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ℓ2 DECOUPLING THEOREM FOR SURFACES IN R3

LARRY GUTH, DOMINIQUE MALDAGUE, AND CHANGKEUN OH

Abstract. We identify a new way to divide the δ-neighborhood of surfaces
M ⊂ R3 into a finitely-overlapping collection of rectangular boxes S. We
obtain a sharp (ℓ2, Lp) decoupling estimate using this decomposition, for the
sharp range of exponents 2 ≤ p ≤ 4. Our decoupling inequality leads to new
exponential sum estimates where the frequencies lie on surfaces which do not
contain a line.

1. Introduction

Consider the manifold

(1.1) Mφ := {(ξ1, ξ2, φ(ξ1, ξ2)) : ξ1, ξ2 ∈ [0, 1]},
where φ : R2 → R is a smooth function. Denote by Nδ(Mφ) ⊂ R3 the δ-
neighborhood of the manifold Mφ. Our main theorem is an ℓ2 decoupling theorem
for Mφ into (φ, δ)-flat sets. This type of theorem was introduced by [BDK20].

Definition 1.1. Let φ : R2 → R be smooth. We say that S ⊂ [0, 1]2 is (φ, δ)-flat if

(1.2) sup
u,v∈S

|φ(u)− φ(v) −∇φ(u) · (u− v)| ≤ δ.

For a measurable function f : R3 → C and a measurable set S ⊂ R2, denote by
fS the Fourier restriction of f on the set S × R. We refer to Definition 2.1 for the
rigorous definition.

Theorem 1.2. Let φ : R2 → R be a smooth function. Fix ǫ > 0. Then there exists
a sufficiently large number A depending on ǫ and φ satisfying the following.

For any δ > 0, there exists a collection Sδ of finitely overlapping sets S such that

(1) the overlapping number is O(log δ−1) in the sense that

(1.3)
∑

S∈Sδ

χS ≤ Cǫ,φ log(δ
−1),

(2) S is (φ,Aδ)-flat,
(3) for 2 ≤ p ≤ 4 we have

(1.4) ‖f‖Lp ≤ Cǫ,φδ
−ǫ
( ∑

S∈Sδ

‖fS‖2Lp

)1/2

for all functions f whose Fourier supports are in Nδ(Mφ).

One important aspect of our theorem is that the collection Sδ is not a strict
partition of [0, 1]2 since the sets S ∈ Sδ are O(log δ−1)-overlapping. The decou-
pling inequality (1.4) for the hyperbolic paraboloid is not true if a family Sδ is a
partition of [0, 1]2. In other words, the O(log δ−1)-overlapping property is neces-
sary for the theorem to hold true (see Appendix A). The situation is different for
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curves (ξ, φ(ξ)) in R2, where Yang proved a version of Theorem 1.2 using a strict
partition [Yan21]. We realized that to prove an ℓ2 decoupling inequality of the
form (1.4), it is crucial to understand the number of possible choices of (φ, δ)-flat
sets. For a curve (ξ, φ(ξ)) ∈ R2 and a given point p ∈ [0, 1], there is essentially
one choice of (φ, δ)-flat set containing the point p with the maximal size. On the
other hand, for the hyperbolic paraboloid in R3 and a given point p ∈ [0, 1]2, there
are essentially O(log δ−1) many choices of (φ, δ)-flat sets containing the point p and
with maximal size. This turns out to be the reason why a partition is not enough
and we need (1.3). For the hyperbolic paraboloid in Rn with n ≥ 4, the possible
choices of (φ, δ)-flat sets containing a point is ∼ δ−An for some An > 0, which is why
we do not have an analogous theorem without any δ−1-power loss (see Appendix B).

Next we describe our main application of Theorem 1.2, which is to prove discrete
restriction estimates for manifoldsMφ not containing a line segment. For a function
F and a set A, define

(1.5) ‖F‖p
Lp

#(A)
:=

1

|A| ‖F‖
p
Lp(A).

Denote by Λδ a collection of δ-separated points in [0, 1]2. Define e(t) := e2πit.

Corollary 1.3. Let φ be a polynomial of degree d with coefficients bounded by 1.
Suppose that the manifold Mφ does not contain a line segment. Then for 2 ≤ p ≤ 4,
ǫ > 0, and any sequence {aξ}ξ∈Λδ

, we have

(1.6)
∥∥∥
∑

ξ∈Λδ

aξe
(
x · (ξ, φ(ξ))

)∥∥∥
Lp

#(B
δ−d )

≤ Cφ,ǫδ
−ǫ
( ∑

ξ∈Λδ

|aξ|2
) 1

2 .

An (ℓ2, Lp) discrete restriction estimate is an inequality of the form (1.6). Corol-
lary 1.3 is sharp in the following senses. First, the range of p of (1.6) is optimal
for the paraboloid, though we expect that a wider range of p is possible for generic
polynomials φ. Second, the inequality (1.6) is false for any p > 2 for some collection
Λδ if the manifold Mφ contains a line segment.

The (ℓ2, Lp) discrete restriction estimate (1.6) implies the sharp (ℓp, Lp) discrete
restriction estimate. [LY21] obtained a sharp ℓp decoupling inequality for smooth
manifolds, but their decoupling does not seem to imply (ℓp, Lp) discrete restriction
estimates.

Our second application is about the Strichartz estimate for the nonelliptic Schrodinger
equation on irrational tori. Let us introduce the conjecture. For α ∈ R \Q, α < 0,

define ∆̃ := 1
2π (∂11 + α∂22). Let v be a solution of the partial differential equation

(1.7) i∂tv − ∆̃v = 0, v(0, x) = f(x),

where the initial data f is defined on the torus T2. We let eit∆̃f(x) := v(x, t). The
Strichartz estimate for the elliptic Schrodinger equation on irrational tori, which
corresponds to the case α ∈ R \Q, α > 0, was studied in [DGG17, DGGRM22].
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Conjecture 1.4. [DGGRM22, Conjecture 1.1]

(1.8) ‖eit∆̃f‖Lp([0,T ]×T2) ≤ CǫN
ǫ‖f‖L2(T2)





T
1
p for 2 ≤ p ≤ 4

T
1
p +N1− 4

p for 4 ≤ p ≤ 6

T
1
pN

1
2−

3
p +N1− 4

p for 6 ≤ p ≤ 10

T
1
pN1− 8

p +N1− 4
p for 10 ≤ p

for functions f whose Fourier support is in [−N,N ]2.

This conjecture is verified for p > 8 by [DGGRM22, Remark 1.3]. Corollary 1.5
gives partial progress on the conjecture for the range 2 ≤ p ≤ 4.

Corollary 1.5. Consider 2 ≤ p ≤ 4. For T ≥ N ,

(1.9) ‖eit∆̃f‖Lp([0,T ]×T2) ≤ CǫN
ǫT

1
p ‖f‖L2(T2)

for functions f whose Fourier support is in [−N,N ]2.

An analogous theorem of Corollary 1.5 for the elliptic Schrodinger equation is
obtained as a corollary of an ℓ2 decoupling theorem [BD15] for the paraboloid,
which is observed by [DGG17].

We prove the corollaries in Section 4.

1.1. Comparison to decoupling inequalities in the literature. Let M ⊂ R3

be a manifold in R3 with nonvanishing Gaussian curvature and let Pδ(M) be a
partition of Nδ(M) into approximate δ1/2 × δ1/2 × δ caps θ. In their foundational
decoupling paper [BD15], Bourgain and Demeter proved that if M has everywhere
positive Gaussian curvature and 2 ≤ p ≤ 4, then

(1.10) ‖f‖Lp(R3) .ǫ δ
−ǫ(

∑

θ∈Pδ(M)

‖fθ‖2L4(R3))
1/2.

for all f with suppf̂ ⊂ Nδ(M). It is observed in [BD17a] that (1.10) is false for the
hyperbolic paraboloid. The counterexample comes from the geometric fact that the
hyperbolic paraboloid contains a line. Based on this observation, one might expect
(1.10) to hold true for manifolds avoiding a line segment.

Conjecture 1.6. Let φ be a polynomial of degree d. Assume that Mφ does not
contain a line segment and has everywhere negative Gaussian curvature. Define

(1.11) Pδ := {[a, a+ δ
1
d ]× [b, b+ δ

1
d ] : a, b ∈ δ

1
dZ ∩ [0, 1− δ

1
d ]}.

Then for 2 ≤ p ≤ 4

(1.12) ‖f‖Lp(R3) .ǫ δ
−ǫ(

∑

θ∈Pδ

‖fθ‖2Lp(R3))
1/2

for functions f whose Fourier supports are in Nδ(M).

Conjecture 1.6 implies Corollary 1.3 for the case that the determinant of the
Hessian matrix of φ is nonnegative. Unfortunately, it is not clear how to prove
Conjecture 1.6 using the current decoupling techniques. Instead of proving Con-
jecture 1.6, we introduce a modified version of the decoupling inequality, which is
inspired by (φ, δ)-flat sets, and proved that this decoupling still implies Corollary
1.3. Both Conjecture 1.6 and Theorem 1.2 imply Corollary 1.3. But neither of
them does not seem to imply the other.
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Let us review decoupling for smooth manifolds to motivate the use of (φ, δ)-sets.
Bourgain and Demeter [BD15, BD17a] proved that if M has everywhere nonzero
Gaussian curvature and 2 ≤ p ≤ 4, then

(1.13) ‖f‖Lp(R3) .ǫ δ
−ǫ(δ−1)

1
2−

1
p (

∑

θ∈Pδ(M)

‖fθ‖pLp(R3))
1/p

for all f with suppf̂ ⊂ Nδ(M). As mentioned before, if the Gaussian curvature
is positive, then the above decoupling inequality may be refined to an (ℓ2, Lp)
decoupling (see [BD15]), which has the form

(1.14) ‖f‖Lp(R3) .ǫ δ
−ǫ(

∑

θ∈Pδ(M)

‖fθ‖2Lp(R3))
1/2.

When M is the truncated paraboloid P2 = {(ξ, |ξ|2) ∈ R3 : |ξ| ≤ 1}, Pδ(P
2) is

the coarsest partition of Nδ(P
2) so that each piece θ is essentially flat. Bourgain

and Demeter [BD15] also proved sharp decoupling estimates for the cylinder Cyl =

{(ξ1, ξ2, ξ3) : ξ21 + ξ22 = 1, |ξ3| . 1} and the cone C = (ξ1, ξ2,
√
ξ21 + ξ22) :

1
4 ≤ ξ21 +

ξ22 ≤ 4}, where their δ-neighborhoods are partitioned into planks θ of dimensions
about 1× δ1/2× δ. They observed that these are the coarsest (φ, δ)-flat sets. Based
on this, Bourgain, Demeter, and Kemp [BDK20] introduced the notion of (φ, δ)-flat
sets (Definition 1.1) for a general manifold Mφ, and asked if there is a partition of
Nδ(Mφ), denoted by Pδ(Mφ), so that each element is (φ, δ)-flat and for 2 ≤ p ≤ 4
the following ℓp decoupling is true

(1.15) ‖f‖Lp(R3) .ǫ δ
−ǫ|Pδ(Mφ)|

1
2−

1
p (

∑

θ∈Pδ(Mφ)

‖fθ‖pLp(R3))
1/p

for all functions f whose Fourier supports are in Nδ(Mφ). This question is an-
swered affirmatively by [LY21] (see also the references therein).

One may ask if there is a partition of Nδ(Mφ) so that each element is (φ, δ)-flat
and for 2 ≤ p ≤ 4 the following ℓ2 decoupling is true

(1.16) ‖f‖Lp(R3) .ǫ δ
−ǫ(

∑

θ∈Pδ(Mφ)

‖fθ‖2Lp(R3))
1/2

for all functions f whose Fourier supports are in Nδ(Mφ). Note that (1.16) implies
(1.15) by Hölder’s inequality. When S is the truncated hyperbolic paraboloid,
Bourgain and Demeter proved that

(1.17) ‖f‖Lp(R3) .ǫ δ
−ǫδ−

1
2 (

1
2−

1
p )(

∑

θ∈Pδ(Mφ)

‖fθ‖2Lp(R3))
1/2.

They also proved that the loss of δ on the right hand side is necessary up to the loss
of δ−ǫ, and the sharp example comes from the geometric fact that the hyperbolic
paraboloid contains a line. At first, this might look like a counterexample to the
question raised in (1.16). However, since there are multiple choices of (φ, δ)-flat
sets, it does not give a counterexample. Also, given that ℓ2 decoupling theorem for
a curve in R2 is proved by [Yan21] (which is the two-dimensional version of (1.16)),
one might still expect that (1.16) is true for some collection of (φ, δ)-flat sets. In
Appendix A, we prove Theorem A.1, which says that for the hyperbolic paraboloid,
there is no partition, whose elements are (φ, δ)-flat, such that (1.16) holds true. The
proof of Theorem A.1 crucially uses the assumption that a collection of (φ, δ)-flat
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sets is a partition. However, in all of the known applications of decouplings we
are aware of, it does not matter if a collection of (φ, δ)-flat sets is a partition or
O(δ−ǫ)-finitely overlapping. Theorem 1.2 says that ℓ2 decoupling theorem is true
after allowing the collection Sδ to be O(log δ−1)-finitely overlapping (see (1.3)).
Our decoupling theorem is still useful in the sense that it implies Corollary 1.3 and
1.5, and Proposition 1.9. Also, by Hölder’s inequality, our decoupling “essentially”
implies the ℓp decoupling theorem (1.15) of Yang and Li.

Let us finish this subsection by mentioning higher dimensional manifolds. It is
conceivable that ℓp decoupling conjecture is still true in high dimensions. Let us
introduce some notations to state the conjecture. For a function φ : Rn−1 → R, we
say S ⊂ [0, 1]n−1 is (φ, δ)-set if (1.2) is true. Consider the manifold

(1.18) Mφ := {(ξ, φ(ξ)) : ξ ∈ [0, 1]n−1}.
For a measurable function f : Rn → C and a measurable set S ⊂ Rn−1, denote by
fS the Fourier restriction of f on the set S × R.

Conjecture 1.7. Let φ : Rn−1 → R be a smooth function. Fix ǫ > 0. Then there
exists a sufficiently large number A depending on ǫ satisfying the following.

For any δ > 0, there exists a collection Sδ of finitely overlapping sets S ⊂
[0, 1]n−1 such that

(1) the overlapping number is O(log δ−1) in the sense that

(1.19)
∑

S∈Sδ

χS ≤ Cǫ log(δ
−1).

(2) S is (φ,Aδ)-flat.
(3) for 2 ≤ p ≤ 2(n+ 1)/(n− 1) we have

(1.20) ‖f‖Lp ≤ Cǫδ
−ǫ(#Sδ)

1
2−

1
p

( ∑

S∈Sδ

‖fS‖pLp

) 1
p

for all functions f whose Fourier supports are in Nδ(Mφ).

Conjecture 1.7 is known for the paraboloid and hyperbolic paraboloid, but would
be new for general manifolds. The ℓp decoupling inequality for manifolds in R2 and
R3 are proved by [Yan21] and [LY21]. It remains open for higher dimensions. One
main ingredient of ℓp decoupling for manifolds in R3 is ℓ2 decoupling for a curve in
R2. Since we now have ℓ2 decoupling for manifolds in R3, it might be possible to
prove ℓp decoupling for manifolds in R4.

1.2. Tomas-Stein for the hyperbolic paraboloid. We state the following ver-
sion of the Stein-Tomas restriction theorem, which is recorded in Theorem 1.16 and
Proposition 1.27 of [Dem20]. Let H be the truncated hyperbolic paraboloid.

Theorem 1.8 (Stein-Tomas [Tom75, Ste86]). For 4 ≤ p ≤ ∞, we have

‖F̂‖Lp(Bδ−1 ) . δ
1
2 ‖F‖L2(Nδ(H))

for each 0 < δ < 1, each ball Bδ−1 ⊂ R3, and each F ∈ L2(Nδ(H)) supported in
Nδ(H).

Proposition 1.9. Theorem 2.5 implies Theorem 1.8 up to an δ−ǫ loss.
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Proof of Proposition 1.9. Theorem 1.8 with p = ∞ is trivial, so it suffices to prove
the p = 4 case and invoke interpolation for the remaining exponents p ∈ (4,∞).
Apply Theorem 2.5 with p = 4 to obtain the estimate

(1.21) ‖F̂‖L4(Bδ−1 ) .ǫ δ
−ǫ

( 2−1 log δ−1∑

m=−2−1 log δ−1

∑

S∈R
2mδ1/2,2−mδ1/2,0

‖(F̂ )S‖2L4(R3)

) 1
2

.

Note that (F̂ )S = F̂χS . Using Hölder’s inequality, we have for each S ∈ R2mδ1/2,2−mδ1/2,0

that

‖F̂χS‖L4(R3) ≤ ‖F̂χS‖
1
2

L∞(R3)‖F̂χS‖
1
2

L2(R3)

≤ ‖F‖
1
2

L1(Nδ(S))‖F‖
1
2

L2(Nδ(S))

≤ |Nδ(S)|
1
4 ‖F‖L2(Nδ(S)).

Using the above inequality to bound the right hand side of (1.21), we have

‖F̂‖L4(Bδ−1 ) .ǫ δ
−ǫ
( 2−1 log δ−1∑

m=−2−1 log δ−1

∑

S∈R
2mδ1/2,2−mδ1/2,0

|Nδ(S)|
1
2 ‖F‖2L2(Nδ(S)

) 1
2

.ǫ δ
−ǫ max

|m|.log δ−1

S∈R
2mδ1/2,2−mδ1/2,0

|Nδ(S)|
1
4 ‖F‖L2(Nδ(H)).

It remains to note that |Nδ(S)| ≤ δ2 for each S ∈ R2mδ1/2,2−mδ1/2,0 and each

|m| . log δ−1. �

1.3. Proof strategy/structure of the paper. In Section 2, we prove ℓ2 de-
coupling inequalities for perturbed hyperbolic paraboloids using a collection of
O(log δ−1)-overlapping (φ, δ)-flat sets. Our result is new even for the hyperbolic pa-
raboloid. The main new idea for the hyperbolic paraboloid is an iterative way of us-
ing broad-narrow analysis, which is combined with the induction on scale argument
by [BD15, BDG16]. To prove theorem for perturbed hyperbolic paraboloids (The-
orem 2.2), we combine the aforementioned argument with a restriction theory for
perturbed hyperbolic paraboloids developed by [BMV20, BMV22, BMV23, GO23].
In Section 3, we use the ℓ2 decoupling for the perturbed hyperbolic paraboloids as
a black box, and prove the ℓ2 decoupling for general polynomials. This argument
is essentially the same as that for [LY21]. In Section 4, we prove Corollary 1.3
and 1.5 from the decoupling theorem. In Appendix A, we prove that there is no ℓ2

decoupling for the hyperbolic paraboloid in R3 using a partition. This explains why
it is necessary to introduce log(δ−1) many partitions in Theorem 1.2. In Appendix
B, we prove that there does not exist a collection of (φ, δ)-flat rectangles such that
ℓ2 decoupling for the collection is true in high dimensions without any additional
power. In appendix C, we prove the sharpness of Theorem 1.2.

1.4. Notations. For a function F and a set A, define

(1.22) ‖F‖p
Lp

#(A)
:=

1

|A| ‖F‖
p
Lp(A).
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For real numbers ai, define

(1.23)
∣∣∣

3∏

i=1

ai

∣∣∣ :=
3∏

i=1

|ai|
1
3 .

For a ball BK of radius K centered at c(BK), define

(1.24) wBK (x) :=
(
1 +

∣∣x− c(BK)

K

∣∣2)−100
.

For a measurable set A and a function f , define

(1.25)

 

A

|f(x)| dx :=
1

|A|

ˆ

A

|f(x)| dx.

For a ball B, we define

(1.26) ‖f‖p
Lp

#(wB)
:= |B|−1‖f‖pLp(wB).

For a rectangular box T , we denote by CT the dilation of T by a factor of C
with respect to its centroid.

For two non-negative numbers A1 and A2, we write A1 . A2 to mean that there
exists a constant C such that A1 ≤ CA2. We write A1 ∼ A2 if A1 . A2 and
A2 . A1. We also write A1 .ǫ A2 if there exists Cǫ depending on a parameter ǫ
such that A1 ≤ CǫA2.

Acknowledgements. The authors would like to thank Yuqiu Fu for discussion at
the early stage of the project. LG is supported by a Simons Investigator award.
DM is supported by the National Science Foundation under Award No. 2103249.

2. Perturbed hyperbolic paraboloids

Consider the manifold Mφ associated with

(2.1) φ(ξ1, ξ2) := ξ1ξ2 + a2,0ξ
2
1 + a0,2ξ

2
2 +

∑

3≤j+k≤d

aj,kξ
j
1ξ

k
2 ,

where the coefficients aj,k satisfy

(2.2) |aj,k| ≤ 10−10d

for d ≥ 3.
When d = 2, the manifold Mφ is associated with φ(ξ1, ξ2) := ξ1ξ2. Note that

this is a special of case of (2.1) as we allow aj,k to be zero.

Definition 2.1. Let S be a rectangle in R2. Take a smooth function ΞS : R2 → R

such that

(1) the support of Ξ̂S is contained in 2S.

(2) 0 ≤ Ξ̂S(ξ1, ξ2) ≤ 1 for all (ξ1, ξ2) ∈ R2.

(3) Ξ̂S is greater than 1/10 on the set S.
(4) ‖ΞS‖L1 ≤ 1000.

Given a function f : R3 → C, define fS : R3 → C by

(2.3) fS(x1, x2, x3) :=

ˆ

R2

f(x1 − y1, x2 − y2, x3)ΞS(y1, y2) dy1dy2.

Note that this is a convolution of f and ΞS for the first two variables.
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Theorem 2.2 (Uniform ℓ2 decoupling for perturbed hyperbolic paraboloids). Fix
d ≥ 2 and ǫ > 0. Then there exists a sufficiently large number A depending on d
and ǫ satisfying the following.

Let Mφ be a manifold of the form (2.1) satisfying (2.2). Then for any δ > 0,
there exists a family Sδ of rectangles S ⊂ R2 such that

(1) the overlapping number is O(log δ−1) in the sense that

(2.4)
∑

S∈Sδ

χS ≤ Cd,ǫ log(δ
−1),

(2) every S is (φ,Aδ)-flat,
(3) for all f whose Fourier support is in Nδ(Mφ),

(2.5) ‖f‖L4 ≤ Cd,ǫδ
−ǫ

( ∑

S∈Sδ

‖fS‖2L4

)1/2

.

The constant Cd,ǫ is independent of the choice of φ.

The first step of the proof is to construct the family Sδ. A restriction theory
for perturbed hyperbolic paraboloids is developed by [BMV20, BMV22, BMV23,
GO23]. We use this theory, in particular, a language in [BMV23] to construct the
family.

2.1. Construction of the family Sδ. To construct a family Sδ, we will first define
null vectors of the Hessian matrix of φ. Let us recall the notions in Section 3.1.1 of
[BMV23]. Consider two vectors at ξ ∈ [0, 1]2 defined by

(2.6) wξ := (−A(ξ), 1), vξ := (1,−B(ξ)).

Here A and B are given by

(2.7) A(ξ) =
φ22(ξ)

φ12(ξ) +
√
|Hφ(ξ)|

, B(ξ) =
φ11(ξ)

φ12(ξ) +
√
|Hφ(ξ)|

,

and Hφ(ξ) is the determinant of the Hessian matrix of φ. The functions φij(ξ) is
defined by ∂i∂jφ(ξ). Note that by (2.2) we have

(2.8) |A(ξ)| ≤ 10−5d, |B(ξ)| ≤ 10−5d.

By (3.7) of [BMV23], the vectors wξ and vξ have the following property.

(2.9) (wξ)Hφ(ξ)(wξ)
T = 0, (vξ)Hφ(ξ)(vξ)

T = 0.

Moreover, by (2.2), wξ and vξ are linearly independent.
We are now ready to define a family Sδ. Assume that δ−1 is a dyadic number.

Let us first define Rδ. The family Sδ will be a subset of it.

(2.10) Rδ :=
⋃

1≤α≤δ−1/2:α∈2Z

Rδα,α−1 .

We need to define Rδα,α−1 . Every element in the set will be a rectangle with
dimension δα×α−1. Introduce a parameter β which will be related to the angle of
the long direction of the rectangle and the ξ1-axis. Define

(2.11) Rδα,α−1 :=
⋃

β∈Z:0≤β≤δ−1α−2π

Rδα,α−1,δα2β.
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Here Rδα,α−1,δα2β is a collection of the translated copies of the rectangle of dimen-
sion δα×α−1 with the angle δα2β with respect to the ξ1-axis so that the elements
of Rδα,α−1,δα2β are disjoint and their union contains [0, 1]2. So we have defined

(2.12) Rδ =
⋃

1≤α≤δ−1/2:α∈2Z

⋃

β∈Z:0≤β≤δ−1α−2π

Rδα,α−1,δα2β .

The family Sδ in Theorem 2.2 will be a subcollection of Rδ.

Definition 2.3. Let A be a sufficiently large constant, which will be the constant
A in Theorem 2.2. We say two rectangles R1, R2 are comparable if

(2.13) R1 ⊂ 2AR2, and R2 ⊂ 2AR1.

Remark 2.4. Suppose that R1, R2 are comparable. Let L be an affine transforma-
tion so that L(R1), L(R2) are rectangles. Then L(R1), L(R2) are also comparable.

Let us now explain how to choose rectangles. Let A be a large number. Let R ∈
Rδα,α−1,δα2β . If the two following conditions are satisfied, we add R to Sδα,α−1,δα2β.

(1) R is (φ,Aδ)-flat.
(2) For any point z ∈ R, we consider a rectangle centered at z, of dimension

δα×α−1, with a long direction parallel to the vector wz . This rectangle is
comparable to R.

If the two following conditions are satisfied, we also add R to Sδα,α−1,δα2β .

(1) R is (φ,Aδ)-flat.
(2) For any point z ∈ R, we consider a rectangle centered at z, of dimension

δα× α−1, with a long direction parallel to the vector vz . This rectangle is
comparable to R.

Recall that vz, wz are defined in (2.6). After this process, we finally have

(2.14) Sδ :=
⋃

α

⋃

β

Sδα,α−1,δα2β .

We define a partition of unity associated with Rδα,α−1,δα2β . Namely, we take
smooth functions {ΞR}R∈R

δα,α−1,δα2β
so that

(1) the support of Ξ̂R is contained in 2R.

(2) 0 ≤ Ξ̂R(ξ1, ξ2) ≤ 1 for all (ξ1, ξ2) ∈ R2.

(3) Ξ̂R is greater than 1/10 on the set R.
(4) for any ξ ∈ [0, 1]2 we have

(2.15)
∑

R∈Rδα,α−1,δα2β

Ξ̂R(ξ) = 1.

(5) ‖ΞR‖L1 ≤ 1000.

For a function f , define fR by

(2.16) fS(x1, x2, x3) :=

ˆ

R2

f(x1 − y1, x2 − y2, x3)ΞR(y1, y2) dy1dy2.
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2.2. Example: Hyperbolic paraboloid. Our theorem is even new for the hy-
perbolic paraboloid. Let us state this special case.

Theorem 2.5. Consider φ(ξ1, ξ2) = ξ1ξ2. For 2 ≤ p ≤ 4,

(2.17) ‖f‖L4 ≤ Cǫδ
−ǫ
( 2−1 log δ−1∑

m=−2−1 log δ−1

∑

S∈R
2mδ1/2,2−mδ1/2,0

‖fS‖2L4

) 1
2

for all functions f whose Fourier support is in Nδ(Mφ).

While the ℓp decoupling for the hyperbolic paraboloid does not imply the Tomas-
Stein theorem for the manifold, our theorem implies the Tomas-Stein theorem for
the manifold. As an application of Theorem 2.5 to exponential sum estimates, we
will prove Corollary 1.5 in Section 4.

Theorem 2.5 itself does not imply ℓp decoupling by [BD17a]. However, in the
proof of the theorem, we proved a slightly stronger inequality, which is a mixture of
ℓ2 and ℓp norms for all the intermediate scales. We do not state this as a theorem as
it is very involved. But this inequality likely implies the ℓp decoupling by [BD17a].

2.3. Properties of partitions. We have defined partitions Sδ (see (2.14)). Let
us study some properties of it.

Proposition 2.6. Let A be a sufficiently large constant. Then

(2.18) Rδ1/2,δ1/2,0 ⊂ Sδ.

This says that our partitions contain the squares with the canonical scale. As a
remark, for the hyperbolic paraboloid, note that the following decoupling is false

(2.19) ‖f‖L4 ≤ Cǫδ
−ǫ

( ∑

S∈R
δ1/2,δ1/2,0

‖fS‖2L4

)1/2

for some functions f whose Fourier transforms are supported on the δ-neighborhood
of the hyperbolic paraboloid.

Proof. Take R ∈ Rδ1/2,δ1/2,0. Since R is a square, by the definition of Sδ, it suffices
to prove that R is (φ,Aδ)-flat. By definition, we need to prove that

(2.20) sup
u,v∈R

|φ(u)− φ(v) −∇φ(u) · (u− v)| ≤ Aδ.

Since R is a square of side length δ1/2 and φ has the Hessian matrix whose deter-
minant is bounded by two (see (2.1) and (2.2)), (2.20) follows from an application
of Taylor’s theorem. �

Proposition 2.7 (Finitely overlapping property). For any ξ ∈ [0, 1]2

(2.21) #{S ∈ Sδ : ξ ∈ S} . A log(δ−1).

This proposition gives a proof of the first property of the family Sδ in Theorem
2.2 (recall that A is a constant depending only on d and ǫ). Let us give a proof.

Proof. Fix ξ ∈ [0, 1]2. Since the number of dyadic numbers α with 1 ≤ α ≤ δ−1/2

is O(log(δ−1)), it suffices to show that given α,

(2.22) #{β ∈ Z : there exist S ∈ Sδα,α−1,δα2β s.t. ξ ∈ S} . A.
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Denote by S1,ξ (and S2,ξ) the rectangle centered at z, of dimension δα×α−1, with
a long direction parallel to the vector wξ (and vξ).

Suppose that ξ ∈ S for some S ∈ Sδα,α−1,δα2β. Then S is comparable to either
S1,ξ or S2,ξ. Without loss of generality, we may assum that S is comparable to
S1,ξ. Then the angle between the long direction of S and wξ is . Aδα2. Since
{δα2β}β∈Z is δα2-separated, there are only ∼ A many β satisfying the property.
This gives the proof. �

The next lemma is a technical lemma. This says that the angle between the
longest direction of a rectangle S and ξ1-axis (or ξ2-axis) is small. If S is a square,
it is not clear how to define “the longest direction of S”. So we prove such a
statement under the condition (2.23) to guarantee that S looks like a rectangle
quantitatively.

Lemma 2.8. Let A be a sufficiently large number. Let S ∈ Sδα,α−1,δα2β. Suppose
that

(2.23)
Length of the long direction of S

Length of the short direction of S
≥ A2.

Then we have

(2.24) δα2β ≤ 1

105d
.

Proof. Suppose that S ∈ Sδα,α−1,δα2β. Let us follow the proof of Proposition 2.7.
Fix ξ ∈ S. Without loss of generality, we may assume that S is comparable to
S1,ξ. Then by Euclidean geometry, the angle between the long direction of S and
wξ is . Aδα2. The condition (2.23) says that δα2 ≤ A−2. So the angle is bounded
by . A−1. On the other hand, by (2.6) and the normalization condition (2.2), the
angle between wξ and ξ1-axis is bounded by 10−9d. Since A is sufficiently large, the
angle between the long direction of S and ξ1-axis is bounded by 10−5d. Therefore,
δα2β, which indicates the angle, is bounded by 10−5d. �

Definition 2.9. Define D(δ) to be the smallest constant such that

(2.25) ‖f‖L4 ≤ D(δ)
( ∑

R∈Sδ

‖fR‖2L4

) 1
2

for all manifolds Mφ of the form (2.1) satisfying (2.2) and functions f whose
Fourer supports are in Nδ(Mφ).

One of the key properties of the partitions is the parabolic rescaling lemma. This
type of rescalings is very crucial in the work of [BD15] and [LY21]. We observe
that the same rescaling lemma still holds true for our collections. The proof uses
a basic property of perturbed hyperbolic paraboloids (for example, see Lemma 3.2
of [GO23]).

Lemma 2.10 (Parabolic rescaling). Let δ ≤ σ ≤ 1. Let R′ ∈ Sσ. Then we have

(2.26) ‖fR′‖L4 ≤ CD(σ−1δ)
( ∑

R∈Sδ

‖fR‖2L4

) 1
2

for all manifolds Mφ of the form (2.1) satisfying (2.2) and functions f whose
Fourer supports are in Nδ(Mφ).
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Proof. Suppose that R′ has dimension σα× α−1 for some 1 ≤ α ≤ σ−1. Then the
Fourier support of fR′ is contained in 2R′. By doing the triangle inequality, we may
assume that the support of fR′ is contained in a box with dimension σα×α−1. By
translation and rotation, we may assume that the support of fR′ is [0, α−1]×[0, σα].
By abusing the notation, let us still call this box R′. After the change of variables,
our phase function changes. Let us denote the new phase function by

(2.27) φ0(ξ1, ξ2) := ξ1ξ2 + b2,0ξ
2
1 + b0,2ξ

2
2 +

∑

3≤j+k≤d

bj,kξ
j
1ξ

k
2 .

For convenience, we introduce b1,1 = 0. Note that

(2.28) |bj,k| . 1, 2 ≤ j + k ≤ d.

Since R′ is (φ0, Aσ)-flat, by definition,

(2.29) sup
u,v∈R′

|φ0(u)− φ0(v) −∇φ0(u) · (u− v)| ≤ Aσ.

Take u = (0, 0) and v = (t, 0). Since ∇φ0(u) = 0, this inequality becomes

(2.30) sup
0≤t≤α−1

|
d∑

j=2

bj,0t
j | ≤ Aσ.

By [LY21, Proposition 7.1], this inequality gives

(2.31) |bj,0| . σαj , 2 ≤ j ≤ d.

Similarly, we take u = (0, 0) and v = (0, t) where 0 ≤ t ≤ σα. Then by the same
reasoning, we obtain

(2.32) |b0,j | . σ(σα)−j , 2 ≤ j ≤ d.

We next do rescaling. Define L(ξ, η) := (α−1ξ, σαη) and

(2.33) φ̃(ξ, η) := σ−1φ0(L(ξ, η)).

The function φ̃(ξ, η) can be rewritten as

(2.34) ξ1ξ2 + (σ−1α−2b2,0)ξ
2
1 + (σα2b0,2)ξ

2
2 +

∑

3≤j+k≤d

(σk−1αk−jbj,k)ξ
j
1ξ

k
2 .

To apply the induction hypothesis, we will prove

(2.35) |bj,k| . σ−k+1α−k+j , 2 ≤ j + k ≤ d.

The cases for j = 0 or k = 0 follow from (2.31) and (2.32). Hence, we may assume
that j ≥ 1 and k ≥ 1.

Let us consider the subcase that k ≤ j. By the inequality 1 ≤ α ≤ σ−1, we have
1 ≤ α−k+j . So what we need to prove follows from

(2.36) |bj,k| . σ−k+1.

Since k ≥ 1 and σ ≤ 1, this follows from (2.28). Let us next consider the subcase
that k ≥ j. By the inequality 1 ≤ α ≤ σ−1, we have σk−j ≤ α−k+j . So what we
need to prove follows from

(2.37) |bj,k| . σ−j+1.

Since j ≥ 1 and σ ≤ 1, this follows from (2.28).
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We have now proved (2.35). So the function (2.34) can be rewritten as

(2.38) ξ1ξ2 + c2,0ξ
2
1 + c0,2ξ

2
2 +

∑

3≤j+k≤d

cj,kξ
j
1ξ

k
2 ,

where

(2.39) |cj,k| . 1, 2 ≤ j + k ≤ d.

By applying an linear transformation, we may assume that c2,0 = c0,2 = 0. More-
over, by doing some triangle inequality, we may assume that |cj,k| ≤ 10−10d. By

abusing the notation, let us still denote by φ̃ the new phase function. By (2.33),
and change of variables on physical variables, the δ-neighborhood of Mφ becomes
the σ−1δ-neighborhood of Mφ̃. For functions g whose Fourier supports are in

Nσ−1δ(Mφ̃), we have

(2.40) ‖g‖L4 ≤ D(σ−1δ)
( ∑

R′′∈Sσ−1δ

‖gR′′‖2L4

) 1
2 .

We next rescale back to the original variables. Given R′′ ∈ Sσ−1δ, by definition, we
have

(2.41) sup
u,v∈R′′

|φ̃(u)− φ̃(v) −∇φ̃(u) · (u − v)| ≤ Aσ−1δ.

By (2.33), we can see that L−1(R′′) is (φ,Aδ)-flat. To conclude that L−1(R′′) ∈ Sδ,
it remains to show the following property: For any point z ∈ L−1(R′′), we consider
a rectangle centered at z, of dimension σα× α−1, with a long direction parallel to
the vector vz (let us denote by Rz). This rectangle is comparable to L−1(R′′).

Let us prove the property. Fix z ∈ L−1(R′′), and let vz be a vector associated
with the phase φ. By Remark 2.4, it suffices to show that L(Rz) is comparable to
R′′. After calculating the Hessian matrix, we see that L(vz) is comparable to the

vector vL(z) associated with the phase function φ̃. Since R′′ belongs to Sσ−1δ, this
gives the desired property. �

2.4. The broad-narrow analysis. In this subsection, we introduce a multilinear
decoupling, and show that a linear decoupling constant is comparable to a multi-
linear decoupling constant up to epsilon loss (Theorem 2.13). This framework is
introduced by [BD15].

Definition 2.11. Let n(ξ) be the unit normal vector of Mφ at the point (ξ, φ(ξ)).
We say three points ξ(1), ξ(2), ξ(3) ∈ [0, 1]2 are N−1-transverse if

(2.42) |n(ξ(1)) ∧ n(ξ(2)) ∧ n(ξ(3))| ≥ N−1.

Three squares τ1, τ2, τ3 ⊂ [0, 1]2 are called N−1-transverse if every triple ξ(i) ∈ τi is

N−1-transverse.

Definition 2.12. Define Dmul(δ,N
−1) to be the smallest constant satisfying the

following: for any N−1-transverse squares τ1, τ2, τ3 ∈ Ra,a,0 for δ1/2 ≤ a ≤ 1,

(2.43)
∥∥∥

3∏

i=1

fτi

∥∥∥
L4

≤ Dmul(δ,N
−1)

( ∑

R∈Sδ

‖fR‖2L4

) 1
2

for all manifolds Mφ of the form (2.1) satisfying (2.2) and functions f whose
Fourer supports are in Nδ(Mφ).
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Recall that the definition of fτi is given in the paragraph below (2.14). The main
theorem of this subsection is as follows.

Theorem 2.13. Given ǫ > 0, there exists a sufficiently large number N depending
on ǫ so that for all δ > 0 we have

(2.44) D(δ) ≤ Cǫδ
−ǫ

(
sup

δ≤δ′≤1
Dmul(δ

′, N−1) + 1
)
.

Proof. We do a broad-narrow analysis by [BG11]. Let K be a sufficiently large
number, which will be determined later. Take a sufficiently large constant K1 such
that K is sufficiently large compared to K1. Fix a ball BK . We write

(2.45) f =
∑

τ∈R
K−1/2,K−1/2,0

fτ .

Recall the definition in (2.11). Each τ is a square of side length K−1/2. Consider
a collection of squares

(2.46) C := {τ ∈ RK−1/2,K−1/2,0 : ‖fτ‖L4(BK) ≥ K−100‖f‖L4(BK)}.
We will consider several cases. By a pigeonholing argument, we can see that C

is nonempty. Take τ1 ∈ C. Consider the first case that all the squares τ ∈ C are
in the (K1)

−1-neighborhood of τ1. Denote by τ ′1 the neighborhood. Then by the
triangle inequality we have

(2.47) ‖f‖L4(BK) ≤
∥∥∥

∑

τ∈R
K−1/2,K−1/2,0

:τ∩τ ′

1 6=∅

fτ

∥∥∥
L4(BK)

+
∑

τ /∈C

‖fτ‖L4(BK).

By the definition of C, this gives

(2.48) ‖f‖L4(BK) ≤ 2
∥∥∥

∑

τ∈R
K−1/2,K−1/2,0

:τ∩τ ′

1 6=∅

fτ

∥∥∥
L4(BK)

.

The set τ ′1 depends on a choice of BK . Hence, by summing over all possible squares,
we have

(2.49) ‖f‖L4(BK) .
( ∑

τ ′∈R
K

−1
1

,K
−1
1

,0

‖fτ ′‖4L4(BK)

) 1
4 .

We next consider the case that there exists τ2 ∈ C outisde of the (K1)
−1-

neighborhood of τ1. There are two subcases. Suppose that there are τ3 ∈ C such
that τ1, τ2, τ3 are 10K−1-transverse. Then we have

(2.50) ‖f‖L4(BK) . K100
∏∥∥fτi

∥∥
L4(BK)

.

By an application of randomization argument and uncertainty principle, we have

(2.51) ‖f‖L4(BK) . K200
∥∥∏ f̃τi

∥∥
L4(wBK

)
,

where f̃τi is a modulation of fτi . The definition of wBK is given in (1.24). We refer
to (2.5)− (2.8) of [GMO23] for the details of the argument.

Lastly, suppose that there does not exist such τ3. Denote by ξ(i) the center of τi
for i = 1, 2. By Definition 2.11, all the elements τ ∈ C are contained in the set

(2.52) Z0 := {ξ ∈ [0, 1]2 : |n(ξ(1)) ∧ n(ξ(2)) ∧ n(ξ)| < 100K−1}.
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Here n(ξ) is the normal vector of the manifold (2.1) at the point (ξ, φ(ξ)). By the
definition of C, we can obtain

(2.53) ‖f‖L4(BK) .
∥∥∥
∑

τ⊂Z0

fτ

∥∥∥
L4(BK)

.

We apply a uniform ℓ2 decoupling theorem for the set Z0 of [LY21, Theorem 3.1],
and obtain

‖f‖L4(BK) .ǫ K
ǫ
(∑

S

‖fS‖2L4(wBK
))

1
2

(2.54)

for any ǫ > 0. Here S ⊂ [0, 1]2 is a rectangular box, and the collection {S}S has
bounded overlap. Moreover,

(2.55)
⋃

S

S ⊂ {ξ ∈ [0, 1]2 : |n(ξ(1)) ∧ n(ξ(2)) ∧ n(ξ)| . K−1}.

The function fS is the Fourier restriction of f to the rectangle S × R.1 Define

(2.56) Z := {ξ ∈ [0, 1]2 : |n(ξ(1)) ∧ n(ξ(2)) ∧ n(ξ)| = 0}.
Then by the separation between τ1 and τ2, and by the normalization conditions
(2.1) and (2.2), one can see that

(2.57) (2.55) ⊂ NCK1/K(Z).

Let us state this as a lemma.

Lemma 2.14.

(2.58) {ξ ∈ [0, 1]2 : |n(ξ(1)) ∧ n(ξ(2)) ∧ n(ξ)| . K−1} ⊂ NCK1/K(Z).

We postpone the proof of this lemma and continue the proof of Theorem 2.13. By
the lemma, each S in (2.55) is contained in a rectangle with dimension 1×CK1K

−1.
Let us fix S. Suppose that

(2.59)
Length of the long direction of S

Length of the short direction of S
≤ K1.

Then we decompose S into squares of side length equal to the length of the short
direction of S. Then the number of squares is bounded by O(K1). By Proposition
2.6, we have

(2.60) ‖fS‖L4 . (K1)
1
4

( ∑

S′∈SX :S′∩2S 6=∅

‖fS′‖2L4

) 1
2 ,

where K−2 . X . (K1K
−1)2. Since K is sufficiently large compared to K1, the

term (K1)
1/4 on the right hand side will not make any trouble.

Let us consider the case that

(2.61)
Length of the long direction of S

Length of the short direction of S
≥ K1.

1There is a minor technical issue. In the work of [LY21], they used a characteristic function for
the cutoff function. The proof can be modified so that the cutoff is smooth. In our application,
we use a smooth cutoff function.
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Assume that K1 is sufficiently large so that K1 > A2. By translation and rotation,
we may assume that S is contained in S′ := [0, 1]× [0, CK1K

−1]. By Lemma 2.8,
after some change of variables, we may write the new phase function by

(2.62) ξ1ξ2 + aξ21 + bξ22 +
∑

3≤j+k≤d

bj,kξ
j
1ξ

k
2 ,

where

(2.63) |a|+ |b|+
∑

3≤j+k≤d

|bj,k| ≤ 10−d.

We will apply the following lemma.

Lemma 2.15. Let K2 be a number such that 1 ≤ K2 ≤ δ−1/2. Let S′ = [0, 1] ×
[0,K−1

2 ]. Suppose that the phase function is

(2.64) Φ(ξ1, ξ2) := ξ1ξ2 + aξ21 + bξ22 +
∑

3≤j+k≤d

bj,kξ
j
1ξ

k
2

where

(2.65) |a|+ |b|+
∑

3≤j+k≤d

|bj,k| ≤ 10−d.

Then for any ǫ > 0 we have

(2.66) ‖fS′‖L4(BK2 )
≤ Cǫ,d,AK

ǫ
2 sup
K2≤L≤(K2)2

( ∑

T∈SL−1 :T⊂2S′

‖fT‖2L4(wBK2
)

) 1
2

for all functions f whose Fourier support is in Nδ(MΦ). Here fS′ is the Fourier
restriction of f to the rectangle S′ × R.

Let us assume this lemma and finish the proof. By (2.54) and Lemma 2.15, we
have

‖f‖L4(BK) ≤ Cǫ(K
−1
1 K)ǫKǫ sup

(K−1
1 K)≤L≤(K)2

( ∑

T∈SL−1

‖fT‖2L4(wBK
)

) 1
2 .(2.67)

To summarize, by considering all possible cases, we have

‖f‖L4 .ǫ

( ∑

τ ′∈R
K

−1
1 ,K

−1
1 ,0

‖fτ ′‖4L4

) 1
4

+K200
∥∥∥

3∏

i=1

f̃τi

∥∥∥
L4

+Kǫ sup
K−1

1 K≤L≤(K)2
(
∑

T∈SL

‖fT ‖2L4)
1
2

(2.68)

for some transverse τi. By Definition 2.12 and Lemma 2.10, we have

(2.69) D(δ) .ǫ D(K2
1δ) +K200Dmul(δ, 10K

−1) +Kǫ sup
(K−1

1 K)≤L≤(K)2
D(Lδ).

We apply this inequality to the first and third terms on the right hand side of (2.69)
repeatedly, and obtain the desired result. �

Proof of Lemma 2.14. For simplicity, we introduce F (ξ) := n(ξ(1))∧n(ξ(2))∧n(ξ).
By the definition of the normal vector n(ξ), this can be rewritten as

(2.70) F (ξ) =

∣∣∣∣∣∣

∂1φ(ξ(1)) ∂2φ(ξ(1)) −1
∂1φ(ξ(2)) ∂2φ(ξ(2)) −1
∂1φ(ξ) ∂2φ(ξ) −1

∣∣∣∣∣∣
.
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After routine computations, this is equal to

−∂1φ(ξ)
(
∂2φ(ξ(1))− ∂2φ(ξ(2))

)
+ ∂2φ(ξ)

(
∂1φ(ξ(1))− ∂1φ(ξ(2))

)

− ∂1φ(ξ(1))∂2φ(ξ(2)) + ∂1φ(ξ(2))∂2φ(ξ(1)).
(2.71)

Recall that ξ(1) and ξ(2) are fixed. For simplicity, we write the function as

(2.72) F (ξ) = A∂1φ(ξ) +B∂2φ(ξ) + C.

We first claim that

(2.73) max
(
|∂2φ(ξ(1))− ∂2φ(ξ(2))|, |∂1φ(ξ(1))− ∂1φ(ξ(2))|

)
&

1

K1
.

The claim is equivalent to

(2.74)
∣∣∇φ(ξ(1))−∇φ(ξ(2))

∣∣ & 1

K1
.

By Taylor’s theorem, note that

(2.75) |∇2φ(ξ(1)) · (ξ(1) − ξ(2))| ∼
∣∣∇φ(ξ(1))−∇φ(ξ(2))

∣∣.
Since the eigenvalues of the Hessian matrix of φ is comparable to one, and by the
separation |ξ(1) − ξ(2)| & 1

K1
, we have

(2.76) |∇2φ(ξ(1)) · (ξ(1) − ξ(2))| &
1

K1
.

This completes the proof of the claim.

Let us continue the proof of Lemma 2.14. Recall (2.72). Let us consider the case
that |A| ≤ |B|. The case |A| ≥ |B| can be dealt with similarly. To prove Lemma
2.14, let us fix ξ ∈ [0, 1]2 and suppose that

(2.77) F (ξ) = X, |X | . K−1.

It suffices to show that there exists α ∈ R such that

• |α| . K1K
−1.

• F
(
ξ + (α, 0)

)
= 0.

By Taylor’s theorem, since F is a polynomial of degree d− 1,

(2.78) F
(
ξ + (α, 0)

)
= F (ξ) + ∂1F (ξ)α+

∑

2≤j≤d−1

∂j1F (ξ)

j!
αj .

By the expression (2.72),

(2.79) ∂j1F (ξ) = A∂j+1
1 φ(ξ) +B∂j1∂2φ(ξ).

By the normalization (2.1) and (2.2), we have

F
(
ξ + (α, 0)

)
= F (ξ) + (∂1F (ξ))α +O

(
Bα2

)

= X + (∂1F (ξ))α+ O
(
Bα2

)
.

(2.80)

Note that |∂1F (ξ)| ∼ |B|. By (2.73), we have |B| & K−1
1 and we can find |α| .

K1K
−1 such that

(2.81) X + (∂1F (ξ))α +O
(
Bα2

)
= 0.

This finishes the proof. �
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Proof of Lemma 2.15. We use an induction on K2. By taking Cǫ,d,A sufficiently
large, we may assume that Lemma 2.15 is true for sufficiently large K2 (compared
to A).

We write our phase function (2.64) as

(2.82) A(ξ1) +B(ξ1, ξ2) :=
(
aξ21 +

∑

3≤j≤d

bj,0ξ
j
1

)
+ (ξ1ξ2 + bξ22 + · · · ).

On the set (ξ1, ξ2) ∈ S′,

(2.83) A(ξ1) +B(ξ1, ξ2) = A(ξ1) +O(K−1
2 ).

By [LY21, Proposition 7.1],

(2.84) sup
0≤ξ1≤1

|A(ξ1)| ∼d max
(
|a|,max

j
|bj,0|

)
.

Let us consider the case that the left hand side of (2.84) is smaller than AK−1
2

for some fixed large number A. We would like to show that S′ ∈ S(K2)−1 . First,

note that S′ is (φ,K−1
2 )-flat. Also, for any z ∈ S′, the angle between ξ1-axis and vz

is smaller than O(AK−1
2 ). Hence, the rectangle, centered at z of dimension 1×K−1

2

with a long direction parallel to the vector vz, is comparable to S′. So we see that
S′ ∈ S(K2)−1 . This already gives the desired result (2.66).

We next consider the case that the left hand side of (2.84) is larger than AK−1
2 /2.

Write our function as

(2.85) f(x) =

ˆ

R3

f̂(ξ)e2πix·ξ dξ.

We do a change of variables x3 7→ M−1x3 and ξ3 7→ Mξ3 so that the Fourier
support of f is contained in the δM -neighborhood of

(2.86) {M(A(ξ1) +B(ξ1, ξ2)) : ξ1 ∈ [0, 1], ξ2 ∈ [0,K−1
2 ]}

for some M−1 & AK−1
2 so that M sup0≤ξ1≤1 |A(ξ1)| ∼ 1. Note that

(2.87) M(A(ξ1) +B(ξ1, ξ2)) =MA(ξ1) +O(A−1).

After the change of variables, the ball BK2 on the physical ball becomes a ball of
radius K2/M , which is still larger than A. Then we use a uniform ℓ2 decoupling
for a curve of [Yan21, Theorem 1.4] by ignoring ξ2-variable, and obtain

(2.88) ‖fS′‖L4 ≤ Ccurve
ǫ/2 (A′)ǫ/2

(∑

T ′

‖fT ′‖2L4

) 1
2 .

Here the sidelength of the longest direction of T ′ is (A′)−1, which is smaller than or
equal to A−1/d. The set T ′ has dimension (A′)−1× (K2)

−1. We next do a isotropic
rescaling (with translation), and T ′ becomes a rectangle with dimension 1×A′/K2.

Since A′

K2
> 1

K2
, by applying the induction hypothesis on K2, and rescaling back,

the left hand side of (2.88) is bounded by

(2.89) Ccurve
ǫ/2 Cǫ(A

′)ǫ/2(
K2

A′
)ǫ
(∑

T

‖fT ‖2L4

) 1
2 .

Recall that A′ ≥ A1/d. Since A is sufficiently large, we have (A′)−ǫ/2 ≤ (Ccurve
ǫ/2 )−1,

and we can close the induction. �
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2.5. Bourgain-Demeter type iteration. We have shown that the linear decou-
pling constant is bounded by the multilinear decoupling constant (Theorem 2.13).
The next step is to bound the multilinear decoupling constant. Here is an ingredi-
ent.

Lemma 2.16 (Ball inflation lemma). Let φ be a function (2.1) satisfying (2.2).
Let p = 4, q = 8/3, and N > 0. Let τ1, τ2, τ3 be N−1-transverse squares. For any
ρ > 0, ǫ > 0 and x0 ∈ R3,

(  

B(x0,ρ−2)

( 3∏

i=1

( ∑

J∈Rρ,ρ,0:J⊂τi

‖fJ‖2Lq
#(wB

ρ−1 (x))

) 1
2

)p

dx
) 1

p

≤ Cǫ,Nρ
−ǫ

3∏

i=1

( ∑

J∈Rρ,ρ,0:J⊂τi

‖fJ‖2Lq
#(wB

ρ−2
(x0))

) 1
2

(2.90)

for all functions f whose Fourier supports are in Nρ2(Mφ).

The proof of the ball inflation lemma is standard. We refer to [BDG16, Theorem
6.6] for the details (see also [BD17b, Theorem 9.2]).

We are ready to give a proof of Theorem 2.2. Let Γ be the smallest constant
such that for every ǫ > 0, we have

(2.91) D(δ) ≤ Cǫδ
−Γ−ǫ, for every dyadic δ < 1,

where Cǫ is a constant depending on ǫ. Our goal is to prove Γ = 0.

We introduce some notations. Take q := 8/3, and note that

(2.92)
1

q
=

1/2

2
+

1/2

4
.

Define

Ã2(b) :=
∥∥∥

3∏

i=1

( ∑

J∈R
δb/2,δb/2,0

:J⊂τi

‖fJ‖2L2
#(w

B(x,δ−b)
)

) 1
2
∥∥∥
L4

x∈R3

,

Ãq(b) :=
∥∥∥

3∏

i=1

( ∑

J∈R
δb/2,δb/2,0

:J⊂τi

‖fJ‖2Lq
#(w

B(x,δ−b/2)
)

) 1
2
∥∥∥
L4

x∈R3

,

Ã4(b) :=
∥∥∥

3∏

i=1

( ∑

J∈R
δb/2,δb/2,0

:J⊂τi

‖fJ‖2L4
#(w

B(x,δ−b)
)

) 1
2
∥∥∥
L4

x∈R3

,

(2.93)

where 0 < b < 1. For 0 < b < 1 and ∗ = 2, q, 4, we let a∗(b) the infimum over all
exponents a satisfying that

(2.94) Ã∗(b) .a,N δ−a
( ∑

R∈Sδ

‖fR‖2L4(R3)

) 1
2

for every δ > 0, every N−1-trasverse squares τi, and every choice of a function f .
Lastly, define

(2.95) a∗ := lim inf
b→0

Γ− a∗(b)

b
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for ∗ = 2, q, 4.

Lemma 2.17. We have the following inequalities.

(1) (setup) a∗ <∞ for ∗ = 2, q, 4
(2) (rescaling) a4 ≥ Γ
(3) (L2 − orthogonality) a2 ≥ 2aq
(4) (ball inflation) aq ≥ a4/2 + a2/2

Notice that by combining all the inequalities in the lemma, we obtain

(2.96) Γ ≤ a4 ≤ 2aq − a2 ≤ 0.

Hence, in order to prove Theorem 2.2, it suffice to prove Lemma 2.17.

Proof of Lemma 2.17. Let us show the item (1). It suffices to show

(2.97) Γ ≤ Cb+ a∗(b)

for some constant C. By the essentially constant property and Bernstein’s inequal-
ity, we have

(2.98)
∥∥∥

3∏

i=1

fτi

∥∥∥
L4

. δ−CbÃ∗(b)

for any ∗ = 2, q, 4 and 0 < b < 1. By the definition of a∗(b) (see (2.94)), we have

(2.99)
∥∥∥

3∏

i=1

fτi

∥∥∥
L4

. δ−Cb−a∗(b)
( ∑

R∈Sδ

‖fR‖2L4(R3)

) 1
2

.

Hence, we have

(2.100) Dmul(δ,N
−1) . δ−Cb−a∗(b).

Combining this with Theorem 2.13 gives

(2.101) D(δ) .ǫ δ
−ǫδ−Cb−a∗(b).

Since ǫ > 0 is arbitrary, by the definition of Γ, we obtain (2.97).

Let us next show the item (2). By the definition of a4, it follows from

(2.102) a4(b) ≤ Γ · (1− b).

By Hölder’s inequality and Minkowski’s inequality, we have

(2.103) Ã4(b) .
3∏

i=1

( ∑

J∈R
δb/2,δb/2,0

:J⊂τi

‖fJ‖2L4(R3)

) 1
2

.

By the parabolic rescaling lemma (Lemma 2.10), this is further bounded by

. D(δ1−b)

3∏

i=1

( ∑

J∈Sδ :J⊂τi

‖fJ‖2L4(R3)

) 1
2

. D(δ1−b)
( ∑

J∈Sδ

‖fJ‖2L4(R3)

) 1
2

.

(2.104)

By (2.91) and (2.94), we have

(2.105) δ−a4(b) . δ−Γ·(1−b).

This gives (2.102).
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Let us move onto the item (3). By the L2-orthogonality and Hölder’s inequality,
we obtain

Ã2(b) .
∥∥∥

3∏

i=1

( ∑

J∈R
δb,δb,0

:J⊂τi

‖fJ‖2L2
#(w

B(x,δ−b)
)

) 1
2
∥∥∥
L4

x∈R3

.
∥∥∥

3∏

i=1

( ∑

J∈R
δb,δb,0

:J⊂τi

‖fJ‖2Lq
#(w

B(x,δ−b)
)

) 1
2
∥∥∥
L4

x∈R3

.

(2.106)

The last expression is Ãq(2b), so we have

(2.107) δ−a2(b) . δ−aq(2b),

or equivalently,

(2.108) a2(b) ≤ aq(2b).

After some computations, this gives

(2.109) a2 ≥ 2aq.

This completes the proof of the item (3).

Lastly, let us show the item (4). By the ball inflation lemma (Lemma 2.16),

(2.110) Ãq(b) .ǫ δ
−ǫ

∥∥∥
3∏

i=1

( ∑

J∈R
δb/2,δb/2,0

:J⊂τi

‖fJ‖2Lq
#(w

B(x,δ−b)
)

) 1
2
∥∥∥
L4

x∈R3

.

By Hölder’s inequality and (2.92),

(2.111) Ãq(b) .ǫ δ
−ǫÃ2(b)

1
2 Ã4(b)

1
2 .

By the definition of a∗(b), this gives

(2.112) δ−aq(b) . δ−ǫδ−
1
2 (a2(b)+a4(b)).

After some computations, this gives

(2.113) aq ≥ a4/2 + a2/2.

This completes the proof of the item (4). �

3. General manifolds

We have proved the ℓ2 decoupling for perturbed hyperbolic paraboloids. We will
use this decoupling as a black box, and prove Theorem 3.1. This section does not
contain any novelty, and we simply follow the argument of [LY21] in Section 5.

The proof of Theorem 1.2 can be reduced to that for ℓ2 decoupling for polyno-
mials (Theorem 3.1). We refer to Section 2.3 of [LY21] for the details.

Theorem 3.1. Fix d ≥ 2 and ǫ > 0. Then there exists a sufficiently large number
A depending on d and ǫ satisfying the following.

Let φ be a polynomial of two variables of degree d with coefficients bounded by
one. For any δ > 0, there exists a collection Sδ of finitely overlapping sets S such
that

(1) the overlapping number is O(log δ−1) in the sense that

(3.1)
∑

S∈Sδ

χS ≤ Cd,ǫ log(δ
−1).
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(2) S is (φ,Aδ)-flat.
(3) we have

(3.2) ‖f‖L4 ≤ Cd,ǫδ
−ǫ

( ∑

S∈Sδ

‖fS‖2L4

)1/2

for all f whose Fourier support is in Nδ(Mφ).
The constant Cd,ǫ is independent of the choice of φ.

To prove Theorem 3.1, we use Theorem 2.2 as a black box. Theorem 2.2 is a de-
coupling theorem for a phase function (2.1) satisfying (2.2), but by a simple change
of variables, this theorem can be generalized to that for a polynomial function φ
with bounded coefficients such that

(3.3) |Hφ(ξ)| & 1

for all ξ ∈ [0, 1]2. Here Hφ is the determinant of the Hessian matrix of φ.

3.1. Sketch of the proof of Theorem 3.1. LetM be a sufficiently large number,
which will be determined later (see the end of Section 3). The proof is composed
of three steps.

Step 1. Dichotomy: a curved part and a flat part. Decompose [0, 1]2 ac-
cording to the size of |Hφ(ξ)|.

Scurved := {(ξ1, ξ2) ∈ [0, 1]2 : |Hφ(ξ1, ξ2)| > M−1},
Sflat := {(ξ1, ξ2) ∈ [0, 1]2 : |Hφ(ξ1, ξ2)| < M−1}.

(3.4)

Introduce a parameterM ≪M1. Decompose [0, 1]2 into squares of side length M1.
Then on each square, one can see that |Hφ| > M−1/2 because M−1

1 ≪ M−1 and
∇Hφ is bounded. By the triangle inequality,

(3.5) ‖f‖L4 ≤
∥∥∥

∑

|τ |=M−1
1 :

τ∩Scurved 6=∅

fτ

∥∥∥
L4

+
∥∥∥

∑

|τ |=M−1
1 :

τ⊂Sflat

fτ

∥∥∥
L4
.

After applying the triangle inequality, we apply Theorem 2.2 (see also the discussion
below Theorem 3.1) to the first term on the right hand side, and this gives

∥∥∥
∑

|τ |=M−1
1 :

τ∩Scurved 6=∅

fτ

∥∥∥
L4

.M1

( ∑

|τ |=M−1
1 :

τ∩Scurved 6=∅

‖fτ‖2L4

) 1
2

.ǫ M1δ
−ǫ

( ∑

S∈Sδ

‖fS‖2L4

)1/2

.

(3.6)

Since M1 is a fixed number independent of δ, this already gives the desired bound.
It remains to bound the second term on the right hand side of (3.5).

Step 2. Analysis of the flat part. We next bound the term

(3.7)
∥∥∥

∑

|τ |=M−1
1 :

τ⊂Sflat

fτ

∥∥∥
L4
.
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By the generalized 2D uniform ℓ2 decoupling for polynomials (Theorem 3.1 of
[LY21]), we can cover Sflat by rectangles T satisfying

(3.8) T ⊂ {(ξ1, ξ2) ∈ [0, 1]2 : |Hφ(ξ1, ξ2)| .M−1},

and

(3.9)
∥∥∥

∑

|τ |=M−1
1 :

τ⊂Sflat

fτ

∥∥∥
L4

.ǫ M
ǫ
(∑

T

‖fT‖2L4

) 1
2 .

Let us fix T . Take an affine transformation L such that it maps [0, 1]2 to T .
Take φ1 := φ ◦ L. Then one can see that

(3.10) |Hφ1(ξ)| .M−1

for all ξ ∈ [0, 1]2. By [LY21, Proposition 7.1], all the coefficients of Hφ1(ξ) are
bounded above by ∼ M−1. Hence, we can apply [LY21, Theorem 3.2], and obtain
a rotation ρ such that

(3.11) φ2(ξ1, ξ2) := φ1 ◦ ρ(ξ1, ξ2) = a(ξ1) +M−αb(ξ1, ξ2).

Here a, b have coefficients bounded above by ∼ 1, and α is a positive number. By
the uncertainty principle, the term M−αB(ξ1, ξ2) is negligible on the ball of radius
Mα on the physical side. Hence, we apply the 2D uniform ℓ2 decoupling of [LY21,
Theorem 4.4] to the one variable polynomial a(ξ1), and partition [0, 1] into intervals
I so that each rectangle is (φ2, AM

−α)-flat. Combining all the inequalities we have
obtained so far, we have

∥∥∥
∑

|τ |=M−1
1 :

τ⊂Sflat

fτ

∥∥∥
L4

.ǫ M
ǫ
(∑

T

‖fT ‖2L4

) 1
2

.ǫ M
ǫ
( ∑

S′∈SM−α

‖fS′‖2L4

) 1
2 .

(3.12)

Step 3. Iteration. By (3.5), (3.6), and (3.12), we obtain

(3.13) ‖f‖L4 ≤ Cǫδ
−ǫ
( ∑

S∈Sδ

‖fS‖2L4

)1/2

+ Cǫ(M
α)ǫ

( ∑

S′∈SM−α

‖fS′‖2L4

) 1
2 .

The first term is already of the desired form. To bound the second term, we fix S′

and do rescaling. Let L be an affine transformation mapping [0, 1]2 to S′. Since S′

is (φ,AM−α)-flat, we have

(3.14) sup
u,v∈S′

|φ(u)− φ(v)−∇φ(u) · (u− v)| ≤ AM−α.

Fix any point u0 ∈ S′ and define

(3.15) φ̃(ξ) := A−1Mα
(
φ(Lu0)− φ(Lξ)−∇φ(Lu0) · (Lu0 − Lξ)

)
.

Then by (3.14), we have supξ∈[0,1]2 |φ̃(ξ)| ≤ 1. By [LY21, Proposition 7.1], all the

coefficients of φ̃ is bounded by one. So this phase function satisfies the hypothesis
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of Theorem 3.1. We apply (3.13) to the function, and obtain

‖fS′‖L4 ≤ Cǫδ
−ǫ

( ∑

S∈Sδ :S∩S′ 6=∅

‖fS‖2L4

)1/2

+ Cǫ(M
α)ǫ

( ∑

S′∈SM−2α :S∩S′ 6=∅

‖fS′‖2L4

) 1
2 .

(3.16)

By (3.13) and (3.16), we have

‖f‖L4 ≤ (Cǫ + C2
ǫ (M

α)ǫ)δ−ǫ
( ∑

S∈Sδ

‖fS‖2L4

)1/2

+ C2
ǫ (M

2α)ǫ
( ∑

S′∈SM−2α

‖fS′‖2L4

) 1
2 .

(3.17)

We repeat this process O(logM δ−1)-times, and we obtain

(3.18) ‖f‖L4 .ǫ (δ
−2ǫ + δ− logM Cǫ)δ−ǫ

( ∑

S∈Sδ

‖fS‖2L4

)1/2

.

We take M sufficiently large so that logM Cǫ ≤ ǫ. This completes the proof.

4. Proof of Corollary 1.3 and 1.5

In this section, we prove Corollary 1.3 and 1.5. We give a remark that Corollary
1.3 holds true under a general condition.

Remark 4.1. Fix d ≥ 2. Let φ : R2 → R be a smooth function. Given a straight
line l intersecting [0, 1]2, we parametrize the line by γ(t) with the unit speed. Assume
that

(4.1) φ(γ(t)) = a0 + a1t+ a2t
2 + · · ·+ adt

d + E(t),

where

(4.2) |E(t)| ≤ cφt
d+1

and

(4.3) |a2|+ · · ·+ |ad| ≥ Cφ > 0.

Here, cφ and Cφ are independent of the choice of the line l. Then (1.6) is true.

Corollary 1.5 is stated using a language in a partial differential equation. By

Fourier series, we can write the operator eit∆̃f as follows.

(4.4) eit∆̃f(x) =
∑

ξ∈[−N,N ]2∩Z2

f̂(ξ)e
(
(x1, x2, x3) · (ξ1, ξ2, ξ21 − αξ22)

)
.

Also by Parseval’s identity, we have

(4.5) ‖f‖2L2(T2) ∼
∑

ξ∈[−N,N ]2∩Z2

|f̂(ξ)|2.

Hence, Corollary 1.5 can be rephrased as follows.
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Corollary 4.2. Let α be irrational. Suppose that

(4.6) φ(ξ1, ξ2) = ξ21 − ξ22 , Λδ =
(
δZ× αδZ

)
∩ [0, 1]2.

Then for 2 ≤ p ≤ 4 and ǫ > 0, we have

(4.7)
∥∥∥
∑

ξ∈Λδ

aξe
(
x · (ξ, φ(ξ))

)∥∥∥
Lp

#(Bδ−3 )
≤ Cǫδ

−ǫ
( ∑

ξ∈Λδ

|aξ|2
) 1

2 .

4.1. Proof of Corollary 1.3. Suppose that the manifold Mφ does not contain a
line. Fix ǫ > 0. By Theorem 3.1 with δ replaced by δd, we have

(4.8) ‖f‖L4 ≤ Cd,ǫδ
−ǫ
( ∑

S∈S
δd

‖fS‖2L4

)1/2

for all f whose Fourier support is in Nδd(Mφ). Since φ does not contain a line, by
a compactness argument, for any l, we can parametrize it as a function of t, and
write

(4.9) φ(t, at+ b) = a0 + a1t+ a2t
2 + · · ·+ adt

d

where

(4.10) max(|a2|, |a3|, · · · , |ad|) ∼ 1.

Suppose that S is a rectangle and is (φ,Aδd)-flat. We claim that the length of a
long direction of S is smaller or equal to Cφδ for some constant Cφ depending on
the choice of φ. We may assume that the angle between the long direction of S and
ξ1-axis is smaller than or equal to π/4. Let l be a line segment passing through
the center of S and parallel to the long direction of S but contained in S. For
convenience, we introduce a parametrization of the line l; γ(t) = (t, at + b) where
t ∈ [b0, b1]. To prove the claim, it suffices to show that

(4.11) |b1 − b0| ≤ Cφ,Aδ.

By the definition of (φ,Aδd)-flat, we have

(4.12) sup
t∈[b0,b1]

|φ(γ(b0))− φ(γ(t)) −∇φ(γ(b0)) · (γ(b0)− γ(t))| ≤ Aδd.

By (4.9) and (4.10), after some computations, this can be rewritten as

(4.13) sup
t∈[b0,b1]

|ã1(t− b0) + ã2(t− b0)
2 + · · ·+ ãd(t− b0)

d| ≤ Aδd,

where

(4.14) max(|ã2|, |ã3|, · · · , |ãd|) ∼ 1.

By [LY21, Proposition 7.1], (4.13) gives that

(4.15) max(|ã2(b0 − b1)
2|, |ã3(b0 − b1)

3|, · · · , |ãd(b0 − b1)
d|) . Aδd.

The condition (4.14) gives that |b1−b0| . δ, and this finishes the proof of the claim.

We have proved the claim. Corollary 1.3 will follow by counting the number of
frequencies in Λδ contained in a δd neighborhood of each S ∈ Sδ. The claim says
that each S contains at most . 1 many frequencies in Λδ, and this gives the desired
result. Let us give more details. We take f to be a Fourier transform of

(4.16)
∑

ξ∈Λδ

ψξ
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where ψξ is a smooth bump function supported on the ball of radius δd centered at
the point (ξ, φ(ξ)). By the claim, we have

(4.17)
( ∑

S∈S
δd

‖fS‖2L4

)1/2

.
( ∑

ξ∈Λδ

‖ψ̂ξ‖2L4

) 1
2

.

On the other hand, by the definition of f , we have

(4.18) ‖f‖L4 ∼
∥∥∥
∑

ξ

ψ̂ξ

∥∥∥
L4
.

Note that

(4.19) ψ̂ξ(x) = δ3de(ξ, φ(ξ))ψB(0,δ−d),

where ψB is a smooth function essentially supported on the ball B. Corollary 1.3
follows from this, (4.8), (4.9), and (4.10). This completes the proof.

4.2. Proof of Corollary 1.5. As we discussed, it suffices to prove Corollary 4.2.
For simplicity, we only consider α =

√
2. The general case can be proved identically.

For φ(ξ1, ξ2) = ξ21 − ξ22 and Λδ = δZ×
√
2δZ, our goal is to show that

(4.20)
∥∥∥
∑

ξ∈Λδ

aξe
(
x · (ξ, φ(ξ))

)∥∥∥
Lp

#(Bδ−3 )
≤ Cǫδ

−ǫ
( ∑

ξ∈Λδ

|aξ|2
) 1

2 .

This will follow from Theorem 2.5 by counting the number of frequencies in Λδ

contained in a δ3 neighborhood of each S ∈ Sδ. Suppose that (miδ, ni

√
2δ) ∈

Λδ ∩Nδ3(S) for i = 1, 2. Then using the definition of (φ, δ3)-flat, we have

|m2
1δ

2−2n2
1δ

2−(m2
2δ

2−2n2
2δ

2)−2(m1δ,−
√
2n1δ)·((m1−m2)δ,

√
2(n1−n2)δ)| . δ3.

This simplifies to
|(m1 −m2)

2 − 2(n1 − n2)
2| . δ,

so
|[m1 −m2 −

√
2(n1 − n2)][m1 −m2 +

√
2(n1 − n2)]| . δ.

By Lemma 4 of Section 2, Chapter 2 of [Cas72], we have 1
b1+ǫ′ .ǫ′ |a+

√
2b| for any

a, b ∈ Z. Therefore, if (m1, n1) 6= (m2, n2), the above displayed inequality implies

that |n1 − n2| &ǫ′ δ
−1+ǫ′ . Since the elements of Λδ ∩ Nδ3(S) are & δ-separated,

there are fewer than .ǫ′ δ
−ǫ′ frequencies in Λδ ∩Nδ3(S), as desired.

Appendix A. Partition is not enough

In this appendix, we prove that there is no ℓ2 decoupling for the hyperbolic
paraboloid using a partition. Note that in Theorem 2.5 we introduce O(log δ−1)
many partitions to obtain ℓ2 decoupling for the hyperbolic paraboloid. The follow-
ing theorem shows that it is necessary to introduce many partitions.

Theorem A.1. Let Mφ be the hyperbolic paraboloid given by φ(ξ1, ξ2) = ξ1ξ2. Fix
0 < ǫ < 1

100 and A ≥ 1. Then the following is false: for any δ > 0, there exists a

family Sδ of rectangles S ⊂ R2 such that

(1) the interiors of rectangles are disjoint

(1.1) int(S1) ∩ int(S2) = ∅, S1, S2 ∈ Sδ

(2) every S is (φ,Aδ)-flat
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(3) for all f whose Fourier support is in Nδ(Mφ),

(1.2) ‖f‖L4 ≤ Cǫ,Aδ
−ǫ

( ∑

S∈Sδ

‖fS‖2L4

)1/2

.

Proof. Fix δ > 0. For simplicity, assume that δ−1 is a dyadic number. Suppose
that such a family Sδ exists for a contradiction. Let us first consider the partition

[0, 1]2 =
⋃

a∈Z∩[0,δ−1−1]

(
[0, 1]× [aδ, aδ + δ]

)
=:

⋃

a

Ca,

[0, 1]2 =
⋃

b∈Z∩[0,δ−1−1]

(
[bδ, bδ + δ]× [0, 1]

)
=:

⋃

b

Db.
(1.3)

Let us fix Ca. Consider a collection of elements of Sδ which have a large intersection
with Ca

(1.4) Sδ,Ca := {S ∈ Sδ : |S ∩ Ca| ≥ δ1δ
1
2−ǫ}.

Define Sδ,Cb
similarly. By abusing notations, let us denote by Sδ,a and Sδ,b the

sets Sδ,Ca and Sδ,Db
. Recall that elements of the set Sδ,a are disjoint by the first

condition (1.1).
We claim that

(1.5)
∣∣∣

⋃

S∈Sδ,a

S ∩ Ca

∣∣∣ ≥ 99δ

100
,

∣∣∣
⋃

S∈Sδ,b

S ∩Db

∣∣∣ ≥ 99δ

100
.

Let us assume this claim for a moment and finish the proof of the theorem. By
taking the union over a to (1.5), we have

(1.6)
∣∣∣

⋃

a∈Z∩[0,δ−1−1]

⋃

S∈Sδ,a

S ∩ Ca

∣∣∣ ≥ 99

100
.

By pigeonholing, there exists Db ∈ Sδ,b such that

(1.7)
∣∣∣Db ∩

( ⋃

a∈Z∩[0,δ−1−1]

⋃

S∈Sδ,a

S ∩ Ca

) ∣∣∣ ≥ 99δ

100
.

This implies

(1.8)
∣∣∣Db ∩

( ⋃

a∈Z∩[0,δ−1−1]

⋃

S∈Sδ,a

S
) ∣∣∣ ≥ 99δ

100
.

We claim that if S ∈ Sδ,a for some a then

(1.9) |Db ∩ S| . δ1δ
1
2+ǫ.

Note that this means that S does not belong to Sδ,Db
. Since the area of Db is δ,

the first inequality of (1.5) gives

(1.10)
∣∣∣

⋃

S∈Sδ,Db

S ∩Db

∣∣∣ ≤ δ

100
.

This contradicts with the second inequality of (1.5). Let us give a proof of (1.9).
Suppose that S ∈ Sδ,a. It suffices to prove that

(1.11) S ⊂ (α, β) +
(
[0, 1]× [0, Cδ

1
2+ǫ]

)
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for some α, β ∈ [0, 1]. To prove this, we use the assumption that S is (φ,Aδ)-flat.
By the definition of Sδ,a, the rectangle S contains a line segment parallel to ξ1-axis

with length δ
1
2−ǫ. Since our manifold is translation invariant, for simplicity, assume

that the line is [0, δ
1
2−ǫ]× {0}. We will show that if p = (p1, p2) is an element of S

then |p2| . δ
1
2+ǫ. This gives the proof of (1.9). To show the bound of p2, we set

u = (0, 0). Then by the definition of (φ,Aδ)-flat (definition 1.1),

(1.12) |p1p2| ≤ Aδ.

Similarly, we use u = (δ
1
2−ǫ, 0) and this gives

(1.13) |p1p2 − δ
1
2−ǫp2| ≤ Aδ.

Combining these two gives |p2| . δ
1
2+ǫ.

It remains to prove (1.5). By symmetry, let’s show only the first inequality. We
will use the assumption (1.2). Fix Ca. Let us first show that there exists S ∈ Sδ

such that

(1.14) |S ∩Ca| ≥ (log δ−1)−10δ1+4ǫ.

Suppose that such S does not exist for a contradiction. We take f such that

(1) f̂ is supported on the δ-neighborhood of the set Mφ ∩ (Ca × R).

(2) f̂ is equal to one on the δ/2-neighborhood of the set Mφ ∩ (Ca × R).

Here Mφ is the hyperbolic paraboloid. Then f is essentially supported on a box
with dimension δ−1 × 1× δ−1 and has amplitude ∼ δ2. So we have

(1.15) ‖f‖L4 ∼ δ2δ−2/4 ∼ δ3/2.

On the other hand, by pigeonholing, there exists j such that

(1.16)
( ∑

S∈Sδ

‖fS‖2L4

)1/2

. (log δ−1)
1
2

( ∑

S∈Sj
δ

‖fS‖2L4

)1/2

where the elements S of Sj
δ satisfies

(1.17) |S ∩ Ca| ∼ δ2−j .

Here, we used the fact that for large j the right hand side of (1.16) is negligible
(which is proved in (1.18)). Since we are assuming that there does not exist S
satisfying (1.14), (1.16) is true for j > 4ǫ log2 δ

−1 + 10 log2 log δ
−1. Note that fS

is essentially constant on a box with volume (δδ2−j)−1 and has amplitude δδ2−j.

Since Sδ is a partition (see (1.1)), the cardinality of Sj
δ is bounded by 2j. So we

have
( ∑

S∈Sj
δ

‖fS‖2L4

)1/2

. (#Sj
δ )

1
2 max

S
‖fS‖L4

. 2j/2(δ22−j)(δ22−j)−
1
4 ∼ δ

3
2 2−

j
4 .

(1.18)

(1.2), (1.15), and (1.18) gives

(1.19) δ
3
2 . (log δ−1)

1
2 δǫδ

3
2 2−

j
4 .
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We get a contradiction from the assumption that j > 4ǫ log2 δ
−1 + 10 log2 log δ

−1.
The same argument works for a general situation. Let C ⊂ Ca ⊂ [0, 1]2 be a convex
set (polygon). Then we can show that there exists S ∈ Sδ such that

(1.20) |S ∩ C| & (log δ−1)−10δ4ǫ|C|.
Let us explain the proof. First, since C is a convex set, we can find a rectangle

C̃ ⊂ C such that |C̃| & |C| (for example, by Kovner–Besicovitch theorem). Since

C̃ is a rectangle in Ca, we can repeat the proof of (1.14) and find S ∈ Sδ such that

(1.21) |S ∩ C| ≥ |S ∩ C̃| ≥ (log δ−1)−10δ4ǫ|C̃| & (log δ−1)−10δ4ǫ|C|.
This gives (1.20).

We have shown that there exists S1 ∈ Sδ such that (1.14) holds true. In par-
ticular, S1 ∈ Sδ,a (see (1.4) for the definition of Sδ,a and note that we used the
assumption that ǫ is small). If we have |S1 ∩ Ca| ≥ 99δ/100, then this gives (1.5).
So suppose that

(1.22) δ1+4ǫ ≤ |S1 ∩Ca| ≤
99

100
δ.

Since S1 is a rectangle, the set Ca \ (S1)
c is either a convex set or a union of two

convex sets. Let us write it as

(1.23) Ca \ (S1)
c = C11 ∪ C12.

Here C11 and C12 are disjoint convex sets and

(1.24) |C11|+ |C12| ≤ |Ca|(1− δ4ǫ).

This finishes the first round of the iteration. Let us explain how to proceed. If C11

satisfies |C11| ≤ δδ
1
4 then we leave this set. If |C11| > δδ

1
4 then we apply (1.20) to

the convex set C11, and obtain the set S2 ∈ Sδ such that

|S2 ∩ C11| & (log δ−1)−10δ4ǫ|C11|.(1.25)

By the stopping time condition |C11| > δδ
1
4 and the assumption that ǫ is small, we

have S2 ∈ Sδ,Ca (see (1.4) for the definition). We write C11 \ (S2)
c = C111 ∪ C112.

Then we have

(1.26) |C111|+ |C112| ≤ |C11|(1− δ4ǫ),

where C11j are convex sets. Repeat this process to C12. If |C12| < δδ
1
4 , then we

have

(1.27) |C111|+ |C112|+ |C12| ≤ |Ca|(1− δ4ǫ)2 + |C12|δ4ǫ.
If |C12| > δδ

1
4 , then we have

(1.28) |C111|+ |C112|+ |C113|+ |C114| ≤ |Ca|(1− δ4ǫ)2.

This finishes the second round of the iteration. We repeat this process M -times
with M & δ−6ǫ. Denote by {CX}X and {SY }Y a collection of convex sets and a
collection of rectangles S ∈ Sδ that we obtained via this process. Note that

(1.29)
∑

X

|CX |+
∑

Y

|SY ∩ Ca| = |Ca| = δ.
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We have
∑

X

|CX | =
∑

X:|CX |≥δδ
1
4

|CX |+
∑

X:|CX |<δδ
1
4

|CX |

≤ |Ca|(1− δ4ǫ)M +
∣∣∣

⋃

X:|CX |<δδ
1
4

CX

∣∣∣δ4ǫ ≤ 1

100
|Ca|.

(1.30)

The last two inequalities follow from the fact that all CX are disjoint and CX ⊂ Ca.
This completes the proof of the claim (1.5). �

Appendix B. Higher dimensions

In this appendix, we prove that an analogous result to Theorem 1.2 is false in
higher dimensions. For convenience, let us consider only a manifold in R4. Higher
dimensional manifolds can be proved in a similar way. Definitions 1.1 and 2.1 can
be naturally generalized to higher dimensions. We will not state them. Recall that
the critical exponent of p of decoupling for the hyperbolic paraboloid in R4 is 10/3.

Theorem B.1. Consider φ(ξ1, ξ2, ξ3) = ξ21 + ξ22 − ξ23 . Fix 0 < ǫ < 1
1000 . Let A be

a constant. Then the following statement is false:
For any δ > 0, there exists a collection Sδ of rectangular boxes S ⊂ [0, 1]3 such

that

(1) the overlapping number is O(log δ−1) in the sense that

(2.1)
∑

S∈Sδ

χS ≤ Cd,ǫ log(δ
−1).

(2) S is (φ,Aδ)-flat.
(3) we have

(2.2) ‖f‖L10/3 ≤ Cd,ǫδ
−ǫ

( ∑

S∈Sδ

‖fS‖2L10/3

)1/2

for all f whose Fourier support is in Nδ(Mφ).

Proof. Let us prove by contradiction. Fix 0 < ǫ < 10−10. Define

(2.3) C := {(ξ1, ξ2, ξ3) ∈ [0, 1]3 : ξ21 + ξ22 − ξ23 = 0}.
We cover it by ∼ δ−1/2 many canonical blocks P with dimension 1× δ1/2 × δ. Let
us denote by P the collection of blocks. Note that each block is (φ,Aδ)-flat for
some large constant A. For given P ∈ P , we take translated copies and cover [0, 1]3

so that they are disjoint. Denote by PP the collection of translated copies of P .
Note that the cardinality of PP is comparable to δ−3/2.

Fix P ′ ∈ PP for some P ∈ P . We next decompose P ′ into parallel tubes
with radius δX , where X is sufficiently large number. Let us denote by PP,P ′ the
collections of tubes P ′′. We claim that for given P ′′ ∈ PP,P ′ there is an element S
of Sδ such that the diameter of the set S∩P ′′ is larger than or equal to (log δ−1)δ5ǫ.
To prove the claim, let us use the hypothesis (2.2). Take a function f so that

(2.4) f̂(ξ) :=

(log δ−1)δ−5ǫ∑

j=1

fj(ξ) :=

(log δ−1)δ−5ǫ∑

j=1

1N
δX

(Bj)(ξ)
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where {Bj}(log δ−1)δ−5ǫ

j=1 is an arithmetic progression with difference (log δ−1)δ5ǫ, and⋃
j Bj ⊂ P ′′. By the direct computations, one can see that

(2.5) ‖f‖L10/3 & (log δ−1)
1
5 δ−5ǫ( 1

2−
1

10/3 )(
∑

j

‖fj‖2L10/3)
1/2.

Hence, (2.2) says that there must be an element S of Sδ containing at least two
Bj . This means that the diameter of S ∩P ′′ is larger than or equal to (log δ−1)δ5ǫ.
This completes the proof of the claim.

For given P ′ ∈ PP , denote by SP ′ the elements of S ∈ Sδ satisfying the property:
for some P ′′ ∈ PP,P ′ the diameter of S ∩P ′′ is larger than or equal to (log δ−1)δ5ǫ.
The claim says that SP ′ is non-empty.

We next claim that if S is (φ,Aδ)-flat and S ∈ Sδ, then S is contained in a box

with dimension δ
1
2−

5ǫ
2 × δ1−5ǫ × δ5ǫ. Let us give a proof. First of all, by an affine

transformation, we may assume that S contains a line {0} × {0} × [0, δ5ǫ] and our

new phase function is φ̃(ξ) = ξ21 + ξ2ξ3. Let v = (v1, v2, v3) ∈ S. We will show that

(2.6) |v1| . δ
1
2−

5ǫ
2 , |v2| . δ1−5ǫ.

By the definition of (φ,Aδ)-flat set with u = (0, 0, 0) we obtain

(2.7) |v21 + v2v3| ≤ Aδ.

We next use u = (0, 0, δ5ǫ) and obtain

(2.8) |v21 + v2v3 − δ5ǫv2| ≤ Aδ.

These two inequalities give |v2| . δ1−5ǫ. This bound and (2.7) give |v1| . δ
1
2−

5ǫ
2 .

This proves the claim.
By the claim, if P ′

1 ∈ PP1 and P ′
2 ∈ PP2 , and the angle of the longest directions

of P1 and P2 is greater than δ
1
2−100ǫ, then any two sets S1 ∈ SP ′

1
and S2 ∈ SP ′

2
are

distinct. Note also that

(2.9)
∣∣∣

⋃

S′∈SP ′

S′ ∩ P ′
∣∣∣ & δ5ǫ|P ′|.

Let us finish the proof of the theorem. To get a contradiction, we need to prove
that there exists ξ ∈ [0, 1]3 such that the number of S ∈ Sδ containing ξ is greater
than the right hand side of (2.1). To prove this, it suffices to show that there exists
ξ ∈ [0, 1]3 satisfying

(2.10)
∑

P∈P

∑

P ′∈PP

∑

S′∈SP ′

1S′∩P ′(ξ) & δ−α−100ǫ

for some number α > 0. This follows from a pigeonholing argument with
ˆ

[0,1]3

∑

P∈P

∑

P ′∈PP

∑

S′∈SP ′

1S′∩P ′(ξ) dξ =
∑

P∈P

∑

P ′∈PP

ˆ

[0,1]3

∑

S′∈SP ′

1S′∩P ′(ξ) dξ

& δ−
3
2 δ−

1
2 δ5ǫδ

3
2 ∼ δ−

1
2+5ǫ.

(2.11)

This completes the proof. �
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Appendix C. Sharpness of Theorem 1.2

Let us discuss the sharpness of Theorem 1.2. More precisely, we would like to
discuss if the range of p for which (1.4) holds true is sharp. An example of a
manifold that the aforementioned range of p is not sharp is as follows.

(3.1) φ(ξ1, ξ2) = ξ21 .

The ℓ2 decoupling for (3.1) is proved for 2 ≤ p ≤ 6 by [BD15], and this range of p
is sharp. Motivated by this example, let us introduce the following definition.

Definition C.1. We say φ(ξ1, ξ2) depends only on a variable if there exists an
affine transformation L such that

(3.2) φ(L(ξ1, ξ2)) = ψ(ξ1) + aξ2

for some function ψ and some a ∈ R. Second, we say φ(ξ1, ξ2) does not depend on
any variable if

(3.3) φ(ξ1, ξ2) = a+ bξ1 + cξ2

for some a, b, c ∈ R. Lastly, we say φ(ξ1, ξ2) depends on two variables if it is not a
form of (3.3) and there does not exist L such that (3.2) holds true.

Here is a complete characterization of the ℓ2 decoupling theorem.

Proposition C.2. Consider a polynomial φ := φ(ξ1, ξ2). Suppose that Sδ is a
family constructed in Subsection 2.1 and Section 3.

(1) Let φ depend on two variables. Then (1.4) is true for 2 ≤ p ≤ 4.
(2) Let φ depend only on a variable. Then (1.4) is true for 2 ≤ p ≤ 6.
(3) Let φ not depend on any variable. Then (1.4) is true for 2 ≤ p <∞.

The ranges of p stated in items (1), (2), and (3) are sharp.

Proof. Let us first prove Item (1). Theorem 1.2 gives (1.4) for 2 ≤ p ≤ 4, so it
suffices to prove that the range is sharp. Let Hφ(ξ) be the Hessian matrix of φ. By
[dBvdE04, Theorem 3.1], Hφ(ξ) is not identically zero. Consider

(3.4) Zφ := {ξ ∈ R2 : det (Hφ(ξ)) = 0}.
Since detHφ(ξ) is not identically zero, it is a zero set of a polynomial. So there
exists a square τ not intersecting Zφ. Let us fix such τ . Assume that δ is smaller

than the sidelength of τ . Let f̂ be a smooth bump function of the δ-neighborhood
of

(3.5) {(ξ1, ξ2, φ(ξ1, ξ2)) : ξ ∈ τ}.
One can see that if ξ ∈ τ , then

(3.6) | detHφ(ξ)| & 1.

So the multiplication of eigenvalues of Hφ(ξ) does not change the sign over ξ ∈ τ .
Suppose that the eigenvalues of Hφ(ξ) have the same sign for all ξ ∈ τ . Then

each S ∈ Sδ intersecting τ is a square with length δ1/2 × δ1/2. So we have

(3.7) f =
∑

S

fS , |fS(x)| = δ21TS

where TS is a tube with dimension δ−1/2 × δ−1/2 × δ−1. Then

(3.8) δ2δ−1 . ‖f‖Lp(B1) . ‖f‖Lp(R3).
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On the other hand,

(3.9)
(∑

S

‖fS‖2Lp

) 1
2

. δ−
1
2 δ2|TS |

1
p ∼ δ−

1
2 δ2δ−

2
p .

This shows that the decoupling inequality is false for p > 4.
Suppose that the eigenvalues have different signs. Then as in the previous case,

we have

(3.10) δ . ‖f‖Lp(R3).

We need to calculate

(3.11)
( ∑

S∈Sδ

‖fS‖2Lp

)1/2

.

By the construction of Sδ, we have |fS | = δ21TS where TS has dimension δA ×
δ1−A×δ for some 0 ≤ A ≤ 1. Here the number A depends on the choice of S. Also,
the cardianlity of Sδ is comparable to δ−1 up to δ−ǫ losses. So we have

(3.12)
( ∑

S∈Sδ

‖fS‖2Lp

)1/2

.ǫ δ
−ǫδ−

1
2 δ2|TS |

1
p ∼ δ−ǫδ−

1
2 δ2δ−

2
p .

This shows that the decoupling inequality is false for p > 4, and completes the
proof of Item (1).

Let us move on to Item (2). Since φ depends only on a variable, after some
change of variables and abusing notations, we may assume that φ(ξ1, ξ2) = ψ(ξ1).
Fix x2 and define

(3.13) g(x1, x3) := f(x1, x2, x3).

Then (1.4) simply follows from [Yan21, Theorem 1.4]. Let us show the sharpness.
Since ψ is a one-variable polynomial, the zeros of ψ are finite. So we can find an
open interval I ⊂ [0, 1] such that for every ξ1 ∈ I, we have |ψ′′(ξ1)| & 1. We write

I as a union of intervals J with length δ1/2. Take f̂ to be a smooth bump function
of the δ-neighborhood of

(3.14) {(ξ1, ξ2, φ(ξ1, ξ2)) : ξ1 ∈ I, ξ2 ∈ [0, 1]}.
Then similar calculations in the proof of Item (1) give the sharpness for p. We leave
out the details.

Lastly, let us prove Item (3). If φ does not depend on any variable, then according
to our construction, fS = f . So (1.4) is true for 2 ≤ p < ∞. This completes the
proof of Proposition C.2. �
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