CONNECTIONS BETWEEN METRIC DIFFERENTIABILITY AND RECTIFIABILITY

IVÁN CAAMAÑO¹, ESTIBALITZ DURAND-CARTAGENA², JESÚS Á. JARAMILLO¹, ÁNGELES PRIETO¹, AND ELEFTERIOS SOULTANIS³

ABSTRACT. We combine Kirchheim's metric differentials with Cheeger charts in order to establish a non-embeddability principle for any collection \mathcal{C} of Banach (or metric) spaces: if a metric measure space X bi-Lipschitz embeds in some element in \mathcal{C} , and if every Lipschitz map $X \to Y \in \mathcal{C}$ is differentiable, then X is rectifiable. This gives a simple proof of the rectifiability of Lipschitz differentiability spaces that are bi-Lipschitz embeddable in Euclidean space, due to Kell-Mondino. Our principle also implies a converse to Kirchheim's theorem: if all Lipschitz maps from a domain space to arbitrary targets are metrically differentiable, the domain is rectifiable. We moreover establish the compatibility of metric and w^{*}-differentials of maps from metric spaces in the spirit of Ambrosio-Kirchheim.

1. INTRODUCTION

Going beyond geometric measure theory in Euclidean space, metric differentiability, introduced by Kirchheim [27] has become an indispensable tool in studying rectifiability of metric spaces. A metric measure space $X = (X, d, \mu)$ is called *n*-rectifiable if $\mu \ll \mathcal{H}^n$ and $\mu(X \setminus \bigcup_{i=1}^{\infty} \psi_i(E_i)) = 0$ for some countable family of Lipschitz maps $\psi_i \in \text{LIP}(E_i, X)$ defined on \mathscr{L}^n -measurable sets $E_i \subset \mathbb{R}^n$. Kirchheim [27] showed that every Lipschitz map $f: E \to X$ from a measurable set $E \subset \mathbb{R}^n$ into a metric space is metrically differentiable: for \mathscr{L}^n -a.e. $x \in E$ there exists a seminorm $\text{md}_x f$ on \mathbb{R}^n so that

(1.1)
$$d(f(y), f(z)) = \mathrm{md}_x f(y-z) + o(d(y, x) + d(x, z)).$$

As an illustration of their use, metric differentials give rise to area and co-area formulae, and can be used to show that the maps ψ_i in the definition of rectifiability can be taken to be bi-Lipschitz, see [27, 1]. Recently, Bate [5] has obtained a characterization of rectifiability in terms of Gromov-Hausdorff approximations, a much weaker condition than (bi-)Lipschitz maps.

Parallel developments in analysis on metric spaces lead to the seminal work of Cheeger [10] introducing what have come to be known as Lipschitz differentiability spaces (LDS for short). These are spaces covered by countably many *Cheeger charts*. A Cheeger chart is a pair (U, φ)

¹ Depto. de Análisis Matemático y Matemática Aplicada, UCM, 28040 Madrid, Spain.

 $^{^2}$ Depto. de Matemática Aplicada, ETSI Industriales, UNED, 28040 Madrid, Spain.

³ Department of Mathematics and Statistics, University of Jyväskylä, Seminaarinkatu 15, PO Box 35, FI-40014 University of Jyväskylä, Finland.

E-mail addresses: ivancaam@ucm.es, edurand@ind.uned.es, jaramil@mat.ucm.es, angelin@mat.ucm.es, elefterios.e.soultanis@jyu.fi.

²⁰²⁰ Mathematics Subject Classification. 30L05, 30L99, 51F30.

 $Key \ words \ and \ phrases.$ Metric differentiability; Rectifiability; Lipschitz differentiability spaces.

The research of I. C., J. Á. and E.D-C. is partially supported by grant PID2022-138758NB-I00 (Spain). E.S.'s research is supported by the Finnish Academy grant no. 355122.

consisting of a Borel set $U \subset X$ with $\mu(U) > 0$ and $\varphi \in LIP(X, \mathbb{R}^n)$ such that every $f \in LIP(X)$ is differentiable μ -a.e. on U with respect to (U, φ) : for μ -a.e. $x \in U$ there exists a unique linear map $d_x f \in (\mathbb{R}^n)^*$ so that

(1.2)
$$f(y) - f(x) = d_x f(\varphi(y) - \varphi(x)) + o(d(x,y)).$$

Cheeger showed that spaces endowed with a doubling measure supporting some Poincaré inequality (in short, PI-spaces) admit a countable covering by such charts, thus establishing a Rademacher-type almost everywhere differentiability result for Lipschitz functions from a metric space. This has lead to a rich theory of Sobolev spaces and first order calculus on PIspaces [21, 23, 8] independently of any rectifiability assumptions. Indeed, one of the motivations in [10] is to obtain non-embedding results for purely unrectifiable PI-spaces such as Carnot groups and Laakso spaces, see e.g [10, Theorem 14.2], which have since received much attention [11, 12, 13, 16]. The general principle is that differentiability and embeddability imply rectifiability, providing an obstruction for unrectifiable PI-spaces to admit bi-Lipschitz embeddings. The connection between PI-spaces, Cheeger differentiability and rectifiability has also been thoroughly explored in the works of [29, 6, 17]. For further connections to PDE's and uniform rectifiability, we refer the reader to [3, 2].

In this note we combine Cheeger's idea of differentiability charts with Kirchheim's notion of metric differential. Throughout the paper, a *chart* refers to a pair (U, φ) consisting of a Borel set $U \subset X$ with $\mu(U) > 0$ and a Lipschitz map $\varphi : X \to \mathbb{R}^n$. The number n is called the dimension of the chart. Below, $\mathcal{S}(\mathbb{R}^n)$ denotes the set of all seminorms on \mathbb{R}^n , equipped with the metric $\delta(s, s') = \sup_{|v| \leq 1} |s(v) - s'(v)|$.

Definition 1.1. Given a map $f : A \subset X \to Y$ into a metric space Y, we say that f admits a metric differential with respect to the chart (U, φ) if there exists a Borel map $\mathrm{md} f : A \cap U \to \mathcal{S}(\mathbb{R}^n)$ satisfying, for μ -a.e. $x \in A \cap U$,

(1.3)
$$\limsup_{A \ni y \to x} \frac{|d_Y(f(y), f(x)) - \operatorname{md}_x f(\varphi(y) - \varphi(x))|}{d(x, y)} = 0.$$

See also [14] for an alternative approach to metric differentiation of mappings between metric spaces which relies on metric differentiation along curves, and [20] for an extension of Kirchheim's result to maps defined on strongly rectifiable metric spaces. The definition above covers maps from a subset $A \subset X$. The case A = U is the metric analogue of *weak* Cheeger charts while, if $\mu(A \cap U) = 0$, the condition is vacuous. We also remark that our definition (see also [1]) is slightly weaker than Kirchheim's original definition, where $d(f(y), f(z))) = \operatorname{md}_x f(z - y) + o(d(x, y) + d(x, z))$.

Charts with respect to which every $f \in LIP(U)$ admits a metric differential are weak Cheeger charts, see Proposition 3.1. Moreover, metric differentials are compatible with w^* -differentials, whenever both exist, see Section 5. Notice that we do not impose uniqueness of the metric differential in Definition 1.1. Indeed, uniqueness among seminorms is a much stronger requirement than uniqueness among linear maps, implying in particular the density of directions realised by φ . In Theorem 1.2 we will instead impose the a priori weaker condition

(1.4)
$$\operatorname{Lip}(v \cdot \varphi|_U) > 0 \ \mu\text{-a.e. on } U \text{ for any } v \in S^{n-1}.$$

which is equivalent to uniqueness of linear differentials, see [7, Lemma 2.1]. We remark that if (U, φ) is a weak Cheeger chart, then the density of directions holds (see [4, Lemma 9.1]) and thus, a posteriori, metric differentials are unique, see Section 3.

Our main result is a rectifiability criterion which relates metric differentiability of maps into a given target class to bi-Lipschitz embeddability in the same class. Our proof gives a conceptually simple argument covering several non-embeddability results known in the literature, see Corollary 1.3.

Theorem 1.2. Let (U, φ) be an n-dimensional chart in X satisfying (1.4), and C a collection of metric spaces so that some $Y \in C$ contains a non-trivial geodesic. If every Lipschitz map $U \to Y \in C$ admits a metric differential with respect to (U, φ) , and U bi-Lipschitz embeds into some $Y \in C$, then $(U, d, \mu|_U)$ is n-rectifiable.

More precisely, $\mu|_U \simeq \mathcal{H}^n|_U$ and there are disjoint Borel sets U_i with $\mu(U \setminus \bigcup_i U_i) = 0$ so that $\varphi|_{U_i}$ is bi-Lipschitz for each *i*.

We make a few remarks:

1) A non-trivial geodesic in a metric space Z is an isometric embedding $\gamma : [a, b] \to Z$ for some a < b. The existence of one in some space $Z \in C$ guarantees (under the hypotheses of Theorem 1.2) that all real valued Lipschitz functions admit a metric differential (see Lemma 4.1), a fact which self-improves to the existence of *linear* differentials (Proposition 3.1). We give an elementary argument in Section 3, but this can also be shown along the lines of [4].

2) We could alternatively require that every Lipschitz map $X \to Y \in \mathcal{C}$ admits a metric differential and that there exists $f \in \text{LIP}(X, Y)$ such that $f|_U$ is bi-Lipschitz for some $Y \in \mathcal{C}$. In particular, if we assume that (X, Y) has the Lipschitz extension property for each $Y \in \mathcal{C}$, the claim of the theorem is true assuming metric differentiability of every Lipschitz map $X \to Y \in \mathcal{C}$.

3) A noteworthy consequence of the fact that (U, φ) is a weak Cheeger chart (Proposition 3.1) is that $\varphi_{\#}(\mu|_U) \ll \mathscr{L}^n$. This is by now well-known (see [18] for a proof) and follows from the deep result of De Philippis–Rindler [19]. Together with the bi-Lipschitz decomposition, this implies the mutual absolute continuity of $\mu|_U$ and $\mathcal{H}^n|_U$, and completes the proof of rectifiability of $(U, d, \mu|_U)$.

Now, we list some straightforward consequences of Theorem 1.2. Notice that part (a) of the following corollary provides a simpler proof of [26, Theorem 3.7].

Corollary 1.3.

- (a) If X is an LDS admitting a bi-Lipschitz embedding into a Euclidean space, then (X, d, μ) is rectifiable.
- (b) More generally, let V be a Banach space. If every Lipschitz map $X \to V$ is metrically differentiable, and X bi-Lipschitz embeds into V, then X is rectifiable.
- (c) If every Lipschitz map $f: X \to c_0$ is metrically differentiable, then X is rectifiable.
- (d) If every Lipschitz map from X to an arbitrary target is metrically differentiable, then X is rectifiable.

In particular, since non-Abelian Carnot groups and the Laakso space are purely unrectifiable RNP-Lipschitz differentiability spaces (see [1, 28, 12, 16]), they do not admit a bi-Lipschitz embedding into an RNP-Banach space. Note that (a), (b) and (d) are immediate consequences of Theorem 1.2 with $\mathcal{C} = \{\mathbb{R}^n\}, \{V\}, \{X \times \mathbb{R}\}$, respectively, and (c) follows readily from Theorem 1.2 and the fact that every separable metric space bi-Lipschitz embeds into c_0 [22, Theorem 3.12]. A similar conclusion holds with c_0 replaced by ℓ^{∞} or C[0, 1], since both contain isometric copies

of every separable metric space. Since all three of these are non-RNP Banach spaces, not all Lipschitz maps into them can be (linearly) differentiable.

2. Preliminaries

Throughout this paper the triplet (X, d, μ) denotes a complete separable metric space endowed with a measure μ which is Borel regular and finite on bounded sets. In particular, μ is Radon (see [23, Corollary 3.3.47]).

For a mapping $f: (X, d_X) \to (Y, d_Y)$ between metric spaces we define the pointwise Lipschitz constant as

$$\operatorname{Lip} f(x) := \limsup_{y \to x} \frac{d_Y(f(x), f(y))}{d_X(x, y)}$$

We denote by LIP(X, Y) the space of Lipschitz mappings and, for the particular case of $Y = \mathbb{R}$, we use the notation LIP(X).

In order to give a formal definition of rectifiability, we briefly recall the notion of *Hausdorff* measure. For s > 0, first fix $\delta > 0$ and consider, for any set $E \subset X$,

$$\mathcal{H}^{s}_{\delta}(E) := \inf \left\{ \sum_{i=1}^{\infty} \operatorname{diam}(E_{i})^{s} \right\},\$$

where the infimum is taken over all countable covers of E by sets $E_i \subset X$ with diam $(E_i) < \delta$ for all $i \in \mathbb{N}$. Then the *s*-dimensional Hausdorff measure is defined as

$$\mathcal{H}^{s}(E) := \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(E).$$

Given two measures μ and ν , we say that μ is *absolutely continuous* with respect to ν (denoted $\mu \ll \nu$) if whenever $A \subset X$ such that $\nu(A) = 0$ then $\mu(A) = 0$.

Definition 2.1. (*n*-rectifiable space) We say that (X, d, μ) is *n*-rectifiable if $\mu \ll \mathcal{H}^n$ and there exists a countable collection of Lipschitz maps $\psi_i : E_i \to X$ from \mathscr{L}^n -measurable sets $E_i \subset \mathbb{R}^n$ with $\mu(X \setminus \bigcup_{i=1}^{\infty} \psi_i(E_i)) = 0$.

An *n*-dimensional chart on (X, d, μ) is a pair (U, φ) such that $U \subset X$ is Borel and $\varphi : X \to \mathbb{R}^n$ is Lipschitz.

Definition 2.2. (weak Cheeger chart) We say that an n-dimensional chart (U, φ) on (X, d, μ) is a weak Cheeger chart if for every mapping $f \in \text{LIP}(X)$ and μ -almost every $x \in U$ there exists a unique linear map $d_x f \in (\mathbb{R}^n)^*$ such that

(2.1)
$$\limsup_{U \ni y \to x} \frac{|f(y) - f(x) - \mathrm{d}_x f(\varphi(y) - \varphi(x))|}{d(x, y)} = 0.$$

As mentioned in the introduction, if (2.1) holds without the restriction $y \in U$ then (U, φ) is called a *Cheeger chart*. If X can be decomposed, up to a μ -null set, into a countable union of (weak) Cheeger charts then X is called a (weak) *Lipschitz differentiability space*, or (weak) LDS in short. It is interesting to notice that, if porous sets in X have zero measure, a weak Cheeger chart is automatically a Cheeger chart (see [25, Remark 2.11] and [7, Proposition 2.8]). Also, a countable union of LDS's might not be an LDS (see [6] for an example), whereas countable unions of weak LDS are trivially a weak LDS. In order to study mappings into a metric space where linearity is absent, a generalized definition of differentiability is necessary, and leads to the concept of *metric differential* introduced by Kirchheim in [27] (see Definition 1.1). In this scenario, the metric differential $\operatorname{md}_x f$ of a mapping $f: X \to Y$ cannot be a linear map, as defined in a (weak) Cheeger chart. Instead, it is substituted by a *seminorm* in \mathbb{R}^n , that is, a subadditive non-negative function. More precisely,

In Section 5 we will also consider the notion of w^* -differential, a weaker version of differentiability for maps taking values in duals to separable Banach spaces. Namely, if V is a separable Banach space, we can consider the w^* -topology in V^* , that is,

the distances $d_Y(f(y), f(x))$ behave like a seminorm (equation (1.3)) instead of f(y) - f(x)

behaving linearly (equation (1.2)), in both cases up to a first order error.

$$w^* - \lim_{j \to \infty} w_j = w \iff \lim_{j \to \infty} \langle w_j, v \rangle = \langle w, v \rangle \quad \forall v \in V,$$

whenever $w_j, w \in V^*$. Here $\langle \cdot, \cdot \rangle$ denotes the standard duality $\langle v, w \rangle = w(v)$ for $v \in V$ and $w \in V^*$.

Definition 2.3. (w*-differentiability) Let (U, φ) be a chart and V a separable Banach space. Given a map $f: U \to V^*$, we say that f is w*-differentiable with respect to the chart (U, φ) if for μ -a.e. $x \in U$ there exists a unique linear map $D_x f: \mathbb{R}^n \to V^*$ such that

(2.2)
$$\limsup_{U \ni y \to x} \frac{|\langle v, f(y) - f(x) - D_x f(\varphi(y) - \varphi(x)) \rangle|}{d(y, x)} = 0 \quad \text{for all } v \in V.$$

3. Metric and linear differentials

Let (U, φ) be an *n*-dimensional chart satisfying (1.4). Note that for every $x \in U$ and any sequence $(x_j) \subset U \setminus \{x\}$ with $x_j \to x$, the Lipschitz property of φ gives that $\left(\frac{\varphi(x_j) - \varphi(x)}{d(x_j, x)}\right)$ has a convergent subsequence. We denote by $L(\varphi, x) \subset \mathbb{R}^n$ the set of limit points of sequences $\left(\frac{\varphi(x_j) - \varphi(x)}{d(x_j, x)}\right)$ with (x_j) as above.

From (1.4) it follows that $L(\varphi, x)$ spans \mathbb{R}^n for μ -a.e. $x \in U$ (since $\operatorname{Lip}(v \cdot \varphi|_U)(x) = 0$ for any $v \perp L(\varphi, x)$). It moreover follows from (1.4) that a function can have at most one (linear) differential with respect to (U, φ) , see [4, Lemma 3.3] and [7, Lemma 2.1]. If on the other hand $f \in \operatorname{LIP}(X)$ admits a metric differential with respect to (U, φ) in the sense of Definition 1.1 it follows that, for μ -a.e. $x \in U$, the metric differential $\operatorname{md}_x f$ is uniquely determined on $L(\varphi, x)$. In fact, if $w = \lim_{j \to \infty} \frac{\varphi(x_j) - \varphi(x)}{d(x_j, x)} \in L(\varphi, x)$, then

$$\operatorname{md}_{x} f(w) = \lim_{j \to \infty} \frac{\operatorname{md}_{x} f(\varphi(x_{j}) - \varphi(x))}{d(x_{j}, x)} = \lim_{j \to \infty} \frac{|f(x_{j}) - f(x)|}{d(x_{j}, x)}$$

However if $\mathbb{R}L(\varphi, x)$ is not dense in \mathbb{R}^n , there may exist many seminorms s on \mathbb{R}^n with $s|_{L(\varphi,x)} =$ md_x $f|_{L(\varphi,x)}$. This is in contrast with linear maps, which are uniquely determined by their values on a spanning set. The density of $\mathbb{R}L(\varphi, x)$ holds for weak Cheeger charts by [4, Lemma 9.1] whose proof uses Alberti representations.

Below we show that metric differentiability of *every* Lipschitz function self-improves to the existence of linear differentials.

Proposition 3.1. Suppose (U, φ) is an n-dimensional chart satisfying (1.4). If every $f \in LIP(U)$ admits a metric differential with respect to (U, φ) , then (U, φ) is a weak Cheeger chart.

Combining this with [4, Lemma 9.1] we have the following immediate corollary.

Corollary 3.2. Under the hypotheses of Proposition 3.1, $\mathbb{R}L(\varphi, x)$ is dense in \mathbb{R}^n for μ -a.e. $x \in U$.

Proof of Proposition 3.1. Let $f \in LIP(X)$. By assumption there exists a μ -null set $N \subset U$ such that $L(\varphi, x)$ spans \mathbb{R}^n and there are seminorms $\mathrm{md}_x(f + w \cdot \varphi)$ satisfying

$$\limsup_{U\ni y\to x} \frac{||f(y) - f(x) + w \cdot (\varphi(y) - \varphi(x))| - \mathrm{md}_x (f + w \cdot \varphi)(\varphi(y) - \varphi(x))|}{d(y, x)} = 0$$

for every $x \in U \setminus N$ and $w \in \mathbb{Q}^n$. We fix $x \in U \setminus N$.

If
$$v = \lim_{j \to \infty} \frac{\varphi(x_j) - \varphi(x)}{d(x_j, x)} \in L(\varphi, x)$$
, and $a(f, x, v) = \lim_{j \to \infty} \frac{f(x_j) - f(x)}{d(x_j, x)}$ exists, then
 $|a(f, x, v) + w \cdot v| = \operatorname{md}_x (f + w \cdot \varphi)(v)$

for all $w \in \mathbb{Q}^n$. If we consider now a different sequence $x'_j \to x$ such that $v = \lim_{j \to \infty} \frac{\varphi(x'_j) - \varphi(x)}{d(x'_j, x)}$ and $a'(f, x, v) = \lim_{j \to \infty} \frac{f(x'_j) - f(x)}{d(x'_j, x)}$ exists, then

$$|a'(f, x, v) + w \cdot v| = |a(f, x, v) + w \cdot v|$$

for all $w \in \mathbb{Q}^n$ and thus we conclude that a'(f, x, v) = a(f, x, v). It follows that the map $L_f: L(\varphi, x) \to \mathbb{R}$ given by

$$L_f(v) := \lim_{j \to \infty} \frac{f(x_j) - f(x)}{d(x_j, x)}, \text{ whenever } v = \lim_{j \to \infty} \frac{\varphi(x_j) - \varphi(x)}{d(x_j, x)}$$

is well-defined and satisfies

(3.1)
$$\operatorname{md}_{x}(f + w \cdot \varphi)(v) = |L_{f}(v) + w \cdot v| \text{ for all } w \in \mathbb{Q}^{n}$$

We prove that

(a) $L_f(tv) = tL_f(v)$ if $v, tv \in L(\varphi, x)$, and

(b) $L_f(v+v') = L_f(v) + L_f(v')$ if $v, v', v+v' \in L(\varphi)$.

If $v, v' \in L(\varphi, x)$ satisfy $v' = tv, t \in \mathbb{R}$, then

$$L_f(v') + w \cdot v'| = \mathrm{md}_x(f + w \cdot \varphi)(v') = |t| \mathrm{md}_x(f + w \cdot \varphi)(v) = |t||L_f(v) + w \cdot v|$$

Thus $|L_f(v') + tw \cdot v| = |tL_f(v) + tw \cdot v|$ for all $w \in \mathbb{Q}^n$, implying (a). Next suppose $v, v', v + v' \in L(\varphi, x)$. From (3.1) and the fact that $\mathrm{md}_x(f + w \cdot \varphi)$ is a seminorm we obtain that

$$|L_f(v+v') + w \cdot (v+v')| \le |L_f(v) + w \cdot v| + |L_f(v') + w \cdot v'|, \quad w \in \mathbb{Q}^n.$$

If v' = -v, then $L_f(v + v') = 0 = L_f(v) + L_f(v')$ by (a). Otherwise, there exists $w \in \mathbb{Q}^n$ such that $w \cdot z > 0$ for z = v, v', v + v'. By multiplying w by a sufficiently large positive number we find w^+ such that $L_f(z) + w^+ \cdot z > 0$, z = v, v', v + v'. From the inequality above we obtain $L_f(v + v') \leq L_f(v) + L_f(v')$. Similarly, by multiplying w by a suitably large (in absolute value) negative number we find w^- such that $L_f(z) + w^- \cdot z < 0$, z = v, v', v + v', yielding $-L_f(v + v') \leq -L_f(v) - L_f(v')$. These two inequalities together prove (b).

Since $L(\varphi, x)$ spans \mathbb{R}^n and L_f satisfies (a) and (b), there exist a linear map $L : \mathbb{R}^n \to \mathbb{R}$ such that $L|_{L(\varphi,x)} = L_f$. It follows that L is the Cheeger differential of f at x with respect to (U, φ) . Indeed, otherwise there would exist $\varepsilon_0 > 0$ and a sequence $U \ni x_j \to x$ with $v := \lim_{j\to\infty} \frac{\varphi(x_j) - \varphi(x)}{d(x_j, x)}$ such that

$$\varepsilon_0 \leq \frac{|f(x_j) - f(x) - L(\varphi(x_j) - \varphi(x))|}{d(x_j, x)} \stackrel{j \to \infty}{\longrightarrow} |L_f(v) - L(v)|,$$

contradicting the fact that $L_f(v) = L(v)$.

4. Metric differential and rectifiability

Throughout this section, we fix an *n*-dimensional chart (U, φ) satisfying (1.4).

Lemma 4.1. Suppose C is a collection of metric spaces containing a space with a non-trivial geodesic, and that every Lipschitz map $U \to Y \in C$ admits a metric differential with respect to (U, φ) . Then every $f \in \text{LIP}(U)$ admits a metric differential with respect to (U, φ) .

Proof. Let $\gamma : [a, b] \to Y \in \mathcal{C}$ be a non-trivial geodesic, and let $h : \mathbb{R} \to (a, b)$ be a Lipschitz diffeomorphism. By assumption, for any $f \in \operatorname{LIP}(U)$ the map $\tilde{f} = \gamma \circ h \circ f$ admits a metric differential. Since $d_Y(\tilde{f}(y), \tilde{f}(x)) = |h(f(y)) - h(f(x))|$ for each $x, y \in U$, it follows that $h \circ f \in$ $\operatorname{LIP}(U)$ admits a metric differential. However if $\operatorname{md}(h \circ f)$ denotes the metric differential of $h \circ f$, we have for μ -a.e. $x \in U$

$$\begin{aligned} |f(y) - f(x)| &= |h^{-1}(h \circ f(y)) - h^{-1}(h \circ f(x))| \\ &= |(h^{-1})'(h \circ f(x))(h \circ f(y) - h \circ f(x))| + o(|h \circ f(y) - h \circ f(x)|) \\ &= |(h^{-1})'(h \circ f(x))| \operatorname{md}_x(h \circ f)(\varphi(y) - \varphi(x)) + o(d(y, x)) \end{aligned}$$

which implies that $\operatorname{md} f := |(h^{-1})' \circ h \circ f| \operatorname{md}(h \circ f)$ is a metric differential of f. This proves the claim.

We now give the proof of the main result.

Proof of Theorem 1.2. By hypothesis, there exists a bi-Lipschitz embedding $f : U \to Y$ of U into some $(Y, d_Y) \in \mathcal{C}$, which admits a metric differential md f with respect to (U, φ) . Denote the bi-Lipschitz constant of f by L. In particular by (1.3) we have

(4.1)
$$\lim_{U\ni y\to x} \frac{|d_Y(f(x), f(y)) - \mathrm{md}_x f(\varphi(y) - \varphi(x))|}{d(x, y)} = 0$$

for μ -almost every $x \in U$. Let $N \subset U$ be a null set such that (4.1) holds for all $x \in U \setminus N$ and rewrite the limit in (4.1) as follows:

$$\lim_{j \to \infty} F_j(x) = 0 \quad \text{where} \quad F_j(x) := \sup_{y \in B(x, \frac{1}{j}) \cap U} \frac{|d_Y(f(x), f(y)) - \mathrm{md}_x f(\varphi(x) - \varphi(y))|}{d(x, y)}$$

By Egorov's theorem for every $\varepsilon > 0$ there exists a set $K \subset U \setminus N$ with $\mu(U \setminus K) < \varepsilon$ so that $\operatorname{md}_x f$ exists for every $x \in K$, and $F_j \to 0$ uniformly on K. Since μ is Radon we may further assume that K is compact. Let $j_0 \in \mathbb{N}$ be such that

$$\sup_{y \in B(x,\frac{1}{j_0}) \cap K} \frac{|d_Y(f(x), f(y)) - \mathrm{md}_x f(\varphi(x) - \varphi(y))|}{d(x, y)} \le F_{j_0}(x) \le \frac{1}{2L}, \quad x \in K.$$

In particular, for any $x, y \in K$ with $d(x, y) < 1/j_0$ we have

$$\frac{1}{L}d(x,y) - \mathrm{md}_x f(\varphi(x) - \varphi(y)) \le d_Y(f(y), f(x)) - \mathrm{md}_x f(\varphi(x) - \varphi(y)) \le \frac{1}{2L}d(x,y)$$

from which we obtain

 $d(x,y) \le 2L \operatorname{md}_x f(\varphi(y) - \varphi(x)) \le 2LC |\varphi(x) - \varphi(y)|,$

where $C := \sup_{|v| \leq 1} \operatorname{md}_x f(v)$. Consider a covering of K by balls $\{B(x, \frac{1}{2j_0})\}_{x \in K}$. By compactness, there exist x_1, x_2, \dots, x_N such that $K \subset \bigcup_{i=1}^N B(x_i, \frac{1}{2j_0})$. Choose $x_0 \in \{x_1, x_2, \dots, x_N\}$ such that $\mu(K \cap B(x_0, \frac{1}{2i_0})) > 0$, and define

$$A_k := \{ x \in K : \frac{1}{k} \le \sup_{|v| \le 1} \operatorname{md}_x f(v) \le k \}.$$

Recall that f is the restriction of a bi-Lipschitz mapping on K, so that $\sup_{|v|<1} \operatorname{md}_x f(v) \neq 0$ for all $x \in K$, implying $\bigcup_{k=1}^{\infty} A_k = K$. Thus there exists $k \ge 1$ such that $\mu(A_k \cap K \cap B(x, \frac{1}{2j_0})) > 0$ 0. Now, let $x, y \in A_k \cap K \cap B(x_0, \frac{1}{2j_0})$. Since $y \in A_k \cap K \cap B(x, \frac{1}{j_0})$ we have that

$$d(x,y) \le 2Lk|\varphi(x) - \varphi(y)|,$$

that is, φ is injective on $A_k \cap K \cap B(x_0, \frac{1}{2j_0})$ and φ^{-1} is 2Lk-Lipschitz on $\varphi(A_k \cap K \cap B(x_0, \frac{1}{2j_0}))$. In particular, φ is bi-Lipschitz on $A_k \cap K \cap B(x_0, \frac{1}{2j_0})$. By [24, Proposition 3.1.1], there exists a countable decomposition

$$U = Z \cup \bigcup_{i} V_i,$$

where $\mu(Z) = 0$ and $\{V_i\}$ is a collection of mutually disjoint measurable sets such that $\varphi|_{V_i}$ is bi-Lipschitz for each i.

To finish the proof, we note that (U, φ) is a weak Cheeger chart of dimension n by Lemma 4.1 and Proposition 3.1. In particular $\varphi_{\#}(\mu|_U) \ll \mathscr{L}^n$ [18, Theorem 1.1]. Writing $\varphi_{\#}(\mu|_{V_i}) = \rho_i \mathscr{L}^n$ for each V_i as above, we obtain that

$$\mu|_{V_i} = (\rho_i \circ \varphi^{-1})\varphi_{\#}^{-1}(\mathscr{L}^n|_{\varphi(V_i)}) \simeq \mathcal{H}^n|_{V_i}.$$

$$\mu \simeq \sum \mathcal{H}^n|_{V_i} = \mathcal{H}^n|_{U_i}.$$

Consequently $\mu|_U = \sum_i \mu|_{V_i} \simeq \sum_i \mathcal{H}^n|_{V_i} = \mathcal{H}^n|_U.$

Next we prove a "converse" ¹ of Corollary 1.3 (d), namely that Lipschitz maps from a rectifiable space to arbitrary targets admit metric differentials. This result can be considered folklore, but we record the statement and its proof below for the reader's convenience.

Proposition 4.2. Suppose (U, φ) be a n-dimensional chart in a metric measure space (X, d, μ) such that $\varphi|_U$ is bi-Lipschitz and $\mu|_U \ll \mathcal{H}^n$ Then, for any metric space Y, every Lipschitz map $f \in LIP(U, Y)$ admits a metric differential with respect to (U, φ) .

Proof. Let $g = f \circ \varphi^{-1} : \varphi(U) \to Y$. Notice that g is a composition of Lipschitz mappings, so it is also Lipschitz. By Kirchheim's Rademacher Theorem [27, Theorem 2], for \mathcal{H}^n -almost every $z \in \varphi(U)$ there exists a unique seminorm $\mathrm{md}_z g$ on \mathbb{R}^n such that

(4.2)
$$\lim_{\substack{y \to z \\ y \in \varphi(U)}} \frac{|d_Y(g(z), g(y)) - \mathrm{md}_z g(y - z)|}{|y - z|} = 0.$$

¹Assuming porous sets in X have measure zero, if X is rectifiable, it can be decomposed into a countable union of charts with respect to which every $f: X \to Y$ admits a metric differential.

On the other hand, $g(\varphi(x)) = f(x)$ for each $x \in U$. Fix $x_0 \in U$ such that for $z_0 := \varphi(x_0)$ there exists a unique seminorm $\mathrm{md}_{z_0}g$ on \mathbb{R}^n such that (4.2) holds. As φ is continuous, if $x \in U$ and $x \to x_0$, then $\varphi(x) \to z_0$. Therefore

$$\lim_{\substack{x \to x_0 \\ x \in U}} \frac{|d_Y(f(x_0), f(x)) - \mathrm{md}_z g(\varphi(x) - \varphi(x_0))|}{d(x, x_0)} \\ \leq \lim_{\substack{z \to z_0 \\ z = \varphi(x)}} \frac{|d_Y(g(z_0), g(z)) - \mathrm{md}_{z_0} g(z - z_0)|}{\frac{1}{C} |z - z_0|} = 0.$$

where C is the Lipschitz constant of φ . Then $\operatorname{md}_{x_0} f := \operatorname{md}_{\varphi(x_0)} g$ is the metric differential of f at $x_0 \in U$. We finish the proof by noticing that, because $\varphi_{\#}(\mu_{|U}) \ll \mathcal{H}^n_{|\varphi(U)}$ and

 $\mathcal{H}^n(\{z_0 \in \varphi(U) : \mathrm{md}_{z_0}g \text{ does not exist}\}) = 0,$

we conclude that

$$\mu(\{x_0 \in U : \mathrm{md}_{x_0} f \text{ does not exist}\}) = 0$$

5. Metric and w^* -differentials

Differentiability of real valued Lipschitz functions gives rise to w^* -differentials of Lipschitz maps into the dual of a separable Banach spaces. This insight was made explicit² in [1], where it was shown that the w^* -differential is compatible with the metric differential of Kirchheim, see [1, Theorem 3.5]. In Propositions 5.1 and 5.2 below we establish the compatibility of metric and w^* -differentials in the setting of (weak) Cheeger charts.

Proposition 5.1. Let (U, φ) be a weak Cheeger chart and V a separable Banach space. Given $f \in \text{LIP}(U, V^*)$, f admits a w^* -differential $D_x f$ with respect to (U, φ) for μ -a.e. $x \in U$.

Proof. Let $D \subset V$ be a countable dense vector space over \mathbb{Q} , and $N \subset U$ a μ -null set such that the unique differential $L_x(v) := d_x \langle v, f \rangle \in (\mathbb{R}^n)^*$ of $\langle v, f \rangle$ with respect to (U, φ) exists for every $v \in D$ whenever $x \in U \setminus N$. We fix $x \in U \setminus N$. Since

$$\langle v+w, f(y) - f(x) \rangle = \langle v, f(y) - f(x) \rangle + \langle w, f(y) - f(x) \rangle$$

= $(L_x(v) + L_x(w))(\varphi(y) - \varphi(x)) + o(d(x, y)),$

it follows by the uniqueness of the differential that $L_x(v+w) = L_x(v) + L_x(w)$ for $v, w \in D$. Similarly $L_x(av) = aL_x(v)$. These identities together with the estimate

$$\operatorname{Lip}(L_x(v) \circ \varphi|_U)(x) = \operatorname{Lip}(\langle v, f \rangle)(x) \le ||v|| \operatorname{Lip} f(x)$$

show that $v \mapsto L_x(v)$ is a bounded linear map $D \to ((\mathbb{R}^n)^*, |\cdot|_x^*)$ and thus extends to a bounded linear map $L_x : V \to (\mathbb{R}^n)^*$. Here $|\lambda|_x^* = \operatorname{Lip}(\lambda \circ \varphi|_U)(x)$ is a norm on $(\mathbb{R}^n)^*$, in light of the fact that a weak Cheeger chart satisfies (1.4).

We denote by $D_x f: (\mathbb{R}^n, |\cdot|_x) \to V^*$ the adjoint operator $(|\cdot|_x$ the dual norm of $|\cdot|_x^*)$ and note that it satisfies $\langle D_x f(z), v \rangle = \langle L_x(v), z \rangle$ for all $z \in \mathbb{R}^n$ and $v \in V$. To see that $D_x f$ is the w^* -differential of f, observe that if $v \in V$, we have

$$\operatorname{Lip}(\langle v, f - D_x f \circ \varphi |_U \rangle)(x) \le \operatorname{Lip}(\langle v_i, f - D_x f \circ \varphi |_U \rangle)(x) + \|v_i - v\|_V(\operatorname{Lip} f(x) + \operatorname{Lip}(D_x f \circ \varphi |_U)(x))$$

²The authors state in [1] that w^* -differentiability of Lipschitz maps from \mathbb{R}^n is a folklore result.

$$\leq \operatorname{Lip}(\langle v_i, f \rangle - L_x(v_i) \circ \varphi|_U)(x) + \|v_i - v\|_V(\operatorname{Lip} f(x) + \operatorname{Lip}(D_x f \circ \varphi|_U)(x)) \\= 0 + \|v_i - v\|_V(\operatorname{Lip} f(x) + \operatorname{Lip}(D_x f \circ \varphi|_U)(x))$$

for any $v_i \in D$. Taking $v_i \to v$ we obtain (2.2).

Proposition 5.2. Suppose (U, φ) is a weak Cheeger chart and $f \in \text{LIP}(U, V^*)$, where V is a separable Banach space. If f admits a metric differential md f with respect to (U, φ) , then for μ -a.e. $x \in U$ we have $\text{md}_x f(z) = \|D_x f(z)\|_{V^*}$ for all $z \in \mathbb{R}^n$.

The proof is a modification of the argument in [1, Theorem 3.5], and uses curve fragments and Alberti representations. A curve fragment in X is a bi-Lipschitz map $\gamma : \operatorname{dom}(\gamma) \to X$ where $\operatorname{dom}(\gamma) \subset \mathbb{R}$ is compact, and the set $\operatorname{Fr}(X)$ of curve fragments in X is equipped with the topology arising from the Hausdorff metric on their graphs, see [4, Definition 2.1]. An Alberti representation $\mathcal{A} = \{\nu_{\gamma}, \mathbb{P}\}$ of a (Radon) measure ν on X consists of a finite positive measure \mathbb{P} on $\operatorname{Fr}(X)$ and a family $\{\nu_{\gamma}\}$ of probability measures on X such that

(a)
$$\nu_{\gamma} \ll \mathcal{H}^{1}|_{\mathrm{Im}(\gamma)} \mathbb{P}$$
-a.e. γ ;
(b) $\gamma \mapsto \nu_{\gamma}(B)$ is \mathbb{P} -measurable and $\nu(B) = \int \nu_{\gamma}(B) \, \mathrm{d}\,\mathbb{P}(\gamma)$ for every Borel $B \subset X$.

Given $\varphi \in \operatorname{LIP}(X, \mathbb{R}^n)$, $z \in S^{n-1}$, $\varepsilon > 0$, and a cone $C(z, \varepsilon) := \{p \in \mathbb{R}^n : z \cdot p \ge (1-\varepsilon)|p|\}$, we say that the Alberti representation \mathcal{A} is in the φ -direction of $C(z, \varepsilon)$ if $(\varphi \circ \gamma)'(t) \in C(z, \varepsilon)$ a.e. $t \in \operatorname{dom}(\gamma)$ for \mathbb{P} -a.e. $\gamma \in \operatorname{Fr}(X)$. Note that if $p \in C(z, \varepsilon)$, then $|z - p/|p|| < 2\varepsilon$. See [4, Section 2, Definition 5.7, and Definition 7.3] for the definition of independence, δ -speed and ξ -separation of Alberti representations used in the proof below. Alberti representations have the following very useful property. If $\Gamma_0 \subset \operatorname{Fr}(X)$ is \mathbb{P} -null, $E_\gamma \subset \operatorname{dom}(\gamma)$ is \mathscr{L}^1 -null for each $\gamma \notin \Gamma_0$, and $\{(\gamma, t) : \gamma \notin \Gamma_0, t \in E_\gamma\} \subset \operatorname{Fr}(X) \times \mathbb{R}$ is $\mathbb{P} \times \mathscr{L}^1$ -measurable, then for ν -a.e. $x \in X$ there exists $\gamma \notin \Gamma_0$ and $t \in \operatorname{dom}(\gamma) \setminus E_\gamma$ with $\gamma_t = x$, cf. [4, Proposition 2.9].

The following facts, which will be used in the proof pf Proposition 5.2, can be established as in the proof of Proposition 5.1. Let $U \subset X$ be a Borel set and $f \in \text{LIP}(U, V^*)$. If \mathcal{A} is an Alberti representation of $\mu|_U$, then the limit

$$(f \circ \gamma)'_t = w^* - \lim_{\operatorname{dom}(\gamma) \ni t' \to t} \frac{f(\gamma_{t'}) - f(\gamma_t)}{t' - t} \in V^*$$

exists for a.e. $t \in \operatorname{dom}(\gamma)$ for \mathbb{P} -a.e. γ . If (U, φ) is a weak Cheeger chart, then $D_{\gamma_t} f((\varphi \circ \gamma)'_t) = (f \circ \gamma)'_t$ for a.e. $t \in \operatorname{dom}(\gamma)$ for \mathbb{P} -a.e. γ . Finally, for \mathbb{P} -a.e. γ , we have that

$$\|D_{\gamma_t}f((\varphi \circ \gamma)_t')\|_{V^*} = \lim_{h \to 0^+} \frac{1}{h} \int_t^{t+h} \chi_{\operatorname{dom}(\gamma)}(s) \|D_{\gamma_s}f((\varphi \circ \gamma)_s')\|_{V^*} \,\mathrm{d}\,s$$

a.e. $t \in \operatorname{dom}(\gamma)$ since $t \mapsto \chi_{\operatorname{dom}(\gamma)}(t) \| D_{\gamma_t} f((\varphi \circ \gamma)'_t) \|_{V^*}$ is integrable for \mathbb{P} -a.e. γ , see [15, Theorem 1.4] and [9, Theorem 3.5].

Proof of Proposition 5.2. By passing to a subset we may assume that (U, φ) is a λ -structured chart and $\mu|_U$ has $n \xi$ -separated Alberti representations with speed strictly greater than δ , for some numbers $\lambda, \xi, \delta > 0$. Let $z \in S^{n-1}$ and $\varepsilon > 0$. By [4, Theorem 9.5] $\mu|_U$ has an Alberti representation in the φ -direction $C(z, \varepsilon)$ with speed greater than $\tau = \tau(n, \lambda, \xi, \delta) > 0$. Thus, for μ -a.e. $x \in U$, there exists a curve fragment $\gamma : \operatorname{dom}(\gamma) \to X$ in the φ -direction of $C(z, \varepsilon)$ and with φ -speed at least τ , and $t \in \operatorname{dom}(\gamma)$ with $\gamma_t = x$, $(\varphi \circ \gamma)'_t \in C(z, \varepsilon)$, and $|(\varphi \circ \gamma)'_t| \ge \tau \operatorname{Lip} \varphi(x)|\gamma'_t|$ such that $\operatorname{md}_x f$, $D_x f$, $(\varphi \circ \gamma)'_t$, $(f \circ \gamma)'_t$ exist and satisfy $(f \circ \gamma)'_t = D_x f((\varphi \circ \gamma)'_t)$. Moreover, we may assume that

(1)
$$(f \circ \gamma)'_s = D_{\gamma_s} f((\varphi \circ \gamma)'_s)$$
 a.e. $s \in \operatorname{dom}(\gamma)$;
(2) we have $\|D_{\gamma_t} f((\varphi \circ \gamma)'_t)\|_{V^*} = \lim_{h \to 0^+} \frac{1}{h} \int_t^{t+h} \chi_{\operatorname{dom}(\gamma)}(s) \|D_{\gamma_s} f((\varphi \circ \gamma)'_s)\|_{V^*} \,\mathrm{d}\,s$, and
 $\lim_{h \to 0^+} \frac{|[t, t+h] \cap \operatorname{dom}(\gamma)|}{h} = 1.$

Indeed, (1) and (2) can be assumed to hold by the discussion before the proof.

From the lower semicontinuity of the norm with respect to w^* -convergence we obtain

$$\|D_x f((\varphi \circ \gamma)'_t)\|_{V^*} = \|(f \circ \gamma)'_t\|_{V^*} \le \operatorname{md}_x f((\varphi \circ \gamma)'_t).$$

Denoting $z_{\gamma} := z - \frac{(\varphi \circ \gamma)'_t}{|(\varphi \circ \gamma)'_t|}$ we have $\|D_x f(z)\|_{V^*} \le \operatorname{md}_x f(z) + \|D_x f(z_{\gamma})\|_{V^*} + \operatorname{md}_x f(z_{\gamma})$. Since, for μ -a.e. $x \in U$, we have that for every $\varepsilon > 0$ there exist γ and $t \in \operatorname{dom}(\gamma)$ as above with $|z_{\gamma}| < 2\varepsilon$, we obtain the inequality $\|D_x f(z)\|_{V^*} \le \operatorname{md}_x f(z)$ for μ -a.e. $x \in U$.

We prove the opposite inequality. Let $f_{\gamma} : [a, b] \to V^*$ be the extension of $f \circ \gamma : \operatorname{dom}(\gamma) \to V^*$ to the smallest interval [a, b] containing $\operatorname{dom}(\gamma)$ obtained by extending linearly into the gaps. Writing $[a, b] \setminus \operatorname{dom}(\gamma) = \bigcup_i (a_i, b_i)$, we have that $f'_{\gamma}(s) = \frac{f(\gamma_{b_i}) - f(\gamma_{a_i})}{b_i - a_i}$, $s \in (a_i, b_i)$, so that $\|f'_{\gamma}\|_{V^*} \leq \operatorname{LIP}(f \circ \gamma)$ on $[a, b] \setminus \operatorname{dom}(\gamma)$ and $f'_{\gamma} = (f \circ \gamma)' = D_{\gamma}f((\varphi \circ \gamma)')$ a.e. on $\operatorname{dom}(\gamma)$. For $v \in V$ with $\|v\|_V \leq 1$ and h > 0 we have

$$\left\langle \frac{f(\gamma_{t+h}) - f(\gamma_t)}{h}, v \right\rangle = \frac{1}{h} \int_t^{t+h} \chi_{\operatorname{dom}(\gamma)}(s) \langle D_{\gamma_s} f((\varphi \circ \gamma)'_s), v \rangle \,\mathrm{d}\,s + \frac{1}{h} \int_t^{t+h} \chi_{\mathbb{R}\setminus\operatorname{dom}(\gamma)}(s) \langle f'_{\gamma}(s), v \rangle \,\mathrm{d}\,s.$$

Taking supremum over *v* with $||v||_V \leq 1$ yields the estimate

$$\frac{\|f(\gamma_{t+h}) - f(\gamma_t)\|_{V^*}}{h} \le \frac{1}{h} \int_t^{t+h} \chi_{\operatorname{dom}(\gamma)}(s) \|D_{\gamma_s} f((\varphi \circ \gamma)'_s)\|_{V^*} \,\mathrm{d}\,s$$
$$+ \operatorname{LIP}(f \circ \gamma) \frac{|[t, t+h] \setminus \operatorname{dom}(\gamma)|}{h}$$

Letting $h \to 0^+$ and using (2) we obtain

$$\operatorname{md}_{x} f((\varphi \circ \gamma)'_{t}) = \lim_{h \to 0^{+}} \frac{\|f(\gamma_{t+h}) - f(\gamma_{t})\|_{V^{*}}}{h} \leq \|D_{x}f((\varphi \circ \gamma)'_{t})\|_{V^{*}}.$$

Thus $\operatorname{md}_x f(z) \leq \|D_x f(z)\|_{V^*} + \operatorname{md}_x f(z_{\gamma}) + \|D_x f(z_{\gamma})\|_{V^*}$, where $z_{\gamma} = z - \frac{(\varphi \circ \gamma)'_t}{|(\varphi \circ \gamma)'_t|}$ satisfies $|z_{\gamma}| < 2\varepsilon$. Arguing as above we get $\operatorname{md}_x f(z) \leq \|D_x f(z)\|_{V^*} \mu$ -a.e. $x \in U$.

By choosing a countable dense set $D \subset \mathbb{R}^n$ it follows from the argument above that μ -a.e. $x \in U$ we have $\operatorname{md}_x f(z) = \|D_x f(z)\|_{V^*}$ for all $z \in D$. For such x, the equality holds for all $z \in \mathbb{R}^n$ by continuity and 1-homogeneity. This completes the proof.

References

- L. Ambrosio and B. Kirchheim. Rectifiable sets in metric and Banach spaces. Math. Ann., 318 (3): 527–555, (2000).
- [2] A. Arroyo-Rabasa, G. De Philippis, J. Hirsch and F. Rindler. Dimensional estimates and rectifiability for measures satisfying linear PDE constraints. *Geom. Funct. Anal.*, 29 (3): 639–658, (2019).
- [3] J. Azzam. Poincaré inequalities and uniform rectifiability. Rev. Mat. Iberoam., 37 (6): 2161–2190, (2021).

12 I. CAAMAÑO, E. DURAND-CARTAGENA, J. Á. JARAMILLO, Á. PRIETO, AND E. SOULTANIS

- [4] D. Bate. Structure of measures in Lispchitz differentiability spaces. JAMS 28 (2): 421-482, (2015).
- [5] D. Bate. Characterising rectifiable metric spaces using tangent spaces. Invent. Math., 230 (3): 995–1070, (2022).
- [6] D. Bate and S. Li. Characterizations of rectifiable metric measure spaces. Ann. Sci. Éc. Norm. Supér. (4), 50(1): 1–37, (2017).
- [7] D. Bate and G. Speight. Differentiability, porosity and doubling in metric measure spaces. *PAMS*, 141(3): 971–985, (2013).
- [8] A. Björn and J. Björn. Nonlinear potential theory on metric spaces, volume 17 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2011.
- [9] I. Caamaño, J.Á. Jaramillo and Á. Prieto. Characterizing Sobolev spaces of vector-valued functions. J. Math. Anal. Appl. 514 (2022), no. 1, Paper No. 126250, 18 pp.
- [10] J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 9 (3): 428–517, (1999).
- [11] J. Cheeger and B. Kleiner. Generalized differentiation and bi-Lipschitz nonembedding in L¹. C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 297–301.
- [12] J. Cheeger and B. Kleiner. Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon–Nikodým property. Geom. Funct. Anal. 19 (4), 1017–1028 (2009).
- [13] J. Cheeger and B. Kleiner. Metric differentiation, monotonicity and maps to L¹. Invent. math. 182, 335–370 (2010).
- [14] J. Cheeger, B. Kleiner and A. Schioppa. Infinitesimal structure of differentiability spaces, and metric differentiation. Anal. Geom. Metr. Spaces 4, 104–159 (2016).
- [15] P. Creutz and N. Evseev. An approach to metric space valued Sobolev maps via weak* derivatives. arXiv: 2106.15449, 2021.
- [16] G. C. David. Tangents and rectifiability of Ahlfors regular Lipschitz differentiability spaces. Geom. Funct. Anal. 25 (2): 553–579, (2015).
- [17] G. C. David and B. Kleiner. Rectifiability of planes and Alberti representations. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 19 (2019), no. 2, 723–756.
- [18] G. De Philippis, A. Marchese and F. Rindler. On a conjecture of Cheeger. Measure Theory in Non-Smooth Spaces. De Gruyter Open Poland 2017.
- [19] G. De Philippis and F. Rindler. On the structure of A-free measures and applications. Ann. of Math., Volume 184, Issue 3 (2016), 1017–1039.
- [20] N. Gigli, A. Tyulenev. Korevaar–Schoen's energy on strongly rectifiable spaces. Calc. Var. (2021) 60, Article number 235.
- [21] J. Heinonen. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001.
- [22] J. Heinonen. Geometric embeddings of metric spaces. University of Jyväskylä, Department of Mathematics and Statistics, vol. 90, University of Jyväskylä, Jyväskylä, 2003.
- [23] J. Heinonen, P. Koskela, N. Shanmugalingam, and J. Tyson. Sobolev spaces on metric measure spaces: an approach based on upper gradients. New Mathematical Monographs. Cambridge University Press, United Kingdom, first edition, 2015.
- [24] S. Keith. A differentiable structure for metric measure spaces. Adv. Math. 183 (2004) 271–315.
- [25] S. Keith. Measurable differentiable structures and the Poincaré inequality. Indiana Univ. Math. J. 53 (2004), no. 4, 1127–1150.
- [26] M. Kell and A. Mondino. On the volume measure of non-smooth spaces with Ricci curvature bounded below. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XVIII (2018), 593–610.
- [27] B. Kirchheim. Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Amer. Math. Soc. 121 (1994), no. 1, 113–123.
- [28] T. J. Laakso. Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality. Geom. Funct. Anal. 10 (2000), no. 1, 111–123.
- [29] A. Schioppa. Derivations and Alberti representations. Adv. Math., 293 (2016), 436–528.