2 dx

≤

ˆ

{|wδ|≤1}

ϕ(wδ)
2

|wδ|
dx+

ˆ

Ω
(ϕ(wδ))

2|wδ|
2∗−2 dx = (⋆);

then, using Hölder’s and Sobolev’s inequality, we obtain

(⋆) ≤

ˆ

{|wδ|≤1}

|ϕ(wδ)|
2

|wδ|
dx+

(

ˆ

Ω
|ϕ(wδ)|

2∗ dx
)2/2∗(

ˆ

Ω
|wδ|

2∗ dx
)

2∗−2
2∗

≤

ˆ

{|wδ|≤1}

|ϕ(wδ)|
2

|wδ|
dx+ S

2−2∗

2
n

(

ˆ

Ω
|ϕ(wδ)|

2∗ dx
)2/2∗

‖wδ‖
2∗−2
H1

0 (Ω)

(since ρε(·) ≥ ‖ · ‖H1
0
, and since wδ ∈ Kδ)
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≤

ˆ

{|wδ|≤1}

|ϕ(wδ)|
2

|wδ|
dx+ δ2

∗−2S
2−2∗

2
n

(

ˆ

Ω
|ϕ(wδ)|

2∗ dx
)2/2∗

.

where Sn > 0 is the best constant in the (local) Sobolev inequality. Using this last
estimate in the above (4.11), we then derive

(

ˆ

Ω
|ϕ(wδ)|

2∗ dx
)2/2∗

≤ cβ
(

ˆ

Ω
|wδ|

2∗ dx+

ˆ

{|wδ|≤1}

|ϕ(wδ)|
2

|wδ|
dx
)

+ cβδ2
∗−2S

2−2∗

2
n

(

ˆ

Ω
|ϕ(wδ)|

2∗ dx
)2/2∗)

.

(4.12)

With (4.12) at hand, we can proceed toward the end of the proof of (4.10): indeed,
if we choose δ0 ∈ (0, 1) so small that

cβδ2
∗−2S

2−2∗

2
n <

1

2

and if we let 0 < δ < δ0, we can reabsorb the last integral in the right-hand side of
the cited (4.12), thus giving

(

ˆ

Ω
|ϕ(wδ)|

2∗ dx
)2/2∗

≤ 2cβ
(

ˆ

Ω
|wδ|

2∗ dx+

ˆ

{|wδ|≤1}

|ϕ(wδ)|
2

|wδ|
dx
)

;

from this, by letting T → +∞ and by arguing as in [38, Lemma 3.2], we get
(

ˆ

Ω
|wδ |

2∗β dx
)2/2∗

≤ 4cβ

ˆ

Ω
|wδ|

2∗ dx for every 0 < δ < δ0.

Finally, by using once again the Sobolev inequality, we conclude that
(

ˆ

Ω
|wδ|

2∗β dx
)2/2∗

≤ 4cβ S−2∗/2
n ρε(wδ) ≤ 4cβ S−2∗/2

n ,

and this estimate holds for every 0 < δ < δ0 (since δ0 < 1). Recalling that c > 0
only depends on n,Ω and on the constant Cf , this completes the proof of (4.10).

Step II). In this second step we complete the proof of (4.4) - i). To this end it
suffices to observe that, since the function gδ in (4.8) satisfies the growth condition
(1.2) with the same constant Cf (independent of δ), we are entitled to apply [38,
Theorem 1.3]; this, together with (4.5), ensures that

1) wδ ∈ C1,α(Ω) for every 0 < α < min{1, 2 − 2s};
2) there exists c > 0, independent of δ, such that

(4.13) ‖wδ‖C1,α(Ω) ≤ c(1 + ‖wδ‖
2∗

L∞(Ω)) ≤ c for every 0 < δ < δ0.

In particular, since wδ ∈ X 1,2(Ω), we get wδ ≡ 0 pointwise on ∂Ω.

Step III). In this last step we give the proof of (4.4) - ii). To this end we observe
that, on account of (4.13), by the Arzelà-Ascoli Theorem we can find a sequence
{δj} ⊆ (0, δ0) converging to 0 as j → +∞ and w0 ∈ C1

0 (Ω) such that

‖wδj − w0‖C1(Ω) → 0 as j → +∞;

thus, since wδj → 0 in X 1,2(Ω) as j → +∞ (recall that wδ ∈ Kδ and that the two

norms ρε(·), ρ(·) are globally equivalent in X 1,2(Ω)), we conclude that

w0 ≡ 0.

This ends the proof. �
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5. Proof of Theorem 1.4

Following the approach in [1], in this section we show how Theorem 1.3 can
be used in order to establish Theorem 1.4, that is, the existence of (at least) two
distinct solutions of (Pε)λ provided that ε ∈ (0, 1) is small enough.

We now turn to prove that, if ε ∈ (0, 1] is fixed and if λ ∈ (0, µ♯) (with µ♯ > 0
as in Lemma 2.6), there exists a solution uλ,ε of problem (Pε)λ which is a local
minimizer for the functional associated with the problem, that is,

(5.1) Iλ,ε(u) =
1

2
ρε(u)

2 −
λ

p+ 1

ˆ

Ω
|u|p+1 dx−

1

2∗

ˆ

Ω
|u|2

∗

dx,

where ρε(u)
2 := ‖u‖H1

0 (Ω) + ε [u]2s,Rn .

Theorem 5.1. Let ε ∈ (0, 1] be fixed, and let λ ∈ (0, µ♯) (with µ♯ > 0 as in Lemma
2.6). Then, there exists a solution uλ,ε ∈ X 1,2(Ω) of problem (Pε)λ which is a local
minimizer for Iλ,ε, that is, there exists ̺0 > 0 such that

Iλ,ε(u) ≥ Iλ,ε(uλ,ε) for all u ∈ X 1,2(Ω) with ρ(u− uλ,ε) < ̺0.

Moreover, the following assertions hold:

1) there exists a constant C > 0, independent of ε but possibly depending on
the fixed λ ∈ (0, µ♯), such that

(5.2) ‖uλ,ε‖L∞(Ω) ≤ C;

2) if wλ,ε ∈ X 1,2(Ω) is the unique solution of (3.1), we have

(5.3) uλ,ε ≥ wλ,ε a.e. in Ω.

Proof. The proof is analogous to that of [1, Lemma 4.1], but we present it here for
the sake of completeness. To begin with, we fix λ1, λ2 ∈ (0, µ♯) such that

(5.4) λ1 < λ < λ2;

accordingly, we let ui = ūλi,ε ∈ X 1,2(Ω) be the minimal solution of problem (Pε)λi

(with i = 1, 2), whose existence is guaranteed by Lemma 2.6. We then observe
that, on account of Theorem 2.3, we have that u1, u2 ∈ C1(Ω); moreover, since the
map t 7→ ūt,ε is non-decreasing on (0,Λε), by (5.4) we also have

u1 ≤ u2 pointwise in Ω.

In view of these facts, and since ui solves (Pε)λi
(for i = 1, 2), we infer that

a) w = u2 − u1 ∈ X 1,2(Ω) ∩C1(Ω);
b) for every test function ϕ ∈ C∞

0 (Ω), ϕ ≥ 0 on Ω, we have

Bε(w,ϕ) =

ˆ

Ω
(λ2u

p
2 + u2

∗−1
2 )ϕdx −

ˆ

Ω
(λ1u

p
1 + u2

∗−1
1 )ϕdx

(by (5.4), and since u2 ≥ u1 ≥ 0)

≥ λ1

ˆ

Ω
(up2 − up1)ϕdx +

ˆ

Ω
(u2

∗−1
2 − u2

∗−1
1 )ϕdx ≥ 0

and this proves that w is a (non-negative) weak supersolution (in the sense
of Definition 2.2) of the following problem

{

Lεu = 0 in Ω

u = 0 in Rn \Ω
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Since w 6≡ 0 in Ω (as λ1 < λ2), by Theorem 2.4 we conclude that

(5.5) w = u2 − u1 > 0 pointwise in Ω and ∂ν(u2 − u1) < 0 on ∂Ω.

With (5.5) at hand, we now define the function

f(x, t) =











λu1(x)
p + u1(x)

2∗−1 if t ≤ u1(x)

λtp + t2
∗−1 if u1(x) < t < u2(x)

λu2(x)
p + u2(x)

2∗−1 if t ≥ u2(x)

(for x ∈ Ω and t ∈ R), and we consider the functional

J(u) =
1

2
ρε(u)

2 −

ˆ

Ω
F (x, u) dx, with F (x, t) =

ˆ t

0
f(x, s) ds.

Since u1, u2 ∈ C1(Ω), the function f is globally bounded on Ω×R; as a consequence
of this fact, it is easy to check that the functional J achieves its (global) minimum
at some u ∈ X 1,2(Ω), which is a weak solution of

(5.6)

{

Lεu = f in Ω,

u = 0 on ∂Ω

Moreover, from Theorem 2.3 we get u ∈ C1(Ω). We then claim that

i) u1 < u < u2 pointwise in Ω;

ii) ∂ν(u− u1) < 0 and ∂ν(u− u2) > 0 pointwise on ∂Ω.
(5.7)

In fact, let w1 = u− u1. On the one hand, we have w1 ∈ X 1,2(Ω) ∩ C1(Ω) (as the
same is true of both u and u1); on the other hand, since u1 solves (P)λ1,ε and since
u solves (5.6), by definition of f (and by recalling (5.5)) we also have

Bε(w1, ϕ) =

ˆ

Ω

(

f(x, u)− λup1 − u2
∗−1

1

)

ϕdx ≥ 0

for every test function ϕ ∈ C∞
0 (Ω), ϕ ≥ 0 on Ω. Hence, we see that w1 is a weak

supersolution (in the sense of Definition 2.2) of the problem
{

Lεu = 0 in Ω,

u = 0 in Rn \Ω

Since w1 6≡ 0 in Ω (as λ1 < λ), again by Theorem 2.4 we then get

w1 = u− u1 > 0 pointwise in Ω and ∂ν(u− u1) < 0 on ∂Ω.

In a totally analogous way one can prove that w2 = u2 − u > 0 pointwise in Ω and
that ∂νw2 < 0 on ∂Ω, and this completes the proof of (5.7).

Now we have established (5.7), we are finally ready to complete the demonstra-
tion of the theorem. Indeed, owing to (5.7), there exists ̺0 > 0 so small that

‖v − u‖C1(Ω) < ̺0 =⇒ u1 ≤ v ≤ u2 pointwise in Ω;

from this, taking into account that J(v) = Iλ,ε(v) for every v ∈ X 1,2(Ω) satisfying
u1 ≤ v ≤ u2 in Ω (see the explicit definition of f), we derive that

Iλ,ε(v) = J(v) ≥ J(u) = Iλ,ε(u) for all v ∈ C1(Ω) with ‖v − u‖C1(Ω) < ̺0,
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and this proves that u is a local minimizer of Iλ,ε in the C1-topology. This, together

with Theorem 1.3, ensures that u ∈ X 1,2(Ω) ∩ C1(Ω) is a local minimizer of the
functional Iλ,ε also in the X 1,2-topology, as desired.

We now turn to prove the two assertions 1) - 2).

- Proof of assertion 1). It is a direct consequence of (5.7) - i) and of estimate (2.17)
in Lemma 2.6, taking into account that u1 = ūλ1,ε.

- Proof of assertion 2). First of all we observe that, since uλ,ε is a weak solution
of problem (Pε)λ (hence, in particular, uλ,ε > 0 a.e. in Ω), this function is a weak
supersolution of problem (3.1) (in the sense of Definition 2.2 with f(t) = λtp); thus,
since wλ,ε solves (3.1), we can use [2, Lemma 3.11] (which can certainly be applied
to the operator Lε, the role of ε being immaterial), obtaining

wλ,ε ≤ uλ,ε a.e. in Ω.

We explicitly mention that [2, Lemma 3.11] can be applied, since f(t)/t = λtp−1 is
decreasing, and since wλ,ε uλ,ε ∈ L

2∗(Ω), see Remark 2.1 - 4).

This ends the proof. �

Now we have established Theorem 5.1, we are ready to embark on the demonstra-
tion of Theorem 1.4. To keep the notation as simple as possible, throughout what
follows we avoid to keep explicit track of the dependence on ε of the functional Iλ,ε
in (5.1) and of the solution uλ,ε obtained in Theorem 5.1. Thus, as in the previous
sections we simply write Iλ and uλ, the dependence on ε being understood.

We begin with the following key lemma.

Lemma 5.2. Let λ ∈ (0, µ♯) be fixed (with µ♯ > 0 as in (2.18)). Then, there exist
ε0 ∈ (0, 1), R0 > 0 and a positive function Ψ ∈ X 1,2(Ω) such that

(5.8)

{

Iλ(uλ +RΨ) < Iλ(uλ) for all ε ∈ (0, ε0) and R ≥ R0,

Iλ(uλ + tR0Ψ) < Iλ(uλ) +
1
nS

n/2
n for all ε ∈ (0, ε0) and t ∈ [0, 1].

Proof. First of all, we choose a Lebesgue point of uλ in Ω, say y, and we let r > 0
be such that Br(y) ⋐ Ω; we then choose a cut-off function ϕ ∈ C∞

0 (Ω) such that

(∗) 0 ≤ ϕ ≤ 1 in Ω;
(∗) ϕ ≡ 1 on Br(y);

and we consider the one-parameter family of functions

(5.9) Uε = Vε ϕ, where Vε(x) =
ε

α(n−2)
2

(ε2α + |x− y|2)
n−2
2

,

where α > 0 will be appropriately chosen later on. Notice that this family {Vε}ε is
the well-known family of the Aubin-Talenti functions, which are the unique (up to
translation) extremals in the (local) Sobolev inequality; this means that

(5.10)
‖|∇Vε|‖

2
L2(Rn)

‖Vε‖2L2∗ (Rn)

= Sn,

where Sn > 0 is the best constant in the Sobolev inequality.
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We now recall that, owing to [16, Lemma 1.1], we have (as ε→ 0+)

i) ‖Uε‖
2
H1

0 (Ω) = εα(n−2)
( K1

εα(n−2)
+O(1)

)

= K1 + o(ε
α(n−2)

2 );

ii) ‖Uε‖
2∗

L2∗ (Ω)
= εαn

(K2

εαn
+O(1)

)

= K2 + o(εαn/2);

(5.11)

where the constants K1,K2 > 0 are given, respectively, by

K1 = ‖|∇V1|‖
2
L2(Rn), K2 =

ˆ

Rn

1

(1 + |x|2)n
dx

and they satisfy K1/K
1−2/n
2 = Sn, see the above (5.10). On the other hand, by

combining (5.11) - ii) with [10, Lemma 4.11], we also have

ε [Uε]
2
s ≤ ε ‖Uε‖

2
L2∗ (Ω)

·O(εα(2−2s)) = ‖Uε‖
2
L2∗ (Ω)

·O(ε1+α(2−2s))

=
(

K2 + o(εαn/2)
)2/2∗

· O(ε1+α(2−2s)) = o(ε1+α(1−s)).
(5.12)

Defining w = uλ + tRUε (for R ≥ 1 and t ∈ [0, 1]), we then obtain the following
estimate (as ε→ 0+):

Iλ,ε(w) = Iλ,ε(uλ) +
t2R2

2
ρε(Uε)

2 + tRBρ(uλ, Uε)

−
1

2∗
(

‖uλ + tRUε‖
2∗

L2∗ (Ω) − ‖uλ‖
2∗

L2∗ (Ω)

)

−
λ

p+ 1

(

ˆ

Ω
|uλ + tRUε|

p+1 dx−

ˆ

Ω
|uλ|

p+1 dx
)

,

and recalling that uλ solves (Pε)λ, we get

Iλ,ε(w) = Iλ,ε(uλ) +
t2R2

2
ρε(Uε)

2 + tR

ˆ

Ω
(λupλ + u2

∗−1
λ )Uε dx

−
1

2∗
(

‖uλ + tRUε‖
2∗

L2∗ (Ω)
− ‖uλ‖

2∗

L2∗ (Ω)

)

−
λ

p+ 1

(

ˆ

Ω
|uλ + tRUε|

p+1 dx−

ˆ

Ω
|uλ|

p+1 dx
)

= Iλ,ε(uλ) +
t2R2

2
ρε(Uε)

2 −
t2

∗

R2∗

2∗
‖Uε‖

2∗

L2∗ (Ω)

− t2
∗−1R2∗−1

ˆ

Ω
U2∗−1
ε uλ dx−Rε −Dε

where we have introduced the notation

(∗) Rε =
1

2∗

ˆ

Ω

{

|uλ + tRUε|
2∗ − u2

∗

λ − (tRUε)
2∗

− 2∗uλ(tRUε)
(

u2
∗−2

λ + (tRUε)
2∗−2

)

}

dx;

(∗) Dε =
λ

p+ 1

ˆ

Ω

{

|uλ + tRUε|
p+1 − |uλ|

p+1 − tR(p+ 1)upλUε

}

dx.

We start estimating Rε. To this aim, we follow [17, Proof of Theorem 1] (from
equation (17) on) where the main difference is due to the fact that uλ is actually
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dependent on ε as well. However, using the uniform upper bound of the L∞-norm
of uλ in Theorem 5.1, one can get

(5.13) | − Rε| ≤ Rβo(ε
α(n−2)

2 ) as ε→ 0+,

for some β ∈ (0, 2∗). Regarding Dε, since the map

[0,+∞) ∋ r 7→ γ(r) = rp+1

is convex on [0,+∞), for every ε ∈ (0, 1) we have

−Dε =
λ

p+ 1

ˆ

Ω

{

tR(p+ 1)upλUε + |uλ|
p+1 − |uλ + tRUε|

p+1

= −
λ

p+ 1

ˆ

Ω

{

γ(uλ + tRUε)− γ(uλ)− γ′(uλ)(tRUε)
}

dx ≤ 0.

(5.14)

Finally, combining once again (5.3) and Proposition 3.1 - iii), and arguing as in the
proof of [10, Lemma 4.11], we get

(5.15)

ˆ

Ω
U2∗−1
ε uλ dx ≥

ˆ

Br(y)
V 2∗−1
ε wλ,ε dx ≥ c2

ˆ

Br(y)
V 2∗−1
ε dx

≥ εα(n−2)/2D0 + o(εα(n−2)/2) as ε→ 0+,

where D0 > 0 is a constant only depending on n.
Gathering (5.11)-(5.12), we obtain

(5.16)

Iλ,ε ≤ Iλ,ε(uλ) +
t2R2

2
K1 −

t2
∗

R2∗

2∗
K2

− t2
∗−1R2∗−1D0ε

α(n−2)/2 −Rβo(εα(n−2)/2) + C(tR+ t2R2) o(ε
α(n−2)

2 )

+
(

t2R2 + t2
∗

R2∗
)(

o(ε1+α(1−s)) + o(εα(n−2)/2)
)

.

Thus, if we choose α ∈ (0, 1] so small that 1 + α(1 − s) > α(n − 2)/2 (notice that
this is always possible, since n ≥ 3 and s ∈ (0, 1)), we get

Iλ,ε(uλ + tRUε) ≤ Iλ,ε(uλ) +
t2R2

2
K1 −

t2
∗

R2∗

2∗
K2

− t2
∗−1R2∗−1D0 ε

α(n−2)/2

+ C
(

t2R2 + t2
∗

R2∗
)

o(εα(n−2)/2).

(5.17)

Now, thanks to estimate (5.17) we are finally ready to complete the proof of the
lemma: in fact, starting from this estimate and repeating word by word the argu-
ment in [39, Lemma 3.1], we find ε0 > 0 and R0 > 0 such that

{

Iλ(uλ +RUε) < Iλ(uλ) for all ε ∈ (0, ε0) and R ≥ R0,

Iλ(uλ + tR0Uε) < Iλ(uλ) +
1
nS

n/2
n for all ε ∈ (0, ε0) and t ∈ [0, 1].

Thus, the lemma is proved by choosing Ψ = Uε (with ε < ε0 and y, a as above). �

Thanks to Lemma 5.2, we can now proceed toward the proof of Theorem 1.4:
in fact, we turn to show that problem (Pε)λ possesses a second solution vλ 6= uλ,
provided that 0 < λ < λ∗ and 0 < ε < ε0, where ε0 > 0 is as in Lemma 5.2.
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Let then 0 < ε < ε0 be arbitrarily but fixed (with ε0 > 0 as in Lemma 5.2), and
let 0 < λ < λ∗. Since we know that uλ is a local minimizer of the functional Iλ,
there exists some 0 < ̺0 = ̺0(ε) ≤ ρε(uλ) such that

(5.18) Iλ(u) ≥ Iλ(uλ) for every u ∈ X 1,2(Ω) with ρε(u− uλ) < ̺0.

As a consequence of (5.18), if we consider the cone

T = {u ∈ X 1,2(Ω) : u ≥ uλ > 0 a.e. in Ω},

only one of the following two cases hold:

A) inf{Iλ(u) : u ∈ T and ρε(u− uλ) = ̺} = Iλ(uλ) for every 0 < ̺ < ̺0;

B) there exists ̺1 ∈ (0, ̺0) such that

(5.19) inf{Iλ(u) : u ∈ T and ρε(u− uλ) = ̺1} > Iλ(uλ).

We explicitly notice that use of ρε(·) to define an open neighborhood of uλ in (5.18)
is motivated by the fact that the norm ρε(·) is globally equivalent to ρ(·) (and to
the H1

0 -norm), uniformly w.r.t. ε, see (2.6).

We then turn to consider the two cases A) - B) separately. In doing this, we will
repeatedly use the following elementary result of Real Analysis.

Lemma 5.3. Let A ⊆ Rn be an arbitrary measurable set, and let 1 ≤ m < ∞.
Moreover, let f ∈ Lm(A) and let {fj}j ⊆ Lm(A) be such that

fj → f in Lm(A) as j → +∞.

Then, for every 0 < ϑ ≤ m we have

(5.20) lim
j→+∞

ˆ

A
|fj|

ϑϕdx =

ˆ

A
|f |ϑϕdx for every ϕ ∈ Lm′

ϑ(A),

where m′
ϑ = m/(m− ϑ) (with the convention m′

ϑ = ∞ if ϑ = m).

Proof. We preliminary observe that, taking into account the very definition of m′
ϑ,

a direct application of Hölder’s inequality shows that

(5.21) |u|ϑ|v| ∈ L1(A) for every u ∈ Lm(A) and every v ∈ Lm′

ϑ(A);

hence, all the integrals in (5.20) are well-defined and finite.

With (5.21) at hand, we now turn to establish (5.20). To this end, we arbitrarily
choose a sub-sequence {fjk}k of {fj}j and we prove that, by possibly choosing a
further sub-sequence, identity (5.20) holds for {fjk}k.

Let then ϕ ∈ Lm′

ϑ(A) be fixed. Since, by assumption, fj → f strongly in Lm(A)
as j → +∞, we can find a function h ∈ Lm(A) such that (up to a sub-sequence)

i) fjk → f a.e. in A as k → +∞;

ii) 0 ≤ |fjk | ≤ h a.e. in A, for every k ∈ N;

thus, since ϑ > 0, by assertion ii) we have the estimate

(5.22) 0 ≤ |fjk |
ϑ|ϕ| ≤ hϑ|ϕ| a.e. in A and for every k ∈ N.

Now, by (5.21) we know that g = hϑ|ϕ| ∈ L1(A); this, together with assertion i)
and estimate (5.22), allows us to apply the Lebesgue Theorem, giving

lim
k→+∞

ˆ

A
|fjk |

ϑϕdx =

ˆ

A
|f |ϑϕdx.

This ends the proof. �
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We are now ready to prove the following propositions.

Proposition 5.4. Assume that Case A) holds. Then, for every ̺ ∈ (0, ̺0) there
exists a solution vλ of problem (Pε)λ such that

ρε(uλ − vλ) = ̺.

In particular, vλ 6≡ uλ.

Proof. Let 0 < ̺ < ̺0 be arbitrarily fixed. Since we are assuming that Case A)
holds, we can find a sequence {uk}k ⊆ T satisfying the following properties:

a) ρε(uk − uλ) = ̺ for every k ≥ 1;

b) Iλ(uk) → Iλ(uλ) =: cλ as k → +∞.

We then choose δ > 0 so small that ̺− δ > 0 and ̺+ δ < ̺0 and, accordingly, we
consider the subset of T defined as follows:

X = {u ∈ T : ̺− δ ≤ ρε(u− uλ) ≤ ̺+ δ} ⊆ T

(note that uk ∈ X for every k ≥ 1, see a)). Since it is closed, this set X is a
complete metric space when endowed with the distance induced by ρ; moreover,
since Iλ is a real-valued and continuous functional on X, and since

infX Iλ = Iλ(uλ)

we are entitled to apply the Ekeland Variational Principle (see [5]) to the functional
Iλ on X, providing us with a sequence {vk}k ⊆ X such that

i) Iλ(vk) ≤ Iλ(uk) ≤ Iλ(uλ) + 1/k2,

ii) ρε(vk − uk) ≤ 1/k,

iii) Iλ(vk) ≤ Iλ(u) + 1/k · ρ(vk − u) for every u ∈ X.

(5.23)

We now observe that, since {vk}k ⊆ X and since the set X is bounded in X 1,2(Ω),
there exists vλ ∈ X 1,2(Ω) such that (as k → +∞ and up to a sub-sequence)

i) vk → vλ weakly in X 1,2(Ω);

ii) vk → vλ strongly in Lm(Ω) for every 1 ≤ m < 2∗;

iii) vk → vλ pointwise a.e. in Ω.

(5.24)

where we have also used the compact embedding X 1,2(Ω) →֒ L2(Ω). To complete
the proof, we then turn to prove the following two facts:

1) vλ is a weak solution of (Pε)λ;
2) ρε(vλ − uλ) = ̺ > 0.

Proof of 1). To begin with, we fix w ∈ T and we choose ν0 = ν0(w, λ) > 0 so small
that uν = vk + ν(w − vk) ∈ X for every 0 < ν < ν0. We explicitly stress that the
existence of such an ν0 easily follows from (5.23)-ii) and property a) above.

On account of (5.23)-iii) (with u = uν), we have

Iλ(vk + ν(w − vk))− Iλ(vk)

ν
≥ −

1

k
ρε(w − vk);

From this, by letting ν → 0+ we obtain

−
1

k
ρε(w − vk) ≤ Bε(vk, w − vk)−

ˆ

Ω
v2

∗−1
k (w − vk) dx

− λ

ˆ

Ω
vpk(w − vk) dx,

(5.25)
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Now, given any ϕ ∈ C∞
0 (Ω) and any ν > 0, we define

(∗) ψk,ν = vk + νϕ− uλ and φk,ν = (ψk,ν)−;

(∗) ψν = vλ + νϕ− uλ and φν = (ψν)−.

Since, obviously, w = vk + νϕ+ φk,ν ∈ T , by exploiting (5.25) we get

−
1

k
ρε(νϕ+ φk,ν) ≤ Bε(vk, νϕ+ φk,ν)−

ˆ

Ω
v2

∗−1
k (νϕ+ φk,ν) dx

− λ

ˆ

Ω
vpk(νϕ+ φk,ν) dx.

(5.26)

Then, we aim to pass to the limit as k → +∞ and ν → 0+ in the above (5.26). To
this end we first observe that, on account of (5.24)-iii), we have

(5.27) φk,ν → φν pointwise a.e. in Ω as k → +∞;

moreover, by the very definition of φk,ν we also have the following estimate

|φk,ν | = (uλ − νϕ− vk) · 1{uλ−νϕ−vk≥0} ≤ uλ + ν|ϕ|;

as a consequence, we get

i) v2
∗−1

k |φk,ν | = v2
∗−1

k (uλ − νϕ− vk) · 1{uλ−νϕ−vk≥0} ≤ (uλ + ν|ϕ|)2
∗

;

ii) vpk|φk,ν | = vpk(uλ − νϕ− vk) · 1{uλ−νϕ−vk≥0} ≤ (uλ + ν|ϕ|)p+1.
(5.28)

Using a standard dominated-convergence argument based on (5.27) - (5.28), jointly
with Lemma 5.3 (see (5.24) - ii) and remind that ϕ ∈ C∞

0 (Ω)), we then obtain

lim
k→+∞

(

ˆ

Ω
v2

∗−1
k (νϕ+ φk,ν) dx+ λ

ˆ

Ω
vpk(νϕ+ φk,ν) dx

)

=

ˆ

Ω
v2

∗−1
λ (νϕ+ φν) dx+ λ

ˆ

Ω
vpλ(νϕ+ φν) dx.

(5.29)

As regards the operator term Bε(vk, νϕ + φk,ν) by proceeding exactly as in [13,
Proposition 5.2] (where the same operator Lε is considered), we get

(5.30) Bε(vk, νϕ+ φk,ν) ≤ Bε(vλ, νϕ+ φν) + o(1) as k → +∞,

where we have used the fact that vk → vλ weakly in X 1,2(Ω).
Gathering (5.29) and (5.30), and taking into account that ρε(φk,ν) is uniformly

bounded with respect to k (as the same is true of vk), we can finally pass to the
limit as k → +∞ in (5.26), obtaining

Bε(vλ, νϕ+ φν) ≥

ˆ

Ω
v2

∗−1
λ (νϕ+ φν) dx+ λ

ˆ

Ω
vpλ(νϕ+ φν) dx.(5.31)
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With (5.31) at hand, we can now exploit once again the computations carried out
in [13, Proposition 5.2], getting

Bε(vλ, ϕ)− λ

ˆ

Ω
vpλϕdx−

ˆ

Ω
v2

∗−1
λ ϕdx

≥ −
1

ν

(

Bε(vλ, φν)− λ

ˆ

Ω
vpλφν dx−

ˆ

Ω
v2

∗−1
λ φν dx

)

(since uλ is a solution of (Pε)λ)

=
1

ν

(

− Bε(vλ − uλ, φν) + λ

ˆ

Ω
(vpλ − upλ)φν dx

+

ˆ

Ω
(v2

∗−1
λ − u2

∗−1
λ )φν dx

)

(since vλ = limk→+∞ vk ≥ uλ)

≥
1

ν

(

−

ˆ

{vλ+νϕ≤uλ}
∇(vλ − uλ) · ∇(vλ − uλ + νϕ) dx

− ε

¨

R2n

((vλ − uλ)(x)− (vλ − uλ)(y))(φν(x)− φν(y))

|x− y|n+2s
dx dy

)

≥ o(1) as ν → 0+;

(5.32)

as a consequence, by letting ν → 0+ in (5.32), we obtain

Bε(vλ, ϕ)− λ

ˆ

Ω
vpλϕdx−

ˆ

Ω
v2

∗−1
λ ϕdx ≥ 0.

This, together with the arbitrariness of the fixed ϕ ∈ C∞
0 (Ω), finally proves that

the function vλ is a weak solution of problem (Pε)λ as claimed.
In particular, from Theorem 2.3 we derive that

(5.33) vλ ∈ L∞(Ω).

Proof of 2). To prove assertion 2) it suffices to show that

(5.34) vk → vλ strongly in X 1,2(Ω) as k → +∞.

In fact, owing to property a) of {uk}k we have

̺− ρε(uk − vk) ≤ ρε(vk − uλ) ≤ ρε(vk − uk) + ̺;

this, together with (5.34) and (5.23)-ii), ensures that ρε(uλ − vλ) = ̺. Hence, we
turn to to prove (5.34), namely the strong convergence of {vk}k to vλ.

First of all, by (5.24) and the Brezis - Lieb Lemma [15], we have

i) ‖vk − vλ‖Lp+1(Ω) → 0 as k → +∞,

ii) ‖vk‖
2∗

L2∗ (Ω) = ‖vλ‖
2∗

L2∗ (Ω) + ‖vk − vλ‖
2∗

L2∗ (Ω) + o(1);

iii) ρε(vk)
2 = ρε(vλ)

2 + ρε(vk − vλ)
2 + o(1).

(5.35)

In particular, from (5.35) - i) we get

(5.36)

ˆ

Ω
vp+1
k dx =

ˆ

Ω
vp+1
λ dx+ o(1) as k → +∞.
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Owing to (5.35), and choosing w = vλ ∈ T in (5.25), we then get

ρε(vk − vλ)
2 = −Bε(vk, vλ − vk) + Bε(vλ, vλ − vk)

≤
1

k
ρε(vk − vλ) + λ

ˆ

Ω
vpk(vk − vλ) dx

+

ˆ

Ω
v2

∗−1
k (vk − vλ) dx+ Bε(vλ, vλ − vk)

(since {vk}k is bounded and vk → vλ weakly in X 1,2(Ω))

= λ

ˆ

Ω
vp+1
k dx+

ˆ

Ω
v2

∗−1
k (vk − vλ) dx− λ

ˆ

Ω
vpkvλ dx+ o(1)

= λ

ˆ

Ω
vp+1
λ dx+ ‖vk − vλ‖

2∗

L2∗ (Ω)
+ ‖vλ‖

2∗

L2∗ (Ω)
−

ˆ

Ω
v2

∗−1
k vλ dx

− λ

ˆ

Ω
vpkvλ dx+ o(1) as k → +∞.

On the other hand, owing to (5.24) - (5.33) (and reminding that 0 < p < 1), we can
exploit once again Lemma 5.3, thus deriving

ˆ

Ω
vpkvλ dx→ ‖vλ‖

p+1
Lp+1(Ω)

and

ˆ

Ω
v2

∗−1
k vλ dx→ ‖vλ‖

2∗

L2∗ (Ω)

as k → +∞; as a consequence, we obtain

(5.37) ρε(vk − vλ)
2 ≤ ‖vk − vλ‖

2∗

L2∗ (Ω)
+ o(1) as k → +∞.

To proceed further, we now choose w = 2vk ∈ T in (5.25): this yields

ρε(vk)
2 − ‖vk‖

2∗

L2∗ (Ω)
− λ

ˆ

Ω
vp+1
k dx ≥ −

1

k
ρε(vk)

2 = o(1);

thus, recalling that vλ is a weak solution of problem (Pε)λ, we get

ρε(vk − vλ)
2 = ρε(vk)

2 − ρε(vλ)
2 + o(1)

≥
(

‖vk‖
2∗

L2∗ (Ω)
+ λ

ˆ

Ω
vp+1
k dx

)

− Bε(vλ, vλ)

= ‖vk‖
2∗

L2∗ (Ω) + λ

ˆ

Ω
vp+1
k dx− ‖vλ‖

2∗

L2∗ (Ω) − λ

ˆ

Ω
vp+1
λ dx

= ‖vk − vλ‖
2∗

L2∗ (Ω) + o(1) as k → +∞,

(5.38)

where we have also used (5.36). Gathering (5.37)-(5.38), we then obtain

(5.39) ρε(vk − vλ)
2 = ‖vk − vλ‖

2∗

L2∗ (Ω) + o(1) as k → +∞.

With (5.39) at hand, we can finally end the proof of (5.34). In fact, assuming (to
fix the ideas) that Iλ(uλ) ≤ Iλ(vλ), from (5.23) and (5.35) - i) we get

Iλ(vk − vλ) =
1

2
ρε(vk − vλ)

2 +
λ

p+ 1

ˆ

Ω
|vk − vλ|

p+1 dx+
1

2∗
‖vk − vλ‖

2∗

L2∗ (Ω)

= I(vk)− I(vλ) + o(1) ≤ I(uλ)− I(vλ) +
1

k2
+ o(1)

≤ o(1) as k → +∞;
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this, together with (5.35) - i), gives

1

2
ρε(vk − vλ)

2 −
1

2∗
‖vk − vλ‖

2∗

L2∗ (Ω)

= Iλ(vk − vλ) +
λ

p+ 1

ˆ

Ω
|vk − vλ|

p+1 dx ≤ o(1).
(5.40)

Thus, by combining (5.39)-(5.40), we easily obtain

lim
k→+∞

‖vk − vλ‖
2∗

L2∗ (Ω) = lim
k→+∞

ρε(vk − vλ)
2 = 0,

and this proves (5.34). �

Proposition 5.5. Assume that Case B) holds. Then, there exists a second solu-
tion vλ of problem (Pε)λ such that vλ 6≡ uλ.

Proof. To begin with, we consider the set

Γ =
{

η ∈ C([0, 1];T ) : η(0) = uλ, Iλ(η(1)) < Iλ(uλ) and ρε(η(1) − uλ) > ̺1
}

,

(where ̺1 > 0 is as in (5.19)), and we claim that Γ 6= ∅.
In fact, since the fixed ε satisfies 0 < ε < ε0 (with ε0 > 0 as in Lemma 5.2), by

the cited Lemma 5.2 we know that there exists R0 > 0 such that

(5.41)

{

Iλ(uλ +RUε) < Iλ(uλ) for all R ≥ R0,

Iλ(uλ + tR0Uε) < Iλ(uλ) +
1
nS

n/2
n for all t ∈ [0, 1].

In particular, from (5.41) we easily see that

η0(t) = uλ + tR0Uε ∈ Γ

(by enlarging R0 if needed), and thus Γ 6= ∅, as claimed.

Now we have proved that Γ 6= ∅, we can proceed towards the end of the proof.
To this end we first observe that, since it is non-empty, this set Γ is a complete
metric space, when endowed with the distance

dΓ(η1, η2) := max
0≤t≤1

ρε
(

η1(t)− η2(t)
)

;

moreover, since Iλ is real-valued and continuous on X 1,2(Ω), it is easy to recognize
that the functional Φ : Γ → R defined as

Φ(η) := max
0≤t≤1

Iλ(η(t)),

is (well-defined and) continuous on Γ. In view of these facts, we are then entitled
to apply the Ekeland Variational Principle to this functional Φ on Γ: setting

γ0 := inf ΓΦ(η),

there exists a sequence {ηk}k ⊆ Γ such that

i) Φ(ηk) ≤ γ0 + 1/k,

ii) Φ(ηk) ≤ Φ(η) + 1/k dΓ(ηk, η) for every η ∈ Γ.
(5.42)

Now, starting from (5.42) and proceeding exactly as in the proof of [6, Lemma 3.5],
we can find another sequence

vk = ηk(tk) ∈ T
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(for some tk ∈ [0, 1]) such that

a) Iλ(vk) → γ0 as k → +∞;

b) there exists some C > 0 such that, for every w ∈ T , one has

Bε(vk, w − vk)− λ

ˆ

Ω
vpk(w − vk) dx

−

ˆ

Ω
v2

∗−1
k (w − vk) dx ≥ −

C

k
(1 + ρε(w)).

(5.43)

In particular, choosing w = 2vk in (5.43), we get

(5.44) ρε(vk)
2 − λ

ˆ

Ω
vp+1 dx−

ˆ

Ω
v2

∗

k dx ≥ −
C

k
(1 + 2ρε(vk)).

By combining (5.44) with assertion a), and exploiting Hölder’s and Sobolev’s ine-
qualities, we then obtain the following estimate

γ0 + o(1) =
1

2
ρε(vk)

2 −
λ

p+ 1

ˆ

Ω
vp+1
k dx−

1

2∗

ˆ

Ω
v2

∗

k dx

≥
(1

2
−

1

2∗

)

ρε(vk)
2 − λ

( 1

p+ 1
−

1

2∗

)

ˆ

Ω
vp+1
k dx

−
C

2∗ k
(1 + 2ρε(vk))

≥
(1

2
−

1

2∗

)

ρε(vk)
2 − C

(

ρε(vk)
p+1 − 2ρε(vk)− 1

)

,

(5.45)

where C > 0 is a constant depending on n and on |Ω|. Since, obviously,

c0 =
1

2
−

1

2∗
> 0,

it is readily seen from (5.45) that the sequence {vk}k is bounded in X 1,2(Ω) (other-
wise, by possibly choosing a sub-sequence we would have ρε(vk) → +∞, and hence
the right-hand side of (5.45) would diverges as k → +∞, which is not possible).

In view of this fact, we can thus proceed as in the proof of Lemma 5.4 to show
that {vk}k weakly converges (up to a sub-sequence) to a weak solution vλ ∈ X 1,2(Ω)
of problem (Pε)λ, further satisfying the identity

(5.46) ρε(vk − vλ)
2 − ‖vk − vλ‖

2∗

L2∗ (Ω) = o(1) as k → +∞.

In view of these facts, to complete the proof we are left to show that vλ 6≡ uλ. To
this end we first observe that, given any η ∈ Γ, we have

ρε(η(0) − uλ) = 0 and ρε(η(1) − uλ) > ̺1,

and hence there exists a point tη ∈ [0, 1] such that ρε(η(tη) − uλ) = ̺1; as a
consequence, since we are assuming that Case B) holds, we obtain

γ0 = inf
η∈Γ

Φ(η) ≥ inf
{

Iλ(η(tη)) : η ∈ Γ
}

≥ inf{Iλ(u) : u ∈ T and ρε(u− uλ) = ̺1} > Iλ(uλ).

On the other hand, since we already know that η0(t) = uλ+tR0Uε ∈ Γ, from (5.41)
(and the very definition of γ0) we derive the following estimate

γ0 ≤ Φ(η0) = max
0≤t≤1

Iλ(η0(t)) < Iλ(uλ) +
1

n
Sn/2
n .
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Summing up, we have

(5.47) Iλ(uλ) < γ0 < Iλ(uλ) +
1

n
Sn/2
n .

Now, since the sequence {vk}k weakly converges in X 1,2(Ω) to vλ as k → +∞, the
same assertions in (5.35) hold also in this context; this, together with (5.47) and
the above property a) of the sequence {vk}k, gives

1

2
ρε(vk − vλ)

2 −
1

2∗
‖vk − vλ‖

2∗

L2∗ (Ω)

=
1

2

(

ρε(vk)
2 − ρε(vλ)

2
)

−
1

2∗
(

‖vk‖
2∗

L2∗ (Ω) − ‖v‖2
∗

L2∗ (Ω)

)

+ o(1)

= Iλ(vk)− Iλ(uλ) + o(1) = γ0 − Iλ(uλ) + o(1)

<
1

n
Sn/2
n − δ0,

(5.48)

for some δ0 > 0 such that 1/nS
n/2
n − δ0 > 0 (provided that k is large enough).

Gathering (5.46)-(5.48), and arguing as in [39, Proposition 3.1], it is then easy
to recognize that vk → vλ strongly in X 1,2(Ω); as a consequence, by the continuity
of the functional Iλ and by (5.43)-(5.47), we get

Iλ(uλ) < γ0 = lim
k→+∞

Iλ(vk) = Iλ(vλ),

and this finally proves that vλ 6≡ uλ, as desired. �

6. Proof of Theorem 1.6

As anticipated in the Introduction, in this last section we exploit Theorem 1.2
to prove Theorem 1.6. The main reason why we postponed this proof at the very
end of the paper is philosophical : since Theorem 1.6 concerns the behavior of the
L∞-norm of any solution of problem (Pε)λ different from its minimal solution ūλ,ε,
we need to know that there exists (at least) one bounded solution of (Pε)λ distinct
from such ūλ,ε; this is precisely the content of our Theorem 1.4 (at least for ε≪ 1),
taking into account Theorem 2.3.

Proof (of Theorem 1.6). We closely follow the approach in [1, Theorem 2.4].
Arguing by contradiction, we assume that there exist a sequence {λj}j ⊆ (0,Λε)

and a family {vj = vλj ,ε}j of weak solutions of problem (Pε)λj
such that

a) λj → 0 as j → +∞;
b) vj 6≡ ūλj ,ε (where ūλj ,ε is the unique minimal solution of (Pε)λj

), and

(6.1) ‖vj‖L∞(Ω) ≤ c.

for some constant c > 0 (possibly depending on ε).

In particular, we have

•) vj > 0 pointwise in Ω and u = 0 pointwise in ∂Ω;

•) ∂νvj < 0 pointwise on ∂Ω
(6.2)

We then observe that, since vj is a weak solution of problem (Pε)λj
different from

its minimal solution ūλj ,ε (that is, problem by (Pε)λj
possesses at least two distinct

solutions), by Theorem 1.2 we necessarily have that

(6.3) ‖vj‖L∞(Ω) ≥Mε,
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for some constant Mε > 0 (independent of j, but possibly depending on ε).
On the other hand, by combining (6.1) with the global regularity result proved

in [38, Theorem 1.3] (see also the proof of Theorem 2.3), we derive that

(6.4) ‖vj‖C1,α(Ω) ≤ c
(

1 + ‖vj‖
2∗

L∞(Ω)

)

≤ c1,

and such an estimate holds for every fixed α ∈ (0,min{1, 2 − 2s}), with a suitable
constant c > 0 independent of j. Now, owing to (6.4) (and bearing in mind (6.2)),
we easily derive that the sequence {vj}j uniformly converges (up to a sub-sequence)
as j → +∞ to some non-negative function

v0 ∈ X 1,2(Ω) ∩ C1(Ω),

which is a weak solution of the purely critical problem

(⋆)

{

Lεu = |u|2
∗−1 in Ω

u = 0 in Rn \ Ω

(recall that λj → 0 as j → +∞); moreover, by (6.4) we get

‖v0‖L∞(Ω) ≥Mε =⇒ v0 6≡ 0.

Summing up, the function v0 is a non-trivial and non-negative weak solution of (⋆)
(in the sense of Definition 2.2), but this is in contradiction with [10, Theorem 1.3]
(since, by assumption, Ω is star-shaped). This ends the proof. �
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[29] S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dis-
persal: an evolution equation and a new Neumann condition arising from the superposition
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