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Abstract

We reimplement here the recent approach of Adam Zsolt Wagner [arXiv:2104.14516], which ap-
plies reinforcement learning to construct (counter)examples in graph theory, in order to make it
more readable, more stable and much faster. The presented concepts are illustrated by constructing
counterexamples for a number of published conjectured bounds for the Laplacian spectral radius of
graphs.
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1 Introduction

We are witnessing yet another computational revolution through proliferation of applications of artificial
intelligence (AI) methods in everyday tasks. Besides being very publicly scrutinised through the ongoing
development of self-driving vehicles, defeating world champions in Go, achieving superhuman perfor-
mance in recognising images and playing video games, or generating multimedia content, AI models are
trained and used to an even greater extent in science, engineering and technology to provide surrogate
models for predicting values of functions that are hard to compute or simulate numerically. Our goal
here is to elaborate on a recent application of a particular AI method—–reinforcement learning—–in
construction of (counter)examples in graph theory.

A few specialised software packages have been used as auxiliary tools in graph theoretical research
for four decades already, either to help with posing new conjectures or to help refute existing conjec-
tures by providing counterexamples. Two earliest examples of such packages are GRAPH and Graffiti,
which were special types of expert systems. GRAPH, written by Dragoš Cvetković and Laszlo Kraus
in the 1980s [1–3], provided a closed environment for visually editing individual graphs and computing
their invariants, and implemented certain AI methods for automatically proving simplest theorems in
graph theory. Graffiti, written by Siemion Fajtlowicz in 1986 [4–7], was geared more toward automatic
conjecture making than enabling researcher to test his own conjectures. Graffiti was used to produce
many conjectures, some of which attracted attention of well-known graph theorists [8]. It is interest-
ing to note that these old packages have been rewritten and modernised a few times in the forms of
newGRAPH [9–11], Graffiti.pc [12–15] and Grinvin [16, 17]. A relatively recent addition to this group
is graph6java [18, 19], which builds upon the power of existing programs for exhaustive generation of
different types of graphs and is capable, for a selected graph invariant, to answer the questions such as
which graphs have extremal values or which pairs of graphs have equal values of this invariant. An-
other approach is taken by AutoGraphiX (AGX), written by Gilles Caporossi and Pierre Hansen in the
2000s [20–24]. AGX considered expressions made up of graph invariants as instances of an optimisation
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problem and consequently applied variable neighbourhood search (VNS) metaheuristic to search for ex-
tremal graphs for these expressions over a search space that consists of a predefined set of graphs (which
is too big to perform an exhaustive search in it). AGX has been used to refute some of the conjectures
of Graffiti, and in a lengthy series of papers its authors posed several new conjectures as well.

Most recently, in the pioneering work [25] Adam Zsolt Wagner used reinforcement learning (RL) to
construct counterexamples for several conjectures in graph theory. Although RL is present for a long
time in AI community, it experienced recent rise in popularity after it was used by DeepMind in programs
AlphaGo, AlphaZero and MuZero that managed to reach superhuman level of performance in go, chess
and visually complex Atari games, all without knowing the game rules in advance [26]. RL is based
on an interplay between an agent and an environment (see Fig. 1): at each step, the agent receives the
observation on the state of the environment, performs an action in the environment, for which it then
receives the reward from the environment. The goal of the RL agent is to learn how to maximise the
cumulative reward received from the environment.

Figure 1: General process of reinforcement learning.

In Wagner’s approach, simple graphs are constructed by an agent as a sequence of 0-1 actions which
represent the entries of the upper part of the adjacency matrix. The environment responds with zero
intermediate rewards, while the final reward, when the graph is fully constructed, is equal to a specified
graph invariant. Setting the final reward to represent the difference of two sides of a conjectured inequality
between graph invariants, Wagner [25] was able to find counterexamples for several published conjectures.
Among others, this includes a 19-vertex counterexample for an AGX conjecture on the sum of the
matching number and the spectral radius [20], for which one of the authors previously showed the
existence of counterexamples on more than 600 vertices [27]. One of the authors [28] also tested Wagner’s
approach on a recent conjecture of Akbari, Alazemi and Andjelić [29]. Although RL did not manage to
explicitly find counterexamples in this case, it was still very useful by suggesting their proper structure.

Our goal here is to offer the reimplementation of Wagner’s approach that is more readable, more
stable, much faster and as a result, more useful. Wagner’s initial RL implementation runs only for very
specific combinations of python and tensorflow versions, which is probably a consequence of pre-existing
code that it is based on (see [30]). To avoid this, we reimplement his approach here from scratch. We
separate the learning agent from the reward computation, so that interested researchers need only define
the final reward in a separate python file in order to adapt and reuse this implementation. We pay
particular attention to computation performance, since RL must compute invariants for at least several
hundred thousands of graphs before reaching a satisfactory level of convergence in its learning. While
final rewards may certainly be computed by using networkX and/or numpy, our experience shows that
computing them by calling Java code directly from Python offers a significant speedup. For example,
computation of eigenvalues of graphs on 20–30 vertices with graph6java (which internally uses EJML
library [31]) is 3–5 times faster than computing them with numpy. Overall, the new implementation
enables interested researchers to see learning results in a matter of minutes instead of hours or even
days.

In the next section we briefly overview the principles used in Wagner’s approach and the details of
our reimplementation, which also serves as a short manual for its use. In Section 3 we then apply it
to find counterexamples to a number of older conjectured bounds on the Laplacian spectral radius of
graphs from [39].

2 Wagner’s simple graph environment and the cross-entropy
method

Wagner’s most profound observation from [25] is that construction of a simple graph and computation
of its invariant can be treated as a sequence of consecutive observations, actions and rewards. For an
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n-vertex graph G, let L: l1, . . . , l(n2)
be the part of adjacency matrix above the diagonal, listed in the

row-wise order. Since G is fully determined by L, the agent constructs G simply by issuing actions equal
to the consecutive elements of L. All rewards given by the environment before G is fully constructed are
equal to zero, while the final reward is equal to the graph invariant r(G) that is of interest to us.

On the other hand, environment observations have to support the goal of the agent to learn which
actions should be issued at which stage of graph construction in order to maximise the final (=cumulative)
reward. Hence each observation has to inform the agent what part of the graph has been already
constructed so far. For this reason, each observation represents the current state of L, followed by the
one-hot encoding of the next entry of L to be determined. The initial observation, before any action is
issued, is thus

0 . . . 0︸ ︷︷ ︸
(n2)

10 . . . 0︸ ︷︷ ︸
(n2)

.

Subsequent actions are collected in the first part of the observation which builds up to L, while the
single 1 in the second part travels from left to right, indicating the index of the entry of L that will store
the next action, until it should pass over the right end, which indicates that the graph is fully constructed
and that r(G) can be computed. This process of interaction between the agent and the environment
while constructing a small graph is illustrated in Fig. 2.

Environment Agent Environment

Observation Action Reward

000000 100000
1

100000 010000 0
1

110000 001000 0
0

110000 000100 0
1

110100 000010 0
1

110110 000001 0
0

110110 000000 r(G)

Figure 2: Illustration of the sequence of observations, actions and rewards issued while constructing
the graph shown in top left part. Entries of the adjacency matrix above the diagonal, which yield the
sequence L, are shown in red. Red-coloured entries of observations represent the entry in the left part
which will store the next action and the single 1 in the right part which indicates the index of this entry.
Note that both the list of actions issued and the left part of the last observation are equal to L.

Wagner [25] used the cross-entropy method [32, 33] to enable the agent to learn how to construct
graphs with large rewards. This is one of the simplest reinforcement learning methods, which usually
works well for environments that do not require discovery of complex, multistep policies [34, Chapter 4].
In this method the agent employs as a learning module the neural network (initialised randomly at the
beginning) which accepts a graph observation as the input and outputs a probability distribution over
the set of possible actions (0 and 1 in this case), according to which the agent selects the next action.
The cross-entropy method successively iterates through the generation and the learning phases. In the
generation phase, the agent uses the neural network to simultaneously construct a batch of N graphs, for
a fixed value of N . While each graph in the batch starts with the same initial observation 0 . . . 0 10 . . . 0,
the agent’s actions are selected at random according to the probability distribution provided by the neural
network for each observation, so that the fully constructed graphs in the batch will not necessarily be
mutually isomorphic. In the learning phase, the agent selects L graphs (for some L << N) with the
largest rewards and trains its neural network on the pairs of observations and actions used in their
construction (see Fig. 3). The goal of training is to minimise the cross-entropy between the actions used
and the probability distributions that the network outputs for the corresponding observations. After
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training is done, the agent selects S graphs (for some S < L) with the largest rewards that are forwarded
as survivors to the next generation phase.

Figure 3: Illustration of the learning phase in the cross-entropy method. White-coloured rectangles
symbolise observations of graph environments, while black-coloured boxes represent subsequent actions
issued by the agent. Construction of each graph is completed after

(
n
2

)
actions, after which the rewards

ri are computed. Constructed graphs with a specified percentage of largest rewards are selected (framed
in red rectangles). The agent’s neural network is retrained on the set of observation/actions pairs used in
construction of most rewarding graphs, with the aim of minimising the cross-entropy between the action
probability distributions that the neural network provides for these observations and the actual actions
used in their construction.

Note that the only purpose of rewards in the cross-entropy method is to select the subsets of elite
graphs, as the actual value of rewards is not used in training of the agent’s underlying neural network.
Nevertheless, the network learns the common characteristics of the structure of elite graphs, so that
the graphs constructed in the following generation phases will tend to have higher rewards. Survivor
graphs serve to speed up the learning process in the beginning, directing neural network toward imitating
construction of particularly rewarding graphs. However, as the learning process converges, the graphs
constructed in each new generation will begin to share more and more similarities, to the point when
majority of them will actually be mutually isomorphic to the same locally optimal graph. At such
moment either the learning should be stopped or the actions issued by the agent should be additionally
randomised in an effort to avoid this local optimum.

2.1 New reimplementation

Our reimplementation of the cross-entropy method employing Wagner’s simple graph environment is
freely available online at

github.com/dragance106/cema-for-graphs

and it consists of three independent files:

• cema_train_simple_graph.py,

• graph6java.jar and

• training_runner.py,

that we briefly discuss here.
The file cema_train_simple_graph.py contains implementation of the methods for successively gen-

erating batches of simple graphs and training the agent’s neural network to maximize the reward function.
The main method in this file is:
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t r a i n ( compute reward ,
n=20,
b a t ch s i z e =200 ,
num generat ions=1000 ,
p e r c en t l e a rn =90,
p e r c en t su rv i v e =97.5 ,
neurons =[72 ,12 ] ,
l e a r n i n g r a t e =0.003 ,
a c t r n d n e s s i n i t =0.005 ,
a c t rndne s s wa i t =10,
ac t rndnes s mul t =1.1 ,
act rndness max =0.025 ,
verbose=True ,
ou tpu t be s t g raph ra t e =25)

Let us quickly discuss the parameters of this method:

• compute reward: denotes the method that computes a real-valued reward for each constructed
graph. This method has to be provided by the user and it has the signature my_reward(n, A),
where n is the number of vertices and A is the adjacency matrix;

• n: the number of vertices of graphs to be constructed;

• batch size: the number of graphs in each batch;

• num generation: the number of generations over which to train the agent;

• percent learn: the best (100-percent learn) percents of graphs from each batch are used to train
the agent’s neural network;

• percent survive: the best (100-percent survive) percents of graph from each batch are transferred
to the next generation as survivors;

• neurons: the list determining the numbers of neurons in hidden layers of the agent’s neural network.
The neural network has n(n − 1) inputs to accommodate a simple graph observation, and two
outputs representing raw scores for the possible actions (0=skip this edge, 1=add this edge). The
structure of hidden layers (together with their number) is defined by this parameter;

• learning rate: the learning rate of the agent’s neural network;

• act rndness init: the initial value for the action randomness act rndness. In order to increase
exploration of different graphs and avoid being stuck in a local optimum from overexploitation of
acquired knowledge, the agent will issue random actions at this rate, i.e., this percent of adjacency
matrix entries will be random;

• act rndness wait: the number of generations without an increase in the maximum reward to wait
before act rndness should be increased;

• act rndness mult: the factor used to multiply act rndness when there are no increases in the
maximum reward for act rndness wait generations;

• act rndness max: the maximum allowed act rndness value, since we do not want to have too many
random edges in constructed graphs;

• verbose: True or False, describing whether to print on the console the summary information for
each generation: generation number, maximum reward seen, reward used to select survivors, reward
used to select graphs for learning, processing time for the generation, and act rndness value

• output best graph rate: the number of generations at which to produce the drawing of the best
graph so far, which is then reported in the external runs/event file for TensorBoard consumption.
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When the learning starts to converge, the train method tries to prevent mutual isomorphism of
constructed graphs by randomising a certain percentage of actions issued by the agent. This percentage
is represented by the internal variable act rndness, while the four act rndness . . . parameters above serve
to control it in a way that is inspired by the variable neighborhood search [35]: whenever act rndness wait
generations pass without improving the maximum reward, act rndness is multiplied by act rndness mult
(with the waiting counter reset), but it is not allowed to surpass the value of act rndness max. On the
other hand, as soon as the maximum reward increases in the next generation, act rndness is returned
back to act rndness init. Such varying action randomness can somewhat postpone convergence towards
generating isomorphic graphs, depending on the combination of these four parameters.

After training is completed, the train method returns the maximum reward obtained, as well as the
adjacency matrix of a graph that attains it. However, in order to check up on the progress of learning
during training, the train method reports both short textual summary information on the console after
each generation (when verbose is set to True) and writes this data, together with a drawing of the best
graph each output best graph rate generations, to an external event file in the runs subfolder. This
event file may be visualised already while it is being populated during training, by starting TensorBoard
application from the same folder with:

tensorboard --logdir runs

and then opening the web page indicated by TensorBoard in the browser. In this way, the user can
effectively visualise the evolution of both the maximum reward and the best graphs during training,
which helps her/him to judge whether training is going in a good direction or whether it should be
stopped or restarted. Note, however, that there is not a simple recipe for determining the proper
combination of training parameters—at the end, it boils down to experimentation through trial and
error.

The values indicated after the equality signs in the signature of the train method above represent
the default values for the corresponding parameters (which need not be mentioned in the method call if
they are not changed). Hence the minimum way of calling the train method is as follows:

from cema tra in s imp le g raph import t r a i n
r , A = t r a i n ( compute reward=my reward )

where my reward is a method that has to be provided by the user. This method accepts the number
of vertices n and the adjacency matrix A for each constructed graph, and returns a real number that
represents its reward. If we are looking for a counterexample to a conjectured inequality a(G) ≤ b(G),
Wagner’s suggestion [25] was to return the reward a(G)− b(G), since in this way we can easily recognise
counterexamples through the positive value of their reward.

While it is quite standard in the Python community to use networkX [36] and numpy [37] for com-
putation of graph invariants, we have found that using our existing Java framework graph6java [18, 19]
directly from Python offers significant performance speedup—between three and five times—without
the need for any compilation. This is enabled by the package JPype [38], which starts the Java virtual
machine parallel to the Python virtual machine and sharing the same memory, so that with a small
overhead, one can call Java methods directly from the Python code. In order not to interfere with the
implementation details in cema_train_simple_graph.py, it is customary to write the reward method
and start the training from another python file. Here is a minimal example that implements the reward
for the conjectured inequality

µ ≤ max
v∈V (G)

√
4d3v
mv

from [39], where µ is the largest Laplacian eigenvalue of the graph, dv is the degree of vertex v and mv

is the average degree of the neighbours of v:

import jpype . imports
from jpype . types import ∗
jpype . startJVM( c l a s spa th=[ ’ ∗ ’ ] , c onve r tS t r i ng s=False )
from graph6java import Graph

import numpy as np
import math
MINUS INF = −1000000 # reward s i g n i f y i n g unwanted graphs
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def au t o l ap l a 1 (n , A) :
g = Graph ( JInt [ : , : ] (A) )
i f g . numberComponents ()>1:

return MINUS INF

mu = max( g . Lspectrum ( ) )
deg = np . array ( g . degree s ( ) )
avd = np . array ( g . averageDegrees ( ) )

return mu − max(np . s q r t (4∗ deg∗deg∗deg/avd ) )

from cema tra in s imp le g raph import t r a i n
r , A = t r a i n ( compute reward=au t o l ap l a 1 )

jpype . shutdownJVM()

The above code makes an important assumption that Java archive graph6java.jar (available at
github.com/dragance106/cema-for-graphs) is located in the current folder. The list of invariants
currently implemented in its Graph class is given in Appendix A. When needed, new invariants can be
added to the Graph class directly in the graph6java source files, available at github.com/dragance106/
graph6java, and the newly compiled jar file can then be used instead.

Finally, the file training_runner.py contains many further examples of implemented reward func-
tions and different ways of inviting the train method.

3 Automated conjectures on the Laplacian spectral radius of
graphs

Brankov, Hansen and Stevanović observed in [39] that a large number of upper bounds on the Laplacian
spectral radius µ of graphs published in the literature so far have very similar form: they are a maximum
taken either over the vertices or over the edges of functions that depend on the degree dv of the vertex
and the average degree mv of the neighbors of v, and that evaluate to 2x when all the dv and mv terms
in the functional expression are replaced by x. Based on this observation, they proposed a procedure for
automatically creating new conjectured bounds of increasing complexity. Out of 361 vertex-maximum
bounds and 1138 edge-maximum bounds of small complexity generated in [39], it turned out that 190
vertex-maximum and 297 edge-maximum bounds hold for connected graphs with up to 9 vertices, as well
as on stars and windmills (triangles sharing one common vertex). This is a fairly large ratio of the total
number of generated bounds, suggesting that the way of generating the bounds is likely meaningful. The
68 conjectured bounds from [39], having either small complexity or being most interesting, are listed
here in Appendix B.

Here we apply the previously described reimplementation of Wagner’s approach to reinforcement
learning on graphs to all 68 conjectured automated bounds on the Laplacian spectral radius of graphs.
The training was run mostly for graphs on 20 vertices, ocassionally going up to 24 vertices, and it managed
to find counterexamples for 25 of the conjectured bounds: for 8 out of 32 vertex-maximum bounds and
for 17 out of 36 edge-maximum bounds, as indicated in Table 1. Tensorboard’s event files, from which
one can see the actual counterexamples and the evolution of maximum, learning and surviving rewards
for all of these conjectures, can be downloaded from [40].

Here we illustrate two particular conjectures

31 : µ ≤ max
v∈V

4m2
v

mv + dv

and

65 : µ ≤ max
vi∼vj

(mi +mj)(dimi + djmj)

2mimj

for which RL managed to properly prove itself by converging toward graphs with clearly identifiable and
nontrivial structure. Evolution of learning rewards for these two conjectures is shown in Fig. 4, while
evolutions of graphs with maximum rewards are shown in Figs. 5 and 6. Learning rewards tend to
oscillate after reaching a plateau due to increases in action randomness, which randomly adds or deletes
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Figure 4: Evolution of learning rewards for the conjecture (left) 31: µ ≤ maxv∈V
4m2

v

mv+dv
and (right)

65: µ ≤ maxvi∼vj
(mi+mj)(dimi+djmj)

2mimj
.

gen=50, reward=-3.106 gen=75, reward=-2.371 gen=250, reward=0.1517

gen=500, reward=0.1588 gen=600, reward=0.5840

Figure 5: Evolution of graphs with maximum rewards for the conjecture 31: µ ≤ maxv∈V
4m2

v

mv+dv
.

edges to graphs constructed by the RL agent. While the counterexamples for these two conjectures were
found relatively early (after 250–500 generations), we see that RL managed to further improve their
rewards in later generations (after 600–900 generations). A look at the maximum reward graphs shows
that this prolonged learning was worthwile, as it gave time to RL to make minor adjustments to its
learning strategy and produce a more evident structure.

Certainly, not all RL runs produce counterexamples with an easily identifiable structure, as can be
noted from the counterexamples shown in Fig. 7. RL is, after all, an optimization algorithm that can
get stuck in a local optimum. Slow and steady increase of action randomness, which is incorporated in
our reimplementation, may help it to get out of the local optimum if training is left to work over a larger
number of generations. While this was indeed the case with conjectured bounds 31 and 65, there can be
no upfront guarantee of success, so it is up to the user to decide based on his/her intuition when is the
proper time to stop training that is unlikely to make further progress.

Nevertheless, the learning that does occur during the training of RL agent can often suggest appropri-
ate directions for further study. For example, while the counterexamples from Fig. 7 do not necessarily
have clearly identifiable structure (except obviously for a counterexample to bound 68), they do suggest
that counterexamples are most often subquartic graphs.

Subquartic graphs are not too numerous, compared to connected graphs in general, so we were able to
perform an exhaustive search among subquartic graphs with up to 14 vertices. It turned out that among
them subquartic graphs on 12 vertices were most successful, disproving 26 of the conjectured bounds,
including some for which RL did not find counterexamples, as indicated in Table 1. Interestingly, one
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gen=25, reward=-0.9167 gen=75, reward=-0.6717 gen=275, reward=-0.1234

gen=500, reward=2.2070 gen=925, reward=2.3460

Figure 6: Evolution of graphs with maximum rewards for the conjecture 65: µ ≤
maxvi∼vj

(mi+mj)(dimi+djmj)
2mimj

.

Bound 3 Bound 15 Bound 28

Bound 29 Bound 36 Bound 49

Bound 51 Bound 67 Bound 68

Figure 7: Counterexamples for several other conjectured bounds from Appendix B.
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µ(SQ∗) = 7.41421 µ(SQ17) = 7.37228

µ(SQ50) = 7.06459 µ(SQ66) = 5.60286

Figure 8: Counterexamples found among subquartic graphs on 12 vertices. SQ∗ disproves 23 bounds: 2,
3, 15, 28, 29, 31, 32, 36, 43, 49, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64 and 67, while SQ17, SQ50

and SQ66 disprove only the bound indicated by their subscripts.

of these graphs serves as a counterexample for a total of 23 of these bounds, indicated as SQ∗ in Fig. 8.
The remaining graphs in this figure represent counterexamples for bounds 17, 50 and 66.

On the other hand, subquartic counterexamples have much more evident structure, so that they
are easily generalizable, together with the two RL counterexamples for bounds 31 and 65 (see Figs. 5
and 6). However, while these generalizations do yield several further examples of graphs that disprove
several conjectured bounds at once, they do not manage to disprove any other bound than those already
disproved by RL training and subquartic graphs, so that we do not discuss them further here.

4 Concluding remarks

We have reimplemented here Wagner’s approach of applying a cross-entropy method, a particular re-
inforcement learning technique, to an environment that represents simple graphs, in order to construct
counterexamples in graph theory.

The reimplementation was applied to the set of 68 conjectured upper bounds on the Laplacian spectral
radius of graphs from [39], which are listed in Appendix B. A total of 30 conjectured bounds was dis-
proven: 25 directly by reinforcement learning and additional five by exhaustive search among subquartic
graphs, which was largely suggested by the properties of counterexamples obtained through reinforcement
learning. However, 38 conjectured bounds are still open after these computational attacks, suggesting
that their automated way of generation may have had some merit. That appears to be especially true
for vertex-based ones, as only 8 out of 32 conjectured bounds were disproved here. Probably due to
the absence of symmetry in their expressions, none of the newly conjectured bounds from [39] has been
proven in the last 18 years, yet they still resist being disproved computationally. We hope that new
theoretical methods for proving at least a handful of these bounds will be discovered soon.

The reinforcement learning proved to be of valuable help in this study, and it is definitely a promising
area for further work, either through the use of other available reinforcement learning methods, or by
developing new environments for more specific graph classes or by applying it in new ways, e.g., to
construct pairs of graphs at once in a single generation phase.
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[18] M. Ghebleh, A. Kanso, D. Stevanović, Graph6Java: a researcher-friendly Java framework for testing
conjectures in chemical graph theory, MATCH Commun. Math. Comput. Chem. 81 (2019) 737–770.

[19] graph6java—Java templates for studying sets of graphs in g6 format, available at github.com/

dragance106/graph6java

[20] G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs. I: The AutoGraphiX
system, Discrete Math. 212 (2000), 29–44.

[21] M. Aouchiche, G. Caporossi, P. Hansen, M. Laffay, Autographix: a survey, Proc. 7th international
colloquium on graph theory, Hyeres, France, September 12–16, 2005, Electron. Notes Discrete Math.
22 (2005), 515–520.

[22] M. Aouchiche, J.M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J. Lacheré,
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theory with AutoGraphiX, Le Cahiers du GERAD, G-2016-90, 2016.

[25] A.Z. Wagner, Constructions in combinatorics via neural networks, arXiv:2104.14516 (2021).

[26] DeepMind, AlphaGo, available at deepmind.com/research/highlighted-research/alphago
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A Invariants implemented in Graph class in graph6java

The following list very briefly describes the invariants currently implemented in Graph class of the Java
archive graph6java.jar from

github.com/dragance106/cema-for-graphs.

Further details on implemented invariants can be found in the source file of this class at github.com/
dragance106/graph6java.

n() the number of vertices

m() the number of edges

degrees() the array of vertex degrees

averageDegrees() the array of average degrees of neighbours of vertices

isConnected() whether the graph is connected

numberComponents() the number of connected components

isIsomorphic(Graph h) whether the graph is isomorphic to another graph h

matchingNumber() The matching number of the graph

complement() the complement of the graph

Amatrix() the adjacency matrix A of the graph

Acharpoly() the characteristic polynomial of A, returned as the array of n + 1 coefficients from the
highest at index 0 to the lowest at index n

Aspectrum() the eigenvalues of A, sorted in non-decreasing order

Aeigenvectors() the eigenvectors of corresponding eigenvalues of A, returned as a double array with
eigenvectors placed in columns

Acospectral(Graph h) whether the graph is cospectral to another graph h
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Aintegral() whether all eigenvalues of A are integers

Aenergy() the energy of A, understood as the absolute deviation of the eigenvalues of A from their
average value

Lmatrix() the Laplacian matrix

Qmatrix() the signless Laplacian matrix

Dmatrix() the distance matrix

DLmatrix() the distance Laplacian matrix

Mmatrix() the modularity matrix

Note that for each of the above matrices the Graph class also contains the corresponding methods
for computing its spectral properties, i.e., Lcharpoly(), Qspectrum(), Deigenvectors(), DLenergy(),
Mcospectral() etc.

Asingular() whether 0 is an eigenvalue of A

fiedlerVector() the eigenvector of the second smallest eigenvalue of L

LEL() Laplacian-like-energy invariant

estrada() Estrada index

Lestrada() Laplacian Estrada index

diameter() the diameter

radius() the radius

wiener() Wiener index

transmissions() the array of vertex transmissions, i.e., the sums of distances from a vertex to all other
vertices

transmissionIrregular() whether the graph is transmission irregular

szeged() Szeged index

weightedSzeged() weighted Szeged index

randic() Randić index

zagreb1() The first Zagreb index

zagreb2() The second Zagreb index

B The list of conjectured upper bounds from [39]

The first group of bounds is of the form

µ ≤ max
v∈V

f(dv,mv)

where µ is the spectral radius of Laplacian matrix of graph G, V is its vertex set, while dv and mv are,
respectively, the degree of v and the average degree of the neighbours of v, for v ∈ V . In the following
list we present only the right-hand side of these bounds. The symbol O after the ordinal number means
that the conjecture is still open, while the symbol X means that the counterexample has been found in
this paper, as indicated in Table 1.

1. O maxv∈V

√
4d3v
mv

17. X maxv∈V
4
√
5d4v + 11m4

v

2. X maxv∈V
2m2

v
dv

18. O maxv∈V

√
2m3

v
dv

+ 2d2v
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3. X maxv∈V
m2

v
dv

+mv 19. O maxv∈V
4
√
4d4v + 12dvm3

v

4. O maxv∈V
2d2v
mv

20. O maxv∈V

√
7d2v+9m2

v

2

5. O maxv∈V
d2v
mv

+mv 21. O maxv∈V

√
d3v
mv

+ 3m2
v

6. O maxv∈V

√
m2

v + 3d2v 22. O maxv∈V
4
√
2d4v + 14d2vm2

v

7. O maxv∈V
d2v
mv

+ dv 23. O maxv∈V

√
d2v + 3dvmv

8. O maxv∈V

√
dv(mv + 3dv) 24. O maxv∈V

4
√
6d4v + 10m4

v

9. O maxv∈V
mv+3dv

2
25. O maxv∈V

4
√
3d4v + 13d2vm2

v

10. O maxv∈V

√
dv(dv + 3mv 26. O maxv∈V

√
5d2v+11dvmv

2

11. O maxv∈V
2m3

v
d2v

27. O maxv∈V

√
3d2v+5dvmv

2

12. O maxv∈V

√
2m2

v + 2d2v 28. X maxv∈V

√
2m4

v
d2v

+ 2dvmv

13. O maxv∈V
2m4

v
d3v

29. X maxv∈V

√
m2

v +
3m3

v
dv

14. O maxv∈V
2d3v
m2

v
30. O maxv∈V

m3
v

d2v
+

d2v
mv

15. X maxv∈V

√
4m3

v
dv

31. X maxv∈V
4m2

v
mv+dv

16. O maxv∈V
2d4v
m3

v
32. X maxv∈V

√
m3

v(mv+3dv)

dv

The second group of bounds is of the form

µ ≤ max
vi∼vj

f(dvi ,mvi , dvj ,mvj )

where the maximum is taken over all pairs of adjacent vertices vi, vj in V . Again, in the following list
we present only the right-hand side of these bounds, with dvi ,mvi , dvj ,mvj shortened as di,mi, dj ,mj ,
respectively.

33. O maxvi∼vj 2(di + dj)− (mi +mj)

34. O maxvi∼vj

2(d2i+d2j )

di+dj

35. O maxvi∼vj

2(d2i+d2j )

mi+mj

36. X maxvi∼vj

2(m2
i+m2

j )

di+dj

37. O maxvi∼vj

√
2(d2i + d2j )

38. O maxvi∼vj 2 +
√

2(di − 1)2 + 2(dj − 1)2

39. O maxvi∼vj 2 +
√

2(d2i + d2j )− 4(mi +mj) + 4

40. O maxvi∼vj 2 +
√

2 ((mi − 1)2 + (mj − 1)2) + (d2i + d2j )− (dimi + djmj)

41. X maxvi∼vj 2 + (mi +mj)− (di + dj) +
√

2(d2i + d2j )− 4(mi +mj) + 4

42. O maxvi∼vj

√
d2i + d2j + 2mimj

43. X maxvi∼vj 2 +
√

3(m2
i +m2

j )− 2mimj − 4(di + dj) + 4

44. O maxvi∼vj 2 +
√

2 ((di − 1)2 + (dj − 1)2 +mimj − didj)

45. O maxvi∼vj 2 +
√

(di − dj)2 + 2(dimi + djmj)− 4(mi +mj) + 4

46. O maxvi∼vj 2 +
√

2(d2i + d2j )− 16
didj

mi+mj
+ 4

47. O maxvi∼vj

2(d2i+d2j )−(mi−mj)
2

di+dj

48. O maxvi∼vj

2(d2i+d2j )

2+
√

2(d2i+d2j )−4(mi+mj)+4

49. X maxvi∼vj 2 +
√

2(m2
i +m2

j ) + (di − dj)2 − 4(di + dj) + 4

50. X maxvi∼vj 2
d2i+d2j+mimj−didj

di+dj

51. X maxvi∼vj 2(mi +mj)− 4
mimj

di+dj

52. X maxvi∼vj 2 +

√√
8(m4

i +m4
j )− 8(d2i + d2j ) + 4− 4(di + dj) + 6

53. X maxvi∼vj 2 +

√√
8(m4

i +m4
j )− 8(dimi + djmj) + 4− 4(di + dj) + 6

54. X maxvi∼vj 2 +
√

2(m2
i +m2

j ) + (dimi + djmj)− (d2i + d2j )− 4(di + dj) + 4

55. X maxvi∼vj 2 +
√

3(m2
i +m2

j )− (d2i + d2j )− 4(mi +mj) + 4
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56. O maxvi∼vj

(d2i+d2j )(mi+mj)

2didj

57. X maxvi∼vj 2 +

√
2(m2

i +m2
j )− 8

d2i+d2j
mi+mj

+ 4

58. X maxvi∼vj 2 +
√

2(m2
i +mimj +m2

j )− (dimi + djmj)− 4(di + dj) + 4

59. X maxvi∼vj

2(m2
i+mimj+m2

j )−(d2i+d2j )

mi+mj

60. X maxvi∼vj 2 +
√

2(m2
i +mimj +m2

j )− (d2i + d2j )− 4(di + dj) + 4

61. X maxvi∼vj

2(m2
i+m2

j )

2+
√

2((di−1)2+(dj−1)2)

62. X maxvi∼vj 2 +
√

m2
i + 4mimj +m2

j − 2didj − 4(di + dj) + 4

63. X maxvi∼vj di + dj +mi +mj − 4
didj

mi+mj

64. X maxvi∼vj
mimj(di+dj)

didj

65. X maxvi∼vj
(mi+mj)(dimi+djmj)

2mimj

66. X maxvi∼vj

m2
i+4mimj+m2

j−(dimi+djmj)

di+dj

67. X maxvi∼vj
(mi+mj)(dimi+djmj)

2didj

68. X maxvi∼vj 2 +
√

(mi −mj)2 + 4didj − 4(mi +mj) + 4
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