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Abstract. We combine Kirchheim’s metric differentials with Cheeger charts in order to es-

tablish a non-embeddability principle for any collection C of Banach (or metric) spaces: if a

metric measure space X bi-Lipschitz embeds in some element in C, and if every Lipschitz map

X → Y ∈ C is differentiable, then X is rectifiable. This gives a simple proof of the rectifiability

of Lipschitz differentiability spaces that are bi-Lipschitz embeddable in Euclidean space, due to

Kell–Mondino. Our principle also implies a converse to Kirchheim’s theorem: if all Lipschitz

maps from a domain space to arbitrary targets are metrically differentiable, the domain is rec-

tifiable. We moreover establish the compatibility of metric and w∗-differentials of maps from

metric spaces in the spirit of Ambrosio–Kirchheim.

1. Introduction

Going beyond geometric measure theory in Euclidean space, metric differentiability, intro-

duced by Kirchheim [27] has become an indispensable tool in studying rectifiability of met-

ric spaces. A metric measure space X = (X, d, µ) is called n-rectifiable if µ ≪ Hn and

µ (X\
⋃∞

i=1 ψi(Ei)) = 0 for some countable family of Lipschitz maps ψi ∈ LIP(Ei, X) defined on

L n-measurable sets Ei ⊂ Rn. Kirchheim [27] showed that every Lipschitz map f : E → X from

a measurable set E ⊂ Rn into a metric space is metrically differentiable: for L n-a.e. x ∈ E

there exists a seminorm mdx f on Rn so that

d(f(y), f(z)) = mdx f(y − z) + o(d(y, x) + d(x, z)).(1.1)

As an illustration of their use, metric differentials give rise to area and co-area formulae, and

can be used to show that the maps ψi in the definition of rectifiability can be taken to be bi-

Lipschitz, see [27, 1]. Recently, Bate [5] has obtained a characterization of rectifiability in terms

of Gromov-Hausdorff approximations, a much weaker condition than (bi-)Lipschitz maps.

Parallel developments in analysis on metric spaces lead to the seminal work of Cheeger [10]

introducing what have come to be known as Lipschitz differentiability spaces (LDS for short).

These are spaces covered by countably many Cheeger charts. A Cheeger chart is a pair (U,φ)
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consisting of a Borel set U ⊂ X with µ(U) > 0 and φ ∈ LIP(X,Rn) such that every f ∈ LIP(X)

is differentiable µ-a.e. on U with respect to (U,φ): for µ-a.e. x ∈ U there exists a unique linear

map dx f ∈ (Rn)∗ so that

f(y)− f(x) = dx f(φ(y)− φ(x)) + o(d(x, y)).(1.2)

Cheeger showed that spaces endowed with a doubling measure supporting some Poincaré in-

equality (in short, PI-spaces) admit a countable covering by such charts, thus establishing a

Rademacher-type almost everywhere differentiability result for Lipschitz functions from a met-

ric space. This has lead to a rich theory of Sobolev spaces and first order calculus on PI-

spaces [21, 23, 8] independently of any rectifiability assumptions. Indeed, one of the motivations

in [10] is to obtain non-embedding results for purely unrectifiable PI-spaces such as Carnot

groups and Laakso spaces, see e.g [10, Theorem 14.2], which have since received much atten-

tion [11, 12, 13, 16]. The general principle is that differentiability and embeddability imply

rectifiability, providing an obstruction for unrectifiable PI-spaces to admit bi-Lipschitz embed-

dings. The connection between PI-spaces, Cheeger differentiability and rectifiability has also

been thoroughly explored in the works of [29, 6, 17]. For further connections to PDE’s and

uniform rectifiability, we refer the reader to [3, 2].

In this note we combine Cheeger’s idea of differentiability charts with Kirchheim’s notion of

metric differential. Throughout the paper, a chart refers to a pair (U,φ) consisting of a Borel set

U ⊂ X with µ(U) > 0 and a Lipschitz map φ : X → Rn. The number n is called the dimension

of the chart. Below, S(Rn) denotes the set of all seminorms on Rn, equipped with the metric

δ(s, s′) = sup|v|≤1 |s(v)− s′(v)|.

Definition 1.1. Given a map f : A ⊂ X → Y into a metric space Y , we say that f admits a

metric differential with respect to the chart (U,φ) if there exists a Borel map md f : A ∩ U →
S(Rn) satisfying, for µ-a.e. x ∈ A ∩ U ,

(1.3) lim sup
A∋y→x

|dY (f(y), f(x))−mdx f(φ(y)− φ(x))|
d(x, y)

= 0.

See also [14] for an alternative approach to metric differentiation of mappings between metric

spaces which relies on metric differentiation along curves, and [20] for an extension of Kirchheim’s

result to maps defined on strongly rectifiable metric spaces. The definition above covers maps

from a subset A ⊂ X. The case A = U is the metric analogue of weak Cheeger charts while,

if µ(A ∩ U) = 0, the condition is vacuous. We also remark that our definition (see also [1])

is slightly weaker than Kirchheim’s original definition, where d(f(y), f(z))) = mdx f(z − y) +

o(d(x, y) + d(x, z)).

Charts with respect to which every f ∈ LIP(U) admits a metric differential are weak Cheeger

charts, see Proposition 3.1. Moreover, metric differentials are compatible with w∗-differentials,

whenever both exist, see Section 5. Notice that we do not impose uniqueness of the metric dif-

ferential in Definition 1.1. Indeed, uniqueness among seminorms is a much stronger requirement

than uniqueness among linear maps, implying in particular the density of directions realised by

φ. In Theorem 1.2 we will instead impose the a priori weaker condition

Lip(v · φ|U ) > 0 µ-a.e. on U for any v ∈ Sn−1,(1.4)

which is equivalent to uniqueness of linear differentials, see [7, Lemma 2.1]. We remark that if

(U,φ) is a weak Cheeger chart, then the density of directions holds (see [4, Lemma 9.1]) and

thus, a posteriori, metric differentials are unique, see Section 3.
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Our main result is a rectifiability criterion which relates metric differentiability of maps into

a given target class to bi-Lipschitz embeddability in the same class. Our proof gives a concep-

tually simple argument covering several non-embeddability results known in the literature, see

Corollary 1.3.

Theorem 1.2. Let (U,φ) be an n-dimensional chart in X satisfying (1.4), and C a collection

of metric spaces so that some Y ∈ C contains a non-trivial geodesic. If every Lipschitz map

U → Y ∈ C admits a metric differential with respect to (U,φ), and U bi-Lipschitz embeds into

some Y ∈ C, then (U, d, µ|U ) is n-rectifiable.
More precisely, µ|U ≃ Hn|U and there are disjoint Borel sets Ui with µ

(
U \

⋃
i Ui) = 0 so that

φ|Ui is bi-Lipschitz for each i.

We make a few remarks:

1) A non-trivial geodesic in a metric space Z is an isometric embedding γ : [a, b] → Z for

some a < b. The existence of one in some space Z ∈ C guarantees (under the hypotheses of

Theorem 1.2) that all real valued Lipschitz functions admit a metric differential (see Lemma

4.1), a fact which self-improves to the existence of linear differentials (Proposition 3.1). We give

an elementary argument in Section 3, but this can also be shown along the lines of [4].

2) We could alternatively require that every Lipschitz map X → Y ∈ C admits a metric

differential and that there exists f ∈ LIP(X,Y ) such that f |U is bi-Lipschitz for some Y ∈ C.
In particular, if we assume that (X,Y ) has the Lipschitz extension property for each Y ∈ C, the
claim of the theorem is true assuming metric differentiability of every Lipschitz map X → Y ∈ C.

3) A noteworthy consequence of the fact that (U,φ) is a weak Cheeger chart (Proposition

3.1) is that φ#(µ|U ) ≪ L n. This is by now well-known (see [18] for a proof) and follows from

the deep result of De Philippis–Rindler [19]. Together with the bi-Lipschitz decomposition, this

implies the mutual absolute continuity of µ|U and Hn|U , and completes the proof of rectifiability

of (U, d, µ|U ).
Now, we list some straightforward consequences of Theorem 1.2. Notice that part (a) of the

following corollary provides a simpler proof of [26, Theorem 3.7].

Corollary 1.3.

(a) If X is an LDS admitting a bi-Lipschitz embedding into a Euclidean space, then (X, d, µ)

is rectifiable.

(b) More generally, let V be a Banach space. If every Lipschitz map X → V is metrically

differentiable, and X bi-Lipschitz embeds into V , then X is rectifiable.

(c) If every Lipschitz map f : X → c0 is metrically differentiable, then X is rectifiable.

(d) If every Lipschitz map from X to an arbitrary target is metrically differentiable, then X

is rectifiable.

In particular, since non-Abelian Carnot groups and the Laakso space are purely unrectifiable

RNP-Lipschitz differentiability spaces (see [1, 28, 12, 16]), they do not admit a bi-Lipschitz

embedding into an RNP-Banach space. Note that (a), (b) and (d) are immediate consequences

of Theorem 1.2 with C = {Rn}, {V }, {X×R}, respectively, and (c) follows readily from Theorem

1.2 and the fact that every separable metric space bi-Lipschitz embeds into c0 [22, Theorem 3.12].

A similar conclusion holds with c0 replaced by ℓ∞ or C[0, 1], since both contain isometric copies
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of every separable metric space. Since all three of these are non-RNP Banach spaces, not all

Lipschitz maps into them can be (linearly) differentiable.

2. Preliminaries

Throughout this paper the triplet (X, d, µ) denotes a complete separable metric space endowed

with a measure µ which is Borel regular and finite on bounded sets. In particular, µ is Radon

(see [23, Corollary 3.3.47]).

For a mapping f : (X, dX) → (Y, dY ) between metric spaces we define the pointwise Lipschitz

constant as

Lip f(x) := lim sup
y→x

dY (f(x), f(y))

dX(x, y)
.

We denote by LIP(X,Y ) the space of Lipschitz mappings and, for the particular case of Y = R,
we use the notation LIP(X).

In order to give a formal definition of rectifiability, we briefly recall the notion of Hausdorff

measure. For s > 0, first fix δ > 0 and consider, for any set E ⊂ X,

Hs
δ(E) := inf

{ ∞∑
i=1

diam(Ei)
s

}
,

where the infimum is taken over all countable covers of E by sets Ei ⊂ X with diam(Ei) < δ

for all i ∈ N. Then the s-dimensional Hausdorff measure is defined as

Hs(E) := lim
δ→0

Hs
δ(E).

Given two measures µ and ν, we say that µ is absolutely continuous with respect to ν (denoted

µ≪ ν) if whenever A ⊂ X such that ν(A) = 0 then µ(A) = 0.

Definition 2.1. (n-rectifiable space) We say that (X, d, µ) is n-rectifiable if µ≪ Hn and there

exists a countable collection of Lipschitz maps ψi : Ei → X from L n-measurable sets Ei ⊂ Rn

with µ (X\
⋃∞

i=1 ψi(Ei)) = 0.

An n-dimensional chart on (X, d, µ) is a pair (U,φ) such that U ⊂ X is Borel and φ : X → Rn

is Lipschitz.

Definition 2.2. (weak Cheeger chart) We say that an n-dimensional chart (U,φ) on (X, d, µ)

is a weak Cheeger chart if for every mapping f ∈ LIP(X) and µ−almost every x ∈ U there

exists a unique linear map dx f ∈ (Rn)∗ such that

(2.1) lim sup
U∋y→x

|f(y)− f(x)− dx f(φ(y)− φ(x))|
d(x, y)

= 0.

As mentioned in the introduction, if (2.1) holds without the restriction y ∈ U then (U,φ) is

called a Cheeger chart. If X can be decomposed, up to a µ-null set, into a countable union of

(weak) Cheeger charts then X is called a (weak) Lipschitz differentiability space, or (weak) LDS

in short. It is interesting to notice that, if porous sets in X have zero measure, a weak Cheeger

chart is automatically a Cheeger chart (see [25, Remark 2.11] and [7, Proposition 2.8]). Also,

a countable union of LDS’s might not be an LDS (see [6] for an example), whereas countable

unions of weak LDS are trivially a weak LDS.
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In order to study mappings into a metric space where linearity is absent, a generalized defi-

nition of differentiability is necessary, and leads to the concept of metric differential introduced

by Kirchheim in [27] (see Definition 1.1). In this scenario, the metric differential mdx f of a

mapping f : X → Y cannot be a linear map, as defined in a (weak) Cheeger chart. Instead, it is

substituted by a seminorm in Rn, that is, a subadditive non-negative function. More precisely,

the distances dY (f(y), f(x)) behave like a seminorm (equation (1.3)) instead of f(y) − f(x)

behaving linearly (equation (1.2)), in both cases up to a first order error.

In Section 5 we will also consider the notion of w∗-differential, a weaker version of differentia-

bility for maps taking values in duals to separable Banach spaces. Namely, if V is a separable

Banach space, we can consider the w∗-topology in V ∗, that is,

w∗ − lim
j→∞

wj = w ⇐⇒ lim
j→∞

⟨wj , v⟩ = ⟨w, v⟩ ∀v ∈ V,

whenever wj , w ∈ V ∗. Here ⟨·, ·⟩ denotes the standard duality ⟨v, w⟩ = w(v) for v ∈ V and

w ∈ V ∗.

Definition 2.3. (w∗-differentiability) Let (U,φ) be a chart and V a separable Banach space.

Given a map f : U → V ∗, we say that f is w∗-differentiable with respect to the chart (U,φ) if

for µ-a.e. x ∈ U there exists a unique linear map Dxf : Rn → V ∗ such that

lim sup
U∋y→x

|⟨v, f(y)− f(x)−Dxf(φ(y)− φ(x))⟩|
d(y, x)

= 0 for all v ∈ V.(2.2)

3. Metric and linear differentials

Let (U,φ) be an n-dimensional chart satisfying (1.4). Note that for every x ∈ U and any

sequence (xj) ⊂ U \ {x} with xj → x, the Lipschitz property of φ gives that

(
φ(xj)− φ(x)

d(xj , x)

)
has a convergent subsequence. We denote by L(φ, x) ⊂ Rn the set of limit points of sequences(
φ(xj)− φ(x)

d(xj , x)

)
with (xj) as above.

From (1.4) it follows that L(φ, x) spans Rn for µ-a.e. x ∈ U (since Lip(v · φ|U )(x) = 0 for

any v ⊥ L(φ, x)). It moreover follows from (1.4) that a function can have at most one (linear)

differential with respect to (U,φ), see [4, Lemma 3.3] and [7, Lemma 2.1]. If on the other hand

f ∈ LIP(X) admits a metric differential with respect to (U,φ) in the sense of Definition 1.1 it

follows that, for µ-a.e. x ∈ U , the metric differential mdx f is uniquely determined on L(φ, x).

In fact, if w = lim
j→∞

φ(xj)− φ(x)

d(xj , x)
∈ L(φ, x), then

mdx f(w) = lim
j→∞

mdx f(φ(xj)− φ(x))

d(xj , x)
= lim

j→∞

|f(xj)− f(x)|
d(xj , x)

.

However if RL(φ, x) is not dense in Rn, there may exist many seminorms s on Rn with s|L(φ,x) =
mdx f |L(φ,x). This is in contrast with linear maps, which are uniquely determined by their values

on a spanning set. The density of RL(φ, x) holds for weak Cheeger charts by [4, Lemma 9.1]

whose proof uses Alberti representations.

Below we show that metric differentiability of every Lipschitz function self-improves to the

existence of linear differentials.
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Proposition 3.1. Suppose (U,φ) is an n-dimensional chart satisfying (1.4). If every f ∈
LIP(U) admits a metric differential with respect to (U,φ), then (U,φ) is a weak Cheeger chart.

Combining this with [4, Lemma 9.1] we have the following immediate corollary.

Corollary 3.2. Under the hypotheses of Proposition 3.1, RL(φ, x) is dense in Rn for µ-a.e.

x ∈ U .

Proof of Proposition 3.1. Let f ∈ LIP(X). By assumption there exists a µ-null set N ⊂ U such

that L(φ, x) spans Rn and there are seminorms mdx(f + w · φ) satisfying

lim sup
U∋y→x

||f(y)− f(x) + w · (φ(y)− φ(x))| −mdx(f + w · φ)(φ(y)− φ(x))|
d(y, x)

= 0

for every x ∈ U \N and w ∈ Qn. We fix x ∈ U \N .

If v = limj→∞
φ(xj)−φ(x)

d(xj ,x)
∈ L(φ, x), and a(f, x, v) = limj→∞

f(xj)−f(x)
d(xj ,x)

exists, then

|a(f, x, v) + w · v| = mdx(f + w · φ)(v)

for all w ∈ Qn. If we consider now a different sequence x′j → x such that v = limj→∞
φ(x′

j)−φ(x)

d(x′
j ,x)

and a′(f, x, v) = limj→∞
f(x′

j)−f(x)

d(x′
j ,x)

exists, then

|a′(f, x, v) + w · v| = |a(f, x, v) + w · v|

for all w ∈ Qn and thus we conclude that a′(f, x, v) = a(f, x, v). It follows that the map

Lf : L(φ, x) → R given by

Lf (v) := lim
j→∞

f(xj)− f(x)

d(xj , x)
, whenever v = lim

j→∞

φ(xj)− φ(x)

d(xj , x)

is well-defined and satisfies

mdx(f + w · φ)(v) = |Lf (v) + w · v| for all w ∈ Qn.(3.1)

We prove that

(a) Lf (tv) = tLf (v) if v, tv ∈ L(φ, x), and

(b) Lf (v + v′) = Lf (v) + Lf (v
′) if v, v′, v + v′ ∈ L(φ).

If v, v′ ∈ L(φ, x) satisfy v′ = tv, t ∈ R, then

|Lf (v
′) + w · v′| = mdx(f + w · φ)(v′) = |t|mdx(f + w · φ)(v) = |t||Lf (v) + w · v|.

Thus |Lf (v
′)+ tw ·v| = |tLf (v)+ tw ·v| for all w ∈ Qn, implying (a). Next suppose v, v′, v+v′ ∈

L(φ, x). From (3.1) and the fact that mdx(f + w · φ) is a seminorm we obtain that

|Lf (v + v′) + w · (v + v′)| ≤ |Lf (v) + w · v|+ |Lf (v
′) + w · v′|, w ∈ Qn.

If v′ = −v, then Lf (v + v′) = 0 = Lf (v) + Lf (v
′) by (a). Otherwise, there exists w ∈ Qn such

that w · z > 0 for z = v, v′, v + v′. By multiplying w by a sufficiently large positive number

we find w+ such that Lf (z) + w+ · z > 0, z = v, v′, v + v′. From the inequality above we

obtain Lf (v+ v′) ≤ Lf (v) +Lf (v
′). Similarly, by multiplying w by a suitably large (in absolute

value) negative number we find w− such that Lf (z) + w− · z < 0, z = v, v′, v + v′, yielding

−Lf (v + v′) ≤ −Lf (v)− Lf (v
′). These two inequalities together prove (b).

Since L(φ, x) spans Rn and Lf satisfies (a) and (b), there exist a linear map L : Rn → R
such that L|L(φ,x) = Lf . It follows that L is the Cheeger differential of f at x with respect
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to (U,φ). Indeed, otherwise there would exist ε0 > 0 and a sequence U ∋ xj → x with

v := limj→∞
φ(xj)−φ(x)

d(xj ,x)
such that

ε0 ≤
|f(xj)− f(x)− L(φ(xj)− φ(x))|

d(xj , x)

j→∞−→ |Lf (v)− L(v)|,

contradicting the fact that Lf (v) = L(v). ■

4. Metric differential and rectifiability

Throughout this section, we fix an n-dimensional chart (U,φ) satisfying (1.4).

Lemma 4.1. Suppose C is a collection of metric spaces containing a space with a non-trivial

geodesic, and that every Lipschitz map U → Y ∈ C admits a metric differential with respect to

(U,φ). Then every f ∈ LIP(U) admits a metric differential with respect to (U,φ).

Proof. Let γ : [a, b] → Y ∈ C be a non-trivial geodesic, and let h : R → (a, b) be a Lipschitz

diffeomorphism. By assumption, for any f ∈ LIP(U) the map f̃ = γ ◦ h ◦ f admits a metric

differential. Since dY (f̃(y), f̃(x)) = |h(f(y))− h(f(x))| for each x, y ∈ U , it follows that h ◦ f ∈
LIP(U) admits a metric differential. However if md(h◦f) denotes the metric differential of h◦f ,
we have for µ-a.e. x ∈ U

|f(y)− f(x)| = |h−1(h ◦ f(y))− h−1(h ◦ f(x))|

= |(h−1)′(h ◦ f(x))(h ◦ f(y)− h ◦ f(x))|+ o(|h ◦ f(y)− h ◦ f(x)|)

= |(h−1)′(h ◦ f(x))|mdx(h ◦ f)(φ(y)− φ(x)) + o(d(y, x))

which implies that md f := |(h−1)′ ◦ h ◦ f |md(h ◦ f) is a metric differential of f . This proves

the claim. ■

We now give the proof of the main result.

Proof of Theorem 1.2. By hypothesis, there exists a bi-Lipschitz embedding f : U → Y of U

into some (Y, dY ) ∈ C, which admits a metric differential md f with respect to (U,φ). Denote

the bi-Lipschitz constant of f by L. In particular by (1.3) we have

(4.1) lim
U∋y→x

|dY (f(x), f(y))−mdxf(φ(y)− φ(x))|
d(x, y)

= 0

for µ−almost every x ∈ U . Let N ⊂ U be a null set such that (4.1) holds for all x ∈ U\N and

rewrite the limit in (4.1) as follows:

lim
j→∞

Fj(x) = 0 where Fj(x) := sup
y∈B(x, 1

j
)∩U

|dY (f(x), f(y))−mdxf(φ(x)− φ(y))|
d(x, y)

.

By Egorov’s theorem for every ε > 0 there exists a set K ⊂ U \ N with µ(U \K) < ε so that

mdx f exists for every x ∈ K, and Fj → 0 uniformly on K. Since µ is Radon we may further

assume that K is compact. Let j0 ∈ N be such that

sup
y∈B(x, 1

j0
)∩K

|dY (f(x), f(y))−mdxf(φ(x)− φ(y))|
d(x, y)

≤ Fj0(x) ≤
1

2L
, x ∈ K.
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In particular, for any x, y ∈ K with d(x, y) < 1/j0 we have

1

L
d(x, y)−mdxf(φ(x)− φ(y)) ≤ dY (f(y), f(x))−mdxf(φ(x)− φ(y)) ≤ 1

2L
d(x, y)

from which we obtain

d(x, y) ≤ 2Lmdx f(φ(y)− φ(x)) ≤ 2LC|φ(x)− φ(y)|,

where C := sup|v|≤1mdx f(v). Consider a covering of K by balls {B(x, 1
2j0

)}x∈K . By compact-

ness, there exist x1, x2, · · · , xN such that K ⊂
⋃N

i=1B(xi,
1
2j0

). Choose x0 ∈ {x1, x2, · · · , xN}
such that µ(K ∩B(x0,

1
2j0

)) > 0, and define

Ak := {x ∈ K :
1

k
≤ sup

|v|≤1
mdx f(v) ≤ k}.

Recall that f is the restriction of a bi-Lipschitz mapping on K, so that sup|v|≤1mdx f(v) ̸= 0

for all x ∈ K, implying
⋃∞

k=1Ak = K. Thus there exists k ≥ 1 such that µ(Ak∩K∩B(x, 1
2j0

)) >

0. Now, let x, y ∈ Ak ∩K ∩B(x0,
1
2j0

). Since y ∈ Ak ∩K ∩B(x, 1
j0
) we have that

d(x, y) ≤ 2Lk|φ(x)− φ(y)|,

that is, φ is injective on Ak∩K∩B(x0,
1
2j0

) and φ−1 is 2Lk-Lipschitz on φ(Ak∩K∩B(x0,
1
2j0

)).

In particular, φ is bi-Lipschitz on Ak ∩K ∩ B(x0,
1
2j0

). By [24, Proposition 3.1.1], there exists

a countable decomposition

U = Z ∪
⋃
i

Vi,

where µ(Z) = 0 and {Vi} is a collection of mutually disjoint measurable sets such that φ|Vi is

bi-Lipschitz for each i.

To finish the proof, we note that (U,φ) is a weak Cheeger chart of dimension n by Lemma 4.1

and Proposition 3.1. In particular φ#(µ|U ) ≪ L n [18, Theorem 1.1]. Writing φ#(µ|Vi) = ρiL n

for each Vi as above, we obtain that

µ|Vi = (ρi ◦ φ−1)φ−1
# (L n|φ(Vi)) ≃ Hn|Vi .

Consequently µ|U =
∑

i µ|Vi ≃
∑

iHn|Vi = Hn|U . ■

Next we prove a “converse” 1 of Corollary 1.3 (d), namely that Lipschitz maps from a rectifi-

able space to arbitrary targets admit metric differentials. This result can be considered folklore,

but we record the statement and its proof below for the reader’s convenience.

Proposition 4.2. Suppose (U,φ) be a n-dimensional chart in a metric measure space (X, d, µ)

such that φ|U is bi-Lipschitz and µ|U ≪ Hn Then, for any metric space Y , every Lipschitz map

f ∈ LIP(U, Y ) admits a metric differential with respect to (U,φ).

Proof. Let g = f ◦ φ−1 : φ(U) → Y . Notice that g is a composition of Lipschitz mappings, so it

is also Lipschitz. By Kirchheim’s Rademacher Theorem [27, Theorem 2], for Hn-almost every

z ∈ φ(U) there exists a unique seminorm mdzg on Rn such that

(4.2) lim
y→z

y∈φ(U)

|dY (g(z), g(y))−mdzg(y − z)|
|y − z|

= 0.

1Assuming porous sets in X have measure zero, if X is rectifiable, it can be decomposed into a countable union

of charts with respect to which every f : X → Y admits a metric differential.
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On the other hand, g(φ(x)) = f(x) for each x ∈ U . Fix x0 ∈ U such that for z0 := φ(x0) there

exists a unique seminorm mdz0g on Rn such that (4.2) holds. As φ is continuous, if x ∈ U and

x→ x0, then φ(x) → z0. Therefore

lim
x→x0
x∈U

|dY (f(x0), f(x))−mdzg(φ(x)− φ(x0))|
d(x, x0)

≤ lim
z→z0
z=φ(x)

|dY (g(z0), g(z))−mdz0g(z − z0)|
1
C |z − z0|

= 0.

where C is the Lipschitz constant of φ. Then mdx0f := mdφ(x0)g is the metric differential of f

at x0 ∈ U . We finish the proof by noticing that, because φ#(µ|U ) ≪ Hn
|φ(U) and

Hn({z0 ∈ φ(U) : mdz0g does not exist}) = 0,

we conclude that

µ({x0 ∈ U : mdx0f does not exist}) = 0.

■

5. Metric and w∗-differentials

Differentiability of real valued Lipschitz functions gives rise to w∗-differentials of Lipschitz

maps into the dual of a separable Banach spaces. This insight was made explicit2 in [1], where

it was shown that the w∗-differential is compatible with the metric differential of Kirchheim, see

[1, Theorem 3.5]. In Propositions 5.1 and 5.2 below we establish the compatibility of metric and

w∗-differentials in the setting of (weak) Cheeger charts.

Proposition 5.1. Let (U,φ) be a weak Cheeger chart and V a separable Banach space. Given

f ∈ LIP(U, V ∗), f admits a w∗-differential Dxf with respect to (U,φ) for µ-a.e. x ∈ U .

Proof. Let D ⊂ V be a countable dense vector space over Q, and N ⊂ U a µ-null set such that

the unique differential Lx(v) := dx⟨v, f⟩ ∈ (Rn)∗ of ⟨v, f⟩ with respect to (U,φ) exists for every

v ∈ D whenever x ∈ U \N . We fix x ∈ U \N . Since

⟨v + w, f(y)− f(x)⟩ = ⟨v, f(y)− f(x)⟩+ ⟨w, f(y)− f(x)⟩
= (Lx(v) + Lx(w))(φ(y)− φ(x)) + o(d(x, y)),

it follows by the uniqueness of the differential that Lx(v + w) = Lx(v) + Lx(w) for v, w ∈ D.

Similarly Lx(av) = aLx(v). These identities together with the estimate

Lip(Lx(v) ◦ φ|U )(x) = Lip(⟨v, f⟩)(x) ≤ ∥v∥Lip f(x)

show that v 7→ Lx(v) is a bounded linear map D → ((Rn)∗, | · |∗x) and thus extends to a bounded

linear map Lx : V → (Rn)∗. Here |λ|∗x = Lip(λ ◦ φ|U )(x) is a norm on (Rn)∗, in light of the fact

that a weak Cheeger chart satisfies (1.4).

We denote by Dxf : (Rn, | · |x) → V ∗ the adjoint operator (| · |x the dual norm of | · |∗x) and
note that it satisfies ⟨Dxf(z), v⟩ = ⟨Lx(v), z⟩ for all z ∈ Rn and v ∈ V . To see that Dxf is the

w∗-differential of f , observe that if v ∈ V , we have

Lip(⟨v, f −Dxf ◦ φ|U ⟩)(x) ≤ Lip(⟨vi, f −Dxf ◦ φ|U ⟩)(x) + ∥vi − v∥V (Lip f(x) + Lip(Dxf ◦ φ|U )(x))

2The authors state in [1] that w∗-differentiability of Lipschitz maps from Rn is a folklore result.
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≤ Lip(⟨vi, f⟩ − Lx(vi) ◦ φ|U )(x) + ∥vi − v∥V (Lip f(x) + Lip(Dxf ◦ φ|U )(x))
= 0 + ∥vi − v∥V (Lip f(x) + Lip(Dxf ◦ φ|U )(x))

for any vi ∈ D. Taking vi → v we obtain (2.2). ■

Proposition 5.2. Suppose (U,φ) is a weak Cheeger chart and f ∈ LIP(U, V ∗), where V is a

separable Banach space. If f admits a metric differential md f with respect to (U,φ), then for

µ-a.e. x ∈ U we have mdx f(z) = ∥Dxf(z)∥V ∗ for all z ∈ Rn.

The proof is a modification of the argument in [1, Theorem 3.5], and uses curve fragments

and Alberti representations. A curve fragment in X is a bi-Lipschitz map γ : dom(γ) → X

where dom(γ) ⊂ R is compact, and the set Fr(X) of curve fragments in X is equipped with the

topology arising from the Hausdorff metric on their graphs, see [4, Definition 2.1]. An Alberti

representation A = {νγ ,P} of a (Radon) measure ν on X consists of a finite positive measure P
on Fr(X) and a family {νγ} of probability measures on X such that

(a) νγ ≪ H1|Im(γ) P-a.e. γ;

(b) γ 7→ νγ(B) is P-measurable and ν(B) =

∫
νγ(B) dP(γ) for every Borel B ⊂ X.

Given φ ∈ LIP(X,Rn), z ∈ Sn−1, ε > 0, and a cone C(z, ε) := {p ∈ Rn : z · p ≥ (1 − ε)|p|},
we say that the Alberti representation A is in the φ-direction of C(z, ε) if (φ ◦ γ)′(t) ∈ C(z, ε)

a.e. t ∈ dom(γ) for P-a.e. γ ∈ Fr(X). Note that if p ∈ C(z, ε), then |z − p/|p|| < 2ε. See [4,

Section 2, Definition 5.7, and Definition 7.3 ] for the definition of independence, δ-speed and

ξ-separation of Alberti representations used in the proof below. Alberti representations have

the following very useful property. If Γ0 ⊂ Fr(X) is P-null, Eγ ⊂ dom(γ) is L 1-null for each

γ /∈ Γ0, and {(γ, t) : γ /∈ Γ0, t ∈ Eγ} ⊂ Fr(X)×R is P× L 1-measurable, then for ν-a.e. x ∈ X

there exists γ /∈ Γ0 and t ∈ dom(γ) \ Eγ with γt = x, cf. [4, Proposition 2.9].

The following facts, which will be used in the proof pf Proposition 5.2, can be established

as in the proof of Proposition 5.1. Let U ⊂ X be a Borel set and f ∈ LIP(U, V ∗). If A is an

Alberti representation of µ|U , then the limit

(f ◦ γ)′t = w∗ − lim
dom(γ)∋t′→t

f(γt′)− f(γt)

t′ − t
∈ V ∗

exists for a.e. t ∈ dom(γ) for P-a.e. γ. If (U,φ) is a weak Cheeger chart, then Dγtf((φ ◦ γ)′t) =
(f ◦ γ)′t for a.e. t ∈ dom(γ) for P-a.e. γ. Finally, for P-a.e. γ, we have that

∥Dγtf((φ ◦ γ)′t)∥V ∗ = lim
h→0+

1

h

∫ t+h

t
χdom(γ)(s)∥Dγsf((φ ◦ γ)′s)∥V ∗ d s

a.e. t ∈ dom(γ) since t 7→ χdom(γ)(t)∥Dγtf((φ ◦ γ)′t)∥V ∗ is integrable for P-a.e. γ, see [15,

Theorem 1.4] and [9, Theorem 3.5].

Proof of Proposition 5.2. By passing to a subset we may assume that (U,φ) is a λ-structured

chart and µ|U has n ξ-separated Alberti representations with speed strictly greater than δ, for

some numbers λ, ξ, δ > 0. Let z ∈ Sn−1 and ε > 0. By [4, Theorem 9.5] µ|U has an Alberti

representation in the φ-direction C(z, ε) with speed greater than τ = τ(n, λ, ξ, δ) > 0. Thus, for

µ-a.e. x ∈ U , there exists a curve fragment γ : dom(γ) → X in the φ-direction of C(z, ε) and with

φ-speed at least τ , and t ∈ dom(γ) with γt = x, (φ ◦ γ)′t ∈ C(z, ε), and |(φ ◦ γ)′t| ≥ τ Lipφ(x)|γ′t|
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such that mdx f, Dxf, (φ ◦ γ)′t, (f ◦ γ)′t exist and satisfy (f ◦ γ)′t = Dxf((φ ◦ γ)′t). Moreover, we

may assume that

(1) (f ◦ γ)′s = Dγsf((φ ◦ γ)′s) a.e. s ∈ dom(γ);

(2) we have ∥Dγtf((φ ◦ γ)′t)∥V ∗ = lim
h→0+

1

h

∫ t+h

t
χdom(γ)(s)∥Dγsf((φ ◦ γ)′s)∥V ∗ d s, and

lim
h→0+

|[t, t+ h] ∩ dom(γ)|
h

= 1.

Indeed, (1) and (2) can be assumed to hold by the discussion before the proof.

From the lower semicontinuity of the norm with respect to w∗-convergence we obtain

∥Dxf((φ ◦ γ)′t)∥V ∗ = ∥(f ◦ γ)′t∥V ∗ ≤ mdx f((φ ◦ γ)′t).

Denoting zγ := z− (φ◦γ)′t
|(φ◦γ)′t|

we have ∥Dxf(z)∥V ∗ ≤ mdx f(z) + ∥Dxf(zγ)∥V ∗ +mdx f(zγ). Since,

for µ-a.e. x ∈ U , we have that for every ε > 0 there exist γ and t ∈ dom(γ) as above with

|zγ | < 2ε, we obtain the inequality ∥Dxf(z)∥V ∗ ≤ mdx f(z) for µ-a.e. x ∈ U .

We prove the opposite inequality. Let fγ : [a, b] → V ∗ be the extension of f ◦γ : dom(γ) → V ∗

to the smallest interval [a, b] containing dom(γ) obtained by extending linearly into the gaps.

Writing [a, b] \ dom(γ) =
⋃

i(ai, bi), we have that f ′γ(s) =
f(γbi )−f(γai )

bi−ai
, s ∈ (ai, bi), so that

∥f ′γ∥V ∗ ≤ LIP(f ◦ γ) on [a, b] \ dom(γ) and f ′γ = (f ◦ γ)′ = Dγf((φ ◦ γ)′) a.e. on dom(γ). For

v ∈ V with ∥v∥V ≤ 1 and h > 0 we have〈f(γt+h)− f(γt)

h
, v
〉
=

1

h

∫ t+h

t
χdom(γ)(s)⟨Dγsf((φ ◦ γ)′s), v⟩d s

+
1

h

∫ t+h

t
χR\dom(γ)(s)⟨f ′γ(s), v⟩ d s.

Taking supremum over vwith ∥v∥V ≤ 1 yields the estimate

∥f(γt+h)− f(γt)∥V ∗

h
≤ 1

h

∫ t+h

t
χdom(γ)(s)∥Dγsf((φ ◦ γ)′s)∥V ∗ d s

+ LIP(f ◦ γ) |[t, t+ h] \ dom(γ)|
h

.

Letting h→ 0+ and using (2) we obtain

mdx f((φ ◦ γ)′t) = lim
h→0+

∥f(γt+h)− f(γt)∥V ∗

h
≤ ∥Dxf((φ ◦ γ)′t)∥V ∗ .

Thus mdx f(z) ≤ ∥Dxf(z)∥V ∗ + mdx f(zγ) + ∥Dxf(zγ)∥V ∗ , where zγ = z − (φ◦γ)′t
|(φ◦γ)′t|

satisfies

|zγ | < 2ε. Arguing as above we get mdx f(z) ≤ ∥Dxf(z)∥V ∗ µ-a.e. x ∈ U .

By choosing a countable dense set D ⊂ Rn it follows from the argument above that µ-a.e.

x ∈ U we have mdx f(z) = ∥Dxf(z)∥V ∗ for all z ∈ D. For such x, the equality holds for all

z ∈ Rn by continuity and 1-homogeneity. This completes the proof. ■
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