ON PERSPECTIVE ABELIAN GROUPS

GRIGORE CĂLUGĂREANU, ANDREY CHEKHLOV

Abstract

As a special case of perspective R-modules, an Abelian goup is called perspective if isomorphic summands have a common complement. In this paper we describe many classes of such groups.

1. Introduction

This paper concerns about direct summands of Abelian groups. To simplify the writing, G will denote an (arbitrary) Abelian group and by some different letters we denote direct summands of G. In what follows, since all summands we consider are direct, we remove this adjective. Moreover, the word "complement" will be used only for direct complements. In trying to make a notation difference, by $\mathbb{Z}(m)$ we denote the Abelian group and by \mathbb{Z}_{m} we denote the ring of integers modulo m. For an Abelian group G, by $\operatorname{End}(G)$ we simply denote $\operatorname{End}_{\mathbb{Z}}(G)$, that is, the endomorphism ring of G.

We start with the following general
Definition (see [5). Let L be a bounded lattice. Two elements $x, y \in L$ are said to be perspective (in L) provided they have a common (direct) complement, i.e., an element $z \in L$ such that $x \vee z=y \vee z=1, x \wedge z=y \wedge z=0$. This definition comes back to John von Neumann.

Specializing for the submodule lattice of a module, two summands A, B of a module M will be denoted by $A \sim B$, if they have a common complement, i.e., there exists a submodule C such that $M=A \oplus C=B \oplus C$. It is clear that $A \sim B$ implies $A \cong B$. A module M is called perspective when $A \cong B$ implies $A \sim B$ for any two summands A, B of M.

A module ${ }_{R} M$ over a ring R is said to satisfy internal cancellation (or we say M is internally cancellable; IC, for short) if, whenever $M=K \oplus N=K^{\prime} \oplus N^{\prime}$ (in the category of R-modules), $N \cong N^{\prime} \Rightarrow K \cong K^{\prime}$ [or $\left.M / N \cong M / N^{\prime}\right]$.

It is clear that perspective modules satisfy the internal cancellation property in the sense that complements of isomorphic summands are isomorphic (see [6]).

The modules definition can be restricted to rings as follows
Definition A ring R is called perspective if isomorphic direct summands of ${ }_{R} R$ have a common (direct) complement.

This property for rings turns out to be left-right symmetric, that is, ${ }_{R} R$ is perspective if and only if R_{R} is perspective for any ring R and we call such ring a perspective ring.

In this paper, we characterize some large classes of perspective Abelian groups. In the sequel, the word "group" will always mean an "Abelian group".

[^0]Our main results are the following.

1) For large classes of Abelian groups, we show that the perspectivity is equivalent to finite rank. These are: the divisible primary groups, the divisible torsion-free groups, the homogeneous completely decomposable groups with type $\mathbf{t}\left(\mathbb{Q}_{p}\right)$.
2) The only perspective rank 1 torsion-free groups are the rational groups. In particular, the only free perspective group is \mathbb{Z}.
3) Any finite p-group is perspective. Any bounded perspective p-group is finite.
4) A torsion group is perspective iff so are all its primary components.
5) (a) Let $G=T(G) \oplus F$ where $T(G)$ is the torsion part of G and F is torsion-free. Then G is perspective iff $T(G)$ and F are perspective
(b) Let $G=D(G) \oplus R$ where $D(G)$ is the divisible part of G and R is reduced. Then G is perspective iff $D(G)$ and R are perspective.
6) We describe the perspective torsion-free algebraically compact groups.
7) For any rational group H (i.e., rank 1 torsion-free group) we characterize when $H \oplus H$ is perspective.

Section 2 recalls a few general results on perspective modules from [4], which are used in the sequel. Section 3 contains our results on perspective Abelian groups, divided into subsection 3.1, about definitions, subsection 3.2, about reduction theorems, subsection 3.3, about perspective torsion groups and subsection 3.4, about perspective torsion-free groups. Some examples are given in the end.

2. Generalities on perspective modules

Definition 8.1 [8]. Let \mathcal{P} be a module-theoretic property. We say that \mathcal{P} is an endomorphism ring property (or ER-property for short) if, whenever A_{R} and A_{S}^{\prime} are right modules (over possibly different rings R and S) such that $\operatorname{End}\left(A_{R}\right) \cong$ $\operatorname{End}\left(A_{S}^{\prime}\right)$ (as rings), A_{R} satisfies \mathcal{P} implies that A_{S}^{\prime} does (and then, of course, also conversely).

As an exhaustive reference on perspective R-modules we mention [4]. However, not much will be used when describing the perspective Abelian groups.

For further reference we list here from [4].
Theorem 2.1. For a module M_{S} with $R=\operatorname{End}_{S}(M)$, the following conditions are equivalent:
(1) M is perspective.
(4) If erse $=e$ for some $e^{2}=e, r, s \in R$, then erte $=e$ for some $t \in R$ such that ete $\in U(e R e)$.

In particular, M_{S} is perspective iff R_{R} is perspective, i.e., perspectivity is an $\boldsymbol{E R}$-property.

We mention here a useful consequence (not recorded in 4]) of the previous theorem.

Corollary 2.2. Arbitrary products of perspective rings are perspective.
Proof. Suppose R is direct product of $R_{i}, i \in I$ and erse $=e$ for some $e^{2}=e, r, s \in$ R. As $e=\left(e_{i}\right), r=\left(r_{i}\right), s=\left(s_{i}\right)$ so erse $=e$ iff $e_{i} r_{i} s_{i} e_{i}=e_{i}$ for each i. As each R_{i} is perspective, so there exists t_{i} such that $e_{i} r_{i} t_{i} e_{i}=e_{i}$ and $e_{i} t_{i} e_{i} \in U\left(e_{i} R_{i} e_{i}\right)$. If $t=\left(t_{i}\right)$, then erte $=e$ and ete $\in U(e R e)$.

Proposition 2.3. Any direct summand of a perspective module is perspective.

Corollary 2.4. If M and N are perspective R-modules with $\operatorname{Hom}_{R}(M, N)=0$, then $M \oplus N$ is perspective.
Remark 2.5. The group $\mathbb{Z} \oplus \mathbb{Z}$ is not perspective. For example, $(2,5) \mathbb{Z}$ and $(1,0) \mathbb{Z}$ are isomorphic direct summands of \mathbb{Z}^{2} as a \mathbb{Z}-module, which do not have a common complement.

From [9] we recall a method of constructing common complements for some special direct sums.

Let $G=H \oplus K$. A subgroup D of G is called a diagonal in G (with respect to H and $K)$ if $D+H=G=D+K$ and $D \cap H=0=D \cap K$.

Theorem 2.6. Let $G=H \oplus K$. If $\delta: H \rightarrow K$ is an isomorphism then $D(\delta)=$ $D(H, \delta)=\{x+\delta(x) \mid x \in H\}=(1+\delta)(H)$ is a diagonal in G (with respect to H and K). Conversely, if D is a diagonal in G (with respect to H and K) there is a unique isomorphism $\delta: H \rightarrow K$ such that $D=D(\delta)$.

Thus, there is a bijection between the diagonals (with respect to H and K) and isomorphisms of H and K.

Every subgroup U of a direct sum $G=H \oplus K$ belongs to the direct product $\mathbf{L}=L(H) \times L(K)$ (i.e., has the form $H^{\prime} \oplus K^{\prime}$ for $H^{\prime} \leq H$ and $K^{\prime} \leq K$) or is a diagonal.

3. Perspective Abelian groups

First about the
3.1. Definition. As the Abelian groups analogue for \mathbb{Z}-modules, an (Abelian group) G is called perspective if isomorphic summands of G have a common complement.

In symbols: if $G=A \oplus H=B \oplus K$ with $A \cong B$, there exists (a summand) C such that $G=A \oplus C=B \oplus C$.

Nonexample. Let N be a group such that $N \nsubseteq N \oplus N$ and let $G=N_{1} \oplus$ $N_{2} \oplus N_{3} \oplus \ldots$ countably many copies with $N_{n}=N$. Then G is not IC (and so nor perspective).

Indeed, $H=N_{2} \oplus N_{3} \oplus \ldots$ and $S=N_{3} \oplus \ldots$ are isomorphic summands, but $G / H \cong N \nsupseteq N \oplus N \cong G / S$.

Remarks. 1) Obviously, if two summands of a group have a common complement, these are isomorphic.

Indeed, if $G=H \oplus K=L \oplus K$ then $H \cong G / K \cong L$.
Therefore, perspectivity is a converse of this property.
2) Indecomposable groups are trivially perspective (e.g., any infinite cyclic group, any cocyclic group or rank 1 torsion-free group).
3) We mention (see Proposition 3.10, [7]) that for two idempotent endomorphisms ε, δ of $G, \varepsilon(G) \cong \delta(G)$ iff there exists endomorphisms α, β of G such that $\varepsilon=\alpha \beta$ and $\delta=\beta \alpha$. Also equivalently, the left $\operatorname{End}(G)$-modules $\operatorname{End}(G) \varepsilon$ and $\operatorname{End}(G) \delta$ are isomorphic to each other. Since we deal only with direct summands, equivalently, we can deal only with the idempotent endomorphisms of the group. Thus, two "isomorphic" endomorphisms ε, δ [i.e., $\operatorname{im}(\varepsilon) \cong \operatorname{im}(\delta)]$ of a group G are perspective, if there is an endomorphism $\gamma \operatorname{such}$ that $\operatorname{im}(\varepsilon) \oplus \operatorname{im}(\gamma)=G=$ $\operatorname{im}(\delta) \oplus \operatorname{im}(\gamma)$.

More general, the group is $I C$ if for any two endomorphisms ε, δ of $G, \operatorname{im}(\varepsilon) \cong$ $\operatorname{im}(\delta)$ implies $G / \operatorname{im}(\varepsilon) \cong G / \operatorname{im}(\delta)$.
4) The group G is indecomposable iff $\operatorname{End}(G)$ has only the trivial idempotents (is connected). Such groups are trivially perspective.

Apparently there is another definition one could give for perspective Abelian groups.

Definition. An Abelian group G is called e-perspective if its endomorphism ring $\operatorname{End}(G)$ is (left or right) perspective.

However, it follows from Theorem 2.1 that for a module M_{S} with $R=\operatorname{End}_{S}(M)$, M_{S} is perspective iff R_{R} is perspective, i.e., perspectivity is an ER-property. Therefore, for $S=\mathbb{Z}$ it follows that

Proposition 3.1. An Abelian group is perspective iff it is e-perspective.
Hence, in the sequel we can use any of these two (equivalent) definitions.

3.2. Reduction theorems.

Proposition 3.2. Summands of perspective groups are perspective.
Proof. Suppose $G=H \oplus K$ and $H=S \oplus T=L \oplus N$ with $S \cong L$. Since these are direct summands also in G, by hypothesis, there is $M \leq{ }^{\oplus} G$ such that $G=S \oplus M=L \oplus M$. Then, by modularity of the subgroup lattice: $H=G \cap H=$ $(\underline{S} \oplus M) \cap \underline{H} \stackrel{\text { mod }}{=} \underline{S} \oplus(M \cap \underline{H})$ (since $S \leq H)$ and similarly $H=L \oplus(M \cap H)$, so $M \cap H$ is a common complement for S and L.

Proposition 3.3. Let $G=\bigoplus_{i \in I} H_{i}$ where each summand H_{i} is fully invariant in G.
Then G is perspective iff all $H_{i}, i \in I$, are perspective.
Proof. By Corollary 2.2, arbitrary products of perspective rings are perspective. It just remains to note that $\operatorname{End}(G) \cong \prod_{i \in I} \operatorname{End}\left(H_{i}\right)$ (see Theorem 106.1, [3], the $I \times I$ matrices are diagonal).

Corollary 3.4. Let G be a torsion group. Then G is perspective iff so are all its primary components.
Proof. A straightforward application of the previous proposition.
As customarily, this reduces the study of perspective torsion groups to perspective p-groups, for any prime p.

We can use Corollary 2.4 whenever $\operatorname{Hom}(G, H)=0$, that is, for: (i) G torsion, H torsion-free, (ii) G a p-group and H a q-group with different primes $p \neq q$, (iii) G divisible and H reduced. Thus

Corollary 3.5. (a) Let $G=T(G) \oplus F$ where $T(G)$ is the torsion part of G and F is torsion-free. Then G is perspective iff $T(G)$ and F are perspective.
(b) Let $G=D(G) \oplus R$ where $D(G)$ is the divisible part of G and R is reduced. Then G is perspective iff $D(G)$ and R are perspective.

Examples. $\mathbb{Z}_{m} \oplus \mathbb{Z}, \mathbb{Z}_{p \infty} \oplus \mathbb{Z}$ or $\mathbb{Z}_{p \infty} \oplus \mathbb{Q}$, all are perspective (splitting) mixed groups.

Therefore, the study of splitting mixed perspective (Abelian) groups reduces to perspective primary groups and to torsion-free groups. Moreover, it reduces to perspective divisible groups and to reduced groups.

According to these reductions, the study of perspective (Abelian) groups reduces to reduced perspective p-groups, reduced perspective torsion-free groups and mixed perspective not splitting groups. Some of such results are proved in the sequel. The reader can convince himself that even for highly predictable (for Abelian groups theorists) results, in the torsion and in the torsion-free cases, the proofs are not at all easy.

Therefore the nonsplitting mixed case was not addressed. Since all we know about the torsion part of such a group is that it is pure in the whole group, the question of which pure subgroups of perspective groups are also perspective (just partly addressed) becomes central.
3.3. Perspective p-groups. First, perspective divisible p-groups are described below. For the proof, recall that the socle of $\mathbb{Z}\left(p^{\infty}\right)$ is its smallest nonzero subgroup (having order p) and that each subsocle of divisible p-group D supports some summand of D.

Proposition 3.6. A divisible p-group is perspective iff it has finite rank. As such it is isomorphic to a finite direct sum of $\mathbb{Z}\left(p^{\infty}\right)$.

Proof. As already mentioned, an infinite rank direct sum of $\mathbb{Z}\left(p^{\infty}\right)$ is not perspective (see nonexample in the preceding section). Conversely, let D be a divisible p-group. The proof goes by induction on rank of D. If $r(D)=1$ then D is indecomposable and so trivially perspective.

Let $r(D)=n+1, D=A \oplus B=C \oplus U$ and $A \cong C$. We go into several cases.

1) Let $A+C \neq D$. Then $D=(A+C) \oplus D^{\prime}$ for some $D^{\prime} \neq 0$ and so A and C are summands in a divisible group $A+C$ of rank $\leq n$. By induction $A+C=A \oplus K=C \oplus K$ for some K, whence $D=A \oplus\left(K \oplus D^{\prime}\right)=C \oplus\left(K \oplus D^{\prime}\right)$.
2) Let $A+C=D$.
a) If $A \cap C=0$ then $D=A \oplus C$, so $B \cong C$. Denote an isomorphism by $f: B \rightarrow C$. Using Theorem 2.6, the subgroup $B^{\prime}=\{b+f(b) \mid b \in B\}$ is a diagonal, so a summand of D such that $A \cap D^{\prime}=C \cap B^{\prime}=0$ and $D=A \oplus B^{\prime}=C \oplus B^{\prime}$.
b) Let $A \cap C \neq 0$, so $(A \cap C)[p] \leq A[p], C[p]$ where $A[p] \cong C[p]$.

If $(A \cap C)[p]=A[p]$ then also $(A \cap C)[p]=C[p]$. Hence $A[p]=C[p]$, and by [2, $D=A \oplus B=C \oplus B$.

Next assume that $0 \neq(A \cap C)[p]<A[p]$, so $(A \cap C)[p]<C[p]$. There exist a summand A_{1} of A with $A_{1}[p]=(A \cap C)[p], A=A_{1} \oplus A_{2}$. Similarly $C=C_{1} \oplus C_{2}$, where $C_{1}[p]=(A \cap C)[p]$. Since $A \cong C$ and $A_{1}[p]=C_{1}[p]$ it follows that $A_{1} \cong C_{1}$ and so $A_{2} \cong C_{2}$.
3) Let $A_{2}+C_{2} \neq D$. Then as in case 1), $D=A_{2} \oplus V=C_{2} \oplus V$ for some V and so $A=A_{2} \oplus(A \cap V)$ and $C=C_{2} \oplus(C \cap V)$. Here V has rank $\leq n$ and $A \cap V$, $C \cap V$ are isomorphic summands, so by induction $V=(A \cap V) \oplus L=(C \cap V) \oplus L$ for some L. Finally $D=\left[A_{2} \oplus(A \cap V)\right] \oplus L=\left[C_{2} \oplus(C \cap V)\right] \oplus L$.
4) Let $A_{2}+C_{2}=D$. Since $A_{2} \cap C_{2}=0$, as in case 2 a), $D=A_{2} \oplus M=C_{2} \oplus M$ for some M. Since $r(M) \leq n$, by induction, $A \cap M$ and $C \cap M$ are perspective in M, and as in case 3), A and C are perspective in D.

If m is a cardinal and G is a group then $G^{(m)}$ denotes the direct sum of m copies of G.

The previous proposition has the following

Corollary 3.7. For any cardinal m and any natural number n, the group $G=$ $\mathbb{Z}\left(p^{n}\right)^{(m)}$ is perspective iff m is finite.
Proof. As already mentioned, an infinite rank direct sum of $\mathbb{Z}\left(p^{n}\right)$ is not perspective (see nonexample in the preceding section). Conversely, if D is a divisible hull of G then $G=D\left[p^{n}\right]$. If $G=A \oplus B=C \oplus K, A \cong C$, then by Proposition 3.6 $D=D_{A} \oplus U=D_{C} \oplus U$ for some $U \leq D$, where D_{A}, D_{C} are the divisible hulls of A, C, respectively. So $G=D\left[p^{n}\right]=D_{A}\left[p^{n}\right] \oplus U\left[p^{n}\right]=D_{C}\left[p^{n}\right] \oplus U\left[p^{n}\right]$, where $D_{A}\left[p^{n}\right]=A, D_{C}\left[p^{n}\right]=C$.

Next, about finite or bounded p-groups, we have
Proposition 3.8. The finite p-groups are perspective.
Proof. The proof goes by induction on the order $|G|$ of the group G. Let $G=$ $G_{1} \oplus G_{2}$, where G_{1} is a direct sum of finitely many groups $\mathbb{Z}\left(p^{n}\right)$, where p^{n} is the maximal order of elements in $G, G=A \oplus B=C \oplus K$ and $A \cong C$.

By Corollary $3.7 G_{1}$ is perspective. Note that if $A \cap G_{1} \neq 0$ then also $C \cap G_{1} \neq 0$. Otherwise, if $C \cap G_{1}=0$, since G_{1} is an absolute direct summand (see [2], Exercise 8 of $\S 9$) of G, we can suppose that $C \leq G_{2}$. However, in this case C would not have any element of order p^{n} but in A such elements exist in view of $A \cap G_{1} \neq 0$. This would contradict the isomorphism $A \cong C$.

Since in a direct sum of cyclic groups each subsocle supports some summand of this group (see [3], Exercise 3 of $\S 66$) it follows that $A=A_{1} \oplus A_{2}, C=C_{1} \oplus C_{2}$, where $A_{1}[p]=\left(A \cap G_{1}\right)[p], C_{1}[p]=\left(C \cap G_{1}\right)[p]$. These direct decompositions of cyclic groups are isomorphic, so from $A \cong C$ it follows that $A_{1} \cong C_{1}$ and so $A_{2} \cong C_{2}$. Hence by Corollary 3.7, $G_{1}=A_{1} \oplus U=C_{1} \oplus U$ for some U. Then $A=A_{1} \oplus A_{3}, C=C_{1} \oplus C_{3}$, where $A_{3}=\left[A \cap\left(U \oplus G_{2}\right)\right], C_{3}=\left[C \cap\left(U \oplus G_{2}\right)\right]$. So A_{3}, C_{3} are isomorphic direct summands in $U \oplus G_{2}$. Since $\left|U \oplus G_{2}\right|<|G|$, by induction $U \oplus G_{2}=A_{3} \oplus V=C_{3} \oplus V$. Hence $G=G_{1} \oplus G_{2}=\left(A_{1} \oplus U\right) \oplus G_{2}=$ $\left(A_{1} \oplus A_{3}\right) \oplus V=\left(C_{1} \oplus C_{3}\right) \oplus V$, where $A_{1} \oplus A_{3}=A$ and $C_{1} \oplus C_{3}=C$, as desired.

Since summands of perspective groups are perspective it follows from the nonexample mentioned before that the Ulm-Kaplanski invariants $f_{n}(G)$ of perspective reduced p-groups G are finite for all integer $n \geq 0$. Thus a basic subgroup of G is countable and so $|G| \leq 2^{\aleph_{0}}$ [2]. Therefore

Corollary 3.9. Any perspective bounded p-group is finite.
For (Abelian) groups we can introduce the following
Definition. A group is called finitely perspective if it is perspective with respect to finite (direct) summands. Then we can prove a surprising (specific for Abelian groups) result.

Proposition 3.10. Each p-group G is finitely perspective.
Proof. Let $A \cong C$ be finite summands of G. Then $p^{m} A=0$ for some integer $m \geq 1$, and so also $p^{m} C=0$ and $p^{m}(A+C)=0$. Hence $A+C \leq H$ for a $p^{m} G$-high subgroup H. By a theorem of Khabbaz (see [2], Theorem 27.7), H is a summand of $G=H \oplus F$. We have $H=H_{1} \oplus \cdots \oplus H_{m}$, where H_{i} is a direct sum of groups $\mathbb{Z}\left(p^{i}\right)$ whenever $H_{i} \neq 0$. Let $\pi_{i} G \rightarrow H_{i}$ be the projections for $i=1, \ldots, m$. Since $A+C$ is finite, it follows that each $\pi_{i}(A+C)$ is finite, and $A+C \leq \pi_{1}(A+C) \oplus \cdots \oplus \pi_{m}(A+C)$. Each $\pi_{i}(A+C)$ is contained in some
finite summand H_{i}^{\prime} of H_{i} and so $H^{\prime}=H_{1}^{\prime} \oplus \cdots \oplus H_{m}^{\prime}$ is a finite summand in $H=H^{\prime} \oplus H^{\prime \prime}$. By Proposition 3.8, $H^{\prime}=A \oplus U=C \oplus U$ for some U. Then $G=A \oplus\left(U \oplus H^{\prime \prime} \oplus F\right)=C \oplus\left(U \oplus H^{\prime \prime} \oplus F\right)$.

We just mention that if $G=A \oplus C$, where $A \cong C$ then $G=A \oplus U=C \oplus U$, for any diagonal U with respect to A and C.

Let \mathfrak{A} be a class of (Abelian) groups and $G \in \mathfrak{A}$. A relativization of our main property can be defined.

Definition. We call A perspective in class \mathfrak{A} if for $G=A \oplus B=C \oplus K$, where $A \cong C$ and $G \in \mathfrak{A}$ it follows that $G=A \oplus U=C \oplus U$ for some U.

Then we can prove a result on torsion-complete (for several equivalent definitions for reduced groups, see [3], Theorem 68.4) p-groups

Proposition 3.11. The torsion-complete p-groups A with finite Ulm-Kaplanski invariants are perspective in the class of separable p-groups.

Proof. Let $G=A \oplus B=C \oplus K$, where $A \cong C$ and let G be a separable p group. Then $G=\left(A_{1} \oplus \cdots \oplus A_{n}\right) \oplus\left(A_{n}^{*} \oplus B\right)=\left(C_{1} \oplus \cdots \oplus C_{n}\right) \oplus\left(C_{n}^{*} \oplus K\right)$, where $A=\left(A_{1} \oplus \cdots \oplus A_{n}\right) \oplus A_{n}^{*}, C=\left(C_{1} \oplus \cdots \oplus C_{n}\right) \oplus C_{n}^{*}$, and $A_{1} \oplus \cdots \oplus A_{n}, C_{1} \oplus \cdots \oplus C_{n}$ respectively, are summands of the basic subgroups of $A, C\left(A_{k}, C_{k}\right.$ are direct sums of cyclic groups of order $\left.p^{k}\right)$. By Proposition 3.10, $G=\left(A_{1} \oplus \cdots \oplus A_{n}\right) \oplus U^{(n)}$, $G=\left(C_{1} \oplus \cdots \oplus C_{n}\right) \oplus U^{(n)}$, where we can choose the $U^{(n)}$'s, such that $U^{(n+1)}$ is a summand in $U^{(n)}$ and $U^{(n)} / U^{(n+1)}$ is a direct sum of cyclic groups of order p^{n+1}. So G has a basic subgroup of type $\left(\bigoplus_{n \geq 1} A_{n}\right) \oplus\left(\bigoplus_{n \geq 1} V_{n}^{(n)}\right)=\left(\bigoplus_{n \geq 1} C_{n}\right) \oplus$ $\left(\bigoplus_{n \geq 1} V_{n}^{(n)}\right)$, where $V_{n}^{(n)}$ is a summand in $U_{n}^{(n)}$, each $U_{n}^{(n)}$ is a summand in $U^{(n)}$ and is a direct sum of cyclic groups of order p^{n}. So by [3],Theorem $71.3, \bar{G}=$ $A \oplus U=C \oplus U$, where \bar{X} is the torsion completion of X and $A=\overline{\left(\bigoplus_{n \geq 1} A_{n}\right)}$, $C=\overline{\left(\bigoplus_{n \geq 1} C_{n}\right)}, U=\overline{\left(\bigoplus_{n \geq 1} V_{n}^{(n)}\right)}$. Hence $G=A \oplus(G \cap U)=C \oplus(G \cap U)$, and the proof is complete.
3.4. Perspective torsion-free groups. As it is well known, the divisible torsionfree groups are the direct sums of \mathbb{Q}.

Proposition 3.12. A torsion-free divisible group is perspective iff it has finite rank. As such, it is isomorphic to a finite direct sum of \mathbb{Q}.

Proof. As already mentioned, an infinite rank direct sum of \mathbb{Q} is not perspective. Conversely, for a torsion-free divisible group D, the proof goes by induction on the rank of D. Let $r(D)=n+1, A$ and B are isomorphic summands of D.

If $A+B<D$ then $D=(A+B) \oplus C$ and $r(A+B) \leq n$, so $A+B=A \oplus H=B \oplus H$, since by induction the divisible group $A+B$ is perspective. Then $D=A \oplus(H \oplus C)=$ $B \oplus(H \oplus C)$.

Assume now that $A+B=D$. Only two cases are possible.

1) If $K:=A \cap B \neq 0$ then K is divisible and $D=K \oplus L$ for some $L \leq D$. We have $A=K \oplus(A \cap L), B=K \oplus(B \cap L)$. Here $A \cap L \cong B \cap L$, so by induction $L=(A \cap L) \oplus C$ and $L=(B \cap L) \oplus C$ whence $D=[K \oplus(A \cap L)] \oplus C$ and $D=[K \oplus(B \cap L)] \oplus C$, where $[K \oplus(A \cap L)]=A,[K \oplus(B \cap L)]=B$.
2) If $A \cap B=0$ then $D=A \oplus B$ and since $A \cong B$ it follows that $A=\mathbb{Q} a_{1} \oplus \cdots \oplus$ $\mathbb{Q} a_{m}$ and $B=\mathbb{Q} b_{1} \oplus \cdots \oplus \mathbb{Q} b_{m}$ for some $0 \neq a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m} \in D$ (with A
and B considered as vector spaces on field $\mathbb{Q})$. Then $D=A \oplus H=B \oplus H$, where $H=\mathbb{Q}\left(a_{1}+b_{1}\right) \oplus \cdots \oplus \mathbb{Q}\left(a_{m}+b_{m}\right)$.

It was already mentioned that \mathbb{Z} is perspective since it is indecomposable and that $\mathbb{Z} \oplus \mathbb{Z}$ is not perspective (see Remark 2.5). It follows

Proposition 3.13. The only perspective free group is \mathbb{Z}.
Since the rational groups (the subgroups of \mathbb{Q}) are also indecomposable it follows
Proposition 3.14. The only perspective rank 1 torsion-free groups are the rational groups.

Clearly

Proposition 3.15. If a torsion-free group has a summand isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$, it is not perspective.

Next we characterize some perspective homogeneous completely decomposable groups.

Note that, similarly to Proposition 3.3, we can prove the following
Proposition 3.16. Let $G=\prod_{i \in I} H_{i}$, where each subgroup H_{i} is fully invariant in G. Then G is perspective iff all $H_{i}, i \in I$, are perspective.

Let p be a prime number and \mathbb{Q}_{p} the group (ring) of all rational numbers with denominator coprime with p.

Proposition 3.17. Let G be a homogeneous completely decomposable group with type $\mathbf{t}(G)=\mathbf{t}\left(\mathbb{Q}_{p}\right)$. The group G is perspective iff G has finite rank.
Proof. As already mentioned, only one way needs a proof. Suppose the rank of G is finite and $G=A \oplus B=C \oplus K$, where $A \cong C$. The proof goes by induction on $n=r(G)$ the rank of G. We distinguish several cases.

1) $A_{1}=A \cap C \neq 0$. Then A_{1}, as pure subgroup, is a summand in G (see [3], Lemma 86.8), say $A=A_{1} \oplus A_{2}, C=A_{1} \oplus C_{2}$, where $C_{2}=\left(A_{2} \oplus B\right) \cap C$. So $A_{2} \oplus B=C_{2} \oplus V$ for some V. By the induction hypothesis $A_{2} \oplus U=C_{2} \oplus U$ for some U. Hence $G=\left(A_{1} \oplus A_{2}\right) \oplus U=\left(A_{1} \oplus C_{2}\right) \oplus U$, where $A_{1} \oplus A_{2}=A$ and $A_{1} \oplus C_{2}=C$.
2) $F=B \cap K \neq 0$. Then $B=B^{\prime} \oplus F$ and $K=K^{\prime} \oplus F$ for some B^{\prime}, K^{\prime} and $(A \oplus F) \oplus B^{\prime}=(C \oplus F) \oplus K^{\prime}$, where $B^{\prime} \cap K^{\prime}=0$. If now $(A \oplus F) \oplus U=(C \oplus F) \oplus U$ then $A \oplus(F \oplus U)=C \oplus(F \oplus U)$. So this case reduces to $B \cap K=0$.
3) $A_{K}=A \cap K \neq 0$. Then $A=A_{K} \oplus A_{2}, K=A_{K} \oplus K_{2}$ for some A_{2}, K_{2} such that $A_{2} \leq C \oplus K_{2}$. Let $\pi: C \oplus K_{2} \rightarrow C$ be the projection and let $C_{2}=\left\langle\pi\left(A_{2}\right)\right\rangle$ be the pure hull of $\pi\left(A_{2}\right)$ in C. Since $A_{2} \cap K_{2}=0$ then $C_{2} \cong A_{2}$ and it follows that $A_{2} \leq C_{2} \oplus K_{2}$, and so $C_{2} \oplus K_{2}=A_{2} \oplus V$ for some V. Since $r\left(C_{2} \oplus K_{2}\right)<n$ by induction hypothesis $C_{2} \oplus U=A_{2} \oplus U$ for some U. So $\left(C_{1} \oplus C_{2}\right) \oplus\left(A_{K} \oplus U\right)=\left(A_{K} \oplus A_{2}\right) \oplus\left(C_{1} \oplus U\right)$, where $A_{K} \cong C_{1}$. Hence if H is a diagonal in $A_{K} \oplus C_{1}$ (with respect to A_{K} and C_{1}) then $C \oplus(H \oplus U)=A \oplus(H \oplus U)$. The case $C \cap B \neq 0$ is similar.
4) $A \cap C=A \cap K=B \cap K=C \cap B=0$. It follows that $r(A)=r(B)=r(K)$. Let $R=\mathbb{Q}_{p}$. Then G is a free R-module of rank $n=2 m$. We have $A=\bigoplus_{i=1}^{m} R a_{i}$, $B=\bigoplus_{i=1}^{m} R b_{i}, C=\bigoplus_{i=1}^{m} R c_{i}$, and $K=\bigoplus_{i=1}^{m} R k_{i}$. Since the pure submodules are summands in G, we can choose $c_{i}=a_{i}^{\prime}+b_{i}^{\prime}$ for some $a_{i}^{\prime}=r_{i} a_{i}, b_{i}^{\prime}=s_{i} b_{i}$, where $r_{i}, s_{i} \in R$.

Assume $s_{i} \in p R, i=1, \ldots, l$ for some $l \leq m$ and $s_{i} \in R \backslash p R$ for $i=l+1, \ldots, m$. Note that if $s_{i} \in p R$ then $r_{i} \in R \backslash p R$, and similarly if $r_{i} \in p R$ then $s_{i} \in R \backslash p R$. Let $H=\bigoplus_{i=1}^{l} R\left(a_{i}+b_{i}\right)$. Then $r_{i}^{-1} c_{i}=a_{i}+s_{i}^{\prime} b_{i}$, where $s_{i}^{\prime}=r_{i}^{-1} s_{i}$ for $i=1, \ldots, l$.

Observe that $H \cap C=0$. Indeed, if $h \in H$ and $h=t_{1}\left(a_{1}+b_{1}\right)+\cdots+t_{l}\left(a_{l}+b_{l}\right) \in C$ for some $t_{1}, \ldots, t_{l} \in R$, then $\left[t_{1}\left(a_{1}+b_{1}\right)+\cdots+t_{l}\left(a_{l}+b_{l}\right)\right]-\left[t_{1}\left(a_{1}+s_{i}^{\prime} b_{1}\right)+\cdots+\right.$ $\left.t_{l}\left(a_{l}+s_{i}^{\prime} b_{l}\right)\right]=t_{1}\left(1-s_{1}^{\prime}\right) b_{1}+\cdots+t_{l}\left(1-s_{l}\right) b_{l} \in C \cap B=0$. So $t_{1}=\cdots=t_{l}=0$, i.e. $h=0$.

Assume also that $r_{i} \in p R$ for $i=l+1, \ldots, l+r$, when $l+r \leq m$ and $r_{i} \in R \backslash p R$ for $i=l+r+1, \ldots, m$ when $l+r<m$. Then as before $L \cap(C \oplus H)=0$, where $L=\bigoplus_{i=l+1}^{l+r} R\left(a_{i}+b_{i}\right)$. If $l+r<m$ then let $M=\bigoplus_{i=l+r+1}^{m} R\left(a_{i}+c_{i}\right)$. We show that $A \oplus(H \oplus L \oplus M)=C \oplus(H \oplus L \oplus M)=G$. Indeed, this follows from the fact that these sums of summands are direct, as for the construction we used linear independent subsystems and these sums equal G since these contain the basis of G.

From the construction of H and L it follows that $b_{i} \in A \oplus H \oplus L$ for $i=1, \ldots, l+r$. Since $c_{i}=r_{i} a_{i}+s_{i} b_{i}$, where s_{i} are invertible in R for $i=l+r+1, \ldots, m$ it follows that $b_{i} \in A \oplus M$ for the specified i. Hence $G=A \oplus(H \oplus L \oplus M)$. It remains to prove that $a_{i}, b_{i} \in C \oplus(H \oplus L \oplus M)$ for all $i=1, \ldots, m$. Indeed, if for example, $i=1, \ldots, l$, then $c_{i}-\left(r_{i} a_{i}+r_{i} b_{i}\right)=\left(r_{i} a_{i}+s_{i} b_{i}\right)-\left(r_{i} a_{i}+r_{i} b_{i}\right)=\left(s_{i}-r_{i}\right) b_{i} \in C \oplus H$. Since $s_{i} \in p R$ and $r_{i} \in R \backslash p R$ we get $s_{i}-r_{i} \in R \backslash p R$, so this element is invertible in R, whence b_{i} and so a_{i} belong to $C \oplus H \leq C \oplus(H \oplus L \oplus M)$ for $i=1, \ldots, l$. Similarly we can prove that all $a_{i}, b_{i} \in C \oplus(H \oplus L \oplus M)$ for $i=1, \ldots, m$, i.e. $G=C \oplus(H \oplus L \oplus M)$. Since the sum of the ranks of H, L, M equals m the latter sum is direct.

Remark. Since the pure subgroups of group G in the previous proposition are summands of G, this is a trivial example of groups with all pure subgroups being perspective.

The next result draws attention on rank 2 summands of homogeneous torsionfree groups of finite rank.

Lemma 3.18. If G is a torsion-free homogeneous group of finite rank then G is perspective iff G has a perspective rank 2 summand.

Proof. The condition is necessary since summands of perspective groups are perspective.

Conversely, since equal rank summands of G are isomorphic, it suffices to focus on any summand. Let $G=A \oplus B=C \oplus K$, where $A \cong C$. As in Proposition 3.17 we can assume that $A \cap C=A \cap K=0$. Let $0 \neq a \in A$ and $a=c+x$, where $c \in C, x \in K(c, x \neq 0)$. If $A_{1}=\langle a\rangle_{*}, C_{1}=\langle c\rangle_{*}, K_{1}=\langle x\rangle_{*}$ then A_{1}, C_{1} and K_{1} are (rank 1) summands, so $A=A_{1} \oplus A_{2}, C=A_{1} \oplus C_{2}, K=K_{1} \oplus K_{2}$ and $G=$ $\left(C_{1} \oplus K_{1}\right) \oplus\left(C_{2} \oplus K_{2}\right)$. By hypothesis, $C_{1} \oplus K_{1}=C_{1} \oplus W_{1}=A_{1} \oplus W_{1}$ for some W_{1}, so $G=C_{1} \oplus\left(W_{1} \oplus C_{2} \oplus K_{2}\right)=A_{1} \oplus\left(W_{1} \oplus C_{2} \oplus K_{2}\right)$. Since $A=A_{1} \oplus A \cap\left(W_{1} \oplus C_{2} \oplus K_{2}\right)$, consider $A_{2}=A \cap\left(W_{1} \oplus C_{2} \oplus K_{2}\right)$. Hence $W_{1} \oplus C_{2} \oplus K_{2}=A_{2} \oplus L$ for some L and we complete the proof by induction: $W_{1} \oplus C_{2} \oplus K_{2}=C_{2} \oplus W=A_{2} \oplus W$ so $G=$ $C_{1} \oplus\left(W_{1} \oplus C_{2} \oplus K_{2}\right)=\left(C_{1} \oplus C_{2}\right) \oplus W=A_{1} \oplus\left(W_{1} \oplus C_{2} \oplus K_{2}\right)=\left(A_{1} \oplus A_{2}\right) \oplus W$.

Using Proposition 3.3 and Proposition 3.16 it follows that

Corollary 3.19. Let $G=\bigoplus_{p \in P} G_{p}\left(G=\prod_{p \in P} G_{p}\right)$, where P is some subset of prime numbers and G_{p} are homogeneous completely decomposable groups of finite rank with type $t\left(G_{p}\right)=t\left(\mathbb{Q}_{p}\right)$. Then the group G is perspective.

Next, we describe the perspective torsion-free algebraically compact groups. Denote by $\hat{\mathbb{Z}}_{p}$ be the ring (group) of p-adic integers and by \mathbb{P} the set of all prime numbers.

Proposition 3.20. A non-zero torsion-free algebraically compact group G is perspective iff $G=\prod_{p \in \pi} G_{p}$, where $\varnothing \neq \pi \subseteq \mathbb{P}$ and G_{p} is a finite direct product of copies of the group $\hat{\mathbb{Z}}_{p}$.

Proof. To show that the condition is necessary, first recall that any torsion-free algebraically compact group G has the form $G=\prod_{p \in \pi} G_{p}$, where G_{p} is a p-adic algebraically compact group (see [2], Proposition 40.1), and in particular, is $\hat{\mathbb{Z}}_{p^{-}}$ module. So the rank of each G_{p} is finite, i.e. G_{p} is a free $\hat{\mathbb{Z}}_{p}$-module of finite rank.

To show that the condition is sufficient, also recall that intersections of summands in torsion-free p-adic algebraically compact groups are also summands of this group. Next note that in the ring $\hat{\mathbb{Z}}_{p}$, all elements of $\hat{\mathbb{Z}}_{p} \backslash p \hat{\mathbb{Z}}_{p}$ are invertible, and that in any $\hat{\mathbb{Z}}_{p}$-module of finite rank, pure submodules are summands. As in Proposition 3.17, one can prove that p-adic algebraically compact modules of finite rank are perspective. Then using Proposition 3.16, the proof is complete.

Example 3.21. Let $G=G_{1} \oplus \cdots \oplus G_{n}$, where $G_{i}, 1 \leq i \leq n$ are perspective groups and $\operatorname{Hom}\left(G_{i}, G_{j}\right)=0$ for $i=2, \ldots, n$ and $1 \leq j \leq i-1$. Then G is perspective.
Proof. The proof goes by induction on n. If $G_{2} \oplus \cdots \oplus G_{n}$ is perspective then since it is fully invariant in G, it is perspective by Corollary 2.4 .

Next, we give some examples and nonexamples.
Recall that a torsion-free group G is called cohesive if G / H is divisible for all pure subgroups $H \neq 0$ of G. For some facts about such groups see [3], 88, exercise 17.

Example 3.22. A perspective direct sum of pure subgroups of a perspective group.
By Proposition 3.20, the group $G=\prod_{p \in \mathbb{P}} \hat{\mathbb{Z}}_{p}$ is perspective. Let $A_{i}, i=1, \ldots, n$, be pure subgroups of G such that $p^{\omega} A_{i}=0$ for all $p \in \mathbb{P}$ and $r\left(A_{i}\right)=m_{i}$, where $1 \leq m_{1}<\cdots<m_{n} \leq 2^{\aleph_{0}}$. Then A_{i} are cohesive groups (see [7], 32). If $A=$ $A_{1} \oplus \cdots \oplus A_{n}$, then A is perspective.

Indeed, each A_{i} is perspective as indecomposable group and $\bigoplus_{j=i}^{n} A_{j}$ is fully invariant in A for all $i=2, \ldots, n-1$. This follows from the fact that $\operatorname{Hom}\left(A_{j}, A_{i}\right)=$ 0 for every $i<j$, owing that since $r\left(A_{i}\right)<r\left(A_{j}\right)$, each homomorphism $f: A_{j} \rightarrow A_{i}$ has a non-zero kernel and so $f\left(A_{j}\right)$ is divisible, whence $f=0$.

In general we can ask
Question. Which pure subgroups of a perspective group are perspective ?
Example 3.23. A subgroup of a perspective group which is not perspective.
Let G be the torsion-free group of rank $n \geq 3$ as in [3], 88, exercise 8. Then G is perspective as an indecomposable group but all the subgroups in G of rank $n-1$ are free. So the proper subgroups of rank ≥ 2 of G are not perspective.

Example 3.24. A factor group of perspective groups which is not perspective.
Let G be a torsion-free cohesive group with $r(G) \geq \aleph_{0}$ and let H be a pure subgroup of G such that $r(G / H) \geq \aleph_{0}$ (e.g., a pure subgroup H of rank 1). Then G / H is not perspective being divisible torsion-free group of infinite rank, but G and H are perspective being indecomposable groups.
Example 3.25. A factor group of a not perspective group may be perspective.
Let $X=\left\{a_{n}: n \in \mathbb{N}^{*}\right\}$ and let $G=\langle X\rangle$ be free of countable rank. Consider the function $f: X \rightarrow \mathbb{Q}, f\left(a_{n}\right)=\frac{1}{n!}$ for every $n \in \mathbb{N}^{*}$. The group G being free, f extends to a group homomorphism $\bar{f}: G \rightarrow \mathbb{Q}$, obviously surjective (as $\left.\mathbb{Q}=\left\langle\frac{1}{n!}: n \in \mathbb{N}^{*}\right\rangle\right)$. So G is not perspective but $\mathbb{Q} \cong G / \operatorname{ker}(\bar{f})$ is perspective.

As in the module case, conditions for a perspective group G which assure that $G \oplus G$ is also perspective, are of interest (and difficult to find).

In closing, we address this problem for rank 1 torsion-free groups, which are perspective as indecomposable groups.

First, a simple lemma which is well known
Lemma 3.26. Each subgroup A of torsion-free group G of rank 1, isomorphic to the whole group, is of form $n G$, for some integer $n \geq 1$.
Proof. If $f: G \rightarrow A$ is an isomorphism then f acts as multiplication with some rational number n / m, where $m G=G$, and so $f(G)=n G=A$.

Next, a characterization.
Proposition 3.27. Let G be a torsion-free group of rank 1. Then $G \oplus G$ is perspective iff for all coprime integers $m, n \geq 1$ and all integers $k, t \geq 0$, such that
(i) at least one of k, t is non-zero, and
(ii) if one of k, t is zero then the other is equal to 1 , and
(iii) if both k, t are non-zero these are coprime,
in each of the following cases:

1) $m G \neq G, k=1, t=0$,
2) $n G \neq G, k=0, t=1$,
3) $m G \neq G, t G \neq G$, where $t \neq 0$,
4) $m G, n G \neq G$,
there exist coprime integers s, l with $(m l-s n) G=G,(k l-s t) G=G$.
Proof. To show that the conditions are necessary, we present $G \oplus G$ as $F=R a \oplus b R$, where R is an additive subgroup with 1 of \mathbb{Q}, isomorphic to G. Since m, n are coprime, the subgroup $R(m a+n b)$ is pure, so its is a summand of F. Let $\pi: F \rightarrow R a$ and $\theta: F \rightarrow R b$ be the projections and let A and C be isomorphic rank 1 summands of F. Hence $A=R(m a+n b)$ and $C=R(k a+t b)$ for some $m, n, k, t \in \mathbb{Z}$, where at least one of $\{m, n\}$ is 1 and the corresponding integer of $\{k, t\}$ is non-zero. It suffices to consider the case $m, n \neq 0$. Since A is a summand of $F, d G=G$ for $d=\operatorname{gcd}(m, n)$, so we can consider $d=1$. Similarly, if $t=0$ and $C=R k a$ then $k G=G$, so we can assume $k=1$.
5) Let $m G \neq G$. Assume that $F=R(m a+n b) \oplus U=R a \oplus U$ for some U, i.e. in this case $k=1, t=0$. Clearly $U \neq R a, R b$ and so $\pi(U), \theta(U) \neq 0$, whence $\pi(U)=R s a, \theta(U)=R l b$ for some coprime integers $s, l \geq 1$ (by Lemma 3.26) and so $U=R(s a+l b)$. We have $-s(m a+n b)+m(s a+l b)=(m l-s n) b$ and $-s a+(s a+l b)=l b$. Since the presentation of elements is unique in direct sums and $R b \leq F$, it follows that $(m l-s n) G=l G=G$.
6) Let $n G \neq G$. Assume that $F=R(m a+n b) \oplus U=R b \oplus U$ for some U, i.e. in this case $t=1, k=0$. Clearly $U \neq R a, R b$ and as above we can show that $(m l-s n) G=s G=G$ for some $m, l \in \mathbb{Z}$ with coprime s, l.
7) Let $m G \neq G, t G \neq G$ for $t \neq 0$. Clearly $U \neq R a, R b$, so $U=R(s a+l b)$, with coprime s, l. We have $-s(m a+n b)+m(s a+l b)=(m l-s n) b$ and $-s(k a+t b)+$ $k(s a+l b)=(k l-s t) b$. Hence $(m l-s n) G=G,(k l-s t) G=G$.
8) Let $m G, n G \neq G$. Then $U \neq R a, R b$, so, as in case 3$),(m l-s n) G=G$, $(k l-s t) G=G$ for some coprime $s, l \in \mathbb{Z}$.

To show that the conditions are sufficient, let $F=A \oplus B=C \oplus K, A \cong C$ and $r(A)=1$. We consider several cases.
I. a) $A=R a, C=R b$. We can choose $U=R(a+b)$.
b) $A=R\left(m^{\prime} a+n^{\prime} b\right)$, where $m^{\prime} G=n^{\prime} G=G$. If $C=R b$ we can take $U=R a$, and if $C=R a$ we can take $U=R b$.
c) $A=R\left(m^{\prime} a+n^{\prime} b\right), C=R\left(k^{\prime} a+t^{\prime} b\right)$, where $m^{\prime} G=n^{\prime} G=G, k^{\prime} G=t^{\prime} G=G$. Then we can choose $U=R a$ or $U=R b$.
II. $A=R(m a+n b)$, where $m G \neq G$ or $n G \neq G$.

If $A=R(m a+n b), C=R(k a+t b), m G \neq G, n G=G, t G=G$ and $k G=G$ or $k G \neq G, k \neq 0$, then in both cases we can take $U=R a$. Also $U=R a$ if $C=R b$.

1) $A=R(m a+n b)$, where $m G \neq G$ and $C=R a$, i.e. $k=1, t=0$. Since $m G \neq G$ then $n \neq 0$ (otherwise A is not summand of F). Then by hypothesis there exist coprime $s, l \in \mathbb{Z}$ with $(m l-s n) G=G, l G=G$. If $U=R(s a+l b)$ then $-s(m a+n b)+m(s a+l b)=(m l-s n) b,-s a+(s a+l b)=l b$ and $-l(m a+n b)+n(s a+$ $l b)=(n s-l m) a$, where $(m l-s n) G=G$ and $l G=G$, so $R a, R b \leq A \oplus U, C \oplus U$ whence $F=A \oplus U=C \oplus U$.
2) $A=R(m a+n b)$, where $n G \neq G$, so $m \neq 0$, and $C=R b$, i.e. $k=0, t=1$. Let $s, l \in \mathbb{Z}$ be coprime, $(m l-s n) G=G, t G=G$ and $U=R(s a+l b)$. As in the previous case 1), $F=A \oplus U=C \oplus U$. The remaining cases 3) and 4) are similar and since this way all the possible cases are covered, the proof is complete.

Corollary 3.28. Let G be a torsion-free group of rank 1 such that $G \oplus G$ is perspective. Then G is p-divisible at least for one prime number p.

Proof. As in Proposition 3.27, assume $(m l-s n) G=G$ and $(k l-s t) G=G$. Moreover, assume that $m l-s n= \pm 1$ and $k l-s t= \pm 1$. Then if $t=0$ we have $l= \pm 1$ and so $\pm m \pm 1=s n$. Since we can choose coprime m and n such that $(\pm m \pm 1) / n \notin \mathbb{Z}$, it follows G is not divisible only by ± 1.

The converse fails as shows the following
Example 3.29. If G is a torsion-free group of rank 1 , with $2 G, 5 G \neq G$ and G is divisible only by 11, then $G \oplus G$ is not perspective.

By contradiction, suppose $G \oplus G$ is perspective. Then according to Proposition 3.27, $5 l-2 s= \pm 11^{a}, k l-s t= \pm 11^{b}$, for some integers $a, b \geq 0$. Taking $l=0$ we can suppose $t=1$ and so $s= \pm 11^{b}$ and $5 l \pm 2 \cdot 11^{b}= \pm 11^{a}$. Since $\left(l, 11^{b}\right)=1$ we get $b=0$ or $a=0$. If $b=0$ then the equation $5 l \pm 2= \pm 11^{a}$ has no solutions since the last digit of the RHS 1 but is 2 or 7 in the LHS. If $a=0$ then the equation $5 l \pm 1= \pm 2 \cdot 11^{b}$ has no solutions since the last digit of the RHS is 2 but is 1 or 6 in the LHS.

A result of the same sort is the following

Proposition 3.30. If G is a torsion-free homogeneous of rank 1 group such that G is divisible for all prime numbers except two coprime numbers p and q then $G \oplus G$ is perspective.

Proof. Let $F=G \oplus G$ and $F=A \oplus B=C \oplus K$, where $A \cong C, r(A)=1$. As in the previous proposition 3.27, we take $A=R(m a+n b), C=R(k a+t b)$, and in view of the sufficiency part, we can suppose $m, n, k, t \neq 0$. We are searching U such that $U=R(s a+l b)$, where $(s, l)=1$. Consider all the possible cases with respect to divisibility of G by m, n, k, t (in the next table, the sign " + " means divisibility by the corresponding number, sign "-" not divisibility).

	1	2	3	4	5	6	7	8	9	10	11	12
m	+	+	+	+	+	-	-	-	-	+	-	-
n	+	+	+	+	-	+	-	-	-	-	+	+
k	+	+	-	+	+	-	-	+	+	+	-	
t	+	-	+	-	+	+	-	+	+	-	-	+

As the cases $\{2,3,5,6\},\{4,9\}$ and $\{10,12\}$ are respectively similar, it suffices to check the cases 2,4 and 10 .

1) -2$) m G=n G=k G=G$ and $t G=G$ or $t G \neq G$. If $U=R b$ then $F=$ $R(m a+n g) \oplus U=R(k a+t b) \oplus U$.
2) $m G=n G=G$, and $k G, t G \neq G$. Since $\operatorname{gcd}(k, t)=1$, let $p|k, q| t$ and $q \nmid k, p \nmid t$. If now $U=R(q a+p b)$, i.e. $s=q, l=p$, then $p, q \nmid(m p-q n)$ and $p, q \nmid(k p-q t)$, so $(m p-q n) G=G,(k p-q t) G=G$. Consequently, by Proposition 3.27, $F=A \oplus U=C \oplus U$. If $p|t, q| k$, where $q \nmid t, p \nmid k$ and $U=R(p a+q b)$ then $p, q \nmid m q-p n, p, q \nmid k q-p t$.
3) $m G, n G, k G, t G \neq G$.
a) $p \mid m, t$ and $q \mid n, k$. If $U=R(a+b)$ then $p, q \nmid m-n$ and $p, q \nmid k-t$.
b) $p \mid m, k$ and $q \mid n, t$. Let $U=R(q a+p b)$, then $p, q \nmid m p-q n$ and $p, q \nmid k p-q t$.
4) $p \mid m, k$ and $q \mid n, t G=G$.
a) $q \nmid k$. If $U=R(q a+b)$ then $p, q \nmid m-q n$ and $p, q \nmid k-q t$.
b) $q \mid k$. If $U=R(a+b)$, then $p, q \nmid m-n$ and $p, q \nmid k-t$.
5) $m G, k G=G$ and $n G, t G \neq G$. If $U=R b$ then $F=A \oplus U=C \oplus U$.
6) a) $q \mid m, t$ and $p \nmid m, t$, but $n G=k G=G$. Let $U=R(p a+b)$, i.e. $s=p$, $l=1$. Then $p, q \nmid m-p n$ and $p, q \nmid k-p t$.
b) $p, q \mid m$, t. If $U=R(a+b)$ then $p, q \nmid m-n$, and $p, q \nmid k-t$.
c) $p \nmid m, q \mid m$ and $q \nmid t, p \mid t$. If $U=R(p a+q b)$, i.e. $s=p, l=q$ then $p, q \nmid m q-p n$ and $p, q \nmid k q-p t$.

Acknowledgement 3.31. The second author was supported by the Ministry of Science and Higher Education of Russia (agreement No. 075-02-2023-943

References

[1] A. R. Chekhlov Abelian groups with normal endomorphism rings. Algebra and Logic 48 (2009), 298-308.
[2] L. Fuchs Infinite abelian groups, vol. 1, Pure and Applied Mathematics, vol. 36, Academic Press, New York, London 1970.
[3] L. Fuchs Infinite abelian groups, vol. 2, Pure and Applied Mathematics, vol. 36-II, Academic Press, New York, London 1973.
[4] S. Garg, H. K. Grover, D. Khurana Perspective rings. J of Algebra 415 (2014), 1-12.
[5] K.R. Goodearl Von Neumann Regular Rings. Krieger Publishing Comp., Second Edition (1991).
[6] D. Khurana, T. Y. Lam Rings with internal cancellation. J. Algebra 284 (2005), 203-235.
[7] P. A. Krylov, A. V. Mikhalev, A. A. Tuganbaev Endomorphism rings of abelian groups. Algebras and Applications, vol. 2. Kluwer Academic Publishers, Dordrecht, 2003.
[8] T. Y. Lam A crash course on stable range, cancellation, substitution and exchange. J. of Algebra and Appl. 3 (3) (2004), 301-343.
[9] R. Schmidt Subgroup lattices of groups. de Gruyter Expositions in Mathematics, 14. Walter de Gruyter, 1994.

Department of Mathematics, Babeş-Bolyai University, Cluj-Napoca, 400084, Romania
Email address: calu@math.ubbcluj.ro
Department of Mathematics, Faculty of Mechanics and Mathematics, Tomsk State University, Tomsk, Russia

Email address: cheklov@math.tsu.ru

[^0]: 2020 Mathematics Subject Classification. Primary: 20K10, 20K15, 20K27. Secondary: 20K21, 16D99.

 Key words and phrases. Abelian group, perspective module, primary group, torsion-free group.

