
POISSON REGRESSION IN ONE COVARIATE ON MASSIVE DATA

TORSTEN REUTER AND RAINER SCHWABE

Abstract. The goal of subsampling is to select an informative subset of all observations, when

using the full data for statistical analysis is not viable. We construct locally D-optimal subsampling

designs under a Poisson regression model with a log link in one covariate. A Representation of the

support of locally D-optimal subsampling designs is established. We make statements on scale-location

transformations of the covariate that require a simultaneous transformation of the regression parameter.

The performance of the methods is demonstrated by illustrating examples. To show the advantage of

the optimal subsampling designs, we examine the efficiency of uniform random subsampling as well as

of two heuristic designs. Further, the efficiency of locally D-optimal subsampling designs is studied

when the parameter is misspecified.

1. Introduction

Progress in technology has lead to the collection of increasingly large data sets. The field of

subsampling or subdata selection has gained popularity in recent years, where the aim is to decrease the

number of observations in the data set while maintaining as much information as possible. To illuminate

fundamental features of the concept, we solely focus on the reduction of observations in massive data for

a single covariate, rather than reduction in covariates of high-dimensional data. Subdata selection for

massive data can be done via a probabilistic subsampling scheme or through deterministic rules. Earlier

works on subsampling for generalized linear models (GLMs) focus on probabilistic methods, in particular

on subsampling for logistic regression, see e.g. Wang et al. (2018). More recently there are more works

on GLMs, including Poisson regression: For probabilistic subsampling under the A and L-optimality

criteria see Ai et al. (2021) and Yu et al. (2022). After Wang et al. (2019) introduced information-based

optimal subdata selection (IBOSS) for linear regression, Cheng et al. (2020) proposed IBOSS for logistic

regression, a deterministic subsampling technique with a probabilistic initial subsample to estimate the

unknown parameter. This is necessary because, as is well known, the optimal design depends on the

unknown parameter for GLMs.

In the present paper on Poisson regression we derive locally D-optimal continuous subsampling

designs directly bounded by the density of the covariate. Such directly bounded designs were first

studied by Wynn (1977) and Fedorov (1989). Recently, Ul Hassan and Miller (2019) derived such

bounded optimal subsampling designs for logistic regression in the context of optimal item calibration

similarly to our approach. Such subsampling designs can then easily be used for subdata selection by

including all observations that lie in the support of the optimal subsampling design and exclude all

others. Though an initial step to estimate the parameter is necessary when it is unknown. When there
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are no constraints on the design, literature on Poisson regression includes Rodŕıguez-Torreblanca and

Rodŕıguez-Dı́az (2007) and Russell et al. (2009).

In Section 2 we introduce the Poisson regression model to be used in this paper. Then, we present a

theorem on the support of a locally D-optimal continuous subsampling design as well as a theorem

concerning scale-location shifts of the covariate in Section 3. Further, we give examples when the

covariate has an exponential or a uniform distribution. In Section 4 we study the efficiency of uniform

random subsampling and some heuristic designs in comparison to the optimal subsampling designs.

In addition, we consider the loss in efficiency when the regression parameter is misspecified. We add

closing remarks in Section 5. Proofs are deferred to an appendix.

2. Model Specification

We consider pairs (xi, yi), i = 1, . . . , n, of data, where yi is the value of the response variable Yi.

xi is a realization of the random variable Xi. The covariate Xi has probability density function fX .

We suppose that the dependence of the response variable on the covariate Xi is given by a Poisson

regression model.

(A1) Conditionally on the covariate Xi, the response Yi is Poisson distributed with conditional mean

E(Yi|Xi) = exp(β0 + β1Xi).

Model (A1) constitutes a generalized linear model with random covariate and log link. The aim is to

estimate the regression parameter β = (β0, β1)
⊤. f(x) = (1, x)⊤ denotes the regression function in the

linear component f(Xi)
⊤β such that E(Yi|Xi) = exp(f(Xi)

⊤β).

We will further assume that the covariate Xi has a continuous distribution satisfying some moment

conditions.

(A2) The covariate Xi has density fX and E(X2
i exp(β1Xi)) <∞.

3. Subsampling Design

We assume that the number of observations n is very large. However, we encounter the challenge

of dealing with responses, denoted by Yi, which are either costly or difficult to observe. Meanwhile,

the values xi of all units Xi of the covariate are readily available. To tackle this problem, we consider

a scenario in which the responses Yi will only be observed for a specific subsampling proportion α of

the units, 0 < α < 1. The selection of these units is based on the knowledge of the covariate values xi

for all units. Our objective is to identify a subsample of pairs (xi, yi) that provides the most accurate

estimation of the parameter vector β by means of the maximum likelihood estimator β̂. As the covariate

Xi has a continuous distribution, we are going to identify a subsample from this distribution that

maximizes information, but only covers a percentage α of the distribution. Therefore, we consider

continuous designs ξ as measures of mass α on R with density fξ bounded by the density fX of Xi

ensuring
∫
fξ(x) dx = α and fξ(x) ≤ fX(x) for all x ∈ R. A subsample can then be generated according

to such a bounded continuous design ξ by accepting units i with probability fξ(xi)/fX(xi). To obtain

analytical results, we assume that the distribution of the covariate Xi and, hence, its density fX is

known.

The information arising for a single observation at covariate value x is defined by the elemental

information M(x,β) = exp(β0 + β1x)f(x)f(x)
⊤ (see Russell et al., 2009). For a continuous design ξ,
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the information matrix M(ξ,β) is defined by

M(ξ,β) =

∫
M(x,β)ξ(dx) = exp(β0)

(
m0(ξ, β1) m1(ξ, β1)

m1(ξ, β1) m2(ξ, β1)

)
,

where mk(ξ, β1) =
∫
xk exp(β1x)fξ(x) dx. The moment condition E(X2

i exp(β1Xi)) < ∞ stated in

assumption (A2) for the distribution of the covariates Xi ensures that the entries mk(ξ, β1) in the

information matrix are finite for any bounded continuous design ξ. Otherwise no meaningful optimization

would be possible. The moment condition is obviously satisfied when the distribution of Xi has a finite

support. It also holds for other not heavy-tailed distributions like the normal distribution. In the case

of an exponentially distributed covariate Xi considered below, the additional condition β1 < λ on the

slope parameter β1 is required where λ is the rate parameter of the exponential distribution.

The information matrix M(ξ,β) serves as a measure for evaluating the performance of the design ξ.

Note that M(ξ,β) has full rank for any continuous design ξ. This ensures the existence of the inverse

M(ξ,β)−1 =
1

exp(β0)d(ξ, β1)

(
m2(ξ, β1) −m1(ξ, β1)

−m1(ξ, β1) m0(ξ, β1)

)
.

where d(ξ, β1) = m0(ξ, β1)m2(ξ, β1)−m1(ξ, β1)
2 is the standardized determinant of M(ξ,β), d(ξ, β1) =

exp(−2β0) det(M(ξ,β)). Then,
√
αn(β̂ − β) is asymptotically normal with mean zero and covariance

matrix M(ξ,β)−1 for the maximum likelihood estimator β̂.

Maximization of the information matrix in the Loewner sense of nonnegative definiteness will not

be possible, in general. Therefore, we have to consider some one-dimensional information functional.

We will focus here on the most popular design criterion, the D-criterion, in its widely used form,

log(det(M(ξ,β))), to be maximized. A subsampling design ξ∗ with density fξ∗ that maximizes the

D-criterion for a given parameter value β will be called locally D-optimal at β. Maximization of the

D-criterion can be interpreted in terms of the covariance matrix as minimization of the volume of the

asymptotic confidence ellipsoid for the parameter vector β.

Remark 3.1. Note that β0 comes in into the information matrix only by the multiplicative factor

exp(β0). Thus, a locally D-optimal subsampling design ξ∗ only depends on the slope β1.

For the characterization of a locally D-optimal design, we will make use of an equivalence theorem

based on constrained convex optimization (see e. g. Sahm and Schwabe, 2001). For this, we have to

distinguish between cases related to the sign of the slope β1. In applications, the slope will often be

negative (β1 < 0). We will focus on that case and establish a representation of the locally D-optimal

subsampling designs for β1 < 0 first.

Denote by FX and qα the cumulative distribution function and the α-quantile of Xi. Let 1A the

indicator function of a set A, i. e. 1A(x) = 1, if x ∈ A and 1A(x) = 0 otherwise. Further, denote by

ψ(x, ξ, β1) =
1

d(ξ, β1)
exp(β1x)(m0(ξ, β1)x

2 − 2m1(ξ, β1)x+m2(ξ, β1))

the sensitivity function of a design ξ (see Theorem A.1). Note that the sensitivity function ψ(x, ξ, β1)

does not depend on β0.

Theorem 3.1. Let assumptions (A1) and (A2) be satisfied and let β1 < 0. Then the subsampling

design ξ∗ is locally D-optimal at β if and only if ξ∗ has density fξ∗(x) = fX(x)1X∗(x) and either



POISSON REGRESSION IN ONE COVARIATE ON MASSIVE DATA 4

(i) there exist a1 < a2 < a3 such that

X ∗ = (−∞, a1] ∪ [a2, a3],

FX(a1) + FX(a3)− FX(a2) = α, and (3.1a)

ψ(a1, ξ
∗, β1) = ψ(a2, ξ

∗, β1) = ψ(a3, ξ
∗, β1), (3.1b)

or

(ii) X ∗ = (−∞, qα], (3.1a’)

ψ(x, ξ∗, β1) > ψ(qα, ξ
∗, β1) for x < qα, and ψ(x, ξ

∗, β1) < ψ(qα, ξ
∗, β1) for x > qα. (3.1b’)

Conditions (3.1a) and (3.1a’) correspond to the subsampling percentage α while (3.1b) and (3.1b’)

are related to the conditions on the sensitivity function in the general equivalence theorem for bounded

designs (Theorem A.1) reproduced in the Appendix.

In view of the shape fξ∗(x) = fX(x)1X∗(x) of the density of the continuous optimal subsampling

designs ξ∗ in Theorem 3.1, the subsampling mechanism becomes deterministic for the optimal design:

The subsample can be generated by accepting all units i for which xi ∈ X ∗ and by rejecting all others.

According to Theorem 3.1, there are two different scenarios for the locally D-optimal design ξ∗.

Either the supporting set X ∗ consists of two separate intervals (−∞, a1] and [a2, a3] (scenario (i)) or

these intervals will be merged into a single one (scenario (ii)).

Remark 3.2. The optimal subsampling design ξ∗ is unique because of the strict concavity of the

D-criterion and the shape of the sensitivity function.

For the construction of a locally D-optimal subsampling design by Theorem 3.1, first the conditions

of scenario (ii) for an optimal design supported on a single interval can be checked. If scenario (ii) does

not apply, the boundary points a1 < a2 < a3 for the support X ∗ have to be calculated by solving the

system of (nonlinear) equations (3.1a) and (3.1b). In the latter case, the rightmost boundary point

a3 of X ∗ may lie outside the support of Xi, i. e. a3 > xmax, when the support of the covariate Xi

is bounded from above, i. e. xmax = ess sup(Xi) < ∞, where ess sup denotes the essential supremum

(see, e. g., Example 3.2 for the uniform distribution below). Then, in scenario (ii), explicit calculation

of the rightmost boundary point c is not necessary. Instead, it is sufficient for (3.1b) to verify that

ψ(xmax, ξ
∗, β1) ≥ ψ(a1, ξ

∗, β1) = ψ(a2, ξ
∗, β1).

Remark 3.3. The leftmost boundary point a1 of a D-optimal subsampling design ξ∗ cannot lie outside

the range of Xi, i. e. a1 > xmin, where xmin = ess inf(Xi) the essential infimum of the distribution of

Xi.

Remark 3.4. When β1 = 0, the information matrix M(ξ,β) is, up to the multiplicative constant exp(β0),

equal to the information matrix M(ξ) =
∫
f(x)f(x)⊤ξ(dx) in the linear model (treated in Reuter and

Schwabe, 2023). Therefore, the D-optimal subsampling design for ordinary linear regression is also

locally D-optimal in the Poisson regression model. Hence, according to (Reuter and Schwabe, 2023,

Section 4), the subsampling design ξ∗ is locally D-optimal for β1 = 0 if and only if there exist a1 < a2

such that

fξ∗(x) = fX(x)1(−∞,a1]∪[a2,∞)(x),

FX(a2)− FX(a1) = 1− α, and

ψ(a1, ξ
∗, β1) = ψ(a2, ξ

∗, β1).
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By means of equivariance considerations, we may transfer a locally D-optimal subsampling design

ξ∗ for a covariate Xi to a location-scale transformed covariate Zi = aXi + b, a ̸= 0. However, the

transformation of a locally D-optimal subsampling design is not as straightforward as in polynomial

regression (see Reuter and Schwabe, 2023), but requires a simultaneous transformation of the slope

parameter β1. This kind of simultaneous transformation typically has to be used in generalizes linear

models where the elemental information depends on β1 by the linear component f(x⊤)β1, see e. g. Radloff

and Schwabe (2016).

Theorem 3.2. Let ξ∗ be a locally D-optimal subsampling design at β1 for a covariate Xi with

density fX . Then, for a covariate Zi with density fZ(z) = 1
|a|fX( z−b

a ), the design ζ∗ with density

fζ∗(z) = 1
|a|fξ∗(

z−b
a ) is locally D-optimal at the transformed parameter β1/a.

For a = −1, Theorem 3.2 covers sign change Then we can transfer the characterization of a locally

D-optimal subsampling design in the equivalence theorem (Theorem 3.1) to positive values for the

slope β1.

Corollary 3.3. Let β1 > 0. Then the subsampling design ξ∗ is locally D-optimal at β if and only if

fξ∗ = fX1X∗ and either

(i) there exist a1 < a2 < a3 such that

X ∗ = [a1, a2] ∪ [a3,∞),

FX(a1) + FX(a3)− FX(a2) = 1− α, and

ψ(a1, ξ
∗, β1) = ψ(a2, ξ

∗, β1) = ψ(a3, ξ
∗, β1),

or

(ii) X ∗ = [q1−α,∞),

ψ(x, ξ∗, β1) < ψ(q1−α, ξ
∗, β1) for x < qα, and ψ(x, ξ

∗, β1) > ψ(qα, ξ
∗, β1) for x > qα.

To illustrate how the equivalence theorem (Theorem 3.1) can be used to construct locally D-optimal

subsampling designs, we consider β1 < 0 in the situation of an exponentially and of a uniformly

distributed covariate in the following two examples.

Example 3.1 (exponential distribution). We assume the covariate Xi to follow an exponential

distribution with rate λ, i. e. Xi has density fX(x) = λ exp(−λx) for x ≥ 0. The condition of finite

moments mk(ξ, β1) is satisfied for β1 < λ and hence, in particular, for β1 ≤ 0. For β1 < 0, let

g0(t) =
λ

λ− β1
exp(−(λ− β1)t), g1(t) =

(
t+

1

λ− β1

)
g0(t) and g2(t) = t2g0(t) +

2

λ− β1
g1(t)

such that gk(t) =
∫∞
t
xk exp(β1x)fX(x) dx, t ≥ 0. Then, in scenario (i), the entries in M(ξ∗,β) are

mk(ξ
∗, β1) = gk(0)− gk(a1) + gk(a2)− gk(a3) , k = 0, 1, 2,

while they reduce to mk(ξ
∗, β1) = gk(0)− gk(qα) in scenario (ii) when there is only one interval, where

qα = − log(1− α)/λ.

In scenario (i), we obtain numerical results for the boundary points a1 to a3 solving the system

of equations (3.1a) and (3.1b) using the Newton method implemented in the R package nleqslv by

Hasselman (2018). Note that here a3 < xmax = ∞. For the case of a standard exponential distribution

(λ = 1), results are given in Table 1 for selected values of β1 and α. In addition, we give the values for
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the amount FX(a1) as well as the percentage of mass the design ξ∗ places on the left interval [0, a1].

We also add the result for β1 = 0 for reference (see Reuter and Schwabe, 2023).

Table 1. Numerical values for the boundary points a1, a2, a3, and qα, respectively,
for selected values of the subsampling proportion α and slope parameter β1 in the case
of a standard exponentially distributed covariate (λ = 1)

α β1 a1 a2 a3, qα FX(a1) % of mass on [0, a1]

0.01

0.0 0.00579 5.46588 - 0.00577 57.71
-0.5 0.00501 3.86767 4.14130 0.00500 49.95
-1.0 0.00500 1.98399 2.02112 0.00499 49.88
-4.0 0.00496 0.49830 0.50665 0.00495 49.51

0.10

0.0 0.06343 3.25596 - 0.06146 61.46
-0.5 0.05181 2.92225 5.44835 0.05049 50.49
-1.0 0.05011 1.83717 2.22435 0.04887 48.87
-4.0 0.04680 0.47740 0.56896 0.04572 45.72

0.30

0.0 0.21398 2.23153 - 0.19264 64.21
-0.5 0.17225 1.95006 7.60885 0.15823 52.74
-1.0 0.15317 1.50902 2.76234 0.14202 47.34
-4.0 0.12876 0.40855 0.72273 0.12081 40.27

0.75

0.0 0.67278 1.34596 - 0.48971 65.29
-0.5 0.52804 1.07947 10.89214 0.41024 54.70
-1.0 0.43176 0.88401 4.28609 0.35063 46.75
-4.0 - - 1.38629 - -

For other values of the rate λ, results can be derived from the case of a standard exponentially

distributed covariate via equivariance (Theorem 3.2) by letting a = 1/λ and b = 0: If we seek a locally

D-optimal subsampling design at β1 < 0 when the rate is λ, we can first construct a locally D-optimal

design at β1/λ for a standard exponentially distributed covariate and then divide the obtained boundary

points by λ. For example, when λ = 2, β1 = −1 and the subsampling proportion is α = 0.10, we get the

boundary points 0.05181/2, 2.92225/2, and 5.44835/2 from the second line highlighted in the second

block of Table 1 such that the locally D-optimal subsampling design wanted is supported on the two

intervals [0, 0.0259] and [1.4611, 2.7242].

When the subsampling proportion α goes to zero, the locallyD-optimal subsampling design apparently

tends to its counterpart in classical optimal design theory which assigns equal weight 1/2 to two support

points x∗1 = 0 and x∗2 = −2/β1 (see e. g. Rodŕıguez-Torreblanca and Rodŕıguez-Dı́az, 2007). In

particular, we observe a2 < x∗2 < a3 for all numerically obtained values of a2 and a3.

On the contrary, we find that scenario (ii) appears for large values of α. This happens when the

slope β1 is strongly negative. More precisely, given α, there is a crossover point β∗
1 such that the single

interval design with density fξ∗ = fX1[0,qα] is locally D-optimal at β1 for all β1 ≥ β∗
1 This crossover

point becomes stronger negative when α gets smaller and apparently tends to −∞ as α→ 0. On the

other hand, when α gets larger, the crossover point apparently tends to zero. In Table 2, we give

numerical results for the crossover point β∗
1/λ for selected values of α together with the quantile qα, the

setting x∗2 of the locally D-optimal unbounded design and their ratio. This shows that, for scenario (ii)
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to apply, the quantile qα has to be substantially larger than x∗2. Vice versa, for given slope β1 < 0,

there is a critical subsampling proportion α∗ such that the single interval design is locally D-optimal

for larger subsampling proportions α ≥ α∗. In particular, when β1 = 0, only scenario (i) applies (see

Reuter and Schwabe, 2023) and, hence, α∗ = 1.

We further notice that the percentage of mass on the left interval [0, a1] is generally larger than 50%

for β1 closer to zero which coincides with what we have seen in Reuter and Schwabe (2023) for the case

β1 = 0. There, observations from the right tail are more informative and thus more observations are

needed on the left tail. Conversely, the percentage of mass on [0, a1] is smaller than 50% for strongly

negative β1. Figure 1 depicts the locally D-optimal subsampling designs for α = 0.5, 0.9 and β1 = −1

along with the corresponding sensitivity functions. The horizontal dotted line represents the threshold

s∗ from Theorem A.1. The vertical dotted lines depict the boundary points. While smaller subsampling

proportions α ≤ 0.1 are typically of interest in the context of subsampling, our selection of larger

subsampling proportions α has been made for the sake of clarity and visibility in the tables and figures.
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(a) β1 = −4, α = 0.75
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(b) β1 = −1, α = 0.3

Figure 1. Density of the locally optimal design (solid) at β1 and the standard
exponential distribution (dashed, upper panels), and corresponding sensitivity functions
(lower panels) for β1 = −4, α = 0.75 (left) and β1 = −1, α = 0.3 (right)

Table 2. Numerical values for the standardized crossover point β∗
1/λ for an exponen-

tially distributed covariate

α β∗
1/λ λqα λx∗2 qα/x

∗
2

0.01 -360.34840 0.01005 0.00556 1.81081
0.10 -34.60684 0.10536 0.05779 1.82310
0.30 -10.41165 0.35667 0.19209 1.85679
0.50 -5.49454 0.69314 0.36400 1.90426
0.75 -2.89534 1.38629 0.69077 2.00690
0.90 -1.86128 2.30259 1.07453 2.14288

Example 3.2 (uniform distribution). We assume the covariate to be uniform random on an interval

[xmin, xmax] with density fX(x) = 1
xmax−xmin

1[xmin,xmax](x). The condition of finite moments mk(ξ, β1)

is satisfied for all β1.
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For β1 < 0, let

g0(t) =
exp(β1t)

|β1|(xmax − xmin)
, g1(t) =

(
t+

1

|β1|

)
g0(t) and g2(t) = t2g0(t) +

2

|β1|
g1(t) .

In scenario (i), unlike in Example 3.1, the support of the covariate is bounded from above and thus the

rightmost boundary point a3 may be larger than xmax. We denote the essential supremum of ξ∗ by

ã3 = min(a3, xmax). Then, in scenario (i), the entries in M(ξ∗,β) are

mk(ξ
∗, β1) = gk(xmin)− gk(a1) + gk(a2)− gk(ã3) , k = 0, 1, 2,

while in scenario (ii), when there is only one interval, they reduce to mk(ξ
∗, β1) = gk(xmin)− gk(qα)

where qα = (1− α)xmin + αxmax.

For the case of a uniform distribution on the unit interval (xmin = 0 and xmax = 1), optimal boundary

points are given in Table 3 for selected values of α and β1 < 0. In addition, we give the values for the

amount FX(a1) as well as the percentage of mass the design ξ∗ places on the left interval [0, a1]. We

also add formally the result for β1 = 0 for reference (see Reuter and Schwabe, 2023).

Table 3. Numerical values for the boundary points a1, a2, a3 and qα, respectively,
for selected values of the subsampling proportion α and slope parameter β1 in the case
of a uniformly distributed covariate on [0, 1]

α β1 a1 a2 a3, qα FX(a1) % of mass on [0, a1]

0.01

0 0.00500 0.99500 - 0.00500 50.00
-2 0.00498 0.99498 - 0.00498 49.75
-4 0.00495 0.49994 0.50499 0.00495 49.51
-8 0.00490 0.24989 0.25498 0.00490 49.04

0.10

0 0.05000 0.9500 - 0.05000 50.00
-2 0.04772 0.94772 - 0.04772 47.72
-4 0.04578 0.49506 0.54928 0.04578 45.78
-8 0.04269 0.24155 0.29887 0.04269 42.69

0.30

0 0.15000 0.8500 - 0.15000 50.00
-2 0.13271 0.83271 - 0.13271 44.24
-4 0.12102 0.46678 0.64577 0.12102 40.34
-8 0.10847 0.20165 0.39318 0.10847 36.16

0.50

0 0.25000 0.7500 - 0.25000 50.00
-2 0.20993 0.70993 - 0.20993 41.99
-4 0.18578 0.42624 0.74046 0.18578 37.16
-8 - - 0.50000 - -

Apart from the situation that a3 > xmax indicated by a hyphen (−) in the table when α = 0.5 and

β1 = −2, the results are similar to those in Example 3.1: More weight is given to the left interval [0, a]

when β1 is closer to zero. When the subsampling proportion α becomes small, the locally D-optimal

subsampling design approaches the locally D-optimal unbounded design equally supported on x∗1 = 0

and x∗2 = −2/β1. For large values of α, the two intervals are merged into one (e. g. for α = 0.50

and β1 = −8). Figure 2 depicts the locally D-optimal subsampling designs along the corresponding

sensitivity functions in scenario (ii) of a single supporting interval for ξ∗ in the left panel. The right
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panel exhibits scenario (i) of ξ∗ supported on two proper intervals. The horizontal dotted line depicts

the threshold s∗. The vertical dotted lines represent the boundary points a1, a2, and a3. The situation

when a3 > xmax is displayed in Figure 3.
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(a) β1 = −8, α = 0.5
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(b) β1 = −4, α = 0.1

Figure 2. Density of the locally optimal design (solid) at β1 for a uniformly distributed
covariate on [0, 1] (dashed, upper panels), and sensitivity functions (lower panels) for
β1 = −8, α = 0.5 (left) and β1 = −4, α = 0.1 (right)
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Figure 3. Density of the locally optimal design (solid) at β1 for a uniformly distributed
covariate on [0, 1] (dashed, upper panel), and sensitivity functions (lower panel) for
β1 = −2, α = 0.3

Because of the symmetry of the uniform distribution, locally D-optimal subsampling designs can

be derived for positive values of the slope β1 via equivariance with respect to sign change by letting

a = −1 and b = 1 in Theorem 3.2. For example, when β1 = 4 and α = 0.10, the optimal boundary

points can be obtained from the third line highlighted in the second block of Table 3 as 1− 0.04578,

1− 0.49506, and 1− 0.54928 such that the locally D-optimal subsampling design is then supported on

the two intervals [0.45072, 0.50494] and [0.95422, 1].

Further, for other ranges [xmin, xmax] of the uniform covariate, optimal subsampling designs can be

obtained by equivariance (Theorem 3.2) as well by letting a = xmax − xmin and b = xmin.
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4. Efficiency

We want to study the performance of random subsampling as well as some heuristic subsampling

designs in the style of IBOSS (see Wang et al., 2019) to quantify the gain in using a locally D-optimal

subsampling design. Besides, we are interested in the quality of the heuristic designs and how they

compare to random subsampling. Further, we want to investigate the performance of designs when the

parameter is misspecified. Specifically, a subsampling design ξ∗(β′) = argmaxdet(M(ξ,β′)) that is

locally D-optimal at β′ is studied when the true parameter is β. The performance of a design ξ may

be compared to the locally D-optimal subsampling design ξ∗(β) using D-efficiency. The D-efficiency of

a subsampling design ξ with mass α is defined as

effD,α(ξ,β) =

(
det(M(ξ,β))

det(M(ξ∗(β),β))

)1/2

.

For this definition the homogeneous version (det(M(ξ,β)))1/2 of the D-criterion is used which sat-

isfies the homogeneity condition (det(νM))1/2 = ν(det(M))1/2 for all ν > 0 (see Pukelsheim, 1993,

Chapter 6.2). Note that by Remark 3.1, the efficiency effD,α(ξ,β) does not depend on β0.

As uniform random subsampling we define the design ξα of size α, which has density fξα(x) = αfX(x).

The information matrix of ξα is given by M(ξα,β) = αM(ξ1,β). Here, ξ1 represents the full sample with

information matrix M(ξ1,β) =
∫
exp(β0+β1x)f(x)f(x)

⊤fX(x) dx. Thus, the D-efficiency effD,α(ξα,β)

of uniform random subsampling can be nicely interpreted as noted in Reuter and Schwabe (2023): for

a fixed full sample size n, the required subsample size (mass) α̃ needed to achieve the same precision

(measured by the D-criterion), compared to utilizing a locally D-optimal subsampling design ξ∗ with

mass α, is given by the inverse of the efficiency, effD,α(ξα,β)
−1, multiplied by α, i. e. α̃ = α/ effD,α(ξα,β).

For instance, if the efficiency effD,α(ξα,β) equals 0.5, then twice the number of observations would be

needed under uniform random sampling compared to a locally D-optimal subsampling design of mass

α. Naturally, the full sample has higher information than any proper subsample such that, for uniform

random subsampling, effD,α(ξα,β) ≥ α holds for all α.

Further, we analyze the efficiency of two heuristic designs. Again we only consider the case β1 < 1.

Let the α-quantile of the covariate Xi be denoted by qα. First, we consider the one-sided design ξos

with density fξos(x) = fX(x)1(−∞,qα](x) that assigns all of its mass on the left tail of the distribution

of the covariate motivated by its optimality for large α. Second, we study the two-sided design ξts

with density fξts(x) = fX(x)1(−∞,qα/2]∪[q1−α/2,∞)(x) that allocates equal mass α/2 on both tails of the

distribution in the style of the IBOSS method (see Wang et al., 2019).

Example 4.1 (exponential distribution). As in Example 3.1, we assume that the covariate Xi is

exponentially distributed with rate λ.

Because uniform random subsampling ξα as well as the one- and two-sided designs ξos and ξts are

equivariant under location-scale transformations, their efficiency depends only on the slope and the

rate by the ratio β1/λ. In Figure 4, we depict the efficiency of these designs for β1/λ = −1 and −4

in dependence on the subsampling proportion α. The efficiency of uniform random subsampling is

quite low for reasonable proportions α ≤ 0.1 and, hence, the gain in using the D-optimal subsampling

design is substantial. Similarly, the efficiency of the one- and the two-sided design is small for α ≤ 0.1

and apparently tends to zero for α → 0 which may be explained by the fact that these designs miss
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observations close to the location x∗2 of the locally D-optimal unbounded design. This feature does not

apply to uniform random subsampling such that, for very small subsampling proportions, both the one-

and the two-sided design is severely less efficient than uniform random subsampling.

As is to be expected, the two-sided IBOSS-like design ξts performs much better for β1 near zero.

In particular, for β1 = 0, the two-sided design ξts only differs slightly from the locally D-optimal

subsampling design is ξ∗ and has a high efficiency throughout (see Reuter and Schwabe, 2023).

Conversely, the one-sided design ξos performs better for strongly negative β1. The vertical dotted line

in Figure 4 displays the crossover point α∗. For all α > α∗, the one-sided design is the D-optimal

subsampling design.

We observe similar behavior in Figure 5. Predictably, the one-sided design performs better for strongly

negative β1 and the two-sided design is better for β1 closer to zero. Notably, the two-sided design

exhibits a nonmonotonic behavior: It performs worst for β1/λ ≈ −3.64 (effD,α(ξts,β) = 0.07974506)

and attains a local maximum at β1/λ ≈ −0.40 (effD,α(ξts,β) = 0.9988009). Further, we again see

that uniform subsampling generally performs better for β1 closer to zero, though it performs best for

β1/λ ≈ −1.05 (effD,α(ξts,β) = 0.6978610).
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(a) β1/λ = −1
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(b) β1/λ = −4.

Figure 4. D-efficiency of uniform random subsampling (solid), one-sided (dashed),
and two-sided (dot-dashed) subsampling design in dependence on the subsampling
proportion α for slope-rate ratio β1/λ = −1 (left) and −4 (right) for an exponentially
distributed covariate

For strongly negative β1, the behavior of the efficiency of the three designs in Figure 5 gives additional

insight. As β1 → −∞, the efficiency of uniform random subsampling converges to its lower bound α

whereas the efficiency of both one- and two-sided design converge to one. Most of the information is

concentrated on the covariate values close to zero. Thus, for strongly negative β1 the two heuristic

designs as well as the D-optimal subsampling design have almost all the information of the full sample.

This limiting behavior is not presented in Figure 5 in order to preserve intelligibility for β1 closer to

zero.

Finally, we consider the efficiency of locally D-optimal subsampling designs ξ∗(β′), when the nominal

value β′
1 is misspecified and differs form the true slope β1. The left panel of Figure 6 illustrates the

efficiency of ξ∗(β′) in dependence on the subsampling proportion α for selected values of the true ratio

β1/λ, when the nominal value is β′
1/λ = −1. For all values we find that the efficiency of the design
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Figure 5. D-efficiency of uniform random subsampling (solid), one-sided (dashed),
and two-sided (dot-dashed) subsampling design in dependence on the slope-rate ratio
β1/λ for subsampling proportion α = 0.1 and an exponentially distributed covariate

ξ∗(β′) under misspecification declines with decreasing α. When the deviation of the parameter is rather

small, β1/λ = −0.8 and β1/λ = −1.2, the designs under misspecification are still very efficient, with

efficiency above 0.98 for α = 0.01. For larger deviations however, the efficiency can drop drastically.

In particular, when β1/λ is closer to 0, the efficiency is more strongly negatively affected than when

the deviation of β1/λ is away from zero. In the right panel of Figure 6, we exhibit the efficiency for

various values of the nominal slope-rate ratio in dependence on the true value when the subsampling

proportion is α = 0.1. The nominal values are indicated by vertical dotted lines.

It can be seen that the efficiency decreases faster for β1/λ towards zero than for stronger negative

values. In particular, the efficiency increases again when β1/λ goes to −∞.
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(a) True parameter β1/λ = −0.5 (dashed), −0.8
(solid), −1.2 (dot-dashed), and −1.5 (long dashed)
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(b) Locally D-optimal subsampling designs for
β′
1/λ = −1 (dashed), −2 (solid), and −4 (dot-dashed)

Figure 6. Efficiency of the locally D-optimal subsampling design for β′
1/λ = −1 and

various subsampling proportions α (left) and for subsampling proportions α = 0.1 and
various values of the nominal slope-rate ratio β′

1/λ (right) in dependence on the true
slope-rate ratio β1/λ for an exponentially distributed covariate
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5. Concluding Remarks

Our investigation centers on a theoretical approach to evaluate subsampling designs under distribu-

tional assumptions on the covariate in the case of Poisson regression on a single covariate. We adjust a

standard equivalence theorem to Poisson regression, given a general distribution of the covariate and

negative slope parameter β1. This equivalence theorem also characterizes the support of the locally

D-optimal subsampling design and allows us to derive such designs for a given covariate and slope

parameter. Then, we establish a theorem to identify locally D-optimal subsampling designs under a

scale-location transformation of the covariate and simultaneous rescaling of the slope parameter. We

make use of this to give a corollary to the equivalence theorem for β1 > 0. It is worthwhile noting

that many of the results can be extended from D-optimality to other criteria within Kiefer’s class of

Φq-optimality criteria, including, in particular, linear criteria The derivation relies mostly on the fact

that the sensitivity function can be factorized into the exponential function and a quadratic polynomial,

rather than its specific form. Our efficiency analysis shows, among other things, that heuristic one- or

two-sided designs can be highly efficient under certain circumstances, however, they display substantial

loss in efficiency for the most relevant small subsampling proportions. Addressing uncertainty about

the parameter β1 and the covariate distribution may involve an initial random subsampling step, before

deploying the locally D-optimal subsampling design. Lastly, note that the results presented here may

be extended to polynomial Poisson regression, where the linear predictor is a polynomial of degree q in

the covariate Xi. Then, the equation ψ(x, ξ,β) = s has at most 2q + 1 solutions and the support of ξ∗

is the union of at most q + 1 intervals.
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Appendix A. Proofs

Before we establish the equivalence theorem (Theorem 3.1), we introduce some technical tools:

The directional derivative of the D-criterion at design ξ in the direction of a design η is Ψ(ξ, η,β) =

trace(M(ξ,β)−1M(η,β))−2. Here, η may be any design of total mass α which is not necessarily required

to have a density bounded by fX . The sensitivity function ψ(x, ξ,β) = trace(M(ξ,β)−1M(ξx,β)) is

the essential part of the directional derivative at ξ in the direction of a single point design ξx with all

mass α at point x. Then

ψ(x, ξ,β) = α exp(β0 + β1x)f(x)
⊤M(ξ,β)−1f(x)

=
α

d(ξ, β1)
exp(β1x)(m0(ξ, β1)x

2 − 2m1(ξ, β1)x+m2(ξ, β1))

does not depend on β0 and will be denoted by ψ(x, ξ, β1), for short. Note that, for any continuous

subsampling design ξ, the information matrix M(ξ,β) is positive definite and, hence, ψ(x, ξ, β1) is

well-defined.

For convenience, we reproduce an equivalence theorem for subsampling designs in a general model

context which follows from Corollary 1(c) in Sahm and Schwabe (2001).
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Theorem A.1. Let condition

(A) P(ψ(Xi, ξ, β1) = s) = 0 for any ξ and s

be satisfied. Then the subsampling design ξ∗ is locally D-optimal at β if and only if there exist a set

X ∗ and a threshold s∗ such that

(i) ξ∗ has density fξ∗(x) = fX(x)1X∗(x)

(ii) ψ(x, ξ∗, β1) ≥ s∗ for x ∈ X ∗, and

(iii) ψ(x, ξ∗, β1) < s∗ for x ̸∈ X ∗.

Next we establish that condition (A) holds for the Poisson regression model.

Lemma A.2. Given ξ and s, the equation ψ(x, ξ, β1) = s has, at most, three different solutions in x.

Proof. For β1 = 0, the sensitivity function is a quadratic polynomial in x. Hence, there are, at most,

two solutions.

For β1 ≠ 0, the sensitivity function ψ(x, ξ,β) = exp(β1x)q(x) factorizes into the exponential function

(exp(β1x)) and a quadratic polynomial q with positive leading term. Because ψ(x, ξ, β1) is positive, only

s > 0 has to be considered. Let v(x) = q(x)−s exp(−β1x). The third derivative v(3)(x) = sβ3
1 exp(−β1x)

has no roots. By iterative application of the mean value theorem, we see that v has, at most, three

roots. Because the solutions of ψ(x, ξ, β1) = s are the roots of v, this completes the proof. □

Condition (A) follows from the continuous distribution of the covariate Xi.

Proof of Theorem 3.1. If ξ∗ is locally D-optimal, then, by Theorem A.1, its density has the shape

fξ = fX1X and X ∗ = {x; ψ(x, ξ∗, β1) ≥ s∗} for some s∗ > 0. Because β1 < 0, the sensitivity function

ψ(x, ξ∗, β1) ranges from ∞ for x → −∞ to 0 for x → ∞ with ψ(x, ξ∗, β1) > 0 throughout. Thus,

the number of sign changes in ψ(x, ξ∗, β1) − s∗ is odd and, by Lemma A.2, equal to one or three.

Hence, X ∗ consists of one or two intervals including a left open interval (−∞, a1], say, and potentially

a second finite interval [a2, a3]. Conditions (3.1a) and (3.1a’), respectively, follow from the subsampling

percentage α. If there are two intervals, then ψ(ak, ξ
∗, β1) = s∗, k = 1, 2, 3, by continuity of the

sensitivity function and we get condition (3.1b) in scenario (i). If there is only one interval, then

condition (3.1b’) follows from (ii) and (iii) in Theorem A.1 which completes the proof that the locally

D-optimal subsampling design satisfies the properties stated in Theorem 3.1.

Conversely, by the shape of the sensitivity function, the properties stated in Theorem 3.1 imply the

equivalence conditions in Theorem A.1 which proves the reverse statement. □

Proof of Remark 3.3. Assume a1 ≤ xmin. Then

m1(ξ
∗, β1) =

∫ a3

a2

x exp(β1x)fX(x) dx > a2

∫ a3

a2

exp(β1x)fX(x) dx = a2m0(ξ
∗, β1)

and q attains its minimum at m1(ξ
∗, β1)/m0(ξ

∗, β1) > a2. Hence, the sensitivity function ψ(x, ξ∗, β1) =

exp(β1x)q(x) is strictly decreasing on (−∞, a2] such that ψ(a1, ξ
∗, β1) > ψ(a2, ξ

∗, β1) which leads to a

contradiction to the optimality condition (3.1b). □

Proof of Theorem 3.2. The proof goes along the same lines as in Radloff and Schwabe (2016). Denote

by g the location-scale transformation g(x) = ax+ b. Let Zi = g(Xi). Note that only the distribution

of the covariate plays a role, but not the covariate itself. The transformation g is conformable



POISSON REGRESSION IN ONE COVARIATE ON MASSIVE DATA 15

with the regression function f(x), i. e. there exists a nonsingular matrix Q =

(
1 0

b a

)
such that

f(ax+ b) = Qf(x) for all x. For a design ξ bounded by fX , we define the transformed design ζ = ξg

which has density fζ(z) =
1
|a|fξ(

z−b
a ) and is bounded by the density fZ(z) =

1
|a|fX( z−b

a ) of Zi. Further,

let β̃ = (Q⊤)−1β = (β0 − β1b/a, β1/a)
⊤. By the transformation theorem for measure integrals,

M(ζ, β̃) =

∫
exp(β0 + β1(z − b)/a)f(z)f(z)⊤ζ(dz)

=

∫
exp(β0 + β1x)Qf(x)f(x)⊤Q⊤ξ(dx)

= QM(ξ,β)Q⊤.

Therefore det(M(ζ, β̃)) = det(Q)2 det(M(ξ,β)). Thus ξ∗ maximizes the D-criterion over the set of

subsampling designs bounded by fX for β1 if and only if ζ∗ maximizes the D-criterion over the set of

subsampling designs bounded by fZ for β1/a. □
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