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Abstract

Predicting residual stresses has always been a topic of significance due to its implications in the
development of enhanced materials and better processing conditions. In this work, an analytical model
for prediction of residual stresses is developed for orthogonal machining. It consists of three component
models for force, temperature and stress computation. The Oxley force model and Waldorf’s slip-line
model are employed for obtaining cutting force, thrust force, and temperatures at the shear zone and
tool-chip interface for the given parameters. The Komanduri-Hou two heat source model is used for
obtaining the temperature distribution in the workpiece. The effect of coolant with differing mass
flow rates has also been incorporated. The residual stresses are obtained by combining the mechanical
and thermal components, followed by the loading and relaxation of the stresses. Optimal values for
unknown parameters are predicted by leveraging a cost function. The residual stress distributions
obtained give a tensile region near the surface for Inconel 718, and a compressive region for Ti6Al4V,
which are in line with experimental results found in literature.
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1 Introduction

Understanding and predicting residual stresses
has been a significant focus of research because
controlling their formation can lead to more
durable and safer materials. Therefore, extensive
research has been conducted on modeling residual
stress distributions in materials and studying the
effects of different materials and process param-
eters. Residual stresses in orthogonal machining
arise from two main factors: (a) local plastic
deformation during cutting, which persists after
the cutting forces are removed, and (b) thermal

stresses due to heat generation at the tool-chip
interface and in the shear zone.

Initial work on residual stress modeling relied
on empirical models, but their applicability is lim-
ited to specific conditions and cannot be extended
to other situations [1]. Analytical models have
been developed to address this limitation by pro-
viding a general framework capable of handling
various parameters based on the underlying mech-
anisms of residual stress generation [1]. Merwin
and Johnson [2] proposed an analytical model
based on classical Hertz theory for calculating
stress distribution, which was later refined by

1

ar
X

iv
:2

40
3.

18
44

1v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  2
7 

M
ar

 2
02

4



Johnson [3]. McDowell [4] used cycloidal distribu-
tions to describe the functions p(s) and q(s) in
the Johnson stress model. Su and Liang [5] uti-
lized Oxley’s [6] cutting force model and Waldorf’s
[7] plowing model to predict residual stresses ana-
lytically. Wan et al. [8] modified the plowing
force model by incorporating the Johnson-Cook
model [9] for flow shear stress calculation, which
became widely adopted. Initial experimental work
on temperature distribution was conducted by
Matsumoto et al. [10], and a temperature model
was developed by Jacobus et al. [11]. Sekhon and
Chenot [12] derived an expression for γ, the fric-
tion heat partition coefficient. Ulutan et al. [13]
employed a finite-difference model for tempera-
ture distribution. Komanduri and Hou [14–16]
proposed a two heat source model. Pan et al.
[17] suggested a modified Johnson-Cook model for
analytical residual stress modeling. Drucker and
Palgen [18] provided an expression for the plas-
tic modulus. Sehitoglu and Jiang [19] introduced a
non-linear kinematic hardening model for elasto-
plastic loading, later modified by McDowell [4].
Merwin and Johnson [2] provided boundary condi-
tions to eliminate certain components of the resid-
ual stress tensor based on the assumption of plane
deformation. Finite element methods (FEMs) rep-
resent a newer set of techniques for simulating
tool-workpiece interactions without requiring deep
mechanistic analysis. However, FEMs often suf-
fer from low efficiency and high computational
demands [1]. Therefore, analytical models remain
the most suitable choice for meeting industrial
needs.

This paper presents an analytical model for
predicting residual stresses in orthogonal machin-
ing, comprising three component analytical mod-
els for force, temperature, and stress. To enhance
accuracy, optimal values of unknown parameters
(Co, δ in the force model, and the plastic mod-
ulus function h in stress loading and relaxation)
are determined within a specific range based on a
cost function to minimize errors in force and stress
prediction. The Oxley cutting force model is used
to predict cutting and thrust forces, along with
Waldorf’s model for plowing forces, as reported
by Su [20], Zhou and Ren [21]. Temperatures in
the shear zone and tool-chip interface are deter-
mined using Boothroyd’s [22] cutting temperature
model. The Johnson-Cook model is employed to

Fig. 1 Overall workflow of the paper

model flow stresses. The temperature distribu-
tion across the workpiece is obtained using the
Komanduri-Hou model, incorporating the addi-
tional effect of a coolant based on the work of
Singh and Sharma [23]. This temperature profile
is then used to model mechanical [3] and thermal
stresses [24, 25], which are combined and incre-
mentally relaxed following the methods outlined
by Shan et al. [26], Liang et al. [24, 25], McDow-
ell [4], and Merwin and Johnson [2], ultimately
yielding the residual stresses. The results of forces,
temperature, and residual stress are plotted and
discussed for Inconel 718 and Ti6Al4V machining
data from the literature.

The paper proceeds by discussing various mod-
els used, starting with the force model in Section 2
for calculating cutting and thrust forces, followed
by the temperature distribution model in Section
3, and concluding with the residual stress model in
Section 4. The parameters used for validating the
model are presented in Section 5, while Section 6
discusses the results and their implications when
applying the model to machining data for two
materials - Inconel 718 and Ti6Al4V. Finally, the
conclusions drawn from the study are discussed in
Section 7.

2 Force modeling for
orthogonal cutting

To determine the mechanical stresses and temper-
ature changes within the workpiece during orthog-
onal machining, it is necessary to ascertain the
cutting and thrust forces. These forces are com-
puted using Oxley’s model, which in turn relies
on flow stresses derived from the Johnson-Cook
model. The following section provides a detailed
description of these models.
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2.1 Oxley cutting force model

Oxley [6] introduced a model to compute the
forces encountered in orthogonal machining. Su
[20] presented an algorithm for utilizing Oxley’s
model to calculate forces. In accordance with their
research, the resultant force R, as well as the shear
cutting and thrust forces (F shear

c and F shear
t ), are

expressed by the following equations:

R =
kABtw

sinϕ cos θ
(1)

F shear
c = R cos(λ− α) (2)

F shear
t = R sin(λ− α) (3)

where kAB is the flow stress in the shear zone,
t is the uncut chip thickness (i.e., depth of cut),
and w is the width of cut. ϕ, α, and λ represent
the shear angle, tool rake angle, and friction angle
respectively. The shear speed vs and chip speed vc
are obtained using the cutting speed v as:

vs =
v cosα

cos(ϕ− α)
(4)

vc =
v sinϕ

cos(ϕ− α)
(5)

The strain (εAB) and strain rate (ε̇AB) in the
shear zone are:

εAB =
λ

′
cosα√

3 sinϕ cos(ϕ− α)
(6)

ε̇AB =
Covs

√
3(

t

sinϕ
)

(7)

where λ
′
is given by cosϕ cos(ϕ−α)/ cosα. The

angles θ and λ are obtained from:

θ = arctan(1 + 2(
π

4
− ϕ)− Coneq) (8)

λ = θ + α− ϕ (9)

Here, neq is given by the following expression:

neq =
nBεnAB

A+BεnAB

(10)

Also, the chip thickness tc is given by t cos(ϕ−
α)/ sinϕ. The plowing forces Pc and Pt are mod-
eled according to Waldorf’s slip-line model [7], the
equations for which are given as follows:

Pc = kABw
[
(1 + 2θ + 2λ+ sin(2η)) sin(ϕ− γ + η)

+ cos(2η) cos(ϕ− γ + η)
]
CB

(11)

Pt = kABw
[
(1 + 2θ + 2λ+ sin(2η)) cos(ϕ− γ + η)

− cos(2η) sin(ϕ− γ + η)
]
CB

(12)

where CB = Rplow/ sin(ηplow). The angles
ηplow, γplow, and θplow are calculated based on
the work developed by Zhou and Ren [21]. In
this paper, the equation for calculating the sec-
tor radius Rplow has been solved analytically, by
taking the maximum of the two quadratic roots,
instead of using the iterative approach proposed
by Zhou and Ren [21]. The total cutting force Fc

and total thrust force Ft are obtained by:

Fc = F shear
c + Pc

Ft = F shear
t + Pt

(13)

2.2 Boothroyd’s cutting
temperature model

Boothroyd [22] described a model for calculating
the average temperatures at the shear zone (TAB)
and the tool-chip interface (Tint), which is also
proposed by Oxley [6]:

TAB = T0 + η∆TAB (14)

Tint = T0 +∆TAB + ψ∆TM (15)

∆TAB =
1− β

ρStw

Fs cosα

cos(ϕ− α)
(16)

where ∆TM and β are calculated using the
work done by Oxley [6]. The value of the shear
force Fs has been computed using an iterative
algorithm given by Zhou and Ren [21].

2.3 Johnson-Cook model

The flow stresses in the shear zone kAB , and in
the tool-chip interface kint are obtained using the
Johnson-Cook model [9], the equations for which
have been shown.
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kAB =
1√
3
(A+BεnAB)

(
1 + C ln

ε̇AB

ε̇0

)(
1−

(
TAB − T0
Tm − T0

)m)
(17)

kint =
1√
3
(A+Bεnint)

(
1 + C ln

ε̇int
ε̇0

)(
1−

(
Tint − T0
Tm − T0

)m)
(18)

The average strain εint and strain rate ε̇int
in the chip are approximated by the following
expressions:

εint = 2εAB +
h√
3δtc

(19)

ε̇int =
vc√
3δtc

(20)

Here, the thickness of the primary shear zone
h is given by:

h =
t sin θ

cosλ sin θ

(
1 +

Coneq
3 tan θ

)
(21)

The shear stress along tool-chip interface is
given by τint = F/(hw), and the shear angle ϕ is
chosen such that we obtain τint = kint.

3 Temperature modeling

Apart from the mechanical influences of defor-
mation, stress formation in the material is also
influenced by temperature changes. This is deter-
mined by integrating the heating effect within the
workpiece from the shear zone and tool-chip inter-
face, followed by the cooling effect due to the
presence of a coolant.

3.1 The temperature model

Komanduri and Hou [14–16] developed a two heat
source model. Based on this model, the tem-
perature change due to shearing and rubbing
interactions are modeled. The temperature change
due to coolant is obtained using the work done by
Singh and Sharma [23]. The three equations for
∆Tshear, ∆Trubbing and ∆Tcool are given.

∆Tshear(X,Z) =
qshear
2πk

∫ L

0

e
−
(X − lisinφ)v

2a
(
K0

[ v
2a

√
(X − lisinφ)2 + (Z − licosφ)2

]
+K0

[ v
2a

√
(X − lisinφ)2 + (Z + licosφ)2

])
dli

(22)

∆Trubbing(X,Z) =
qrubbing
πk

∫ VB

0

γe
−
(X − x)v

2a K0

[ v
2a

√
(X − x)2 + Z2

]
dx

(23)

∆Tcool(X,Z) = −qcool
πk

∫ l

0

e
−
(X − x)v

2a K0

[ v
2a

√
(X − x)2 + Z2

]
dx

(24)
Here, φ = ϕ − π/2, L = t/ sinϕ, VB is the

flank wear length, a is the thermal diffusivity of
the workpiece, k is the thermal conductivity of the
workpiece, and K0 is the modified Bessel function
of the second kind of order zero.

The values for heat sources qshear and qrubbing
are given by:

qshear =
(Fc cosϕ− Ft sinϕ)(v cosα/ cos(ϕ− α))

tw cscϕ
(25)

qrubbing =
Pcv

w(VB)
(26)

3.2 The effect of coolant

For a coolant with heat transfer coefficient h, the
rate of heat loss through convection per unit area
is given by qcool = h(T − T0), as proposed by Su
[20]. For a coolant flowing with a mass flow rate
per unit area of ρv, the heat transfer coefficient h
is obtained using the following expressions given
by Singh and Sharma [23]:

1.86Re1/3Pr1/3 =
hd

k
(27)

0.023Re0.8Pr0.4 =
hd

k
(28)

where, Re = ρvd/µ is the Reynolds number,
Pr is the Prandtl number, and the two equations
above are for the cases of laminar and turbulent
flow respectively. The overall temperature change
is then given by ∆T (X,Z) = ∆Tshear(X,Z) +
∆Trubbing(X,Z) + ∆Tcool(X,Z).

4 Residual stress modeling

The mechanical and thermal stresses that develop
within the material are now calculated. These
stresses are combined under either elastic or
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elasto-plastic loading conditions to derive the
components of total stress. Subsequently, they are
relaxed to ascertain the residual stress value. The
previously obtained temperature distribution is
employed in computing thermal stresses.

4.1 Johnson model for mechanical
Stress

Johnson [3] provided a model for obtaining
the components of mechanical stresses. These
equations for σm

xx, σ
m
zz and τmxz are:

σm
xx = −2z

π

∫ a

−b

p(s)(x− s)2

[(x− s)2 + z2]2
ds− 2

π

∫ a

−b

q(s)(x− s)3

[(x− s)2 + z2]2
ds

(29)

σm
zz = −2z3

π

∫ a

−b

p(s)

[(x− s)2 + z2]2
ds− 2z2

π

∫ a

−b

q(s)(x− s)

[(x− s)2 + z2]2
ds

(30)

τmxz = −2z2

π

∫ a

−b

p(s)(x− s)

[(x− s)2 + z2]2
ds− 2z

π

∫ a

−b

q(s)(x− s)2

[(x− s)2 + z2]2
ds

(31)
where the normal and tangential stress distri-

butions, p(s) and q(s), have been assumed to be
for a 2-D hertzian contact, with q(s) proportional
to p(s), as proposed by McDowell [4]:

p(s) = p0

√
1− (s/a)

2
(32)

q(s) = q0

√
1− (s/a)

2
(33)

where, q0 = −µp0, and µ is the coefficient
of friction. The mechanical stress components
obtained from these integrals are then trans-
formed from the (x′, z′) coordinate system of the
shear zone, to the (x, z) coordinate system of the
workpiece, as proposed by [20].

4.2 Thermal stresses

The thermal stresses are derived using a model
established by Liang et al. [24, 25]. The equations
for calculating the thermal stress components σt

xx,
σt
zz and τ txz are:

σt
xx(x, z) = − αE

1− 2ν

∫ ∞

0

∫ ∞

−∞

(
Gxh(x

′, z′)
∂T

∂x
(x, z) +Gxν(x

′, z′)
∂T

∂z
(x, z)

)
dx′dz′

+
2z

π

∫ ∞

−∞

p(t)(t− x)2

((t− x)2 + z2)2
dt− αET (x, z)

1− 2ν

(34)

σt
zz(x, z) = − αE

1− 2ν

∫ ∞

0

∫ ∞

−∞

(
Gzh(x

′, z′)
∂T

∂x
(x, z) +Gzν(x

′, z′)
∂T

∂z
(x, z)

)
dx′dz′

+
2z3

π

∫ ∞

−∞

p(t)

((t− x)2 + z2)2
dt− αET (x, z)

1− 2ν

(35)

τ txz(x, z) = − αE

1− 2ν

∫ ∞

0

∫ ∞

−∞

(
Gxzh(x

′, z′)
∂T

∂x
(x, z) +Gxzν(x

′, z′)
∂T

∂z
(x, z)

)
dx′dz′

+
2z2

π

∫ ∞

−∞

p(t)(t− x)

((t− x)2 + z2)2
dt

(36)
where α is the coefficient of thermal expansion

of the workpiece, E is the Young’s modulus, ν is
the poisson ratio, and Gxh, Gxν , Gzh, Gzν , Gxzh

and Gxzν are Green’s functions, calculated using
their corresponding expressions developed by Saif
et al. [27]. The function p(t) represents surface
traction, and is given by Liang et al. [24, 25] as:

p(t) =
αET (x = 0, z = 0)

1− 2ν
(37)

Using the mechanical and thermal stresses
obtained, the total stress components are calcu-
lated for elastic loading condition as:

σxx = σm
xx + σt

xx

σzz = σm
zz + σt

zz

τxz = τmxz + τ txz

σyy = ν(σxx + σzz)− αE∆T

(38)

The model proposed by Shan et al. [26],
based on the Jiang-Sehitoglu [19] model, has been
incorporated for calculating the stress and strain
increments for elasto-plastic loading. The stress
increments are obtained through an iterative pro-
cess, which involves the use of deviatoric stresses,
the shear yield strength, and the plastic modulus
function (denoted by h).

4.3 Stress relaxation to obtain
residual stresses

After the cutting process is complete, the unload-
ing (relaxation) of the stresses must be performed
in order to satisy certain boundary conditions for
the stresses and strains. The stress and strain
increments for this process are proposed by Mer-
win and Johnson [2], and Su [20]:
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∆σr
zz = −σ

r
zz

M
,∆τ rxz = −τ

r
xz

M

∆εrxx = −ε
r
xx

M
,∆T r = −T

r

M

(39)

Using these increments, either elastic or
elastic-plastic unloading is performed, based on
the work of Shan et al. [26], which has also been
proposed by Su [20], McDowell [4], and Liang et
al. [24].

5 Validation

The authors have utilized machining data associ-
ated with two work materials - Inconel 718 and
Ti6Al4V - to validate the proposed residual stress
model. These materials have been selected due
to their widespread application in the aerospace
industry, particularly in critical components such
as turbine blades and various structural parts,
owing to their exceptional mechanical properties,
thermal stability, and corrosion resistance. The
parameters for the Johnson-Cook model adopted
for Inconel 718 are as follows: A = 1290MPa, B =
895MPa, C = 0.0252, n = 0.526, m = 1.55, and
ε̇0 = 10−5; for Ti6Al4V, they are: A = 724.7MPa,
B = 683.1MPa, C = 0.01, n = 0.47, m = 1.0, and
ε̇0 = 10−5. The ambient temperature T0 is taken
as 20◦C (equivalent to 293 K). The parameters
for the Johnson-Cook model for Inconel 718 are
derived from the work of Zhou and Ren [21], while
those for Ti6Al4V are obtained from Zhou et al.
[28]. The process parameters utilized for the model
are displayed in Table 1, and the material proper-
ties of Inconel 718 and Ti6Al4V are presented in
Table 2.

Table 1 Process parameters taken for the model

Parameters Values

Tool rake angle, α 12.62◦

Width of cut, w 2 mm

Nose radius, re 30µm

Flank wear length, VB 10µm

ψ (in oxley temperature model) 0.4

η (in oxley temperature model) 0.9

Friction factor, mplow 0.99

ρplow (in plowing force model) 20◦

The values for the tool rake angle, width of
cut, nose radius, density, specific heat, thermal
conductivity, coefficient of friction, mplow, ρplow,
melting temperature, ψ, and η for both Inconel
718 and Ti6Al4V are sourced from the data pro-
vided by Zhou and Ren [21] and Zhou et al. [28].
The values for the Young’s modulus, Poisson ratio,
and coefficient of thermal expansion for Inconel
718 are obtained from Shen et al. [29], while those
for Ti6Al4V are derived from Shan et al. [26].
The thermal diffusivity of Ti6Al4V is sourced from
Liang et al. [25].

The tool is modeled as an uncoated cemented
carbide tool, with a density of 14860 kg/m3, ther-
mal conductivity of 82W/mK, and specific heat
of 249.8 J/kgK, based on data provided by Liu et
al. [30]. The coolant is modeled as water, with an
absolute viscosity of 0.001 kg/m.s, Prandtl num-
ber of 7.56, and a diameter of the circular duct of
2 mm, as per data from Singh and Sharma [23].
For this model, a mass flow rate per unit area of
2500 kg/m2s is considered to model the effect of
the coolant on the temperature distribution.

In the force model, the shear angle ϕ is iter-
atively computed within the range of 10◦ to 45◦.
The parameters C0 and δ are treated as hyper-
parameters, which are optimized by tuning them
using the training data. Specifically, Co is varied
within the range of 0.1 to 4.0, while δ is varied
within the range of 0.005 to 0.20. The cost function
employed for determining the optimal values of
these hyperparameters is (1+Cmpe)(1+Tmpe)(1+
Csde)(1 + Tsde), where Cmpe and Tmpe denote the
mean absolute percentage errors in the cutting
and thrust forces, respectively, and Csde and Tsde
represent the standard deviation of errors in the
cutting and thrust forces. The experimental data
utilized for training the model, and subsequently
evaluating it to compute the errors in Fc and Ft,
are obtained from Zhou and Ren [21] (for Inconel
718) and Zhou et al. [28] (for Ti6Al4V). The plas-
tic modulus function h is tuned within the range
of 10 GPa to 60 GPa, employing a mean abso-
lute percentage error cost function to minimize the
error in the predicted residual stress. For stress
relaxation, the number of iterations M is set to
100.

The integrals employed in temperature and
stress modeling are computed using the quad
and dblquad functions in the Python scipy-1.7.3
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Table 2 Properties of Inconel 718 and Ti6Al4V for material parameters

Properties Inconel 718 Ti6Al4V

Melting temperature, Tm 1297◦C 1604◦C

Density, ρ (in kg/m3) 8280 4430

Specific heat capacity, S (in J/kgK) 362 565

Thermal conductivity, k (in W/mK) 10.3 6.6

Thermal diffusivity, a (in m2/s) 2.87× 10−6 2.76× 10−6

Young’s modulus, E 214.580 GPa 113.8 GPa

Poisson ratio, ν 0.305 0.342

Coefficient of friction, µ 0.7 0.85

Shear yield stress 1100/
√
3 MPa 880/

√
3 MPa

Coefficient of thermal expansion, α (in K−1) 14.8× 10−6 9.2× 10−6

library. The model is implemented in Python-
3.9.12 and executed on a 64-bit system featuring
an Intel(R) Core(TM) i7-8565U processor, with a
clock speed of 1.80 GHz and 16 GB RAM.

6 Results and discussion

The force model is employed for both Inconel 718
and Ti6Al4V, utilizing the parameters detailed in
Tables 1-2. For Inconel 718, the predicted cutting
forces (Fc) and thrust forces (Ft) yield mean per-
centage errors of 3.65% and 16.16%, respectively,
with standard deviations of the errors amounting
to 24.46 N and 79.31 N, respectively. Correspond-
ingly, for Ti6Al4V, the errors stand at 4.37% for
Fc and 15.12% for Ft, with standard deviations
of 17.65 N and 20.05 N, respectively. Generally,
the force model demonstrates higher accuracy in
predicting cutting force compared to thrust force,
a trend in line with observations by Zhou and
Ren [21] regarding the superior accuracy of cut-
ting force prediction with various J-C models.
As proposed by Zhou and Ren [21], the predic-
tive accuracy may be enhanced by employing an
improved plow force model.

Plots illustrating cutting force and thrust force
against speed (v) and depth of cut (t) are pro-
vided in Figures 2-5 for both Inconel 718 and
Ti6Al4V. Figures 6 and 7 depict plots for the aver-
age shear zone temperatures (TAB) and average
tool-chip interface temperatures (Tint) computed
from Boothroyd’s [22] model, in relation to cutting
speed and depth of cut for both materials. Fur-
thermore, Figure 8 illustrates the predicted shear

angles obtained from the force model for Inconel
718 and Ti6Al4V, across all data sets (numbered
1-15 in [21] for Inconel 718 and 1-24 in [28] for
Ti6Al4V). The percentage errors in Fc and Ft for
each individual data set are plotted in Figure 9.
The values of Co and δ derived from the force
model are 1.8 and 0.185 for Inconel 718, and 0.1
and 0.145 for Ti6Al4V.

Temperature distribution plots within the
workpiece and the impact of coolant are presented
in Figures 10 and 11 for both Inconel 718 and
Ti6Al4V. The maximum temperature drop due to
coolant, as observed in Figure 11, falls within the
range of 50−70◦C, notably smaller than the antic-
ipated drop (approximately 29% for laminar and
53% for turbulent flow, as suggested by [23]). Pos-
sible explanations for this disparity include: (a)
The convective heat flow rate (qcool) used in tem-
perature drop calculations is directly determined
for the workpiece, without consideration of the
flow rate for the tool, a significant heat source. (b)
The impact of coolant has not been incorporated
into the force model, resulting in higher forces
and consequently greater temperature values than
expected in the presence of coolant.

Residual stresses (σxx and σyy) are plotted
alongside experimental data in Figure 12. For
Inconel 718, the results are plotted for a cutting
speed of 60 m/min and a depth of cut of 0.15 mm,
along with experimental data from Liu et al. [30].
Similarly, for Ti6Al4V, the results are plotted for
a cutting speed of 50 m/min and a depth of cut of
0.10 mm, alongside experimental data from Liang
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Fig. 2 Force vs cutting speed plots at t = 0.05 mm and t
= 0.10 mm for Inconel 718. The black lines represent model
predictions, and the red lines are from experimental data.

Fig. 3 Force vs cutting speed plots at t = 0.15 mm for
Ti6Al4V. The black lines represent model predictions, and
the red lines are from experimental data.

Fig. 4 Cutting force vs depth of cut plots at v = 20 m/min
and v = 30 m/min for Inconel 718. The black lines represent
model predictions, and the red lines are from experimental
data.
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Fig. 5 Force vs depth of cut plots at v = 20 m/min for
Ti6Al4V. The black lines represent model predictions, and
the red lines are from experimental data.

et al. [24]. The values of the plastic modulus func-
tion h derived from the residual stress model are
40 GPa for Inconel 718 and 25 GPa for Ti6Al4V.
The model results indicate that residual stresses
are more pronounced near the surface, diminishing
rapidly with increasing depth, consistent with the
expectation that mechanical and thermal effects
of machining primarily influence regions near the
surface. Tensile stress regions are observed near
the surface for Inconel 718, attributed to the
dominance of tensile thermal effects over compres-
sive mechanical effects as explained by Liu et al.
[30]. This observation aligns with the maximum
temperatures for Inconel 718 (> 600◦C), higher
than those for Ti6Al4V (> 500◦C), partly due to
larger v and t values used for modeling residual
stresses in Inconel 718. Conversely, compressive
stress regions near the surface are observed for
Ti6Al4V, attributed to the dominance of mechan-
ical effects over thermal effects, as explained by
Liang et al. [24], given the lower heating due
to friction for low cutting speeds (here, v = 50
m/min) and smaller flank wear (here, VBmodel =
10µm, VBexp = 0mm). The errors in residual

Fig. 6 Temperature vs cutting speed, and temperature vs
depth of cut plots for Inconel 718. The blue lines represent
predicted shear zone temperature (TAB), and the red lines
represent predicted tool-chip interface temperature (Tint).
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Fig. 7 Temperature vs cutting speed, and temperature vs
depth of cut plots for Ti6Al4V. The blue lines represent
predicted shear zone temperature (TAB), and the red lines
represent predicted tool-chip interface temperature (Tint).

Fig. 8 Shear angles predicted for each v-t pair for Inconel
718 [21] (top), and Ti6Al4V [28] (bottom).

Fig. 9 Errors in Fc and Ft calculated for each v-t pair
for Inconel 718 [21] (top), and Ti6Al4V [28] (bottom). The
blue bars represent the percentage error in Fc, and green
bars represent percentage error in Ft.
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Fig. 10 The predicted temperature distribution through
the workpiece, for Inconel 718 (top) and Ti6Al4V (bottom).

Fig. 11 The predicted change in temperature through the
workpiece due to the coolant, for Inconel 718 (top) and
Ti6Al4V (bottom).

Fig. 12 The predicted residual stress vs depth into the
workpiece, for Inconel 718 (top) and Ti6Al4V (bottom).
The red line represents experimental data, and the blue
and green lines represent σxx and σyy respectively.

Fig. 13 Errors in residual stress vs depth into the work-
piece, for Inconel 718 (blue bars) and Ti6Al4V (green
bars).

stress (i.e., the difference between model predic-
tion and experimental data) are plotted against
depth into the workpiece for both Inconel 718
and Ti6Al4V in Figure 13. The residual stress
results exhibit similar trends as the experimental
data but show larger errors compared to the force
model. This discrepancy can partly be attributed
to the fact that the parameters (aside from v and
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t) for which the experimental data are plotted dif-
fer from those used in modeling residual stresses.
Notably, variations in experimental values with
parameters such as flank wear (VB) are observed
in results provided by Liu et al. [30] and Liang et
al. [24]. Additionally, the accumulation of errors
from component force, temperature, and stress
analytical models contributes to larger errors.

7 Conclusions

This study introduces a physics-informed and
data-driven model designed to predict resid-
ual stresses arising from orthogonal machining.
Employing analytical modeling techniques, the
authors model the forces and temperature distri-
butions, facilitating the subsequent computation
of residual stress variations with depth into the
workpiece. Upon comparison with experimental
data, the force model demonstrates precise predic-
tions for Fc and Ft values. Although the residual
stress exhibits larger errors, it aligns with antic-
ipated trends from literature for both materials,
considering their respective input parameters -
notably, a tensile region in Inconel 718 and a com-
pressive region in Ti6Al4V, closer to the surface.
Key factors integrated into the model encompass
material properties, machining process parame-
ters (including tool rake angle, width of cut,
nose radius, and flank wear), and the influence of
coolant on the workpiece owing to laminar and
turbulent flow.

The proposed model exhibits adaptability for
specific tool-work-process combinations even with
limited data availability, enhancing its practical
utility for industrial applications. This adaptabil-
ity enables the prediction of parameters for which
data is scarce across various materials. More-
over, the model holds promise for extension into
a real-time framework for industrial deployment.
Such real-time integration would facilitate con-
tinual verification of experimental measurements
against their expected counterparts, facilitating
adjustments for any deviations attributable to
improper processing conditions, thereby enhanc-
ing machining efficiency and component quality.
Future enhancements to the model could involve
the inclusion of additional factors such as machin-
ing vibrations, the impact of coolant on both the
force model and temperature profiles in the shear
zone and tool-chip interface, utilization of refined

literature data, and adoption of advanced opti-
mization techniques for hyperparameter tuning,
with the aim of improving predictive accuracy.
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