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ON PERSPECTIVE ABELIAN GROUPS

GRIGORE CĂLUGĂREANU, ANDREY CHEKHLOV

Abstract. As a special case of perspective R-modules, an Abelian goup is
called perspective if isomorphic summands have a common complement. In
this paper we describe many classes of such groups.

1. Introduction

This paper concerns about direct summands of Abelian groups. To simplify the
writing, G will denote an (arbitrary) Abelian group and by some different letters
we denote direct summands of G. In what follows, since all summands we consider
are direct, we remove this adjective. Moreover, the word ”complement” will be
used only for direct complements. In trying to make a notation difference, by Z(m)
we denote the Abelian group and by Zm we denote the ring of integers modulo
m. For an Abelian group G, by End(G) we simply denote EndZ(G), that is, the
endomorphism ring of G.

We start with the following general
Definition (see [5]). Let L be a bounded lattice. Two elements x, y ∈ L are

said to be perspective (in L) provided they have a common (direct) complement,
i.e., an element z ∈ L such that x∨ z = y∨ z = 1, x∧ z = y∧ z = 0. This definition
comes back to John von Neumann.

Specializing for the submodule lattice of a module, two summands A,B of a
module M will be denoted by A ∼ B, if they have a common complement, i.e.,
there exists a submodule C such that M = A⊕C = B ⊕C. It is clear that A ∼ B
implies A ∼= B. A module M is called perspective when A ∼= B implies A ∼ B for
any two summands A,B of M .

A module RM over a ring R is said to satisfy internal cancellation (or we say M
is internally cancellable; IC, for short) if, whenever M = K ⊕N = K ′ ⊕N ′ (in the
category of R-modules), N ∼= N ′ ⇒ K ∼= K ′ [or M/N ∼= M/N ′].

It is clear that perspective modules satisfy the internal cancellation property in
the sense that complements of isomorphic summands are isomorphic (see [6]).

The modules definition can be restricted to rings as follows
Definition A ring R is called perspective if isomorphic direct summands of RR

have a common (direct) complement.
This property for rings turns out to be left–right symmetric, that is, RR is

perspective if and only if RR is perspective for any ring R and we call such ring a
perspective ring.

In this paper, we characterize some large classes of perspective Abelian groups.
In the sequel, the word ”group” will always mean an ”Abelian group”.
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Our main results are the following.
1) For large classes of Abelian groups, we show that the perspectivity is equiva-

lent to finite rank. These are: the divisible primary groups, the divisible torsion-free
groups, the homogeneous completely decomposable groups with type t(Qp).

2) The only perspective rank 1 torsion-free groups are the rational groups. In
particular, the only free perspective group is Z.

3) Any finite p-group is perspective. Any bounded perspective p-group is finite.
4) A torsion group is perspective iff so are all its primary components.
5) (a) Let G = T (G)⊕F where T (G) is the torsion part ofG and F is torsion-free.

Then G is perspective iff T (G) and F are perspective
(b) Let G = D(G) ⊕R where D(G) is the divisible part of G and R is reduced.

Then G is perspective iff D(G) and R are perspective.
6) We describe the perspective torsion-free algebraically compact groups.
7) For any rational group H (i.e., rank 1 torsion-free group) we characterize

when H ⊕H is perspective.
Section 2 recalls a few general results on perspective modules from [4], which are

used in the sequel. Section 3 contains our results on perspective Abelian groups,
divided into subsection 3.1, about definitions, subsection 3.2, about reduction the-
orems, subsection 3.3, about perspective torsion groups and subsection 3.4, about
perspective torsion-free groups. Some examples are given in the end.

2. Generalities on perspective modules

Definition 8.1 [8]. Let P be a module-theoretic property. We say that P is
an endomorphism ring property (or ER-property for short) if, whenever AR and
A′

S are right modules (over possibly different rings R and S) such that End(AR) ∼=
End(A′

S) (as rings), AR satisfies P implies that A′
S does (and then, of course, also

conversely).
As an exhaustive reference on perspective R-modules we mention [4]. However,

not much will be used when describing the perspective Abelian groups.
For further reference we list here from [4].

Theorem 2.1. For a module MS with R = EndS(M), the following conditions are
equivalent:

(1) M is perspective.
(4) If erse = e for some e2 = e, r, s ∈ R, then erte = e for some t ∈ R such that

ete ∈ U(eRe).
In particular, MS is perspective iff RR is perspective, i.e., perspectivity is an

ER-property.

We mention here a useful consequence (not recorded in [4]) of the previous the-
orem.

Corollary 2.2. Arbitrary products of perspective rings are perspective.

Proof. Suppose R is direct product of Ri, i ∈ I and erse = e for some e2 = e, r, s ∈
R. As e = (ei), r = (ri), s = (si) so erse = e iff eirisiei = ei for each i. As each
Ri is perspective, so there exists ti such that eiritiei = ei and eitiei ∈ U(eiRiei).
If t = (ti), then erte = e and ete ∈ U(eRe). �

Proposition 2.3. Any direct summand of a perspective module is perspective.
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Corollary 2.4. If M and N are perspective R-modules with HomR(M,N) = 0,
then M ⊕N is perspective.

Remark 2.5. The group Z⊕Z is not perspective. For example, (2, 5)Z and (1, 0)Z
are isomorphic direct summands of Z2 as a Z-module, which do not have a common
complement.

From [9] we recall a method of constructing common complements for some spe-
cial direct sums.

Let G = H ⊕K. A subgroup D of G is called a diagonal in G (with respect to
H and K) if D +H = G = D +K and D ∩H = 0 = D ∩K.

Theorem 2.6. Let G = H ⊕ K. If δ : H → K is an isomorphism then D(δ) =
D(H, δ) = {x + δ(x)|x ∈ H} = (1 + δ)(H) is a diagonal in G (with respect to H
and K). Conversely, if D is a diagonal in G (with respect to H and K) there is a
unique isomorphism δ : H → K such that D = D(δ).

Thus, there is a bijection between the diagonals (with respect to H and K) and
isomorphisms of H and K.

Every subgroup U of a direct sum G = H ⊕ K belongs to the direct product
L = L(H) × L(K) (i.e., has the form H ′ ⊕ K ′ for H ′ ≤ H and K ′ ≤ K) or is a
diagonal.

3. Perspective Abelian groups

First about the

3.1. Definition. As the Abelian groups analogue for Z-modules, an (Abelian group)
G is called perspective if isomorphic summands of G have a common complement.

In symbols: if G = A ⊕H = B ⊕K with A ∼= B, there exists (a summand) C
such that G = A⊕ C = B ⊕ C.

Nonexample. Let N be a group such that N ≇ N ⊕ N and let G = N1 ⊕
N2 ⊕N3 ⊕ ... countably many copies with Nn = N . Then G is not IC (and so nor
perspective).

Indeed, H = N2 ⊕ N3 ⊕ ... and S = N3 ⊕ ... are isomorphic summands, but
G/H ∼= N ≇ N ⊕N ∼= G/S.

Remarks. 1) Obviously, if two summands of a group have a common comple-
ment, these are isomorphic.

Indeed, if G = H ⊕K = L⊕K then H ∼= G/K ∼= L.
Therefore, perspectivity is a converse of this property.
2) Indecomposable groups are trivially perspective (e.g., any infinite cyclic group,

any cocyclic group or rank 1 torsion-free group).
3) We mention (see Proposition 3.10, [7]) that for two idempotent endomor-

phisms ε, δ of G, ε(G) ∼= δ(G) iff there exists endomorphisms α, β of G such
that ε = αβ and δ = βα. Also equivalently, the left End(G)-modules End(G)ε and
End(G)δ are isomorphic to each other. Since we deal only with direct summands,
equivalently, we can deal only with the idempotent endomorphisms of the group.
Thus, two ”isomorphic” endomorphisms ε, δ [i.e., im(ε) ∼= im(δ)] of a group G
are perspective, if there is an endomorphism γ such that im(ε) ⊕ im(γ) = G =
im(δ)⊕ im(γ).

More general, the group is IC if for any two endomorphisms ε, δ of G, im(ε) ∼=
im(δ) implies G/im(ε) ∼= G/im(δ).
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4) The group G is indecomposable iff End(G) has only the trivial idempotents
(is connected). Such groups are trivially perspective.

Apparently there is another definition one could give for perspective Abelian
groups.

Definition. An Abelian group G is called e-perspective if its endomorphism
ring End(G) is (left or right) perspective.

However, it follows from Theorem 2.1 that for a module MS with R = EndS(M),
MS is perspective iff RR is perspective, i.e., perspectivity is an ER-property. There-
fore, for S = Z it follows that

Proposition 3.1. An Abelian group is perspective iff it is e-perspective.

Hence, in the sequel we can use any of these two (equivalent) definitions.

3.2. Reduction theorems.

Proposition 3.2. Summands of perspective groups are perspective.

Proof. Suppose G = H ⊕ K and H = S ⊕ T = L ⊕ N with S ∼= L. Since
these are direct summands also in G, by hypothesis, there is M ≤⊕ G such that
G = S ⊕M = L⊕M . Then, by modularity of the subgroup lattice: H = G∩H =

(S ⊕M) ∩H
mod
= S ⊕ (M ∩H) (since S ≤ H) and similarly H = L⊕ (M ∩H), so

M ∩H is a common complement for S and L. �

Proposition 3.3. Let G =
⊕

i∈I

Hi where each summand Hi is fully invariant in G.

Then G is perspective iff all Hi, i ∈ I, are perspective.

Proof. By Corollary 2.2, arbitrary products of perspective rings are perspective. It
just remains to note that End(G) ∼=

∏

i∈I

End(Hi) (see Theorem 106.1, [3], the I× I

matrices are diagonal). �

Corollary 3.4. Let G be a torsion group. Then G is perspective iff so are all its
primary components.

Proof. A straightforward application of the previous proposition. �

As customarily, this reduces the study of perspective torsion groups to perspec-
tive p-groups, for any prime p.

We can use Corollary 2.4 whenever Hom(G,H) = 0, that is, for: (i) G torsion,
H torsion-free, (ii) G a p-group and H a q-group with different primes p 6= q, (iii)
G divisible and H reduced. Thus

Corollary 3.5. (a) Let G = T (G)⊕F where T (G) is the torsion part of G and F
is torsion-free. Then G is perspective iff T (G) and F are perspective.

(b) Let G = D(G) ⊕ R where D(G) is the divisible part of G and R is reduced.
Then G is perspective iff D(G) and R are perspective.

Examples. Zm ⊕ Z, Zp∞ ⊕ Z or Zp∞ ⊕Q, all are perspective (splitting) mixed
groups.

Therefore, the study of splitting mixed perspective (Abelian) groups reduces to
perspective primary groups and to torsion-free groups. Moreover, it reduces to
perspective divisible groups and to reduced groups.
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According to these reductions, the study of perspective (Abelian) groups reduces
to reduced perspective p-groups, reduced perspective torsion-free groups and mixed
perspective not splitting groups. Some of such results are proved in the sequel. The
reader can convince himself that even for highly predictable (for Abelian groups
theorists) results, in the torsion and in the torsion-free cases, the proofs are not at
all easy.

Therefore the nonsplitting mixed case was not addressed. Since all we know
about the torsion part of such a group is that it is pure in the whole group, the
question of which pure subgroups of perspective groups are also perspective (just
partly addressed) becomes central.

3.3. Perspective p-groups. First, perspective divisible p-groups are described
below. For the proof, recall that the socle of Z(p∞) is its smallest nonzero sub-
group (having order p) and that each subsocle of divisible p-group D supports some
summand of D.

Proposition 3.6. A divisible p-group is perspective iff it has finite rank. As such
it is isomorphic to a finite direct sum of Z(p∞).

Proof. As already mentioned, an infinite rank direct sum of Z(p∞) is not perspective
(see nonexample in the preceding section). Conversely, let D be a divisible p-group.
The proof goes by induction on rank of D. If r(D) = 1 then D is indecomposable
and so trivially perspective.

Let r(D) = n+ 1, D = A⊕B = C ⊕ U and A ∼= C. We go into several cases.
1) Let A + C 6= D. Then D = (A + C) ⊕ D′ for some D′ 6= 0 and so A

and C are summands in a divisible group A + C of rank ≤ n. By induction
A+C = A⊕K = C ⊕K for some K, whence D = A⊕ (K ⊕D′) = C ⊕ (K ⊕D′).

2) Let A+ C = D.
a) If A ∩ C = 0 then D = A ⊕ C, so B ∼= C. Denote an isomorphism by

f : B → C. Using Theorem 2.6, the subgroup B′ = {b+ f(b) | b ∈ B} is a diagonal,
so a summand of D such that A ∩D′ = C ∩B′ = 0 and D = A⊕B′ = C ⊕B′.

b) Let A ∩ C 6= 0, so (A ∩ C)[p] ≤ A[p], C[p] where A[p] ∼= C[p].
If (A ∩C)[p] = A[p] then also (A ∩ C)[p] = C[p]. Hence A[p] = C[p], and by [2],

D = A⊕B = C ⊕B.
Next assume that 0 6= (A ∩ C)[p] < A[p], so (A ∩ C)[p] < C[p]. There exist a

summand A1 of A with A1[p] = (A ∩ C)[p], A = A1 ⊕A2. Similarly C = C1 ⊕ C2,
where C1[p] = (A ∩ C)[p]. Since A ∼= C and A1[p] = C1[p] it follows that A1

∼= C1

and so A2
∼= C2.

3) Let A2 + C2 6= D. Then as in case 1), D = A2 ⊕ V = C2 ⊕ V for some V
and so A = A2 ⊕ (A∩ V ) and C = C2 ⊕ (C ∩ V ). Here V has rank ≤ n and A∩ V ,
C ∩ V are isomorphic summands, so by induction V = (A ∩ V )⊕L = (C ∩ V )⊕L
for some L. Finally D = [A2 ⊕ (A ∩ V )]⊕ L = [C2 ⊕ (C ∩ V )]⊕ L.

4) Let A2+C2 = D. Since A2∩C2 = 0, as in case 2 a), D = A2⊕M = C2⊕M
for some M . Since r(M) ≤ n, by induction, A ∩M and C ∩M are perspective in
M , and as in case 3), A and C are perspective in D. �

If m is a cardinal and G is a group then G(m) denotes the direct sum of m copies
of G.

The previous proposition has the following
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Corollary 3.7. For any cardinal m and any natural number n, the group G =
Z(pn)(m) is perspective iff m is finite.

Proof. As already mentioned, an infinite rank direct sum of Z(pn) is not perspective
(see nonexample in the preceding section). Conversely, if D is a divisible hull of
G then G = D[pn]. If G = A ⊕ B = C ⊕ K, A ∼= C, then by Proposition 3.6,
D = DA ⊕ U = DC ⊕ U for some U ≤ D, where DA, DC are the divisible hulls
of A, C, respectively. So G = D[pn] = DA[p

n] ⊕ U [pn] = DC [p
n] ⊕ U [pn], where

DA[p
n] = A, DC [p

n] = C. �

Next, about finite or bounded p-groups, we have

Proposition 3.8. The finite p-groups are perspective.

Proof. The proof goes by induction on the order |G| of the group G. Let G =
G1 ⊕G2, where G1 is a direct sum of finitely many groups Z(pn), where pn is the
maximal order of elements in G, G = A⊕B = C ⊕K and A ∼= C.

By Corollary 3.7 G1 is perspective. Note that if A∩G1 6= 0 then also C∩G1 6= 0.
Otherwise, if C ∩G1 = 0, since G1 is an absolute direct summand (see [2], Exercise
8 of §9) of G, we can suppose that C ≤ G2. However, in this case C would not
have any element of order pn but in A such elements exist in view of A ∩ G1 6= 0.
This would contradict the isomorphism A ∼= C.

Since in a direct sum of cyclic groups each subsocle supports some summand of
this group (see [3], Exercise 3 of §66) it follows that A = A1 ⊕ A2, C = C1 ⊕ C2,
where A1[p] = (A ∩ G1)[p], C1[p] = (C ∩ G1)[p]. These direct decompositions
of cyclic groups are isomorphic, so from A ∼= C it follows that A1

∼= C1 and so
A2

∼= C2. Hence by Corollary 3.7, G1 = A1 ⊕ U = C1 ⊕ U for some U . Then
A = A1 ⊕ A3, C = C1 ⊕ C3, where A3 = [A ∩ (U ⊕ G2)], C3 = [C ∩ (U ⊕ G2)].
So A3, C3 are isomorphic direct summands in U ⊕ G2. Since |U ⊕ G2| < |G|, by
induction U ⊕ G2 = A3 ⊕ V = C3 ⊕ V . Hence G = G1 ⊕ G2 = (A1 ⊕ U) ⊕ G2 =
(A1⊕A3)⊕V = (C1⊕C3)⊕V , where A1⊕A3 = A and C1⊕C3 = C, as desired. �

Since summands of perspective groups are perspective it follows from the nonex-
ample mentioned before that the Ulm-Kaplanski invariants fn(G) of perspective
reduced p-groups G are finite for all integer n ≥ 0. Thus a basic subgroup of G is
countable and so |G| ≤ 2ℵ0 [2]. Therefore

Corollary 3.9. Any perspective bounded p-group is finite.

For (Abelian) groups we can introduce the following
Definition. A group is called finitely perspective if it is perspective with respect

to finite (direct) summands. Then we can prove a surprising (specific for Abelian
groups) result.

Proposition 3.10. Each p-group G is finitely perspective.

Proof. Let A ∼= C be finite summands of G. Then pmA = 0 for some integer
m ≥ 1, and so also pmC = 0 and pm(A + C) = 0. Hence A + C ≤ H for a
pmG-high subgroup H . By a theorem of Khabbaz (see [2], Theorem 27.7), H is
a summand of G = H ⊕ F . We have H = H1 ⊕ · · · ⊕ Hm, where Hi is a direct
sum of groups Z(pi) whenever Hi 6= 0. Let πiG → Hi be the projections for
i = 1, . . . ,m. Since A + C is finite, it follows that each πi(A + C) is finite, and
A + C ≤ π1(A + C) ⊕ · · · ⊕ πm(A + C). Each πi(A + C) is contained in some
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finite summand H ′
i of Hi and so H ′ = H ′

1 ⊕ · · · ⊕ H ′
m is a finite summand in

H = H ′ ⊕ H ′′. By Proposition 3.8, H ′ = A ⊕ U = C ⊕ U for some U . Then
G = A⊕ (U ⊕H ′′ ⊕ F ) = C ⊕ (U ⊕H ′′ ⊕ F ). �

We just mention that if G = A⊕C, where A ∼= C then G = A⊕U = C ⊕U , for
any diagonal U with respect to A and C.

Let A be a class of (Abelian) groups and G ∈ A. A relativization of our main
property can be defined.

Definition. We call A perspective in class A if for G = A⊕B = C ⊕K, where
A ∼= C and G ∈ A it follows that G = A⊕ U = C ⊕ U for some U .

Then we can prove a result on torsion-complete (for several equivalent definitions
for reduced groups, see [3], Theorem 68.4) p-groups

Proposition 3.11. The torsion-complete p-groups A with finite Ulm-Kaplanski
invariants are perspective in the class of separable p-groups.

Proof. Let G = A ⊕ B = C ⊕ K, where A ∼= C and let G be a separable p-
group. Then G = (A1 ⊕ · · · ⊕An)⊕ (A∗

n ⊕B) = (C1 ⊕ · · · ⊕Cn)⊕ (C∗
n ⊕K), where

A = (A1⊕· · ·⊕An)⊕A∗
n, C = (C1⊕· · ·⊕Cn)⊕C∗

n, and A1⊕· · ·⊕An, C1⊕· · ·⊕Cn

respectively, are summands of the basic subgroups of A, C (Ak, Ck are direct sums
of cyclic groups of order pk). By Proposition 3.10, G = (A1 ⊕ · · · ⊕ An) ⊕ U (n),
G = (C1 ⊕ · · · ⊕ Cn) ⊕ U (n), where we can choose the U (n)’s, such that U (n+1)

is a summand in U (n) and U (n)/U (n+1) is a direct sum of cyclic groups of order

pn+1. So G has a basic subgroup of type (
⊕

n≥1 An)⊕(
⊕

n≥1 V
(n)
n ) = (

⊕

n≥1 Cn)⊕

(
⊕

n≥1 V
(n)
n ), where V

(n)
n is a summand in U

(n)
n , each U

(n)
n is a summand in U (n)

and is a direct sum of cyclic groups of order pn. So by [3],Theorem 71.3, G =

A ⊕ U = C ⊕ U , where X is the torsion completion of X and A = (
⊕

n≥1 An),

C = (
⊕

n≥1 Cn), U = (
⊕

n≥1 V
(n)
n ). Hence G = A⊕ (G ∩ U) = C ⊕ (G ∩ U), and

the proof is complete. �

3.4. Perspective torsion-free groups. As it is well known, the divisible torsion-
free groups are the direct sums of Q.

Proposition 3.12. A torsion-free divisible group is perspective iff it has finite rank.
As such, it is isomorphic to a finite direct sum of Q.

Proof. As already mentioned, an infinite rank direct sum of Q is not perspective.
Conversely, for a torsion-free divisible group D, the proof goes by induction on the
rank of D. Let r(D) = n+ 1, A and B are isomorphic summands of D.

If A+B < D then D = (A+B)⊕C and r(A+B) ≤ n, so A+B = A⊕H = B⊕H ,
since by induction the divisible group A+B is perspective. ThenD = A⊕(H⊕C) =
B ⊕ (H ⊕ C).

Assume now that A+B = D. Only two cases are possible.
1) If K := A ∩ B 6= 0 then K is divisible and D = K ⊕ L for some L ≤ D. We

have A = K ⊕ (A ∩ L), B = K ⊕ (B ∩ L). Here A ∩ L ∼= B ∩ L, so by induction
L = (A ∩ L) ⊕ C and L = (B ∩ L) ⊕ C whence D = [K ⊕ (A ∩ L)] ⊕ C and
D = [K ⊕ (B ∩ L)]⊕ C, where [K ⊕ (A ∩ L)] = A, [K ⊕ (B ∩ L)] = B.

2) If A∩B = 0 then D = A⊕B and since A ∼= B it follows that A = Qa1⊕· · ·⊕
Qam and B = Qb1 ⊕ · · · ⊕ Qbm for some 0 6= a1, . . . , am, b1, . . . , bm ∈ D (with A
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and B considered as vector spaces on field Q). Then D = A⊕H = B ⊕H , where
H = Q(a1 + b1)⊕ · · · ⊕Q(am + bm). �

It was already mentioned that Z is perspective since it is indecomposable and
that Z⊕ Z is not perspective (see Remark 2.5). It follows

Proposition 3.13. The only perspective free group is Z.

Since the rational groups (the subgroups of Q) are also indecomposable it follows

Proposition 3.14. The only perspective rank 1 torsion-free groups are the rational
groups.

Clearly

Proposition 3.15. If a torsion-free group has a summand isomorphic to Z⊕Z, it
is not perspective.

Next we characterize some perspective homogeneous completely decomposable
groups.

Note that, similarly to Proposition 3.3, we can prove the following

Proposition 3.16. Let G =
∏

i∈I Hi, where each subgroup Hi is fully invariant in
G. Then G is perspective iff all Hi, i ∈ I, are perspective.

Let p be a prime number and Qp the group (ring) of all rational numbers with
denominator coprime with p.

Proposition 3.17. Let G be a homogeneous completely decomposable group with
type t(G) = t(Qp). The group G is perspective iff G has finite rank.

Proof. As already mentioned, only one way needs a proof. Suppose the rank of G
is finite and G = A ⊕ B = C ⊕K, where A ∼= C. The proof goes by induction on
n = r(G) the rank of G. We distinguish several cases.

1) A1 = A ∩ C 6= 0. Then A1, as pure subgroup, is a summand in G (see [3],
Lemma 86.8), say A = A1 ⊕ A2, C = A1 ⊕ C2, where C2 = (A2 ⊕ B) ∩ C. So
A2 ⊕ B = C2 ⊕ V for some V . By the induction hypothesis A2 ⊕ U = C2 ⊕ U for
some U . Hence G = (A1 ⊕ A2) ⊕ U = (A1 ⊕ C2) ⊕ U , where A1 ⊕ A2 = A and
A1 ⊕ C2 = C.

2) F = B ∩K 6= 0. Then B = B′ ⊕ F and K = K ′ ⊕ F for some B′, K ′ and
(A⊕F )⊕B′ = (C⊕F )⊕K ′, where B′∩K ′ = 0. If now (A⊕F )⊕U = (C⊕F )⊕U
then A⊕ (F ⊕ U) = C ⊕ (F ⊕ U). So this case reduces to B ∩K = 0.

3) AK = A ∩ K 6= 0. Then A = AK ⊕ A2, K = AK ⊕ K2 for some A2,
K2 such that A2 ≤ C ⊕ K2. Let π : C ⊕ K2 → C be the projection and let
C2 = 〈π(A2)〉 be the pure hull of π(A2) in C. Since A2 ∩ K2 = 0 then C2

∼= A2

and it follows that A2 ≤ C2 ⊕ K2, and so C2 ⊕K2 = A2 ⊕ V for some V . Since
r(C2 ⊕ K2) < n by induction hypothesis C2 ⊕ U = A2 ⊕ U for some U . So
(C1 ⊕ C2)⊕ (AK ⊕ U) = (AK ⊕A2)⊕ (C1 ⊕ U), where AK

∼= C1. Hence if H is a
diagonal in AK ⊕C1 (with respect to AK and C1) then C⊕(H⊕U) = A⊕(H⊕U).
The case C ∩B 6= 0 is similar.

4) A ∩ C = A ∩K = B ∩K = C ∩B = 0. It follows that r(A) = r(B) = r(K).
Let R = Qp. Then G is a free R-module of rank n = 2m. We have A =

⊕m
i=1 Rai,

B =
⊕m

i=1 Rbi, C =
⊕m

i=1 Rci, and K =
⊕m

i=1 Rki. Since the pure submodules
are summands in G, we can choose ci = a′i + b′i for some a′i = riai, b

′
i = sibi, where

ri, si ∈ R.
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Assume si ∈ pR, i = 1, . . . , l for some l ≤ m and si ∈ R\pR for i = l+1, . . . ,m.
Note that if si ∈ pR then ri ∈ R \ pR, and similarly if ri ∈ pR then si ∈ R \ pR.

Let H =
⊕l

i=1 R(ai+ bi). Then r−1
i ci = ai+ s′ibi, where s

′
i = r−1

i si for i = 1, . . . , l.
Observe that H∩C = 0. Indeed, if h ∈ H and h = t1(a1+b1)+· · ·+tl(al+bl) ∈ C

for some t1, . . . , tl ∈ R, then [t1(a1 + b1) + · · ·+ tl(al + bl)]− [t1(a1 + s′ib1) + · · ·+
tl(al + s′ibl)] = t1(1 − s′1)b1 + · · ·+ tl(1 − sl)bl ∈ C ∩ B = 0. So t1 = · · · = tl = 0,
i.e. h = 0.

Assume also that ri ∈ pR for i = l+1, . . . , l+ r, when l+ r ≤ m and ri ∈ R \pR
for i = l + r + 1, . . . ,m when l + r < m. Then as before L ∩ (C ⊕H) = 0, where

L =
⊕l+r

i=l+1 R(ai + bi). If l + r < m then let M =
⊕m

i=l+r+1 R(ai + ci). We show
that A ⊕ (H ⊕ L ⊕ M) = C ⊕ (H ⊕ L ⊕ M) = G. Indeed, this follows from the
fact that these sums of summands are direct, as for the construction we used linear
independent subsystems and these sums equal G since these contain the basis of G.

From the construction ofH and L it follows that bi ∈ A⊕H⊕L for i = 1, . . . , l+r.
Since ci = riai + sibi, where si are invertible in R for i = l+ r+1, . . . ,m it follows
that bi ∈ A ⊕M for the specified i. Hence G = A ⊕ (H ⊕ L ⊕M). It remains to
prove that ai, bi ∈ C ⊕ (H ⊕ L ⊕M) for all i = 1, . . . ,m. Indeed, if for example,
i = 1, . . . , l, then ci−(riai+ribi) = (riai+sibi)−(riai+ribi) = (si−ri)bi ∈ C⊕H .
Since si ∈ pR and ri ∈ R \ pR we get si − ri ∈ R \ pR, so this element is invertible
in R, whence bi and so ai belong to C ⊕H ≤ C ⊕ (H ⊕ L ⊕ M) for i = 1, . . . , l.
Similarly we can prove that all ai, bi ∈ C ⊕ (H ⊕ L ⊕ M) for i = 1, . . . ,m, i.e.
G = C ⊕ (H ⊕L⊕M). Since the sum of the ranks of H , L, M equals m the latter
sum is direct. �

Remark. Since the pure subgroups of group G in the previous proposition are
summands of G, this is a trivial example of groups with all pure subgroups being
perspective.

The next result draws attention on rank 2 summands of homogeneous torsion-
free groups of finite rank.

Lemma 3.18. If G is a torsion-free homogeneous group of finite rank then G is
perspective iff G has a perspective rank 2 summand.

Proof. The condition is necessary since summands of perspective groups are per-
spective.

Conversely, since equal rank summands of G are isomorphic, it suffices to focus
on any summand. Let G = A⊕B = C ⊕K, where A ∼= C. As in Proposition 3.17,
we can assume that A ∩ C = A ∩ K = 0. Let 0 6= a ∈ A and a = c + x, where
c ∈ C, x ∈ K (c, x 6= 0). If A1 = 〈a〉∗, C1 = 〈c〉∗, K1 = 〈x〉∗ then A1, C1 and K1

are (rank 1) summands, so A = A1 ⊕ A2, C = A1 ⊕ C2, K = K1 ⊕K2 and G =
(C1⊕K1)⊕(C2⊕K2). By hypothesis, C1⊕K1 = C1⊕W1 = A1⊕W1 for someW1, so
G = C1⊕(W1⊕C2⊕K2) = A1⊕(W1⊕C2⊕K2). Since A = A1⊕A∩(W1⊕C2⊕K2),
considerA2 = A∩ (W1 ⊕C2 ⊕K2). Hence W1 ⊕C2 ⊕K2 = A2 ⊕L for some L and
we complete the proof by induction: W1 ⊕ C2 ⊕K2 = C2 ⊕W = A2 ⊕W so G =
C1⊕(W1⊕C2⊕K2) = (C1⊕C2)⊕W = A1⊕(W1⊕C2⊕K2) = (A1⊕A2)⊕W . �

Using Proposition 3.3 and Proposition 3.16 it follows that
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Corollary 3.19. Let G =
⊕

p∈P Gp (G =
∏

p∈P Gp), where P is some subset of
prime numbers and Gp are homogeneous completely decomposable groups of finite
rank with type t(Gp) = t(Qp). Then the group G is perspective.

Next, we describe the perspective torsion-free algebraically compact groups. De-

note by Ẑp be the ring (group) of p-adic integers and by P the set of all prime
numbers.

Proposition 3.20. A non-zero torsion-free algebraically compact group G is per-
spective iff G =

∏

p∈π Gp, where ∅ 6= π ⊆ P and Gp is a finite direct product of

copies of the group Ẑp.

Proof. To show that the condition is necessary, first recall that any torsion-free
algebraically compact group G has the form G =

∏

p∈π Gp, where Gp is a p-adic

algebraically compact group (see [2], Proposition 40.1), and in particular, is Ẑp-

module. So the rank of each Gp is finite, i.e. Gp is a free Ẑp-module of finite
rank.

To show that the condition is sufficient, also recall that intersections of summands
in torsion-free p-adic algebraically compact groups are also summands of this group.

Next note that in the ring Ẑp, all elements of Ẑp \ pẐp are invertible, and that in

any Ẑp-module of finite rank, pure submodules are summands. As in Proposition
3.17, one can prove that p-adic algebraically compact modules of finite rank are
perspective. Then using Proposition 3.16, the proof is complete. �

Example 3.21. Let G = G1⊕· · ·⊕Gn, where Gi, 1 ≤ i ≤ n are perspective groups
and Hom(Gi, Gj) = 0 for i = 2, . . . , n and 1 ≤ j ≤ i− 1. Then G is perspective.

Proof. The proof goes by induction on n. If G2⊕ · · ·⊕Gn is perspective then since
it is fully invariant in G, it is perspective by Corollary 2.4. �

Next, we give some examples and nonexamples.
Recall that a torsion-free group G is called cohesive if G/H is divisible for all

pure subgroups H 6= 0 of G. For some facts about such groups see [3], 88, exercise
17.

Example 3.22. A perspective direct sum of pure subgroups of a perspective group.

By Proposition 3.20, the group G =
∏

p∈P
Ẑp is perspective. Let Ai, i = 1, . . . , n,

be pure subgroups of G such that pωAi = 0 for all p ∈ P and r(Ai) = mi, where
1 ≤ m1 < · · · < mn ≤ 2ℵ0 . Then Ai are cohesive groups (see [7], 32). If A =
A1 ⊕ · · · ⊕An, then A is perspective.

Indeed, each Ai is perspective as indecomposable group and
⊕n

j=i Aj is fully

invariant in A for all i = 2, . . . , n−1. This follows from the fact that Hom(Aj , Ai) =
0 for every i < j, owing that since r(Ai) < r(Aj), each homomorphism f : Aj → Ai

has a non-zero kernel and so f(Aj) is divisible, whence f = 0.

In general we can ask
Question. Which pure subgroups of a perspective group are perspective ?

Example 3.23. A subgroup of a perspective group which is not perspective.
Let G be the torsion-free group of rank n ≥ 3 as in [3], 88, exercise 8. Then G

is perspective as an indecomposable group but all the subgroups in G of rank n− 1
are free. So the proper subgroups of rank ≥ 2 of G are not perspective.
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Example 3.24. A factor group of perspective groups which is not perspective.
Let G be a torsion-free cohesive group with r(G) ≥ ℵ0 and let H be a pure

subgroup of G such that r(G/H) ≥ ℵ0 (e.g., a pure subgroup H of rank 1). Then
G/H is not perspective being divisible torsion-free group of infinite rank, but G
and H are perspective being indecomposable groups.

Example 3.25. A factor group of a not perspective group may be perspective.
Let X = {an : n ∈ N∗} and let G = 〈X〉 be free of countable rank. Consider

the function f : X → Q, f(an) = 1
n! for every n ∈ N∗. The group G being

free, f extends to a group homomorphism f : G → Q, obviously surjective (as
Q =

〈

1
n! : n ∈ N∗

〉

). So G is not perspective but Q ∼= G/ ker(f) is perspective.

As in the module case, conditions for a perspective group G which assure that
G⊕G is also perspective, are of interest (and difficult to find).

In closing, we address this problem for rank 1 torsion-free groups, which are
perspective as indecomposable groups.

First, a simple lemma which is well known

Lemma 3.26. Each subgroup A of torsion-free group G of rank 1, isomorphic to
the whole group, is of form nG, for some integer n ≥ 1.

Proof. If f : G → A is an isomorphism then f acts as multiplication with some
rational number n/m, where mG = G, and so f(G) = nG = A. �

Next, a characterization.

Proposition 3.27. Let G be a torsion-free group of rank 1. Then G ⊕ G is per-
spective iff for all coprime integers m,n ≥ 1 and all integers k, t ≥ 0, such that

(i) at least one of k, t is non-zero, and
(ii) if one of k, t is zero then the other is equal to 1, and
(iii) if both k, t are non-zero these are coprime,
in each of the following cases:
1) mG 6= G, k = 1, t = 0,
2) nG 6= G, k = 0, t = 1,
3) mG 6= G, tG 6= G, where t 6= 0,
4) mG,nG 6= G,
there exist coprime integers s, l with (ml − sn)G = G, (kl − st)G = G.

Proof. To show that the conditions are necessary, we present G⊕G as F = Ra⊕bR,
where R is an additive subgroup with 1 of Q, isomorphic to G. Since m, n are
coprime, the subgroupR(ma+nb) is pure, so its is a summand of F . Let π : F → Ra
and θ : F → Rb be the projections and let A and C be isomorphic rank 1 summands
of F . Hence A = R(ma + nb) and C = R(ka + tb) for some m,n, k, t ∈ Z, where
at least one of {m,n} is 1 and the corresponding integer of {k, t} is non-zero. It
suffices to consider the case m,n 6= 0. Since A is a summand of F , dG = G for
d = gcd(m,n), so we can consider d = 1. Similarly, if t = 0 and C = Rka then
kG = G, so we can assume k = 1.

1) Let mG 6= G. Assume that F = R(ma + nb) ⊕ U = Ra ⊕ U for some U ,
i.e. in this case k = 1, t = 0. Clearly U 6= Ra,Rb and so π(U), θ(U) 6= 0, whence
π(U) = Rsa, θ(U) = Rlb for some coprime integers s, l ≥ 1 (by Lemma 3.26)
and so U = R(sa + lb). We have −s(ma + nb) + m(sa + lb) = (ml − sn)b and
−sa + (sa + lb) = lb. Since the presentation of elements is unique in direct sums
and Rb ≤ F , it follows that (ml − sn)G = lG = G.
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2) Let nG 6= G. Assume that F = R(ma + nb) ⊕ U = Rb ⊕ U for some U , i.e.
in this case t = 1, k = 0. Clearly U 6= Ra,Rb and as above we can show that
(ml − sn)G = sG = G for some m, l ∈ Z with coprime s , l.

3) Let mG 6= G, tG 6= G for t 6= 0. Clearly U 6= Ra,Rb, so U = R(sa+ lb), with
coprime s, l. We have −s(ma+ nb) +m(sa+ lb) = (ml − sn)b and −s(ka+ tb) +
k(sa+ lb) = (kl − st)b. Hence (ml − sn)G = G, (kl − st)G = G.

4) Let mG,nG 6= G. Then U 6= Ra,Rb, so, as in case 3), (ml − sn)G = G,
(kl − st)G = G for some coprime s, l ∈ Z.

To show that the conditions are sufficient, let F = A⊕B = C ⊕K, A ∼= C and
r(A) = 1. We consider several cases.

I. a) A = Ra, C = Rb. We can choose U = R(a+ b).
b) A = R(m′a + n′b), where m′G = n′G = G. If C = Rb we can take U = Ra,

and if C = Ra we can take U = Rb.
c) A = R(m′a+ n′b), C = R(k′a+ t′b), where m′G = n′G = G, k′G = t′G = G.

Then we can choose U = Ra or U = Rb.
II. A = R(ma+ nb), where mG 6= G or nG 6= G.
If A = R(ma+ nb), C = R(ka+ tb), mG 6= G, nG = G, tG = G and kG = G or

kG 6= G, k 6= 0, then in both cases we can take U = Ra. Also U = Ra if C = Rb.
1) A = R(ma + nb), where mG 6= G and C = Ra, i.e. k = 1, t = 0. Since

mG 6= G then n 6= 0 (otherwise A is not summand of F ). Then by hypothesis
there exist coprime s, l ∈ Z with (ml− sn)G = G, lG = G. If U = R(sa+ lb) then
−s(ma+nb)+m(sa+lb) = (ml−sn)b, −sa+(sa+lb) = lb and −l(ma+nb)+n(sa+
lb) = (ns− lm)a, where (ml − sn)G = G and lG = G, so Ra,Rb ≤ A ⊕ U,C ⊕ U
whence F = A⊕ U = C ⊕ U .

2) A = R(ma + nb), where nG 6= G, so m 6= 0, and C = Rb, i.e. k = 0, t = 1.
Let s, l ∈ Z be coprime, (ml − sn)G = G, tG = G and U = R(sa+ lb). As in the
previous case 1), F = A ⊕ U = C ⊕ U . The remaining cases 3) and 4) are similar
and since this way all the possible cases are covered, the proof is complete. �

Corollary 3.28. Let G be a torsion-free group of rank 1 such that G ⊕ G is per-
spective. Then G is p-divisible at least for one prime number p.

Proof. As in Proposition 3.27, assume (ml − sn)G = G and (kl − st)G = G.
Moreover, assume that ml − sn = ±1 and kl − st = ±1. Then if t = 0 we have
l = ±1 and so ±m ± 1 = sn. Since we can choose coprime m and n such that
(±m± 1)/n /∈ Z, it follows G is not divisible only by ±1. �

The converse fails as shows the following

Example 3.29. If G is a torsion-free group of rank 1, with 2G, 5G 6= G and G is
divisible only by 11, then G⊕G is not perspective.

By contradiction, suppose G⊕G is perspective. Then according to Proposition
3.27, 5l − 2s = ±11a, kl − st = ±11b, for some integers a, b ≥ 0. Taking l = 0 we
can suppose t = 1 and so s = ±11b and 5l ± 2 · 11b = ±11a. Since (l, 11b) = 1 we
get b = 0 or a = 0. If b = 0 then the equation 5l± 2 = ±11a has no solutions since
the last digit of the RHS 1 but is 2 or 7 in the LHS. If a = 0 then the equation
5l± 1 = ±2 · 11b has no solutions since the last digit of the RHS is 2 but is 1 or 6
in the LHS.

A result of the same sort is the following
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Proposition 3.30. If G is a torsion-free homogeneous of rank 1 group such that G
is divisible for all prime numbers except two coprime numbers p and q then G⊕G
is perspective.

Proof. Let F = G ⊕ G and F = A ⊕ B = C ⊕K, where A ∼= C, r(A) = 1. As in
the previous proposition 3.27, we take A = R(ma + nb), C = R(ka + tb), and in
view of the sufficiency part, we can suppose m,n, k, t 6= 0. We are searching U such
that U = R(sa+ lb), where (s, l) = 1. Consider all the possible cases with respect
to divisibility of G by m,n, k, t (in the next table, the sign ”+” means divisibility
by the corresponding number, sign ”–” not divisibility).

1 2 3 4 5 6 7 8 9 10 11 12

m + + + + + − − − − + − −

n + + + + − + − − − − + +

k + + − − + + − − + + + −

t + − + − + + − + + − − +

As the cases {2, 3, 5, 6}, {4, 9} and {10, 12} are respectively similar, it suffices to
check the cases 2, 4 and 10.

1)–2) mG = nG = kG = G and tG = G or tG 6= G. If U = Rb then F =
R(ma+ ng)⊕ U = R(ka+ tb)⊕ U .

4) mG = nG = G, and kG, tG 6= G. Since gcd(k, t) = 1, let p | k, q | t and
q ∤ k, p ∤ t. If now U = R(qa + pb), i.e. s = q, l = p, then p, q ∤ (mp − qn) and
p, q ∤ (kp− qt), so (mp− qn)G = G, (kp− qt)G = G. Consequently, by Proposition
3.27, F = A⊕U = C ⊕U . If p | t, q | k, where q ∤ t, p ∤ k and U = R(pa+ qb) then
p, q ∤ mq − pn, p, q ∤ kq − pt.

7) mG,nG, kG, tG 6= G.
a) p | m, t and q | n, k. If U = R(a+ b) then p, q ∤ m− n and p, q ∤ k − t.
b) p | m, k and q | n, t. Let U = R(qa+pb), then p, q ∤ mp− qn and p, q ∤ kp− qt.
8) p | m, k and q | n, tG = G.
a) q ∤ k. If U = R(qa+ b) then p, q ∤ m− qn and p, q ∤ k − qt.
b) q | k. If U = R(a+ b), then p, q ∤ m− n and p, q ∤ k − t.
10) mG, kG = G and nG, tG 6= G. If U = Rb then F = A⊕ U = C ⊕ U .
11) a) q | m, t and p ∤ m, t, but nG = kG = G. Let U = R(pa + b), i.e. s = p,

l = 1. Then p, q ∤ m− pn and p, q ∤ k − pt.
b) p, q | m, t. If U = R(a+ b) then p, q ∤ m− n, and p, q ∤ k − t.
c) p ∤ m, q | m and q ∤ t, p | t. If U = R(pa + qb), i.e. s = p, l = q then

p, q ∤ mq − pn and p, q ∤ kq − pt. �
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