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Asymptotic Analysis of Synchronous Signal
Processing

Marc Vilà-Insa , and Jaume Riba , Senior Member, IEEE

Abstract—This paper extends various theoretical results from
stationary data processing to cyclostationary (CS) processes under
a unified framework. We first derive their asymptotic eigenbasis,
which provides a link between their Fourier and Karhunen-Loève
(KL) expansions, through a unitary transformation dictated by the
cyclic spectrum. By exploiting this connection and the optimalities
offered by the KL representation, we study the asymptotic
performance of smoothing, filtering and prediction of CS processes,
without the need for deriving explicit implementations. We obtain
minimum mean squared error expressions that depend on the
cyclic spectrum and include classical limits based on the power
spectral density as particular cases. We conclude this work by
applying the results to a practical scenario, in order to quantify
the achievable gains of synchronous signal processing.

Index Terms—Cyclostationary processes, cyclic Wiener filter,
Karhunen-Loève expansion, asymptotic bounds.

I. INTRODUCTION

MANY random phenomena in nature and engineering
exhibit statistical properties that vary periodically with

time. Notable examples are encountered in Earth sciences
(e.g. hydrology, oceanography and climatology [1]) as well
as in human activities (e.g. econometrics, electronic design
and mechanical engineering [1]). Of particular interest are
the signals used in digital communications and radar systems,
where periodicities occur due to the use of constant symbol
rates and carrier frequencies [2, Ch. 12].

These cyclic behaviors are typically modeled statistically
as cyclostationary (CS) or periodically correlated stochastic
processes [3]. The research on signal processing methods
that exploit their unique characteristics is broad, rich and
mature [4]. Numerous applications have emerged in areas in
which these phenomena typically arise, which include signal
extraction/separation from spatial or temporal mixtures [2,
Ch. 14], modeling [5, Ch. 7], blind system equalization
and identification [6], spectrum sensing [7] and time-delay
estimation [3]. They are usually based on exploiting the
diversity offered by such structured statistical change, and
their performance is generally affected by the accuracy in prior
knowledge of the inherent periods of variation.
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sitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain (e-mail:
{marc.vila.insa, jaume.riba}@upc.edu).

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be
accessible.

Concerning linear filtering, it is well known that the cyclic
Wiener filter (CWF) [8] is the optimal periodically time-variant
linear estimator for CS signals. It can be understood as a
combination of several linear shift-invariant filters operating on
replicas of the signal of interest under different frequency
shifts (FRESH) [9, Ch. 10], thus providing a variety of
improved designs [7]. Compared to simpler methods that
assume stationarity, detectors and estimators derived from
CS modeling perform better at discriminating signal from
interference, by being aware of the intrinsic period of the
signals involved, either the one of interest [10], [11], or the
one considered interference [12], [13].

The derivation of asymptotic performance limits of linear
time-invariant (LTI) filters with unconstrained length has been
a fundamental tool within the classical theory of stationary
signals. For a given problem, they provide the ultimate
achievable performance in advance and inform about how
far a constrained implementation is from the optimum, thus
shedding light on the achieved complexity/performance trade-
off. Not less important is their role in unveiling key physical
aspects of the signal that are the most relevant for the pursued
processing performance.

In this sense, several bounds are well-known for stationary
processes, on account of their asymptotic uncorrelatedness
through Fourier analysis. This property, which is in fact a
corollary of the more general Szegö limit theorems, comes from
the asymptotic diagonalization of Toeplitz matrices through
the unitary Fourier basis [14]. Examples of these limits are
expressions of minimum mean squared error (MMSE) through
integral operators involving spectral coherences (i.e. Wiener
smoothing in the frequency domain [15, Sec. 12.3]). The
Kolmogorov-Szegö formula [16, Ch. 6] on the MMSE for
asymptotic one-step linear prediction is another remarkable
limit expression, and involves integral operators over the log-
spectrum. When causality is a design restriction, such as in
applications requiring small processing latency, causal Wiener
filtering becomes relevant. The performance limit in this case
involves, as in linear prediction, integral operators on the log-
spectrum [17]. Since these causal formulas resemble Shannon
capacity expressions, information theoretic interpretations have
been explored in the literature [18]. A fundamental result,
known as the I-MMSE formula (or Guo-Shamai-Verdú (GSV)
theorem), was obtained in [19] and establishes a direct path
between the MMSE of causal and non-causal processing for a
very general kind of filtering.

Given the prevalence of CS signals in both theoretical [20]
and applied [21] research fields, one would expect to find results
parallel to the ones mentioned for stationary data. However,
this is mostly not the case, possibly due to the lack of more
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general asymptotic properties of their autocorrelation structures.
Therefore, the main purpose of this paper is going in the
direction of filling this gap and providing new insights within
the context of filtering CS signals. The goal is to understand the
ultimate performance gain achievable from synchronous signal
processing, under the assumption of attainable synchronization
with the periodic phenomenon that is inherent to the desired
noisy data.

Classical treatments of CS signals represent them through
their Cramér-Loève (CL) spectral expansion [9, Ch. 10], which
provides a direct physical interpretation of the problem at hand.
This approach, however, leads to processes with correlated
spectral increments for non-stationary data. In contrast, we
follow a fully uncorrelated approach based on the asymptotic
eigendecomposition of periodic Toeplitz matrices [22]. To
this end, we leverage known results for stationary data and
extend them without breaking the inherent structure of the
signals, such that the resulting formulas remain interpretable. In
particular, we avoid the classical polyphase [3] and Gladyshev
decompositions [23, Sec. 7.2] of CS signals onto multivariate
low-rate stationary data, which are useful for implementation
purposes but blur the connection between performance bounds
and physical parameters.

Moreover, we capitalize on the general GSV theorem to ex-
plore the causal CWF, instead of studying the causal constraint
specific to the CS problem. By following this alternative route,
we obtain mathematical expressions of performance bounds
that depend on the cyclic spectrum explicitly, thus becoming
insightful generalizations that contain classical limits based
on the spectrum as particular cases. The tools developed in
the paper allow to obtain theoretical results for any particular
application: they provide knowledge from the problem without
the need for deriving explicit implementations. The exposition
is probabilistic and focused on discrete-time signals and systems
encountered in signal processing and communications, while
maintaining a continuous spectrum interpretation. As a result, it
is possible to plot performance limits against the relevant signal
parameters in a very direct manner, as integral expressions.

The main contributions of this paper are listed below:
• We revisit and refine results obtained in [22]. Using

an incremental formulation [9, Ch. 8], we obtain the
asymptotic Karhunen-Loève (KL) basis of CS processes.
This allows an interpretation of such KL expansion as a
decorrelation of their CL representation, bridging them
through a unitary transformation.

• We extend classical results of stationary filtering to CS
processes. In particular, we provide a new sense of
optimality for the CWF by proving its equivalence to
the Wiener filter in the KL domain, which exploits the
energy compaction properties of such representation.

• We develop a unified theoretical analysis of smoothing,
filtering and prediction of CS processes thanks to the
discrete-time approach and the use of [19, Th. 8] to
connect the three regimes. We quantify the MMSE and
maximum achievable gain with synchronous processing
in each case.

• We relate the obtained MMSE expressions to the spectral
coherence and coherence matrix [24] in an explicit manner.

The text is organized as follows. Section II establishes the
basic notions and concepts used in the rest of the derivations.
Section III develops the theoretical results regarding the KL
expansion of CS processes, as well as its connection to the
CL expansion and other properties of interest. The filtering
problem is explored throughout the rest of the paper: Section IV
presents the model, while Sections V to VII study various
asymptotic performance metrics for smoothing, filtering and
prediction, respectively. Finally, some numerical illustrations
of the theoretical contents are displayed in Section VIII.

Notation: Vectors and matrices are denoted by boldface
lowercase and uppercase letters. An element (r, c) from a
matrix A is indicated by [A]r,c. The conjugate, transpose and
conjugate transpose operators are ·∗, ·T and ·H, respectively.
The inverse of A is A−1. The trace of A is Tr{A}, while its
determinant is |A|. The identity matrix of size N is IN , and an
all-zeros vector of size M is 0M . A product of matrices that
depend on the same parameter A(s)B(s) · · ·C(s) is shortened
by (AB · · ·C)(s). Operator Diag(a, b, . . . , c) constructs a
diagonal matrix from the set {a, b, . . . , c}, while diag(A)
performs the opposite action. The imaginary unit is j. The
expectation operator is E[·]. Dirac delta is δ(s) and Kronecker
delta is δa,b. The Dirac comb with separation T is XT (s). If
a set a majorizes another set b, it is indicated as a ≻ b. The
element-wise product between matrices is ◦.

II. PRELIMINARY DEFINITIONS AND BACKGROUND

Let x(n) ∈ C be a discrete-time random process with
time index n ∈ Z. For a clearer exposition, all the con-
sidered processes will be assumed zero-mean and proper
(i.e. E[x(n)x(n + m)] = 0, ∀m ∈ Z) [9, Sec. 1.6.2]. The
autocorrelation function of x(n) is defined as

Rx(n,m) ≜ E
[
x(n+m)x∗(n)

]
, (1)

where index m is referred to as lag. Various classes of
random processes can be identified based on properties of
their autocorrelation. In particular, CS processes display a
periodic structure with period P within their autocorrelation
function:

Rx(n,m) ≡ Rx(n+ lP,m), ∀l ∈ Z. (2)

When P = 1, a CS process becomes wide-sense stationary
(WSS), whose autocorrelation function is independent from the
time index: Rx(n,m) ≡ Rx(m) (i.e. it displays shift-invariant
second-order statistics [9, Ch. 8]).

The following definition will prove useful in the sequel. The
cyclic spectrum is the two-dimensional Fourier transform of
the autocorrelation function, both in the time and lag domains.
Particularized for CS processes, it is expressed as

S
( k
P )

X (f) =
1

P

P−1∑
n=0

∑
m∈Z

Rx(n,m)e−j2π(nk
P +mf), (3)

for all k ∈ {0, . . . , P −1}. This is known as the cyclic Wiener-
Khinchin relationship [25, Eq. (39a)].

While these expressions provide a statistical representation of
the properties of x(n), in many signal processing applications
it is convenient to have a spectral representation of the process
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itself. In the following sections, the CL and KL expansions
are presented.

A. CL spectral representation

A complex second-order random process [23, Ch. 1] x(n)
can be expressed as

x(n) =

∫ 1

0

ej2πnfdνx(f), (4)

where dνx(f) are the increments of a process in the spectral
domain. This Riemann-Stieltjes integral representation is known
as the CL expansion, and processes that can be expressed in
such a way are called harmonizable [23, Ch. 5].

The CL expansion is of great conceptual interest since it
decomposes x(n) onto the Fourier basis (complex exponentials),
thus preserving the frequency interpretation of the transformed
domain. If the derivative process X(f) ≜ dνx(f)

df existed,
it would be the discrete-time Fourier transform (DTFT) of
x(n) [26, Eq. (4.13)]. However, x(n) is not square-integrable
in general and its DTFT might be ill-defined. Thus we resort
to the increment definition1:

dνx(f) = lim
N→∞

1

N

N
2 −1∑

n=−N
2

x(n)e−j2πnf . (5)

In a similar manner to (1), a correlation function between
frequentially displaced spectral increments can be defined [9,
Sec. 9.2]:

SX(f, α)dfdα ≜ E
[
dνx(f)dν

∗
x(f − α)

]
, (6)

known as spectral correlation. When α = 0, it is convenient
to define the power spectral density (PSD) [9, Sec. 9.2.2]:

SX(f)df ≜ E
[
|dνx(f)|2

]
. (7)

Many stochastic processes can be described from properties
of their CL spectral representation. For instance, WSS pro-
cesses display the unique characteristic of having orthogonal
increments [9, Sec. 8.1], which translates into

S
(WSS)
X (f, α)dfdα = SX(f)δ(α)dfdα. (8)

On the contrary, CS processes present the following spectral
correlation [9, Sec. 10.1.1]:

S
(CS)
X (f, α)dfdα =

P−1∑
k=0

S
( k
P )

X (f)δ
(
α− k

P

)
dfdα, (9)

in terms of the cyclic PSD from (3).
Representing a non-WSS process over the Fourier domain

comes at the cost of losing the orthogonality property (8). For
this reason, it might be useful to study an alternative spectral
expansion that preserves it.

1We assume N ∈ 2N without loss of generality.

III. KL REPRESENTATION OF CS PROCESSES

Given a second-order random process x(n), its KL expan-
sion [9, Sec. 9.1] is defined as

x(n) =

∫ 1

0

ϕ(n, λ)dξx(λ), (10)

such that dξx(λ) are increments of a random process in
the KL spectral domain. The set {ϕ(n, λ)}, for all n ∈ Z
and λ ∈ [0, 1), contains eigenfunctions that satisfy the
orthonormality condition [27, Def. 2.17] and completeness
relation [27, Th. 2.13], which are{ ∫ 1

0
ϕ(n, λ)ϕ∗(n′, λ)dλ = δn−n′∑
n∈Z ϕ(n, λ)ϕ

∗(n, λ′) = δ(λ− λ′)
, (11)

respectively. They are obtained by solving the following
eigenequation [28, Ch. 6]:∑

l∈Z
Rx(l, k − l)ϕ(l, λ) = SX (λ)ϕ(k, λ). (12)

The term SX (λ) is the KL spectrum of x(n). By combining (11)
and (12), it is straightforward to obtain explicit conversion
formulas:

Rx(l, k − l) =

∫ 1

0

ϕ(k, λ)SX (λ)ϕ∗(l, λ)dλ

SX (λ)δ(λ− λ′) =
∑
k,l∈Z

ϕ(l, λ)Rx(l, k − l)ϕ∗(k, λ′).
(13)

Complementary to (10), the KL transform2 of x(n) is defined
by projecting the random process onto its KL basis {ϕ(n, λ)}:

dξx(λ) = lim
N→∞

1

N

N
2 −1∑

n=−N
2

x(n)ϕ∗(n, λ) ≜ KL
{
x(n)

}
(λ). (14)

The defining characteristic of the KL expansion is the
orthogonality between spectral increments, i.e.

SX (λ, β)dλdβ ≜ E
[
dξx(λ)dξ

∗
x(λ− β)

]
= SX (λ)δ(β)dλdβ,

(15)

which can be derived from (14) and (13). This property
generalizes (8) and will prove to be fundamental in subsequent
derivations of simple MMSE expressions. The trade-off for
spectral uncorrelatedness is the fact that each class of random
processes has a different eigenbasis, compared to the simplicity
of the CL representation. WSS processes are special in this
sense because their KL and CL decompositions coincide and
are both asymptotically given by the orthonormal Fourier basis.

The KL representation of CS processes of period P was
obtained in [22]. To define it, the full KL domain [0, 1) is
segmented into P non-overlapping domains and λ is replaced
by the pair (p, σ). The continuous variable σ is defined in a
spectral sub-band [0, 1/P ) and p ∈ {0, 1, . . . , P − 1} is an
index that selects one of these subintervals, i.e. λ ≜ σ + p/P .

2Expression (10) is sometimes referred to as backward KL transform or
synthesis. Similarly, forward KL transform or analysis are used for (14).



4

SX(f, α) =

f

f − α(0, 0)

(1, 1)1/P

= SX(σ)

P = 3

σ

σ

Figure 1. Graphical representation of the construction of SX(σ) from the
spectral correlation SX(f, α) of a CS process, which is only defined across
δ-ridges spaced by 1/P both horizontally and vertically [9, Sec. 10.1.1].

Theorem 1: (Riba & Vilà-Insa [22, Th. 1]) The KL eigenbasis
of a CS process of period P takes the form:

ϕ
(p)
CS(n, σ) =

P−1∑
q=0

b
(p)
X (q, σ)ej2πn(σ+

q
P ). (16)

Weighting coefficients b
(p)
X (q, σ) are grouped in vectors

b
(p)
X (σ) ≜

[
b
(p)
X (0, σ), . . . , b

(p)
X (P − 1, σ)

]T
, (17)

and obtained by solving the following eigenproblem:

SX(σ)b
(p)
X (σ) = S(p)

X (σ)b
(p)
X (σ). (18)

Terms S(p)
X (σ) ≜ SX (σ + p/P ) are the eigenvalues of the

Hermitian non-negative definite cyclic PSD matrix of the
process, SX(σ) ∈ CP×P , given by

[SX(σ)]r,c ≜ S
( r−c

P )

X

(
σ + r

P

)
. (19)

Proof: See Appendix A.
The cyclic PSD matrix can be equivalently defined as

[SX(σ)]r,cdσ = E
[
dν(r)x (σ)dν(c)∗x (σ)

]
= SX

(
σ + r

P , r−c
P

)
dσdσ,

(20)

where dν
(p)
x (σ) ≜ dνx(σ + p/P ). This shows how SX(σ)

can be constructed from P 2 equally spaced elements of the
two-dimensional spectral correlation SX(f, α), as illustrated
in Fig. 1. The next result relates the CL and KL expansions
of a CS process.

Corollary 1: (Connection between CL and KL expansions of
CS processes) The KL spectral representation of a CS random
process x(n) is related to its CL spectral representation through
the following equality:

x̃(σ) = BH
X(σ)x̆(σ), (21)

where
x̃(σ) ≜

[
dξ(0)x (σ), . . . ,dξ(P−1)

x (σ)
]T

x̆(σ) ≜
[
dν(0)x (σ), . . . ,dν(P−1)

x (σ)
]T (22)

are constructed from P samples of the KL and CL spectral
processes, respectively, and dξ

(p)
x (σ) ≜ dξx(σ+ p/P ). Matrix

BX(σ) contains the eigenbasis of SX(σ):

BX(σ) ≜
[
b
(0)
X (σ), . . . ,b

(P−1)
X (σ)

]
. (23)

Proof: See Appendix B.
This result implies the KL transform of a CS process can

be thought of as a CL transform followed by a decorrelation
through unitary matrix BX(σ). A straightforward consequence
of this is summarized in the following corollary.

Corollary 2: (Connection between cyclic PSD and KL-PSD
matrices of CS processes) The KL-PSD matrix

SX (σ)dσ ≜ Diag
(
S(0)
X (σ), . . . ,S(P−1)

X (σ)
)
dσ

= E
[
x̃(σ)x̃H(σ)

] (24)

contains the P eigenvalues of the cyclic PSD matrix SX(σ).
Proof: Using relationships (20) and (21), we have:

SX (σ)dσ = BH
X(σ) E

[
x̆(σ)x̆H(σ)

]
BX(σ)

=
(
BH

XSXBX

)
(σ)dσ.

(25)

A. Temporal dependence of KL transforms

While the reference time n0 has been assumed 0 and omitted
from the previous analysis, its impact on KL representations
should be addressed. In general, an arbitrary time shift will
affect the KL expansion of a random process.

The two classes of stochastic processes considered here are
special in this sense. The KL basis of a WSS process remains
unchanged by a temporal shift, whereas that of a CS process
depends on the reference time [22]:

ϕ
(p)
CS(n, σ, n0) =

P−1∑
q=0

b
(p)
X (q, σ)ej2πn0

q
P ej2πn(σ+

q
P ). (26)

Regarding their spectral representation, a translation in time
becomes a phase shift in the KL domain for both of them:

dξ(p)x (σ, n0) ≜ KL
{
x(n+ n0)

}
(p, σ)

= KL
{
x(n)

}
(p, σ) ej2πn0σ.

(27)

This property is derived for CS processes in Appendix C3.
On the contrary, the KL spectrum of both classes is

invariant to temporal translations, since the effect of the phase
in (27) disappears. This phenomenon is easily seen by using
definition (15):

S(p)
X (σ, n0)dσ = E

[∣∣dξ(p)x (σ, n0)
∣∣2] = E

[∣∣dξ(p)x (σ)ej2πn0σ
∣∣2]

= E
[∣∣dξ(p)x (σ)

∣∣2] ≡ S(p)
X (σ)dσ. (28)

Since we are interested in obtaining asymptotic theoretical
bounds, this property simplifies the subsequent derivations.

B. Parseval’s Theorem in the KL domain

The average power of a random process x(n) is defined as

Px ≜ lim
N→∞

1

N

N
2 −1∑

n=−N
2

E
[
|x(n)|2

]
. (29)

3Refer to [26, Eq. (4.33)] for the WSS case.
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Since the KL transform is unitary, it preserves power in the
spectral domain. A result similar to Parseval’s theorem for the
frequency domain can thus be stated [26, Eq. (2.80)]:

Px =

∫ 1

0

E
[
|dξx(λ)|2

]
=

P−1∑
p=0

∫ 1
P

0

S(p)
X (σ)dσ. (30)

Using the segmented KL spectrum allows to more compactly
express the previous integral, by transforming the summation
into a trace and applying Corollary 2:

Px =

∫ 1
P

0

Tr
{
SX (σ)

}
dσ =

∫ 1
P

0

Tr
{
SX(σ)

}
dσ. (31)

This way, we have obtained the power of a CS process in terms
of its cyclic PSD matrix.

C. Energy compaction and minimum representation entropy

While most unitary transforms exhibit some sort of energy
concentration [26, Sec. 9.2.3], the KL transform does it
optimally. Let {θ(n, λ)} form an arbitrary unitary basis for a
process x(n):

x(n) =

∫ 1

0

θ(n, λ)dηx(λ), (32)

where dηx(λ) is its spectral representation, i.e.

dηx(λ) = lim
N→∞

1

N

N
2 −1∑

n=−N
2

x(n)θ∗(n, λ). (33)

Since we are dealing with a unitary transform, the power of
x(n) can be obtained in the spectral domain due to Parseval’s
theorem:

Px =

∫ 1

0

E
[
|dηx(λ)|2

]
≜

∫ 1

0

SX ,θ(λ)dλ. (34)

We define the power contained in a portion [0, ρ) of the
spectrum:

Px(ρ, {θ(n, λ)}) ≜
∫ ρ

0

SX ,θ(λ)dλ, 0 < ρ < 1. (35)

Of all possible bases that fulfill (11), we aim for the one that
maximizes it for all ρ; i.e.

{ϕ(n, λ)} = argmax
{θ(n,λ)}

Px(ρ, {θ(n, λ)})

s.t.
∑
n∈Z

θ(n, λ)θ∗(n, λ′) = δ(λ− λ′).
(36)

The solution to this problem, which can be obtained through
Lagrange multipliers [26, Th. 9.1], is the set of eigenfunctions
{θ(n, λ)} that satisfies∑

l∈Z
Rx(l, k − l)θ(l, λ) = χ(λ)θ(k, λ). (37)

By definition (see (12)), this is the KL basis {ϕ(n, λ)}, and
χ(λ) must be the KL-PSD SX (λ).

This optimality in energy compaction can be quantified with
a metric known as representation entropy [29] or spectral
entropy [30], which indicates the compression of informa-
tion achieved by a spectral representation. Let px,θ(λ) ≜

SX ,θ(λ)/Px be the normalized spectrum of x(n) for a given
orthonormal basis {θ(n, λ)}. Since px,θ(λ) is nonnegative and
its integral is 1, it can be interpreted as a probability density
function. We may then define the differential entropy associated
with its corresponding representation as

h({θ(n, λ)}) ≜ −
∫ 1

0

px,θ(λ) · ln(px,θ(λ))dλ. (38)

Proposition 1: (Representation entropy) The KL expansion
has the minimum representation entropy:

h({ϕ(n, λ)}) ≤ h({θ(n, λ)}), ∀{θ(n, λ)}. (39)

Proof: Let f : [0, 1] 7→ R≥0 be the continuous concave
function f(a) ≜ −a · ln(a). Knowing that

Px(ρ, {ϕ(n, λ)}) ≥ Px(ρ, {θ(n, λ)}), ∀{θ(n, λ)}, (40)

using [31, Def. 14.H.1] it can be stated that SX ,θ ≺ SX ,ϕ.
By [31, Prop. 14.H.1.a], we can say that∫ 1

0

f
(
px,ϕ(λ)

)
dλ ≤

∫ 1

0

f
(
px,θ(λ)

)
dλ, ∀{θ(n, λ)}, (41)

which is equivalent to (39).
Representation entropy is a measure of spectral redundancy,

such as the one emerging from the spectrally correlated
components of CS processes. It is of interest to determine
this form of frequency diversity [9, Sec. 9.2.3] since it is
precisely the signal characteristic that synchronous processing
exploits.

IV. CYCLIC WIENER FILTERING: PROBLEM STATEMENT

The previous formulation of CS processes can be applied to
the theory of Wiener filtering in order to obtain asymptotic
bounds on the achievable performance. We will focus on the
following framework. We deal with an observation x(n) of a
reference signal d(n) distorted by additive noise z(n):

x(n) = d(n) + z(n). (42)

They are assumed uncorrelated (i.e. E[d(n)z∗(n′)] = 0, ∀n, n′).
Either d(n) or z(n) will be WSS with known PSD, while the
other one will be CS. This combination of random processes
presents many desirable properties. By passing x(n) through
a stable LTI filter, its WSS component can be whitened [15,
Sec. 11.3.3], while the CS properties of the other one are
preserved, as proven in [23, Sec. 6.8.1]. Therefore, and without
loss of generality, the WSS process will be assumed white
from this point onwards.

White WSS processes are of great interest because they admit
any orthonormal KL eigenbasis. This allows the following
simplification:

dξ(p)x (σ) = KL
{
x(n)

}
(p, σ) = KL

{
d(n) + z(n)

}
(p, σ)

= KL
{
d(n)

}
(p, σ) + KL

{
z(n)

}
(p, σ)

= dξ
(p)
d (σ) + dξ(p)z (σ). (43)

This simple model will provide various insights on the filtering
problem and can be adapted to represent different cases of
interest:
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• CS signal d(n) and white WSS noise z(n): this is a
typical scenario in digital wireless communications, which
usually involve the reception of CS signals hindered by
additive noise [8].

• Wideband signal d(n) and narrowband CS interference
z(n): in this scenario, which is often encountered in
spread-spectrum systems, the high degree of predictability
of z(n) is used against the unpredictability of the desired
term d(n) to improve signal separation. The CS nature
of z(n) can be exploited beyond the spectral domain to
further reduce the distortion of the desired component
after a cancellation filter [32].

We will only develop results for the first case for brevity.
Extending the following analysis to the second one is straight-
forward and yields complementary expressions.

Our objective is to design a filter w(·), such that it minimizes
the average filtering error power, or mean squared error (MSE),
for a time interval N1 ≤ n ≤ N2:

MSE(N1, N2) ≜
1

N2 −N1

N2∑
n=N1

E
[
|d(n)− d̂(n)|2

]
=

1

N2 −N1

∑
n

MSE(n).

(44)

The filtered signal is d̂(n) ≜ w(x(n)) and e(n) ≜ d(n)− d̂(n)
is the error process. Three different problems will be studied in
this setting [28, Sec. 1.2]: smoothing, filtering and prediction.

V. ASYMPTOTIC SMOOTHING PERFORMANCE

When future samples of process x(n) are available, the previous
problem is referred to as non-causal or smoothing [28, Sec. 9.1].
This case is common in applications without latency restrictions.
Since we are interested in the asymptotically achievable
performance, the limit

MSEnc ≜ lim
N→∞

MSE
(
−N

2 ,
N
2 − 1

)
(45)

is considered. Using Parseval’s theorem, the error power can
be expressed as

MSEnc =

P−1∑
p=0

∫ 1
P

0

E
[∣∣dξ(p)e (σ)

∣∣2], (46)

where dξ
(p)
e (σ) is the KL transform of the error process e(n):

dξ(p)e (σ) ≜ KL
{
d(n)− d̂(n)

}
(p, σ). (47)

For a more convenient analysis, and without loss of general-
ity4, we set the filter in the KL domain to be a linear operator
applied onto the observed signal x(n):

dξ
(p)

d̂
(σ) ≜ W∗

p (σ) · dξ(p)x (σ), (48)

where dξ
(p)

d̂
(σ) is the KL representation of the filtered signal

d̂(n). The previous expression can be seen as a natural
extension of the transfer function in the frequency domain,
commonly employed to deal with WSS processes through LTI

4This is ensured by the uncorrelatedness between spectral components
provided by the KL representation.

systems: it relates every input to its corresponding output across
the full spectrum.

Using (48), we can express the spectral representation of
e(n) in terms of the ones of d(n) and d̂(n):

dξ(p)e (σ) = dξ
(p)
d (σ)− dξ

(p)

d̂
(σ). (49)

This decoupled structure is achieved by both signals sharing
the same KL basis, due to the noise component being white.
We can harness this simplicity to design filter W∗

p (σ), such
that it minimizes the average error power at every point (p, σ)
of the spectrum:

MSEp(σ) ≜ E
[∣∣dξ(p)e (σ)

∣∣2]. (50)

To obtain it, the derivative of each MSE term must be nullified:

dMSEp(σ)

dW∗
p (σ)

= Wp(σ) · E
[∣∣dξ(p)x (σ)

∣∣2]
− E

[
dξ

(p)∗
d (σ)dξ(p)x (σ)

]
≡ 0

(51)

Wp(σ) =
E
[
dξ

(p)∗
d (σ)dξ

(p)
x (σ)

]
E
[∣∣dξ(p)x (σ)

∣∣2] ≜
S(p)∗
DX (σ)dσ

S(p)
X (σ)dσ

. (52)

This solution is the KL extension of the classical non-causal
Wiener filter in the frequency domain [28, Eq. (8.144)].

A. Non-causal MMSE and coherence

Plugging (52) back into (46) produces the MMSE5:

MMSEnc =

P−1∑
p=0

∫ 1
P

0

S(p)
D (σ)

(
1− |γp(σ)|2

)
dσ, (53)

where

|γp(σ)|2 ≜

∣∣S(p)
DX (σ)

∣∣2
S(p)
X (σ)S(p)

D (σ)
∈ [0, 1] (54)

is the KL version of the squared spectral coherence in the
frequency domain [24, Eq. (3.6)]. This is a measure of
linear dependency between observation dξ

(p)
x (σ) and reference

dξ
(p)
d (σ). Its value is directly related to the MMSE: as clearly

stated in (53), the closer |γp(σ)|2 is to 1 for all (p, σ), the
lower the achievable MMSE will be.

Representing (53) in matrix form will provide valuable
insights on the filtering problem. Let

SDX (σ) ≜ Diag
(
S(0)
DX (σ), . . . ,S(P−1)

DX (σ)
)

(55)

be the KL correlation matrix between d(n) and x(n). Then,
the summation in (53) can be expressed as a trace:

MMSEnc = (56)∫ 1
P

0

Tr
{
SD(σ)

(
IP −

(
S−1

D SDXS−1
X SH

DX
)
(σ)

)}
dσ.

Using the circularity property of the trace operator together
with decomposition

SDX(σ) ≜
(
BDSDXBH

X

)
(σ), (57)

5Notice how (53) resembles [33, Eq. (13.115)].
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which is a straightforward consequence of Corollary 2, we
can express the non-causal MMSE in terms of cyclic PSD
matrices6:

MMSEnc =

∫ 1
P

0

Tr
{
SD(σ)

(
IP −CDX(σ)CH

DX(σ)
)}

dσ,

(58)
where

CDX(σ) ≜
(
S
−1/2
D SDXS

−1/2
X

)
(σ), (59)

is the coherence matrix [24, Def. 3.3]. It generalizes the notion
of spectral coherence presented in (54): the more CDX(σ)
resembles a unitary matrix for all σ, the lower the MMSE
will be. This mathematical structure is very recurrent in the
literature and is strongly related to canonical correlations and
principal angles [24, Ch. 3].

On a final note, we can particularize the non-causal
MMSE (53) for our additive model, in which the white
noise has KL-PSD S(p)

Z (σ) = Pz , for all (p, σ). The filter
expression (52) simplifies to

Wp(σ) =
S(p)
D (σ)

S(p)
D (σ) + Pz

, (60)

with which we obtain

MMSEnc =

P−1∑
p=0

∫ 1
P

0

S(p)
D (σ)Pz

S(p)
D (σ) + Pz

dσ

= Pz

∫ 1
P

0

Tr
{
SD(σ)(SD(σ) + PzIP )

−1
}
dσ.

(61)

B. Equivalence between KL Wiener filter and CWF

It is known that the CWF, which is the optimum filter
for CS signals, is periodically time variant [8]. It is usually
implemented through a FRESH structure, which has the
following formulation in the frequency domain [9, Sec. 10.3]:

dν
(p)

d̂
(σ) ≜

P−1∑
q=0

W∗
q(σ + p

P )dν(q)x (σ + p
P )

≜ w̆H
p (σ)P

p
Πx̆(σ),

(62)

where PΠ is a cyclic permutation matrix [34, Eq. (4.1.1)]:

PΠ ≜

[
0(P−1) I(P−1)

1 0T
(P−1)

]
. (63)

Applying Parseval’s theorem onto (45), we may express the
(non-causal) error power in the CL domain:

MSEnc =

P−1∑
p=0

∫ 1
P

0

E
[∣∣dν(p)d (σ)− w̆H

p (σ)P
p
Πx̆(σ)

∣∣2]. (64)

To obtain the optimal FRESH filter, we must nullify the
derivative of the previous expression with respect to w̆∗

p(σ):

∇w̆∗
p(σ)

MSE(p)
nc (σ) = Pp

Π

(
SX(σ)P−p

Π w̆p(σ)− s
(p)
XD(σ)

)
≡ 0

w̆p(σ) = Pp
ΠS

−1
X (σ)s

(p)
XD(σ), (65)

6The matrix inside the trace in (58) is the error covariance matrix in [24,
Sec. 3.6].

where
s
(p)
XD(σ)dσ ≜ E

[
x̆(σ)dν

(p)∗
d (σ)

]
(66)

is the pth column of SH
DX(σ)dσ. The following result relates

the KL Wiener filter derived in (52) with the CWF obtained
herein.

Theorem 2: (CWF in the KL domain) The CWF is equivalent
to the KL Wiener filter.

Proof: The proof is based on comparing the output signals
obtained from the cyclic and KL Wiener filters. Regarding the
former, we simply plug (65) into (62):

dν
(p)

d̂
(σ) =

(
s
(p)H
XD S−1

X x̆
)
(σ). (67)

As for the latter, we apply (52) to (48):

dξ
(p)

d̂
(σ) =

S(p)
DX (σ)

S(p)
X (σ)

dξ(p)x (σ). (68)

To compare them, we must express both filtered signals in
the same domain. We achieve this by stacking P samples of
dν

(p)

d̂
(σ) as

˘̂
d(σ) ≜

[
dν

(0)

d̂
(σ), . . . ,dν

(P−1)

d̂
(σ)

]T
= (SDXS−1

X x̆)(σ),
(69)

and using Corollaries 1 and 2:

BH
D(σ)

˘̂
d(σ) = (BH

DSDXBXS−1
X BH

X x̆)(σ)

= (SDXS−1
X x̃)(σ).

(70)

Since the pth term of the transformed vector corresponds
to (68), we can assert that both expansions correspond to
the same process, making the cyclic and linear KL Wiener
filters equivalent. This completes the proof.

This result bears remarkable implications in the context of
this paper. By studying a linear filtering problem in the KL
domain, we have accessed asymptotic performance results of
periodically time variant filtering (namely (53)) without having
to explicitly derive its expressions nor deal with the FRESH
structure.

C. Second order characterization of the error process

The error process resulting after filtering (42) with the CWF
has the following spectral representation:

ĕ(σ) ≜
[
dν(0)e (σ), . . . ,dν(P−1)

e (σ)
]T

(71)

= d̆(σ)− SD(σ)(SD(σ) + PzIP )
−1

(
d̆(σ) + z̆(σ)

)
= (SD(σ) + PzIP )

−1
(
Pzd̆(σ)− SD(σ)z̆(σ)

)
.

Notice we have used the same notation as in Section III. Its
cyclic spectrum matrix is

SE(σ)dσ = E[ĕ(σ)ĕH(σ)] = (P−1
z IP + S−1

D (σ))−1dσ. (72)

Since this matrix is not diagonal for Pz > 0, it implies the
error process of the CWF is CS.
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D. Synchronous gain

To complement this analysis, it is of interest to define
the synchronous gain: the improvement in MSE that can be
harnessed by taking cyclostationarity into account. Returning
to the additive model (42) with CS reference, recall the MMSE
expression in the Fourier domain (64). If d(n) is erroneously
treated as WSS, the classical non-causal Wiener filter [28,
Eq. (8.149)] can be employed, which yields

MMSEnc,WSS =

P−1∑
p=0

∫ 1
P

0

SD
(
σ + p

P

)
Pz

SD
(
σ + p

P

)
+ Pz

dσ, (73)

as stated in [19, Eq. (106)]. Notice how (73), which is a function
of the diagonal elements of SD(σ), is related to (61), which
depends on its eigenvalues instead. With the two expressions,
the synchronous gain is defined as

ζnc ≜
MMSEnc

MMSEnc,WSS
. (74)

One might expect this value to be less than 1, implying
a reduction in MSE achieved by a more nuanced processing.
This intuition can be formally proved using the theory of
majorization [31], as in Proposition 1. We know that the
eigenvalues of a Hermitian matrix majorize its diagonal
elements [31, Th. 9.B.1.], i.e. diag

(
SD(σ)

)
≺ diag

(
SD(σ)

)
.

Therefore, by [31, Prop. 4.B.1.], we can assert that MMSEnc ≤
MMSEnc,WSS. This ensures that there is a MSE improvement
in performing a synchronous processing, compared to the
conventional Wiener filter treatment.

VI. ASYMPTOTIC FILTERING PERFORMANCE

Non-causal filters are often referred to as unrealizable [35,
Sec. 4.1] because it may be unrealistic to assume the availability
of future samples from a process. For this reason, the results
obtained in the previous section are to be understood as bounds
on how accurate synchronous filtering can get, rather than an
achievable performance in practice.

We define the signal-to-noise ratio (SNR) as the ratio between
the average power of d(n) and z(n). If we assume d(n) has
unit power, it reduces to SNR ≜ 1/Pz . We may express the
MMSE (61) obtained from the non-causal CWF in terms of
this SNR:

MMSEnc(SNR) =

P−1∑
p=0

∫ 1
P

0

S(p)
D (σ)

SNR · S(p)
D (σ) + 1

dσ. (75)

Let {x(n)}nb
na

be a sequence of consecutive samples from
x(n), for na ≤ n ≤ nb. The infinite past causal MMSE at any
nb given {x(n)}nb

na
is known to be [36, Sec. 4.2.1]

mmsec(nb,SNR) ≜

E
[∣∣d(nb)− E

[
d(nb)|{x(n)}nb

−∞; SNR
]∣∣2], (76)

and its time average is

MMSEc(SNR) ≜ lim
N→∞

1

N

nb∑
n=nb−N+1

mmsec(n, SNR). (77)

Its derivation can be circumvented by employing the following
fundamental result in nonlinear filtering.

Theorem 3: (Guo-Shamai-Verdú [19, Th. 8]) The average
(per unit time) MMSE for filtering can be obtained by averaging
the smoothing MMSE over all possible values of SNR:

MMSEc(SNR) = E
[
MMSEnc(Γ)

]
, (78)

where Γ is distributed uniformly in the interval [0,SNR].
In Section V-C, we have proved the error process after

smoothing signal (42) with the CWF is CS. Hence, (75) is
valid for the (asymptotic) non-causal MMSE averaged over
a single period P . Since Theorem 3 links it with its causal
counterpart, this implies MMSEc(SNR) averaged over a single
period is equivalent to (77), which is averaged over the full
infinite past.

To obtain (78) from (75), we perform the following expec-
tation:

MMSEc(SNR) =
1

SNR

∫ SNR

0

MMSEnc(Γ)dΓ

=
1

SNR

P−1∑
p=0

∫ 1
P

0

∫ SNR

0

S(p)
D (σ)

Γ · S(p)
D (σ) + 1

dΓdσ

=
1

SNR

∫ 1
P

0

P−1∑
p=0

ln
(
SNR · S(p)

D (σ) + 1
)
dσ.

(79)

Transforming the sum of logarithms into a log-determinant,
and making use of Corollary 2, we can express this result in
terms of the cyclic PSD and the coherence matrix (59):

MMSEc(SNR) =
1

SNR

∫ 1
P

0

ln|SNR · SD(σ) + IP |dσ

=
1

SNR

∫ 1
P

0

ln|SNR · SD(σ) + IP |dσ

=
−1

SNR

∫ 1
P

0

ln
∣∣IP −CDX(σ)CH

DX(σ)
∣∣dσ.

(80)

This formula is related to various problems that require the
detection of correlation and cyclostationarity [24, Ch. 8]. It
also provides a link between MMSE, the coherence matrix and
mutual information, since it involves a generalization of the
information-theoretic coherence from [24, Sec. 11.4].

A. Synchronous gain

The causal MMSE assuming d(n) is WSS is known to
be [28, Eq. (8.177)]

MMSEc,WSS(SNR) =
P−1∑
p=0

∫ 1
P

0

ln
(
SNR · SD

(
σ + p

P

)
+ 1

)
SNR

dσ. (81)

Using the same rationale based on majorization theory as in
Section V-D, we once again state that the MSE can be reduced
by synchronous processing, i.e.

ζc ≜
MMSEc

MMSEc,WSS
≤ 1. (82)
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B. High SNR regime

Suppose that SD(λ) in (79) is concentrated inside a band
[0, B), for 0 < B < 1, such that it is null outside of it:

MMSEc(SNR) =

∫ B

0

ln
(
SD(λ) +

1
SNR

)
SNR

dλ+B · ln SNR

SNR
.

(83)
In the limit of SNR → ∞, the causal MMSE decays as7

lim
SNR→∞

MMSEc(SNR) = lim
SNR→∞

∫ B

0

lnSD(λ)

SNR
dλ

+ lim
SNR→∞

B · ln SNR

SNR
= lim
SNR→∞

B · ln SNR

SNR
. (84)

This implies that, the more concentrated the KL spectrum of
d(n) is (i.e. the smaller B is), the lower MMSEc will be at
high SNR. The same idea applies to its non-causal counterpart;
it can be clearly seen by observing the limit of (75) at high
SNR under mild conditions:

lim
SNR→∞

MMSEnc(SNR) =

lim
SNR→∞

∫ B

0

SD(λ)

SNR · SD(λ) + 1
dλ = lim

SNR→∞

B

SNR
. (85)

From (84) and (85) we conclude that the causal MMSE
asymptotically approaches the rate of decay of the non-causal
MMSE, which is hyperbolic.

VII. ASYMPTOTIC PREDICTION PERFORMANCE

The final problem that will be analyzed is the one-step linear
prediction of x(n) based on N past samples:

x̂N (n) = wH
N (n)xN (n− 1), (86)

where

xN (n− 1) ≜ [x(n−N), . . . , x(n− 2), x(n− 1)]T. (87)

The MMSE in this case is given by

MMSE(N)
p (n) ≜ min

wN (n)
E
[
|x(n)− x̂N (n)|2

]
. (88)

This error is achieved by the cyclic Wiener predictor, which
is periodic and implements a synchronous processing. It is
known to be [16, Eq. (2.10)]

MMSE(N)
p (n)

= Rx(n, 0)− r(N)H
x (n)

(
R(N)

x (n− 1)
)−1

r(N)
x (n), (89)

where the autocorrelation matrix and vector are respectively
defined as

R(N)
x (n− 1) ≜ E[xN (n− 1)xH

N (n− 1)]

r(N)
x (n) ≜ E[xN (n− 1)x∗(n)].

(90)

Notice that the correlation matrix of size N + 1 at instant n
can be expressed blockwise as

R(N+1)
x (n) =

[
R

(N)
x (n− 1) r

(N)
x (n)

r
(N)H
x (n) Rx(n, 0)

]
. (91)

7We have assumed that lnSD(λ) is Riemann-integrable in [0, B) [37,
Def. 9.5.1], which is closely related to the regularity condition in [38, Th. 4.3].

Using the determinant formula for block matrices, we can
express the MMSE as follows [16, Eq. (2.41)]:

MMSE(N)
p (n) =

∣∣R(N+1)
x (n)

∣∣∣∣R(N)
x (n− 1)

∣∣ . (92)

We are interested in the behavior of this error as past samples
grow without bound, i.e.

MMSEp ≜ lim
N→∞

MMSE(N)
p (n). (93)

Theorem 4: (Riba & Vilà-Insa [22, Th. 2]) A lower bound on
the MMSE of one-step prediction of a cyclostationary signal
is given by

MMSEp = exp

∫ 1
P

0

ln|SX(σ)|dσ. (94)

Proof: See Appendix D.
A metric that is closely related to the MMSE in prediction

is the spectral flatness of WSS processes [16, Def. 6.1], which
we extend to CS ones by defining the KL spectral flatness:

ω2
x ≜

MMSEp

Px
∈ [0, 1]. (95)

This ratio measures the shape (i.e. flatness) of the KL spectrum
of x(n) and is directly linked to its representation entropy and
predictability through synchronous processing [16, Sec. 6.6.1].

A. Synchronous gain

The minimum MMSE achievable from classical Wiener
prediction is given by the Kolmogorov-Szegö theorem [16,
Eq. (6.23)]:

MMSEp,WSS = exp

∫ 1
P

0

ln
∣∣SX(σ)SH

X(σ)
∣∣dσ. (96)

where SX(σ) ≜ (IP ◦SX(σ))1/2. In this case, the synchronous
gain

ζp ≜
MMSEp

MMSEp,WSS
≤ 1 (97)

can be expressed compactly as a function of the spectral
coherence matrix [24, Sec. 8.2]:

CX(σ) ≜ (S−1
X SXS−H

X )(σ). (98)

This fact was stated in [22]:

ζp = exp

∫ 1
P

0

ln|SX(σ)| − ln
∣∣SX(σ)SH

X(σ)
∣∣dσ

= exp

∫ 1
P

0

ln
∣∣CX(σ)

∣∣dσ. (99)

B. High SNR regime

If x(n) is obtained from the additive model (42), we may
relate the prediction and filtering MMSE as follows:

MMSEp(SNR) = exp

∫ 1
P

0

ln|SDD(σ) + 1
SNRIP |dσ (100)

=
exp

∫ 1
P

0
ln|SNR · SDD(σ) + IP |dσ

SNR
=

eMMSEc·SNR

SNR
.
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f − 𝛼f

|SX(f, 𝛼)|
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Figure 2. Spectral correlation of x(n) from model (104), for P = 4, ∆ = 0
and Pz = 1.

With it, we can easily replicate the high SNR analysis from
Section VI-B for prediction MMSE:

lim
SNR→∞

MMSEp(SNR) = lim
SNR→∞

exp(B · ln SNR
SNR · SNR)

SNR

= lim
SNR→∞

SNRB

SNR
= lim
SNR→∞

1

SNR(1−B)
. (101)

Some remarks about this result should be made. The decay
of (101) is slower than hyperbolic and is controlled by the
occupied spectral band B. When B → 0, i.e. very low ω2

x, it
approaches the rate of decay of MMSEnc at high SNR, as seen
in (85). When B = 1, i.e. d(n) occupies the full KL spectrum
(high flatness), the desired signal becomes unpredictable and
MMSEp does not vanish at SNR → ∞.

VIII. NUMERICAL ILLUSTRATION

In this final section, we are going to apply the previous results
to a linearly modulated digital communication system, in
order to validate them numerically. Consider a pulse-amplitude
modulation signal of cycle period P , d(n), affected by an
independent additive noise component z(n), which is WSS and
white and has autocorrelation Rz(m) = Pzδm. The transmitted
complex baseband signal is constructed as follows:

d(n) =
∑
k∈Z

a(k)b(n− kP ). (102)

The symbols a(k) are uncorrelated and have power P (i.e.
Ra(m) = Pδm). The shaping pulse b(n) is a 100% excess
bandwidth square-root raised cosine [39, Ex. 5-22], with DTFT

B(f) =
√
P cos

(
π
2Pf

)
, f ∈

[
− 1

P , 1
P

)
. (103)

The signal model of interest is as follows:

x(n) = d(n− ε) + z(n), (104)

where ε ∼ U [0,∆) is a random delay. The spectral correlation
of x(n) is derived in Appendix E and represented graphically
in Fig. 2. It is only defined on δ-ridges parallel to the stationary
manifold at α = k/P for k = 0, . . . , P − 1 [9, Sec. 10.1.1].
From (122), its cyclic spectrum is

S
( k
P )

X (σ) = Pzδk +B(σ)B∗(σ − k
P

)1− e−j2π∆ k
P

j2π∆ k
P

, (105)

𝜆
0 1/P 2/P 3/P 1

0

5

KL-PSD
Δ = 0
Δ = P/6
Δ = P/(P − 1)
Δ = P/(P − 1) (sorted)

CL − PSD
CL − PSD(sorted)

(a) PSD and KL-PSD of x(n) for various values of ∆.

Δ

0 1/3 2/3 1 P
P − 1

− 0.46

− 0.39

− 0.32

CL representation
KL representation

(b) Representation entropy of x(n) in bits.

Figure 3. Spectral density and representation entropy of x(n) for P = 4 and
Pz = 1.

with which we construct the cyclic PSD matrix SX(σ) for
all σ ∈ [0, 1/P ), as explained in Section III (see Fig. 1). By
obtaining its eigenvalues SX (σ) for each σ, the KL-PSD can
be derived, since [SX (σ)]p,p = SX (σ + p/P ).

The maximum delay ∆ allows to control the statistical
properties of x(n). Notice that its impact cannot be observed
on the PSD; indeed, if we take (105) and set k = 0, we obtain
SX(σ) = Pz + |B(σ)|2, which does not depend on ∆. On
the contrary, the KL-PSD does behave differently for different
values of ∆, as shown in Fig. 3a. For ∆ = 0, (i.e. d(n) is
fully CS), the signal component of SX (λ) is contained in a
spectral band of width 1/P , while the rest of the spectrum is
only occupied by noise. As ∆ increases (e.g. ∆ = P/6), some
amount of the signal KL-PSD leaks to the band [1/P, 2/P ).
When ∆ = P/(P − 1), the leakage is maximum and d(n)
becomes WSS, in which case the KL-PSD coincides with the
CL-PSD. To see it, we sort them both in decreasing order so
we can compare the two spectra regardless of the domain they
belong to.

A different way to analyze the effect of ∆ onto the statistical
behavior of x(n) is through the representation entropy defined
in Section III-C (see Fig. 3b). As expected, the lowest entropy
is achieved for ∆ = 0, since the KL spectrum of x(n) is the
most compact (i.e. CS). Its value increases with ∆ until it
reaches a maximum for ∆ = P/(P −1), which coincides with
the entropy of the CL representation of x(n), since it is WSS.
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Figure 4. MMSE in synchronous (solid lines) and asynchronous (dotted lines)
processing. ∆ = 0 and P = 4.

A. Signal processing performance

We are now interested in numerically assessing the perfor-
mance of smoothing, filtering and prediction, given model (104).
Fig. 4 displays the MMSE of both synchronous and asyn-
chronous processing in the three modalities for different SNR
values, making very clear the gains achievable by exploiting
cyclostationarity. The relationship between non-causal and
causal filtering from [19, Th. 8], explored in Section VI, is
illustrated as well. The area under MMSEnc in the interval
SNR ∈ [0, 1] is the same as the one in the colored box, which
coincides with MMSEc at SNR = 1, as expected from (79).

In Fig. 5, there is a plot of MMSE times SNR against SNR
for synchronous processing in the three modalities. Regarding
smoothing, its corresponding curve is a horizontal straight line,
since its MMSE decays hyperbolically. We can observe the
high SNR approximation derived in Section VI-B is remarkably
accurate. Its ordinate is dictated by the bandwidth parameter
in (85) which, in the model considered, depends on the signal
period (i.e. B = 1/P ). Relating to causal filtering, its curve
increases at a slower rate the higher the SNR is. This implies its
MMSE presents asymptotically hyperbolic decay, as predicted
in (84). Its approximation improves as the SNR grows. Finally,
the prediction curves increase linearly with SNR, with a slope
equal to 1/P : this is the performance loss with respect to
hyperbolic decay, as expected from (101). Notice that the
approximation curve displays the same slope as the real one.

To assess the gain achievable by performing a synchronous
treatment of the signal at high SNR we refer to Fig. 6. The
horizontal axis is a scan across all the possible values of
∆ ∈ [0, P/(P −1)]; it represents the synchronization reliability
at the receiver (i.e. 0 is perfect synchronization while 1 is the
maximum uncertainty). In both smoothing and filtering, the
achievable gain is not affected by the signal period P when
perfect synchronization is available. The gain degradation as the
uncertainty increases, however, is less sensitive to ∆ in filtering.
The prediction case bears some comment. Under perfect
synchronization, the achievable gains are the highest among
the three processing modes and are remarkably affected by P :
the higher the period, the lower the gain. This phenomenon
can be explained in terms of spectral flatness. For P = 2,
the KL-PSD of d(n) is concentrated in a band of width 1/2.
On the contrary, its CL-PSD occupies the full spectrum, i.e.
it is significantly flatter. Therefore, implementing a perfectly
synchronized processing yields a notable performance gain. As

SNR [dB]
20 30 40 50

M
S
E

×
S
N

R

10− 1

1

10

102

103

slope = 0

slope = O(1/SNR[dB])

slope = 1/P

Noncausal
Causal
Prediction

P = 2
P = 4

Figure 5. MMSE×SNR vs. SNR for synchronous processing. The dotted
lines are the corresponding approximations in the high SNR regime.

Δ
P/(P − 1)

0 0.25 0.5 0.75 1

𝜁
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P = 8

Figure 6. Processing gain in terms of synchronization reliability at SNR =
30dB.

P increases, however, the CL-PSD concentrates in a smaller
band and the synchronous gain shrinks.

IX. CONCLUSIONS

This work has explored the problem of synchronous process-
ing of CS signals. By using their KL representation, we have
leveraged its desirable properties to conduct various theoretical
analyses. In particular, its uncorrelated eigendecomposition and
time-shift invariant spectral density have proven to be very
valuable in the extraction of asymptotic performance bounds
for filtering applications.

This spectral treatment has enabled to address smoothing,
filtering and prediction under the same unified framework
and study cyclic Wiener processing without having to delve
into specific architectures. The unitary transformation that
connects the CL and KL expansions has played a central role
in obtaining compact MMSE expressions, as integrals of traces
and determinants of the cyclic spectrum matrix. With them, we
have also quantified the achievable synchronous gain, which is
of remarkable interest in prediction applications. Indeed, the
optimal energy compaction of the KL spectrum is intimately
linked to improved predictability.

The toolset developed in the present work can be applied in
various new directions. Interesting extensions can be found in
almost CS and more general classes of stochastic processes [40],
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[41], which relax different aspects of the periodic structure
assumed herein, such as the integer period. From a theoretical
point of view, the presence of coherence statistics in MMSE
expressions should be investigated further. This would provide
deep insights in the relation between synchronous signal
processing and other problems in information theory.

APPENDIX

A. Proof of Theorem 1
The following proof is an alternative version of the one

presented in [22]. It is based on checking that (12) holds for
CS processes with the proposed basis:

S(p)
X (σ)ϕ

(p)
CS(k, σ)dσ = lim

N→∞

1

N

N
2 −1∑

l=−N
2

Rx(l, k − l)ϕ
(p)
CS(l, σ).

(106)
Applying definition (1) and the CL expansion of x(k), we have

S(p)
X (σ)ϕ

(p)
CS(k, σ)dσ (107)

= lim
N→∞

1

N

∑
l

E[x(k)x∗(l)]

P−1∑
c=0

b
(p)
X (c, σ)ej2πl(σ+

c
P )

=
∑
c

b
(p)
X (c, σ) E

[( P−1∑
r=0

∫ 1
P

0

ej2π(σ
′+ r

P )kdν(r)x (σ′)

)
×
(

lim
N→∞

1

N

∑
l

x(l)e−j2πl(σ+ c
P )

)∗]

=
∑
r,c

b
(p)
X (c, σ)

∫ 1
P

0

ej2πk(σ
′+ r

P ) E
[
dν(r)x (σ′)dν(c)∗x (σ)

]
,

where dν(p)x (σ) is defined in (20). Using the spectral correlation
of a CS process (9) yields:

S(p)
X (σ)ϕ

(p)
CS(k, σ)dσ =

∑
r,c

b
(p)
X (c, σ)dσ

×
∫ 1

P

0

ej2πk(σ
′+ r

P )S
( r−c

P )

X (σ′ + r
P )δ(σ′ − σ)dσ′

=
∑
r,c

ej2πk(σ+
r
P )b

(p)
X (c, σ)S

( r−c
P )

X (σ + r
P )dσ.

(108)

Afterwards, we substitute the proposed basis on the LHS of
the equality and cancel the common exponential terms that
depend on σ:

S(p)
X (σ)

∑
r

b
(p)
X (r, σ)ej2πk

r
P

=
∑
r,c

ej2π
r
P kb

(p)
X (c, σ)S

( r−c
P )

X (σ + r
P ). (109)

Finally, each term of the sum with respect to r is equated and
stacked in vector form:

S(p)
X (σ)b

(p)
X (r, σ) =

∑
c

b
(p)
X (c, σ)S

( r−c
P )

X (σ + r
P )

S(p)
X (σ)b

(p)
X (σ) = SX(σ)b

(p)
X (σ).

(110)

In order to fulfill this eigenequation, b
(p)
X (σ) must be an

eigenvector of SX(σ) and S(p)
X (σ) its corresponding eigenvalue.

This completes the proof.

B. Proof of Corollary 1

The proof is obtained by particularizing (14) for the CS
basis (16) and applying the definition of the CL transform (5):

dξ(p)x (σ) = lim
N→∞

1

N

N
2 −1∑

n=−N
2

x(n)

P−1∑
q=0

b
(p)∗
X (q, σ)e−j2πn(σ+ q

P )

=
∑
q

b
(p)∗
X (q, σ)

(
lim

N→∞

1

N

∑
n

x(n)e−j2πn(σ+ q
P )

)
=

∑
q

b
(p)∗
X (q, σ)dν(q)x (σ) = b

(p)H
X (σ)x̆(σ). (111)

C. Time-shift effect on the KL transform of CS processes

Changing the reference time of a CS process adds a phase
shift to its KL representation:

dξ
(p)
x,CS(σ, n0) = lim

N→∞

1

N

N
2 −1∑

n=−N
2

x(n+ n0)

P−1∑
q=0

b
(p)∗
X (q, σ)

× e−j2πn0
q
P e−j2πn(σ+ q

P )

= lim
N→∞

1

N

∑
n′∈Z

x(n′)
∑
q

b
(p)∗
X (q, σ)e−j2πn′(σ+ q

P )ej2πn0σ

= dξ
(p)
x,CS(σ)e

j2πn0σ. (112)

D. Proof of Theorem 4

This proof is based on the one provided in [22], adapted to
the present notation and setting in this work. We define value

J(n,N) ≜
1

N
ln
∣∣R(N)

x (n)
∣∣ (113)

and represent (92) in terms of it:

MMSE(N)
p (n) =

exp((N + 1) · J(n,N + 1))

exp(N · J(n− 1, N))
. (114)

The determinant of R(N)
x (n) can be expressed as the product

of its eigenvalues, which are obtained as

S(k)
X (n) ≜ φH

k (n)R
(N)
x (n)φk(n), (115)

where φk(n) ≜ [φk,1(n), . . . , φk,N (n)]T are its unitary eigen-
vectors. Developing the previous quadratic form, we have

S(k)
X (n) =

N−1∑
l,m=0

φ∗
k,l(n)Rx(n−N+m, l−m)φk,m(n). (116)

Notice the similarities between this expression and the second
identity from (13). Indeed, with appropriate index shifts in the
autocorrelation function and the eigenvectors, in the limit

lim
N→∞

S(k)
X (n) = lim

N→∞
SX ( k

N ), (117)

where the dependence on n has been dropped, since the
spectrum of CS processes is shift-invariant, as proved in
Section III-A.
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Returning to (113), we have

lim
N→∞

J(n,N) = lim
N→∞

1

N
ln

N−1∏
k=0

S(k)
X (n)

= lim
N→∞

1

N

∑
k

lnSX ( k
N ) =

∫ 1

0

lnSX (λ)dλ ≜ J.

(118)

We have converted a Riemann sum into an integral, by assuming
this limit exists and setting k/N → λ ∈ [0, 1) and 1/N → dλ.
The same analysis applies to J(n − 1, N) and J(n,N + 1).
Using these results in (114), we finally have

lim
N→∞

MMSE(N)
p (n) = lim

N→∞

exp((N + 1) · J)
exp(N · J)

= eJ (119)

= exp

P−1∑
p=0

∫ 1
P

0

lnS(p)
X (σ)dσ = exp

∫ 1
P

0

ln
∏
p

S(p)
X (σ)dσ

= exp

∫ 1
P

0

ln|SX (σ)|dσ = exp

∫ 1
P

0

ln|SX(σ)|dσ.

E. Spectral correlation of x(n) in Section VIII

The CL expansion of d(n) is obtained as follows:

dνd(f) = lim
N→∞

1

N

N
2 −1∑∑

n,k=−N
2

a(k)b(n− kP )e−j2πfn

=
(∑

n′

b(n′)e−j2πfn′
)(∑

k

a(k)e−j2πfkP
)
df

= B(f)df ·
∑
k

a(k)e−j2πfkP ,

(120)

where we have used the change of variable n′ ≜ n− kP . We
can now compute the spectral correlation of x(n):

SX(f, α) = SZ(f, α) + B(f)B∗(f − α) E[e−j2παε]

×
∑

k,k′∈Z
E[a(k)a∗(k′)]ej2π(f(k

′−k)−αk′)P , (121)

due to d(n) and z(n) being independent. Since the symbols
are uncorrelated and the noise is WSS and white, we have

SX(f, α) = Pzδ(α) +
B(f)B∗(f − α)

∆

∫ ∆

0

e−j2παεdε

×
∑
k,k′

Pδk−k′ej2π(f(k
′−k)−αk′)P (122)

= Pzδ(α) + B(f)B∗(f − α)
1− e−j2πα∆

j2πα∆
P
∑
k

ej2παkP

= Pzδ(α) + B(f)B∗(f − α)
1− e−j2πα∆

j2πα∆
X 1

P
(α).
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