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In this paper, we establish the theoretical framework for understanding the sensing capabilities of optical fibers. We
show the distinct advantage of polarization over phase in detecting subhertz environmental processes. Subsequently, we
propose a scheme capable of extracting the spectrum of perturbations affecting a specific section at any position along
an optical fiber by detecting the state of polarization of the backreflected light. We discuss two examples of earthquake
detection and the detection of sea swells and ocean tides through the analysis of the state of polarization of an optical
signal reconstructed by the receiver of a transoceanic cable, obtained from an online database.1 Finally, we provide the
analytical expression for the cross-correlation of the polarization perturbations of two wavelength division multiplexed
channels, and show that the analysis of the polarization correlations between adjacent channels can provide valuable
insights into the localization of earthquakes.

I. INTRODUCTION

Fiber sensing technologies have emerged as powerful tools
for environmental monitoring, enabling precise and real-time
data collection over large geographical areas. Taking ad-
vantage of the inherent properties of optical fibers, such as
low loss transmission and sensitivity to external perturbations,
researchers have developed innovative techniques to detect
various environmental parameters, including seismic activity,
ocean dynamics, and submarine fault detection. Marra et al.
introduced ultrastable laser interferometry for earthquake de-
tection using terrestrial and submarine cables,2 paving the way
towards exciting progress towards disaster management and
early warning systems. In ref. 3 and 4 the authors demon-
strated the use of optical coherent detection for environmental
sensing, showing the potential of polarization sensing in ap-
plications such as earthquake detection and tsunami warning.
In addition to seismic monitoring, fiber sensing technologies
have been applied to understand ocean dynamics and detect
underwater phenomena. Lindsey et al.5 demonstrated the use
of dark fiber distributed acoustic sensing for mapping seafloor
faults and monitoring ocean dynamics, while Landrø et al.6

utilized arctic fiber optic cables for sensing whales, storms,
ships, and earthquakes, proving the versatility of fiber sens-
ing in harsh environments. Skarvang et al.7 presented obser-
vations of local small magnitude earthquakes using state-of-
polarization monitoring in a passive arctic submarine commu-
nication cable, highlighting the potential of polarization-based
sensing techniques in seismic monitoring. These develop-
ments underscore the importance of fiber sensing in enhancing
our understanding of environmental processes and facilitating
early detection of natural hazards. Using the capabilities of
optical fibers, researchers continue to push the boundaries of
environmental sensing, enabling more efficient and reliable
monitoring of the planet.

In this paper, we will first establish the theoretical basis for
the understanding of the sensing capability of optical fibers.
We will show the pros and cons of the use of the polarization-
averaged optical phase and of the polarization as a sensing
tool. We will propose a scheme that can provide the spectrum
of the perturbation acting upon the cable by detecting the state

of polarization of the backreflected light. We will then delve
into the vast database in ref. 1 to show a few examples of
earthquake detection using the reconstructed state of polariza-
tion of the receiver of the Curie cable system connecting Los
Angeles, in California, to Valparaiso in Chile. Finally, we will
present an analytical expression of the cross-correlation of the
state of polarization between two wavelength division multi-
plexed channels and highlight how studying the correlations
between the polarization of nearby channels may yield valu-
able insights into localization of earthquakes.

II. BASIC EQUATIONS

Let the tranverse electric field propagating in a single mode
fiber be represented by the column vector[

Ex(z)
Ey(z)

]
=

[
Ex(z)
Ey(z)

]
exp(−iω0t) , (1)

where ω0 is the center optical frequency. Let us define[
Ex(z)
Ey(z)

]
= A(z)|⃗s(z)⟩, (2)

where A(z) =
[
|Ex(z)|2 + |Ey(z)|2

]1/2 and

|⃗s(z)⟩=
[

sx(z)
sy(z)

]
, (3)

is a Jones vector, normalized such that

⟨⃗s(z)|⃗s(z)⟩= 1. (4)

Here, following Dirac’s bra-ket notation, we defined ⟨⃗s(z)| =
(|⃗s(z)⟩)†, with the dagger standing for hermitian conjugation
(the transpose conjugate of the vector). Assuming negligible
polarization dependent loss and gain, the evolution of the am-
plitude of the field A(z) is only determined by the gain and loss
profile of the fiber, and decouples to that of the polarization. In
a right-handed reference frame with x and y in the transverse
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plane and z in the propagation direction, the propagation of
the Jones vector can then be described by the equation

d
dz

|⃗s(z)⟩= iV(z)B(z)V†(z) |⃗s(z)⟩, (5)

where V(z) is the unitary matrix

V(z) =
[

cosθ(z) −sinθ(z)
sinθ(z) cosθ(z)

]
(6)

representing an anticlockwise rotation by the angle θ(z)
of in the x − y plane with respect to the z axis, so that
V(z)B(z)V†(z) produces a rotation by the same angle of the
birefringence vector, and

B(z) =
[

β1(z) 0
0 β2(z)

]
, (7)

with β1(z) and β2(z) the magnitudes of the (local) eigenvalues
of the transmission matrix. Defining the Pauli matrices as

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 i
−i 0

)
, (8)

and the Pauli spin vector as the Stokes vector σ⃗ = σ1ê1 +
σ2ê2+σ3ê3, where êi are the canonical basis vectors of Stokes
space, Eq. (5) becomes

d
dz

|⃗s(z)⟩= i

[
β0(z)1+

β⃗ (z)
2

· σ⃗

]
|⃗s(z)⟩, (9)

where 1 is the two-by-two unit matrix, and

β0(z) =
1
2
[β1(z)+β2(z)] , (10)

β⃗ (z) = β (z)cos[2θ(z)]ê1 +β (z)sin[2θ(z)]ê2, (11)

with

β (z) = β1(z)−β2(z). (12)

Solution of Eq. (5) is

|⃗s(z)⟩= U0(z)|⃗s(0)⟩, (13)

where U0(z) satisfy the equation

dU0(z)
dz

= i

[
β0(z)1+

β⃗ (z)
2

· σ⃗

]
U0(z), (14)

with initial condition U0(0) = 1. Using in Eq. (14) the expan-
sion

U0(z) = exp[iϕ0(z)]U(z), (15)

we obtain the equation

i
dϕ0(z)

dz
U(z)+

dU(z)
dz

= i

[
β0(z)1+

β⃗ (z)
2

· σ⃗

]
U(z), (16)

which is verified if

dϕ0(z)
dz

= β0(z), (17)

and

dU(z)
dz

=
i
2

[
β⃗ (z) · σ⃗

]
U(z), (18)

with initial conditions ϕ0(0) = 0 and U(0) = 1. The solution
of Eq. (18) can be formally written as

U(z) =
z

∏
z′=0

exp
[

i
2

β⃗ (z′) · σ⃗ dz′
]
, (19)

with the individual members of the product belonging to
SU(2) (the special unitary group of degree 2, which is the
group of unitary two-by-two matrices of unit determinant).
Being SU(2) closed with respect to matrix multiplication,8

U(z) itself is a member of SU(2).9,10 Defining the polariza-
tion averaged phase as

ϕ0 =
1
2i

trace logU0 =
1
2i

logdetU0, (20)

it is easy to show, using Eq. (15) and the property that U(z)
belongs to SU(2) hence its determinant is one, that

ϕ0 = ϕ0 +
1
2i

logdetU = ϕ0. (21)

so that the polarization averaged phase is the solution of Eq.
(17). A member of the SU(2) group can always be expressed
as9,10

U(z) = exp
[

i
2

ϕ⃗(z) · σ⃗
]
, (22)

so that

U0(z) = exp
[

iϕ0(z)1+
i
2

ϕ⃗(z) · σ⃗
]
. (23)

Being ϕ0(z) solution of Eq. (17), it is not affected by the
rotation of the birefringence axes. Consequently, the fluctu-
ations of the average phase are insensitive to the rotation of
the birefringence axes, or equivalently, they are uncoupled to
the fluctuations that leave unchanged the modulus of the bire-
fringence eigenvalues. Consequence of this property is that,
as we will see, fiber twist does not affect the polarization av-
eraged phase. The evolution of the phase fluctuations can be
expressed in terms of the polarization averaged wavevector by
simply integrating Eq. (17)

ϕ0(z) =
∫ z

0
β0(z′)dz′. (24)

Let us define the Stokes vector corresponding to |⃗s(z)⟩ as9

s⃗(z) = ⟨⃗s(z)|⃗σ |⃗s(z)⟩. (25)



Sensing with submarine optical cables 3

This vector describes in Stokes space the evolution of the field
polarization. The equation describing the evolution of s⃗(z) can
be obtained using Eq. (13) in the definition of Stokes vector

s⃗(z) = ⟨⃗s(0)|U†(z)σ⃗U(z)|⃗s(0)⟩ (26)

differentiating both terms and using Eq. (18) and the equality
(⃗a · σ⃗)σ⃗ = a⃗1+ i⃗a× σ⃗ and that σ⃗ (⃗a · σ⃗) = a⃗1− i⃗a× σ⃗ . The
final result is9

d⃗s(z)
dz

= β⃗ (z)× s⃗(z). (27)

Having derived the fundamental equations, the following sec-
tion will be devoted to the analysis of the effect of external
perturbations on the polarization averaged wavevector β0 and
on the fiber birefringence β⃗ .

III. WAVEVECTOR PERTURBATIONS

Let us consider a perfectly cylindrical fiber and treat any ef-
fects of the deviations from cylindrical symmetry (including
birefringence) as a small perturbation. Assume first a per-
fectly cylindrical fiber with no preexisting birefringence. If
some strain is applied to the fiber, the polarization averaged
wavevector β0 = 2πn0/λ turns into

β0 =
2π

λ
n(z), (28)

where n(z) is the refractive index given by

n(z) = n0 +Cε(z). (29)

Here, n0 is the unperturbed glass refractive index, C is the pho-
toelastic factor and ε(z) the strain. The strain also affects the
propagation distance at every z, becoming z(ε) = [1+ ε(z)]z.
Thus, dz turns into dz′(ε) = [1+ ε(z′)]dz′ and ϕ0 changes to

ϕ(z) =
∫ z

0

2π

λ
[n0 +Cε(z′)] [1+ ε(z′)]dz′. (30)

Neglecting the term of the order of ε2 we obtain

ϕ(z) = β0

∫ z

0

[
1+ξ ε(z′)

]
dz′. (31)

where ξ = 1+C/n0 is the photoelastic scaling factor for lon-
gitudinal strain (for isotropic glass, ξ ≃ 0.78), and

β0 =
2π

λ
n0 (32)

is the unperturbed wavevector. The effect of strain is to pro-
duce to the polarization averaged propagation constant the rel-
ative change

∆β

β0
= ξ ε. (33)

Assume now that the fiber has some (small) birefringence
and treat the effects of the birefringence as a perturbation.

If the strain is induced by hydrostatic pressure via the Pois-
son effect, the cylindrical symmetry of the perturbation im-
plies that it does not alter the orientation of the birefringence
vector, meaning that ∆β⃗ is parallel to β⃗ . Moreover, a pertur-
bation with cylindrical symmetry cannot induce birefringence
in a cylindrical fiber, since any nonzero birefringence would
break the cylindrical symmetry. This requirement is satisfied
if we assume that the perturbation alters the eigenvector on
each eigenpolarization proportionally to the magnitude of the
wavevector itself. Enforcing this condition alongside the addi-
tional criterion that Eq. (33) is recovered when birefringence
is absent results in

∆βh

βh
= ξ ε h = 1,2. (34)

The use of this equation for h = 1 and 2 gives

∆β1 −∆β2

β1 −β2
= ξ ε, (35)

that is, being ∆β1(z)− ∆β2(z) = ∆β and β1 − β2 = β , the
equation ∆β = ξ εβ . The additional condition of parallelism
between ∆β⃗ and β⃗ yields the expression

∆β⃗ = ξ ε β⃗ . (36)

We obtain the important result that in quasi-cylindrical sym-
metric fibers, in which birefringence is a small perturbation,
the dependence of the birefringence on strain can be inferred
from the dependence on strain of the polarization averaged
wavevector, which is easier to characterize experimentally.4

Another process affecting birefringence is the twist of the
fiber. We have shown in the previous section that the fluctu-
ations of the average phase are insensitive to rotations of the
birefringence axes that leave unchanged the modulus of the
birefringence eigenvalues, so that fiber twist, unlike strain,
does not modify the polarization-averaged wavevector and
phase. When the fiber is twisted by an angle α around its
axis, the first-order change in birefringence is given by

∆β⃗ = 2α ê3 × β⃗ . (37)

Notice that ê3 and β⃗ are orthogonal so that ∆β⃗ belongs to the
(ê1, ê2) plane of Stokes space and ∆β = 2 |α|β .

In both cases of strain and twist, the magnitude of the bire-
fringence perturbation is proportional to the pre-existing static
birefringence. This characteristic enables the establishment of
a correlation between a fiber’s sensitivity to external perturba-
tions and the fiber’s polarization mode dispersion, a correla-
tion we will elaborate on in Section V.

IV. PHASE-BASED SENSING

Phase sensing relies on measuring the perturbation to the
phase of an optical field propagating along an optical fiber due
to strain induced by coupling with the surrounding environ-
ment. In the previous section, it was demonstrated that strain
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causes a local alteration in the polarization-averaged wavevec-
tor, as described by Eq. (33). Consequently, this modifica-
tion affects the polarization-averaged phase accumulated over
a distance z adding to Eq. (24) the term

∆ϕ(z, t) =
∫ z

0
∆β (z′, t)dz′, (38)

which is equal to, using Eq. (33)

∆ϕ(z, t) =
2π

λ
n0

∫ z

0
ξ ε(z′, t)dz′. (39)

The primary noise source that limits the sensitivity of phase
measurements is the phase noise of the laser probe. In the fol-
lowing, we examine the limitations that phase noise imposes
on the sensitivity of phase measurements. Consider a laser
with quantum-limited white frequency noise. Accurate detec-
tion of the phase deviation occurring over the time T

∆ϕsig(T ) = ∆ϕ(z, t +T )−∆ϕ(z, t), (40)

requires that |∆ϕsig(T )| ≫ ∆ϕrms, where ∆ϕrms is the root-
mean square of the phase deviation due to the laser phase
noise. The phase fluctuations of a quantum limited laser
are described by a Wiener process with diffusion constant
Dϕ = 2πν , where ν is the laser linewidth. After a time T the
root-mean square phase deviations originating from the laser
phase noise are therefore

∆ϕrms(T ) = ⟨∆ϕ
2
ν (T )⟩1/2 =

√
Dϕ T . (41)

The condition |∆ϕsig(T )| ≫ ∆ϕrms becomes

|∆ϕsig(T )| ≫
√

Dϕ T . (42)

If the rate of variation of the phase is ϕ̇ , then ∆ϕsig(T ) = ϕ̇T
and Eq. (42), after using the expression for Dϕ in terms of the
linewidth, becomes

|ϕ̇|T ≫
√

2πνT , (43)

that is

ν ≪ ϕ̇2T
2π

. (44)

A longer sampling time effectively averages the effects of
laser phase noise, thereby reducing the requirements on the
linewidth. However, the 2π periodicity of the phase imposes
that |∆ϕsig| = |ϕ̇|T ≤ 2π . Using for T its maximum value
2π/|ϕ̇|, we obtain the somehow expected result

ν ≪ |ϕ̇|. (45)

This condition was met in the earthquake detection cases pre-
sented in ref. 2, wherein the earthquakes induced a phase dy-
namics covering intervals on the order of thousands of radians
over a timescale of tens of seconds, and the laser employed
had sub-hertz equivalent linewidth. It is questionable whether
the detection of processes with much weaker dynamics that
occur over the same timescale or longer, like those associated

with tsunami’s propagation, would be possible even utilizing
lasers with similar ultra-low linewidth.

Let us now consider a different scenario, namely that
the process is characterized by a bandwidth 1/(2T ) and is
recorded for a duration sufficient to utilize the short-time
Fourier transform for its analysis.11 Let ϕ0(t) be the phase cor-
rupted by the laser phase noise. The instantaneous frequency
perturbed by the frequency noise of the laser has the expres-
sion

dϕ0(t)
dt

= N0(t)+
dϕ(t)

dt
, (46)

and where N0(t) is the frequency noise of a quantum limited
laser with linewidth ν , namely a white noise term with corre-
lation function

⟨N0(t)N0(t ′)⟩= Dϕ δ (t − t ′). (47)

Let us assume that the signal spectrum is entirely contained
within a bandwidth 1/(2T ). Complete signal reconstruction
can be accomplished by sampling the signal at intervals of T .
Let n ≫ 1 be the number of samples, so that the overall detec-
tion window is nT . Optimal signal reconstruction is achieved
by convolution of the signal plus noise with the matched filter

F(t) = (1/T )sinc(t/T ), (48)

where sinc(x) = sin(πx)/(πx). After filtering, Eq. (47) be-
comes

dϕ0(t)
dt

= N(t)+
dϕ(t)

dt
, (49)

where

N(t) =
∫

∞

−∞

F(t − t ′)N0(t ′)dt ′, (50)

while the second term at right-hand side of Eq. (49), its spec-
trum being entirely contained within the filter bandwidth, re-
mains unaltered by filtering. Let us define the spectra

Ñ(Ωk) =
1
n

n−1

∑
h=0

N(hT )exp(iΩkhT ) , (51)

ϕ̃(Ωk) =
1
n

n−1

∑
h=0

ϕ(hT )exp(iΩkhT ) , (52)

and likewise, the spectrum of ϕ0(t). Here, the angular fre-
quencies have the discrete values (assuming n even)

Ωk =
2πk
nT

, k =−n/2+1, . . . ,n/2. (53)

We employed a normalization factor 1/n in the Fourier trans-
form definition to ensure that the spectral amplitude ϕ̃(Ωk) of
a pure sinusoidal modulation at frequency Ωk is independent
of the number of samples n. Fourier transforming both sides
of Eq. (49) yields

iΩkϕ̃0(Ωk) = Ñ(Ωk)+ iΩkϕ̃(Ωk). (54)
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Using Eq. (47) into Eq. (50), we obtain

⟨N(hT )N(kT )⟩= 2πν

T
δh,k. (55)

Taking the square of Eq. (51), averaging and using Eq. (55)
yields

⟨Ñ∗(Ωh)Ñ(Ωk)⟩=
2πν

nT
δh,k. (56)

A faithful detection of the phase modulation at angular fre-
quency Ωk requires that the signal in Eq. (54) is much larger
than the noise,

⟨|Ñ(Ωk)|2⟩ ≪ |Ωk|2|ϕ̃(Ωk)|2. (57)

By using Eq. (56) for h = k into Eq. (57), solving for ν and
defining Twin = nT as the amplitude of the time window of the
Fourier transform and fk = Ωk/(2π) as the frequency in hertz,
Eq. (57) yields

ν ≪ 2π| fk|2|ϕ̃(2π fk)|2Twin. (58)

This equation gains clarity when we define Tk = 1/ fk as the
period of the spectral component with frequency fk, becoming

ν ≪ 2π| fk||ϕ̃(2π fk)|2
Twin

Tk
. (59)

The conditions stated by Eqs. (58) and (59) are independent
of the sampling time T and the number of samples n (pro-
vided that n ≫ 1). Specifically, Eq. (59) illustrates that the
maximum tolerable linewidth is directly proportional to the
modulation frequency, the amplitude square of the phase mod-
ulation and the ratio Twin/Tk, which is the number of tempo-
ral periods contained within the time window of the Fourier
transform Twin = nT . Therefore, widening the time window of
the short-time Fourier transform Twin can alleviate the require-
ments on the laser linewidth compared to the detection of tran-
sient phase deviations discussed earlier in this section. How-
ever, this can only be achieved by sacrificing temporal resolu-
tion, which is determined by the amplitude of the time window
Twin. Consequently, the necessity of using ultra-stable lasers
for detecting low intensity sub-hertz signals persists even with
approaches based on the short-time Fourier transform.

The independence of Eqs. (58) and (59) on the sampling
time T and the number of samples n suggests that these equa-
tions are also valid in the continuous limit where n tends to
infinity and T to zero, with their product Twin = nT finite. The
derivation of Eqs. (58) and (59) in the continuous case is pre-
sented in appendix A.

V. POLARIZATION-BASED SENSING

Now, let us explore the potential of the use of polarization
for sensing. The prominent advantage of polarization com-
pared to phase is that polarization is unaffected by laser phase
noise. This characteristic makes polarization the preferred
choice for detecting environmental processes with very low

frequencies. Let us now analyze how polarization can be used
for sensing with the help of the theory established in the pre-
vious sections.

The solution of (27) is the concatenation of infinitesimal ro-
tations around the axes β⃗ (z)dz. For sensing, we are interested
into the change of the state of polarization induced by small
time-dependent changes ∆β⃗ (z, t) of β⃗

dU(z, t)
dz

=
i
2
[β⃗ (z)+∆β⃗ (z, t)] · σ⃗ U(z, t). (60)

Let us now use an approach is similar to the interaction picture
in quantum mechanics, separating the “free” static evolution
from the “interaction” time-dependent part.10 To this purpose,
let us represent U(z, t) as the concatenation of two unitary ma-
trices

U(z, t) = U0(z)U1(z, t). (61)

The matrix U(z, t) is solution of Eq. (60) if U0(z, t) and
U1(z, t) satisfy the equations

dU0(z)
dz

=
i
2

β⃗ (z) · σ⃗ U0(z), (62)

dU1(z, t)
dz

=
i
2

{
U−1

0 (z)
[
∆β⃗ (z, t) · σ⃗

]
U0(z)

}
U1(z, t). (63)

Equation (63) is equivalent to

dU1(z, t)
dz

=
i
2

{[
R−1

0 (z)∆β⃗ (z, t)
]
· σ⃗
}

U1(z, t), (64)

where R0(z) is the rotation operator in Stokes space corre-
sponding to the unitary operator U0(z) in Jones space by the
relation R0(z)σ⃗ = U−1

0 (z)σ⃗U0(z). By doing so, we employ
a frame that rotates with the static birefringence β⃗ (z), effec-
tively eliminating the static, z-dependent rotations induced by
β⃗ (z).12 In this reference frame, the state of polarization be-
comes in terms of the original one s⃗′ = R−1

0 (z)⃗s, and the evo-
lution of the polarization vector s⃗′ is described by the equation

d⃗s′

dz
= ∆β⃗

′(z, t)× s⃗′, (65)

where

∆β⃗
′(z, t) = R−1

0 (z)∆β⃗ (z, t). (66)

This equation shows that when perturbations are absent and
therefore ∆β⃗ ′(z, t)≡ 0, we have d⃗s′/dz ≡ 0 and hence s⃗′ ≡ s⃗0,
where s⃗0 is the input Stokes vector (which is identical in the
rotating frame and in the original frame). If the fluctuations
of the birefringence are sufficiently small such that their im-
pact on s⃗′ is linear – a prerequisite for ensuring linearity of
the sensing mechanism – a perturbative approach can be ap-
plied around the unperturbed solution s⃗′ = s⃗0. This involves
setting s⃗(z, t) = s⃗0 + ∆⃗s(z, t) with ∆⃗s(z, t) of the same order of
∆β⃗ ′(z, t), leading to

d∆⃗s′

dz
= ∆β⃗

′(z, t)× s⃗0. (67)
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Integration of the above gives

∆⃗s′(z, t) =
∫ z

0
∆β⃗

′(z′, t)dz′× s⃗0, (68)

where ∆⃗s′(z, t) = s⃗′(z, t)− s⃗0 is the deviation of the rotated
state of polarization from the static position.

Let us now use the general relations that we have just de-
rived first considering the case in which the perturbation is
caused by strain. In this case we have

∆⃗s′(z, t) = ξ

∫ z

0
ε(z′, t)β⃗ ′

⊥(z
′)dz′, (69)

where we have defined ∆β⃗ ′
⊥(z) = ∆β⃗ ′(z, t)× s⃗0, the compo-

nent of ∆β⃗ ′(z, t) perpendicular to s⃗0 and rotated around s⃗0 by
90◦. Similarly to phase deviations, the deviation of the state
of polarization from its steady-state value is proportional to
ε(z′, t), ensuring the linearity of the sensing probe. However,
the behavior differs when it comes to signal accumulation.
Unlike the deterministic nature of the polarization averaged
birefringence vector, which is uniform in space in the absence
of perturbations, in standard single mode fibers, the preex-
isting birefringence varies randomly over a scale of tens of
meters. Fortunately, however, a simplification arises from the
fact that external perturbations generally occur on orders of
magnitude larger scales, making it appropriate to perform sta-
tistical averaging over the short-scale variation of the birefrin-
gence. As we will demonstrate below, this results in the accu-
mulation of the deviation of the state of polarization along the
fiber being incoherent, contrasting with the coherent accumu-
lation of phase deviations.

A realistic birefringence correlation function is

⟨β⃗ (z) · β⃗ (z′)⟩= ⟨β 2⟩exp(−|z− z′|/Lf), (70)

where Lf, the birefringence correlation length, is of the order
of meters.13 Assuming that the scale of variation of the ex-
ternal perturbation is much longer, it is appropriate to replace
right hand side of the above with a Dirac delta function of
equal area

⟨β⃗ (z) · β⃗ (z′)⟩= 2Lf⟨β 2⟩δ (z− z′). (71)

The fiber birefringence β⃗ (z) represents linear birefringence
and therefore belongs to the equatorial plane of the Stokes
space. Conversely, in the rotated reference frame the rotated
birefringence β⃗ ′(z) = R−1

0 (z)β⃗ (z) is instead isotropically dis-
tributed because R−1

0 (z) it is the concatenation of rotations
with axes β⃗ (z) that vary over a length scale of few meters, so
that its components are uncorrelated to each other and each
one has a variance one third of the total. Consequently we
have

⟨β⃗ ′
⊥(z) · β⃗ ′

⊥(z
′)⟩= 2

3
⟨β⃗ (z) · β⃗ (z′)⟩. (72)

Using now Eq. (69) we obtain

⟨∆⃗s(z, t) · ∆⃗s(z, t ′)⟩= 4
3
⟨β 2⟩Lfξ

2
∫ z

0
ε(z, t)ε(z, t ′)dz′. (73)

The contribution of a fiber section to the fluctuations of the
polarization are proportional to the strength of the local static
birefringence, which is a quantity well characterized in opti-
cal fibers because the fiber’s polarization mode dispersion de-
pends on it. The fiber polarization mode dispersion is related
to ⟨β 2⟩Lf by

⟨τ2⟩= 1
ω2

0
2Lf⟨β 2⟩z, (74)

with ⟨τ⟩2 = 8⟨τ2⟩/(3π) the mean polarization mode disper-
sion square.13 If we define as κ2 = ⟨τ⟩2/z the averaged square
polarization mode dispersion of the fiber in ps/

√
km, we may

eliminate 2Lf⟨β 2⟩ in the correlation functions by using

2Lf⟨β 2⟩=
3πω2

0 κ2

8
. (75)

After using ω0 = 2πc/λ , we obtain

⟨∆⃗s(z, t) · ∆⃗s(z, t ′)⟩= π

4

(
2πc
λ

)2

κ
2
ξ

2
∫ z

0
ε(z, t)ε(z, t ′)dz′,

(76)
Let us now analyze twist. Combining Eqs. (37), (66) and

(68), yields

∆⃗s′(z, t) =
∫ z

0
2α(z′, t)R−1

0 (z′)
[
ê3 × β⃗ (z′)

]
dz′× s⃗0. (77)

The outcome of ê3 × β⃗ (z) yields a vector with the same mag-
nitude as β⃗ (z) but rotated by 90◦ in the equatorial plane.
Considering that β⃗ (z) lies within the equatorial plane and is
distributed isotropically, the result of this rotation is statis-
tically equivalent to β⃗ (z). Consequently, we can substitute
R−1

0 (z′)[ê3 × β⃗ (z′)] with β⃗ ′(z) and proceed along the same
route of the analysis for strain. The final result is

⟨∆⃗s(z, t) · ∆⃗s(z, t ′)⟩= 4
3
⟨β 2⟩Lf

∫ z

0
4α(z′, t)α(z′, t ′)dz′, (78)

and, using Eq. (75)

⟨∆⃗s(z, t) · ∆⃗s(z, t ′)⟩= π

4

(
2πc
λ

)2

κ
2
∫ z

0
4α(z′, t)α(z′, t ′)dz′.

(79)
As discussed in ref. 4, strain is most likely the predominant
source of perturbation in submarine systems employing jelly-
filled cables, while twist has a dominant role in aerial cables
exposed to wind.14

It is important to note that, in both cases of strain and twist,
the temporal correlation functions of the deviations of the state
of polarization are proportional to the temporal correlation
functions of the perturbations, integrated over the entire link
length. This property insures that the spectrum of the fluc-
tuations of the state of polarization faithfully reproduces the
spectrum of the integrated strain and twist. Additionally, in
both cases, the sensitivity is proportional to the polarization
mode dispersion coefficient of the fiber.
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With polarization, the spectra are obtained in terms of en-
semble averages. It is well established15 that polarization fluc-
tuations exhibit ergodic behavior in frequency, meaning that
ensemble averages can be effectively replaced by averages
over frequency, if taken over a bandwidth containing a suf-
ficient number of principal state of polarization bandwidths.
In this particular scenario, however, measurement data over
a sufficiently large frequency span are not easily accessible,
but fortunately, they are also unnecessary. This is because the
length scale of the environmental perturbations, of the order
of tens of kilometers, is much greater than the length scale of
the spatial variations of the birefringence, of the order of tens
of meters. Consequently, significant self averaging of the bire-
fringence fluctuations occurs over the length scale of the envi-
ronmental perturbations. This issue will be further discussed
and the effectiveness of self averaging validated against ex-
perimental data in Sec. IX, where we analyze a few cases of
earthquakes and sea swell detection.

VI. COMPARISON BETWEEN PHASE AND
POLARIZATION ACCUMULATION

Let us now compare the signal accumulation between po-
larization and phase deviations, limiting ourselves to the case
in which the perturbation is due to strain because twist is un-
coupled to phase. If we compare Eq. (76) and that obtained
from Eq. (39)

∆ϕ(z, t)∆ϕ(z, t ′) =

(
2π

λ

)2

n2
0ξ

2

∫ z

0

∫ z

0
ε(z′, t)ε(z′′, t ′)dz′dz′′, (80)

we notice that, although both ⟨∆⃗s(z, t) · ∆⃗s(z, t ′)⟩ and
∆ϕ(z, t)∆ϕ(z, t ′) are proportional to the temporal correlation
function of the strain, the accumulation of the strain contri-
butions along the fiber is different in the two cases. For po-
larization, sections with positive and negative strain give the
same contribution to signal strength, because ⟨|∆⃗s(z, t)|2⟩ de-
pends only on ε(z, t)2. On the contrary, Eq. (39) reveals that
sections subjected to positive strain yield a positive contribu-
tion to the phase deviations, while sections experiencing neg-
ative strain contribute negatively, thus partially offsetting each
other’s effects.

To get an order of magnitude estimate of the effect that
averaging produces on phase measurements, let us assume a
seismic wave of wavelength Λ whose amplitude is modulated
by the envelope ε0(z, t), namely ε(z, t) = sin(2πz/Λ)ε0(z, t).
With this assumption, Eq. (39) becomes

∆ϕ(z, t) =
2π

λ
n0

∫ z

0
ξ cos(2πz/Λ)ε0(z′, t)dz′, (81)

that is

∆ϕ(z, t) =
2π

λ
n0 ξ ε̃0(2π/Λ, t), (82)

where

ε̃0(K, t) =
1
2

Re
[∫

∞

−∞

exp(−iKz)ε0(z′, t)dz′
]
, (83)

is the spatial Fourier transform of the strain perturbation
(which we assume zero outside the fiber length) calculated
at the spatial wavevector K = 2πz/Λ. Assuming for the en-
velope of the perturbation ε0(z′, t) a Gaussian distribution of
root mean square L0 entirely contained into the fiber length

ε0(z, t) = ε0 exp
(
− z2

2L2
0

)
, (84)

we obtain

ε̃0(K, t) =

√
2π

2
L0ε0 exp

(
−

2π2L2
0

Λ2

)
. (85)

The wavelength of seismic waves Λ0 is of the order of 100 km,
but if we assume a plane seismic wave incident on the local
direction of the cable with an angle ϑ , the spatial periodicity
is Λ = Λ0/cosϑ , so it is in general larger than Λ0 and equal
only if the wavevector of the seismic wave is parallel to the
direction of the cable. With this simplified assumption we
obtain

∆ϕ(z, t) =
2π

λ
n0 ξ

√
2π

2
L0ε0 exp

(
−cos2

ϑ
2π2L2

0

Λ2
0

)
. (86)

Notice the dependence on cos2 ϑ at the exponent, suggesting
a larger sensitivity for seismic wave approximately orthog-
onal to the cable, consistent with experimental observations
detailed in ref. 16. For comparison, with polarization

⟨|∆⃗s(z, t)|2⟩1/2 =

√
π

2
2πc
λ

κξ

[∫ z

0
ε(z, t)2 dz′

]1/2

, (87)

that is, with the Gaussian assumption and assuming Λ ≪ L0
so that we may replace the cosine square with its average one
half,

⟨|∆⃗s(z, t)|2⟩1/2 =

√
π

2
2πc
λ

κξ ε0

(√
2πL0

4

)1/2

. (88)

Comparing the two signals, we have

∆ϕ(z, t) =

(
32
π

)1/4 n0
√

L0

κ c
exp
(
−cos2

ϑ
2π2L2

0

Λ2
0

)
⟨|∆⃗s(z, t)|2⟩1/2. (89)

Introducing the full-width at half maximum of a Gaussian
Lf = 2

√
2ln(2)L0

∆ϕ(z, t) = 4
(

ln2
π

)1/4 n0
√

Lf

κ c
exp
(
−cos2

ϑ
π2 L2

f

4Λ2
0 ln2

)
⟨|∆⃗s(z, t)|2⟩1/2. (90)
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Assuming κ = 0.03 ps/
√

km and n0 = 1.5, we obtain for Lf =
2Λ0/cosϑ and L f = 400 km, ∆ϕ(z, t) ≃ 6000⟨|∆⃗s(z, t)|2⟩1/2

rad. When the ratio Lf/(Λ/cosϑ) becomes larger, the effi-
ciency of the phase modulation drops very rapidly as a conse-
quence of the Gaussian profile and the fact that we assumed Λ

as a constant, so that the expression may become meaningless
in this limit.

The root mean square deviations of the signal polarization
being much smaller than the amplitude of the phase deviations
ensures that the polarization deviations fall within the linear
range even for very large external perturbations, like those ap-
plied by earthquakes of high magnitudes, as we will show in
section IX.

VII. THE JONES MATRIX IN THE ROTATING FRAME

In the rotating frame in which the static birefringence is
removed, the Jones matrix can be represented, similarly to Eq.
(22), as

U1(t) = exp
[

i
2

∆ϕ⃗
′(t) · σ⃗

]
. (91)

In the same frame, the output Stokes vector is

s⃗′(t) = ⟨⃗s0|U†
1(t) σ⃗ U1(t)|⃗s0⟩= exp

[
∆ϕ⃗

′(t)×
]

s⃗0. (92)

Being in the cases of interest for sensing |∆ϕ⃗ ′(t)| ≪ π , be-
cause otherwise the probe does not depend linearly on the per-
turbations, we may expand the exponential in the last member
of Eq. (92) to first order obtaining for ∆⃗s(t) = s⃗(t)− s⃗0

∆⃗s′(t) = ∆ϕ⃗(t)× s⃗0. (93)

If we use the expression of ∆⃗s′(t) given by Eq. (68) we get17

∆ϕ⃗(t) =
∫ z

0
∆β⃗

′(z′, t)dz′. (94)

Comparison of Eqs. (91) with Eq. (93) reveals that the de-
tection of the fluctuations of the output polarization from the
average value, ∆⃗s′(t), with a fixed input enables the character-
ization of the fluctuations of two out of the three parameters
that identify the Jones matrix of the link, the two components
of ∆ϕ⃗(t) orthogonal to s⃗0.17

The three components of ∆ϕ⃗(t) and hence a complete char-
acterization of the fluctuations of the rotation vector can be
obtained from U1(t) with the following procedure. A coherent
receiver reconstructs the Jones matrix in the original frame,
U(t). Using Eq. (61), we find that U1(t) is related to U(t) by
the following equation

U1(t) = U−1
0 U(t). (95)

In practical terms, the Jones matrix in the rotating frame can
be extracted by left-multiplying the Jones matrix directly ob-
tained from the receiver, U(t), by the inverse of the “static”
Jones matrix, U0.17 The latter is obtained by averaging the
Jones matrix U(t) over a sufficiently long time window. The

duration of the averaging time window sets the lower limit on
the bandwidth of ∆ϕ⃗(t). Once U1(t) is extracted, we obtain

∆ϕ⃗(t) = trace{−i log [U1(t)] σ⃗} . (96)

Whether the polarization state corresponding to a fixed input
is measured, or the Jones matrix is reconstructed from the re-
ceiver, to achieve a linear dependency of the measured quan-
tity on the applied strain both approaches require employing
of a frame that rotates with the static birefringence, and both
approaches yield identical results. When utilizing a fixed po-
larization at the input, as done in refs. 3 and 4, one extracts the
two components of

∫ z
0 dz′∆β⃗ ′(z′, t) orthogonal to the input po-

larization s⃗0.17 Conversely, knowledge of the full Jones matrix
provides access to all three components of

∫ z
0 dz′∆β⃗ ′(z′, t).

VIII. LOCALIZATION WITH POLARIZATION

The integral in ∆ϕ⃗(t) can be readily obtained in transmis-
sion experiments4,17. However, in such experiments, only the
perturbation accumulated over the entire link can be extracted.
Below, we outline a procedure demonstrating that in experi-
ments utilizing time-resolved backscattering, such as in dis-
tributed acoustic sensing, or in experiments employing high-
loss loopbacks as in ref. 18–21, it is possible to extract one of
the three components of ∆ϕ⃗(t) specific to a section located at
any position along the link.

Assume that Uf is the Jones matrix that describes the evo-
lution of the polarization of a single mode fiber up to a given
distance z and ∆U the unitary matrix describing the evolution
in a section that goes from z to z+∆z along the same fiber,
which we will refer to as the section of interest in the follow-
ing. Then, the backscattered field is either rerouted through
a different fiber with Jones matrix Ub or transmitted back
through the same fiber, in which case Ub = Uf. The Jones
matrix Urt(1) describing the round-trip propagation from 0 to
z and back, and the Jones matrix Urt(2) describing the round-
trip propagation from 0 to z+∆z and back, are22

Urt(1) = UT
b Uf, (97)

Urt(2) = UT
b
(
∆UT

∆U
)

Uf, (98)

where the superscript T stands for transpose. Our aim is to
characterize the unitary matrix

∆Urt = ∆UT
∆U, (99)

from a measurement of Urt(1) and Urt(2). Left multiplying by
U−1

rt (1) both sides of the above, we obtain

Umeas = U−1
f ∆Urt Uf, (100)

where we have defined the unitary matrix

Umeas = Urt(1)−1Urt(2). (101)
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From now on, we will assume that Umeas has been character-
ized experimentally and is known. Let us now define

Umeas = exp(iϕ⃗meas/2 · σ⃗) , (102)

Uf = exp(iϕ⃗f/2 · σ⃗) , (103)

and

∆Urt = exp [(∆ϕ⃗0 +∆ϕ⃗1)/2 · σ⃗) , (104)

where ∆ϕ⃗0 is the contribution of the static birefringence in the
section of interest and ∆ϕ⃗1 of the perturbation. Entering the
above definitions into Eq. (100) we obtain

ϕ⃗meas = exp(−ϕ⃗f×)(∆ϕ⃗0 +∆ϕ⃗1). (105)

The vector ϕ⃗meas can be extracted from the measurement data
using

ϕ⃗meas = trace [−i log(Umeas)σ⃗ ] . (106)

Taking the modulus square of both terms of (105) yields

|ϕ⃗meas|2 = |∆ϕ⃗0 +∆ϕ⃗1|2 = |∆ϕ⃗0|2 + |∆ϕ⃗1|2 +2∆ϕ⃗0 ·∆ϕ⃗1.
(107)

In this equation ∆ϕ⃗0 is time independent whereas ∆ϕ⃗1 is time-
dependent. The technique used in ref. 20 and 21 was based
on the analysis of the temporal modulation of |ϕ⃗meas|2 or its
square root. In both cases, this approach fails to return the
spectrum of the perturbation because the term |∆ϕ⃗1|2 is non-
linear in the perturbation and is generally not negligible com-
pared to the linear term ∆ϕ⃗0 ·∆ϕ⃗1. This is because, although
the birefringence is much larger than its fluctuations, being
∆ϕ0 ≤ π for the periodicity of rotations, the vectors ∆ϕ⃗0 and
∆ϕ⃗1 have comparable magnitudes. Consequently, the tempo-
ral variations of the length of the rotation vector are gener-
ally not proportional to any of the components of ∆ϕ⃗1, which
are the quantities of interest because related to the fiber strain
in the section of interest. However, we will show in the re-
mainder of this section that further manipulations of the above
equations enable the establishment of a procedure for extract-
ing one of the three components of ∆ϕ⃗1.

If we insert into Eq. (100) the decomposition Uf =U0,fU1,f,
where U0,f is the static contribution and U1,f the contribution
of the perturbations of the forward propagation, Eq. (100)
becomes

Umeas = U−1
1,f ∆U′

rtU1,f, (108)

where

∆U′
rt = U−1

0,f ∆Urt U0,f (109)

is the Jones matrix of the rountrip propagation through the
section under test rotated by the static birefringence of the
forward propagation. Let us define, using the prime for the
quantities rotated by the static birefringence,

∆U′
rt = exp

[
i(∆ϕ⃗

′
0 +∆ϕ⃗

′
1)/2 · σ⃗

]
, (110)

where ∆ϕ⃗ ′
0 is the contribution of the static birefringence in the

section under test and ∆ϕ⃗ ′
1 of the perturbations, rotated by the

static birefringence of the forward propagation, and represent
U1,f as

U1,f = exp
(
iϕ⃗ ′

1,f/2 · σ⃗
)
. (111)

If we now use Eq. (108), we may express the matrix Umeas as9

Umeas = exp
[
iR1,f(∆ϕ⃗

′
0 +∆ϕ⃗

′
1)/2 · σ⃗

]
, (112)

where

R1,f = exp(−ϕ⃗1,f×)≃ 1− ϕ⃗1,f× (113)

where we used that ϕ⃗1,f ≪ π because it is produced by the
small perturbations in the forward propagation. Comparing
Eq. (102) with Eq. (112) we obtain

ϕ⃗meas = ∆ϕ⃗
′
0 +∆ϕ⃗

′
1 − ϕ⃗1,f ×∆ϕ⃗

′
0 − ϕ⃗1,f ×∆ϕ⃗

′
1. (114)

The terms ∆ϕ⃗ ′
1 and ϕ⃗1,f are small time-dependent perturba-

tions in the section of interest and in the forward propagation.
If we average them over a sufficiently long time interval these
terms vanish, so that we have

E(ϕ⃗meas) = ∆ϕ⃗
′
0. (115)

If we now define

∆ϕ⃗meas = ϕ⃗meas −E(ϕ⃗meas) , (116)

we have

∆ϕ⃗meas = ∆ϕ⃗
′
1 − ϕ⃗1,f ×∆ϕ⃗

′
0 − ϕ⃗1,f ×∆ϕ⃗

′
1. (117)

Being the term ϕ⃗ ′
1,f ×∆ϕ⃗ ′

1 the product of perturbation terms
which we may assume much smaller than one, it can be ne-
glected with respect to linear terms, so that the equation above,
solved for ∆ϕ⃗ ′

1, gives

∆ϕ⃗
′
1 ≃ ∆ϕ⃗meas − ϕ⃗

′
1,f ×∆ϕ⃗

′
0. (118)

In Eq. (118), ∆ϕ⃗ ′
0 is the known, time independent, rotation

vector given by Eq. (115), accounting for the effect of the
static birefringence in the round-trip through the section un-
der test, ϕ⃗ ′

1,f is the (unknown) time-dependent result of the
birefringence perturbations in the forward propagation up to
z, and

∆ϕ⃗
′
1 =

∫ z+∆z

z
∆β⃗

′
f (z

′, t)dz′+
∫ z

z+∆z
∆β⃗

′
b(z

′, t)dz′ (119)

is the time-dependent birefrigence accumulated over the
roudtrip from z to z+∆z rotated by the static birefringence
of the forward propagation up to z.

Equation (118) states that the three components of ∆ϕ⃗ ′
1 are

equal to the known vector ∆ϕ⃗meas corrupted by an extra term
involving the unknown time-dependent vector ϕ⃗ ′

1,f. One of
the three components of ∆ϕ⃗ ′

1 is however unaffected by the ex-
tra term. Specifically, if we project ∆ϕ⃗meas over the direction
parallel to ê0 = ∆ϕ⃗ ′

0/∆ϕ ′
0, we obtain

∆ϕ⃗
′
1 · ê0 = ∆ϕ⃗meas · ê0. (120)
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Projection over the direction of ∆ϕ⃗ ′
0 allows the separation of

the time-dependent fluctuations of the polarization caused by
the birefringence perturbations in the section of interest from
those originating from the light propagation before the sec-
tion of interest. Although only a single component of the
integrated birefringence fluctuations can be extracted by this
procedure, this is sufficient to derive the strain perturbation
spectrum due to the isotropic nature of ∆ϕ⃗ ′

1. The isotropy of
the polarization fluctuations will be corroborated through the
analysis of experimental data in the following section.

As a final comment, we notice that the procedure that we
have just described is equivalent to subtract the steady state
value of the rotation matrix by a procedure similar to that
described and experimentally validated in ref. 17. That ap-
proach, in turn, was equivalent to the rotation used in ref. 4
to align the average of the output polarization with the north
pole of the Poincaré sphere. This alignment was crucial for
establishing a correspondence between the spectrum of polar-
ization fluctuations and the spectra of earthquakes and micro-
seisms in ref. 3.

IX. ENVIRONMENTAL SENSING USING THE STATE OF
POLARIZATION

In this section, we explore the potential of utilizing the state
of polarization as a sensing probe for detecting earthquakes
and sea swells in proximity to an optical cable. We will make
extensive use of the database of Ref. 1, demonstrating how the
analysis of the correlation between measurements obtained
from two wavelength division multiplexing channels offers
valuable insights, potentially enabling a coarse localization of
earthquake events.

Fibers embedded in loose tube gel-filled cables laid on the
seafloor experience a static pressure of about 105 Pa every 10
meters of depth. For a 4-kilometer depth (the average depth of
the Curie cable3), the pressure is approximately 400×105 Pa,
roughly 400 times atmospheric pressure. This static pressure
induces strain due to the Poisson effect. During an oceanic
earthquake, the movement of the seafloor causes the water
column above the cable to oscillate. The inertia of this wa-
ter column leads to fluctuations in the pressure acting on the
cable around its static value. Consequently, these pressure
fluctuations induce oscillations in strain, affecting both the
polarization-averaged propagation constant and the birefrin-
gence of the fiber.

We will analyze data from two channels, denominated
channel 1 and channel 2 in Ref. 1, belonging to the Curie
submarine cable system, connecting Los Angeles, California,
to Valparaiso, Chile, for a total of 10,500 km of length. In the
measurement campaign, both channels were looped back in
Valparaiso, so that the signals were transmitted and received
in Los Angeles, covering a total round-trip distance of 21,000
km. Channel 1 operated at a frequency centered at 193.5805
THz, while channel 2 operated at 193.6570 THz, resulting in
a frequency separation of ∆ f = 76.5 GHz (see the supplemen-
tary material of ref. 3 for details).

The database of ref. 1 provides the three components of the
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FIG. 1. Sum of the spectrograms of the two components of ∆⃗s
orthogonal to s⃗0 of channel 1, referring to an M7.3 earthquake that
occurred in Oaxaca on June 23, 2020, at UTC time 15:29:05. The
horizontal axis represents UTC time. The left panel depicts the entire
day of the earthquake, while the right panel zooms in on a one-hour
time window around the earthquake event.

Stokes vector rotated such that the Stokes vectors averaged
over a 200 s time window coincide with the north pole of the
Poincaré sphere. From now on, we will refer to these compo-
nents as if they were those in the frame rotating with the static
fiber birefringence. Although in the field experiment the in-
put to the fiber was a fixed linear polarization,17 hence a point
on the equator of the sphere, this equivalence is justified by
the fact that the constant rotation from the fixed point on the
equator to the north pole does not impact the time-dependent
deviations from the average polarization. It should be noted,
however, that the rotation of the sphere that aligns the average
polarization to a fixed point of the sphere does not specify the
orientation of the sphere around the average point. The rotat-
ing frame is therefore undetermined for a rotation of the cloud
of polarization points around the average. This indetermina-
tion does not affect accuracy when polarization dependent loss
is negligible as assumed in our analysis, because in this case
the fluctuations of the deviations of the Stokes vector from the
average Stokes vector are isotropic.

Figure 1 displays the sum of the spectrograms of the two
components of ∆⃗s orthogonal to s⃗0 of channel 1, concerning an
M7.3 earthquake that took place in Oaxaca on June 23, 2020,
at UTC time 15:29:05. The horizontal axis represents UTC
time. The left panel illustrates the entire day of the earthquake,
while the right panel zooms in on a one-hour time window
around the earthquake occurrence.

Figure 2 illustrates the spectrograms of the two components
of the deviations of the Stokes vector separately. It is notewor-
thy that both spectrograms display similar spectral features,
despite the random nature of the birefringence acting indepen-
dently on each component. This independence is confirmed
by the observation that the magnitude of the cross-correlation
between the two components does not exceed 5%. This sim-
ilarity strongly suggests that, as we anticipated at the end of
section V, significant spatial self averaging occurs, and there-
fore the random nature of the static birefringence does not im-
pose a significant limitation on the accuracy of sensing ap-
proaches based on the analysis of the modulation of the state
of polarization at the output of a long fiber with random bire-
fringence.

Figure 3 depicts the temporal traces of the two components
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FIG. 2. Spectrograms of the two components of ∆⃗s orthogonal to s⃗0
relative to a M7.3 earthquake occurred in Oaxaca on 23 June 2020,
UTC time 15:29:05.
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FIG. 3. Temporal traces of the two components of ∆⃗s orthogonal to
s⃗0 relative to a M7.3 earthquake occurred in Oaxaca on 23 June 2020,
UTC time 15:29:05. The traces are filtered in the band 0.1 to 1.5 Hz.
The origin of the temporal axis is set to the time of the earthquake.

of ∆⃗s orthogonal to s⃗0, namely ∆s1 and ∆s2, extracted from the
receiver of channel 1 during the Oaxaca earthquake, filtered in
the band 0.1 to 1.5 Hz.

Figure 4 displays the sum of the spectrograms of the two
components of the Stokes vector orthogonal to the input po-
larization s⃗0 for channel 2, which we remind is spaced 76.5
GHz from channel 1. The spectrogram closely resembles that
of Fig. 1. Figure 5 shows the temporal traces of the two
components extracted from the same channel. A remarkable
similarity between the traces of the two components of the
Stokes vector extracted from channel 1 and channel 2 emerges
from the comparison between Fig. 3 and Fig. 5. The two
traces nearly overlap when the trace of channel 2 is delayed
by 552.35 s. The time misalignment between the two chan-
nels can be attributed to the clock of channel 2 being out of
synchronization and experiencing a slow drift, leading to lags
that could accumulate to several minutes from the UTC time
(for further details, refer to the supplementary material of Ref.
3).

It is valuable at this point to develop a quantitative frame-
work for estimating the correlations between the two wave-
length division multiplexing channels. Let us consider two
frequencies, ω1 and ω2 = ω1 +∆ω corresponding to the cen-
ter frequencies of the two wavelength division multiplexing
channels. We have shown in the previous analysis that the
process of correlating the polarization fluctuations to the spec-
trum of the perturbations involves a rotation of the Poincaré
sphere. This rotation aligns, for each channel, the average
Stokes vector with a fixed point of the Poincaré sphere, which

EQs/CH1/20200623T000000_CH2.h5

FIG. 4. Same of Fig. 1 on a channel separated by 76.5 GHz (Chan-
nel 1 is centered at 193.5805 THz and channel 2 at 193.6570 THz).
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FIG. 5. Same of Fig. 3 for the same channel of Fig. 4.

we have arbitrarily chosen as the north pole. Subsequently,
we analyze the deviations of the Stokes vector from this aver-
age. We have already pointed out that, apart from an immate-
rial time-independent rotation, this is equivalent to the use of
the fluctuations of the Stokes vectors in a frame rotating with
the static birefringence. Since the birefringence is frequency-
dependent, the rotating frame of the two channels is different.
In a frame rotating with the static birefringence at the generic
frequency ω and within a first order approximation, the fluc-
tuations of the Stokes vector at frequency ω are

∆⃗s′ω(z, t) = ξ

∫ z

0
dz′ε(z′, t)R−1

ω (z′)β⃗ (z′)× s⃗0, (121)

where we used Eqs. (68), (66) and (36), and we neglect,
as customarily done in the theory of polarization mode dis-
persion, the (weak) dependence on frequency of the birefrin-
gence, but not the effect of the frequency dependence on the
rotation operators. The correlation function of the fluctuations
of the rotated Stokes vector at the two frequencies is

⟨∆⃗s′ω2
(z, t) · ∆⃗s′ω1

(z, t)⟩ = ξ
2
∫ z

0
dz′
∫ z

0
dz′′ε(z′, t)ε(z′′, t)〈[

R−1
ω2
(z′)β⃗ (z′)× s⃗0

]
·
[
R−1

ω1
(z′′)β⃗ (z′′)× s⃗0

]〉
. (122)

The result of the average is (see appendix B for the detailed
derivation)

⟨∆⃗s′ω2
(z, t ′) · ∆⃗s′ω1

(z, t)⟩=

π

4

(
2πc
λ

)2

κ
2
∫ z

0
dz′ε(z′, t ′)ε(z′, t)F(z′), (123)
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where

F(z) = exp
(
−π∆ω2κ2z

8

)
. (124)

Expressing F(z)= exp(−z/∆Z) with ∆Z = 2/(π3∆ f 2κ2), and
using the values of the systems of ref. 1, κ = 0.03 ps/

√
km and

∆ f = 76.5 GHz, we obtain ∆Z ≃ 12,247 km. In the presence
of a localized perturbation centered at z = zp over a spatial
extension ∆z ≪ ∆Z, we may replace F(z′) with F(zp) in the
integral at right-hand side of Eq. (123), obtaining

⟨∆⃗s′ω2
(z, t ′) · ∆⃗s′ω1

(z, t)⟩ ≃

π

4

(
2πc
λ

)2

ξ
2
κ

2F(zp)
∫ z

0
dz′ε(z′, t ′)ε(z′, t), (125)

that is

⟨∆⃗s′ω2
(z, t ′) · ∆⃗s′ω1

(z, t)⟩ ≃ ⟨∆⃗s′ω(z, t
′) · ∆⃗s′ω(z, t)⟩F (zp) ,

(126)
where at right-hand side ω is either ω1 or ω2. Since the fluc-
tuations of the Stokes vector ∆⃗s are isotropic on the tangent
plane of the Poincaré sphere centered on the tip of s⃗0, the
above equations in terms of the components on a canonical
basis of the rotated Stokes space e⃗i become

⟨
[
∆⃗s′ω2

(z, t ′) · e⃗i
][

∆⃗s′ω1
(z, t) · e⃗ j

]
⟩

=
1
2
⟨∆⃗s′ω2

(z, t ′) · ∆⃗s′ω1
(z, t)⟩δi, j, i, j = 1,2, (127)

and

⟨
[
∆⃗s′ω(z, t

′) · e⃗i
][

∆⃗s′ω(z, t) · e⃗ j
]
⟩

=
1
2
⟨∆⃗s′ω(z, t

′) · ∆⃗s′ω(z, t)⟩δi, j, i, j = 1,2, (128)

with the fluctuations of the third components zero to first or-
der.

When a single localized perturbation is dominant over the
others, the cross-correlation is proportional to the autocorre-
lation of the two channels, with the scaling factor F(zp). This
is the case of earthquakes strongly coupled to the fiber. When,
on the other hand, there are multiple perturbations scattered
at different positions along the cable, the proportionality can-
not be established and cross-correlation and autocorrelations
have different shapes. For a given zp, the width of the func-
tion F(zp) is the bandwidth over which the polarization of
two channels at different frequencies decorrelates, which is re-
lated (but is not equal) to the bandwidth of the principal states
of polarization of the fiber section from the transmitter to the
position zp along the fiber.15 This bandwidth is directly pro-
portional to the inverse of the polarization mode dispersion
coefficient, κ , multiplied by the square root of the distance
from transmitter.

When a narrowband perturbation affects all channels
equally at a specific point in the fiber, it might seem some-
how obvious that the perturbation is fully correlated if the
perturbation is applied at the receiver, that is zp = z, and that
the distance for considering the decorrelation of the perturba-
tion imprinted on the channels is the distance from the point
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FIG. 6. Autocorrelation of ∆s1 for channel 1 (blue) with overlapped
cross-correlation between channel 1 and channel 2 delayed by 552.35
s, from 0 to 12 UTC time of 23 June 2020 (left panel), and from
12 to 24 UTC time of the same day, which include the time of the
earthquake (right panel).

-50 0 50
-0.2

0

0.2

0.4

0.6

0.8

1

-50 0 50
-0.2

0

0.2

0.4

0.6

0.8

1

Time lags (seconds)

N
or

m
al

iz
ed

 c
or

re
la

tio
ns

Time lags (seconds)

FIG. 7. Autocorrelation of ∆s2 for channel 1 (blue) with overlapped
cross-correlation between channel 1 and channel 2 delayed by 552.35
s, from 0 to 12 UTC time of 23 June 2020 (left panel), and from
12 to 24 UTC time of the same day, which include the time of the
earthquake (right panel). The cross-correlation is displayed with a
sign inverted (see text).

where the perturbation is applied to the receiver. It may there-
fore appear counterintuitive the result stated by Eq. (126) that
the distance affecting the depolarization is the distance of the
perturbation point from the transmitter zp. This produces the
seemingly paradoxical results that a perturbation at the cable
input produces a fully correlated polarization perturbation be-
tween distant channels. The explanation of this result stems
from the use of a frame rotating with the static birefringence
of each channel. The use of this reference frame is equiva-
lent to the application of a backpropagation that rotates back
the output polarization under the action of the static birefrin-
gence only. The output polarization of two channels does get
decorrelated proportionally to the distance of the section that
goes from the perturbation point to the receiver, but the back-
propagation from the receiver to the transmitter compensates
exactly the decorrelation that occurs in the section from the
receiver to the point where the perturbation is applied, leaving
uncompensated only the propagation from the point of pertur-
bation to the transmitter.

Let us now compare the expressions that we have just de-
rived with the data provided in ref. 1. Since the cable per-
turbation is inherently a nonstationary process, its correlation
functions do not depend on t − t ′ only. For a better visual rep-
resentation, we decided to compare autocorrelation and cross-
correlation plotting the normalized correlation of the polar-
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FIG. 8. Autocorrelation of ∆s1 for channel 1 (blue) with overlapped
cross-correlation between channel 1 and channel 2 delayed by 552.35
s, from UTC time t0−1000 s to t0+2000 s where t0 is the UTC time
of the earthquake 23 June 2020 15:29:05 plotted from −200 s to 200
s (left panel), and a zoom from −50 s to 50 s (right panel).

ization traces as a function of the time difference t − t ′, av-
eraged over a suitable time window and normalized such that
the autocorrelation for t = t ′ is one. The time window for the
average will be chosen on a case-by-case basis to highlight
specific features of the process.

Figure 6 illustrates the autocorrelation of ∆s1 for channel
1 (blue), with overlapped the cross-correlation between ∆s1
extracted from channel 1 and channel 2 delayed by 552.35 s
(red). The cross correlation was calculated spanning the time
interval from 0 to 12 UTC time of 23 June 2020 (left panel),
and the time interval, containing the time of the earthquake,
from 12 to 24 UTC time of the same day (right panel). Figure
7 depicts the same curves for ∆s2, with the cross-correlation
displayed with the sign inverted. Notably, achieving consis-
tency between the data extracted from channel 1 and channel
2 always necessitates inverting one of the components (not
always the same) of the Stokes vector of one of the two chan-
nels, that we arbitrarily chose as being channel 2. A plausible
explanation is that the transmission matrix, from which the
output polarization of channel 2 (or channel 1) is derived, is
the transpose of that pertaining to the propagation direction
of channel 1 (or channel 2). The transposition of a matrix en-
tails the inversion of the third component of the rotation vector
in Stokes space, effectively resulting in an improper rotation
of the Stokes space. The resulting change of the frame par-
ity (from right-handed to left-handed) in Stokes space implies
that after rotation, one of the two components of the fluctua-
tions of the rotated Stokes vector changes its sign.

The right panels of Figs. 6 and 7 demonstrate, in agreement
with our theoretical predictions, that in the presence of a dom-
inant localized earthquake perturbation, the autocorrelation
and the cross-correlation exhibit approximate proportionality,
whereas they manifest different shapes when the perturbations
are numerous and distributed, as in the left panels of the same
figures. However, while this proportionality becomes evident
for nonzero time lags, the value when the time lag equals zero
appears reduced compared to the expected value. This reduc-
tion may stem from either the residual presence of distributed
perturbations or a slow drift of the clock of channel 2, result-
ing in a misalignment of the polarization traces. This mis-
alignment effectively produces a dilatation of the time axis of
channel 2, thus reducing the narrow cross-correlation peak.

-50 0 50
-0.5

0

0.5

1

-200 -100 0 100 200
-0.5

0

0.5

1

Time lags (seconds)

N
or

m
al

iz
ed

 c
or

re
la

tio
ns

Time lags (seconds)

FIG. 9. Autocorrelation of ∆s2 for channel 1 (blue) with overlapped
cross-correlation between channel 1 and channel 2 delayed by 552.35
s, from UTC time t0−1000 s to t0+2000 s where t0 is the UTC time
of the earthquake on 23 June 2020, 15:29:05 plotted from −200 s to
200 s (left panel), and a zoom from −50 s to 50 s (right panel).
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FIG. 10. In blue: autocorrelations of ∆s1 (left panel), and of ∆s2
(right panel) for channel 1. In red: cross-correlations between ∆s1
obtained from channel 1 and channel 2 (left panel) and ∆s2 obtained
from channel 1 and channel 2, respectively, delayed by 552.35 s. Be-
fore processing, the signals were filtered within the frequency range
of 0.1 to 1.5 Hz, corresponding to the earthquake perturbation fre-
quency range. The time window from UTC time t0 − 1000 s to
t0 + 2000 s where t0 is the UTC time of the earthquake on 23 June
2020, 15:29:05.

Both of these effects become less pronounced if we narrow
down the time window of the cross-correlation around the
time of the earthquake. This is corroborated by the analysis
of Figs. 8 and 9, where the right panels depict the same auto-
correlations and cross-correlations as the right panels of Figs.
6 and 7, but calculated over a time window of 3000 s start-
ing from 1000 s before the UTC time of the earthquake. The
left panels represent the same correlations as the right panels,
with enlarged windows for the time lags. The rise of the cen-
tral peak is evident, along with the near overlap of the two
correlation traces at non-zero time lags.

Further confirmation of the strong correlation between the
polarization fluctuations of the two channels is evident when
the Stokes vector deviations are filtered within the frequency
range of 0.1 to 1.5 Hz, which approximately corresponds to
the earthquake perturbation frequency range. This is shown
in Fig. 10, which in the left panel illustrates in blue the au-
tocorrelations of ∆s1, while in the right panel the autocorrela-
tions of ∆s2, both for channel 1. Overlaid in red are the cross-
correlations between ∆s1 and ∆s2, respectively, obtained from
the two channels, delayed by 552.35 s. Before processing,
the signals were filtered within the frequency range of 0.1 to
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FIG. 11. Sum of the cross-spectrograms of the ∆s1 and ∆s2 of
channel 1 and channel 2, relative to a M7.3 earthquake occurred in
Oaxaca on 23 June 2020, UTC time 15:29:05. Left panel shows the
entire day of the earthquake, the right panel a zoom of the hour of
the earthquake.

1.5 Hz. For the component with more pronounced dynamics,
∆s1, the autocorrelation and cross-correlation curves essen-
tially coincide. For the component exhibiting smaller ampli-
tude fluctuations (possibly because of some residual polariza-
tion dependent loss), the two curves are more distinct. This
difference might be attributed to the rotation of the sphere
aimed at aligning the average output Stokes vector with the
north pole. The rotation could have been different for the
two channels, potentially causing a slight misalignment of the
cluster of polarization points due to a small rotation around
the third axis of the Stokes vector.

Cross-spectrograms,11 which are the time-frequency repre-
sentation of the products of the short-time Fourier transforms
of the polarization traces of the two channels (or equivalently,
of the modulus of the short-time Fourier transform of the
cross-correlations), can also provide a useful visualization of
the correlations between channels. Figure 11 shows the sum
of the cross-spectrograms of ∆s1 and ∆s2 of channel 1 and
channel 2 for the entire day of the earthquake (left panel) and
its magnification in the hour of the earthquake (right panel).
The trace of channel 2 has been delayed by 552.35 s. The
strong similarity with Fig. 1, representing the sum of the spec-
trograms of ∆s1 and ∆s2 of channel 1, is self-evident. It is
also evident that the cross-spectrograms show an earthquake
signature practically unaltered from the spectrograms of Fig.
1, while the background features appear more diffuse, sug-
gesting a less localized origin. Figure 12 shows separately
the cross-spectrogram of ∆s1 (left panel) and ∆s2 (right panel)
of channel 1 and channel 2. Again, the cross-spectrograms
displayed here show features very similar to those in Fig. 2,
which presents separately the spectrograms of ∆s1 and ∆s2 of
channel 1.

Let us now examine another earthquake, namely a magni-
tude 6.8 event with its epicenter located 200 km east of the
city of Antofagasta, Chile, near the Valparaiso terminal of the
Curie cable. This earthquake occurred on June 3, 2020, at
UTC time 07:35:33. Figure 13 displays the sum of the spec-
trograms of the two components of the output Stokes vectors
orthogonal to the input Stokes vector for channel 1. The left
panel illustrates the entire day of the earthquake, while the
right panel zooms in on a one-hour time window around the
earthquake event. Compared to the Oaxaca earthquake, the
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FIG. 12. Cross-spectrograms of the ∆s1 and ∆s2 of channel 1 and
channel 2, relative to a M7.3 earthquake occurred in Oaxaca on 23
June 2020, UTC time 15:29:05.

15 15.2 15.4 15.6 15.8 16
Time (hours)

0

0.5

1

1.5

2

2.5

3

Fr
eq

ue
nc

y 
(H

z)

-30

-25

-20

-15

Po
w

er
/fr

eq
ue

nc
y 

(d
B/

H
z)

'EQs/CH1/20200603T000000_CH1.h5'

FIG. 13. Sum of the spectrograms of the two components of ∆⃗s
orthogonal to s⃗0 relative to M6.8 earthquake occurred approximately
200 km east of the city of Antofagasta, in Chile, on 3 June 2020,
UTC time 07:35:33. The abscissa reports to the UTC time. The left
panel reports the entire day of the earthquake while the right panel
the zoom of one hour time window around the earthquake time.

spectral signature of this event appears much weaker, sug-
gesting a potentially lower coupling of the cable with the sur-
rounding environment.

For this earthquake as well the database of Ref. 1 includes
state of polarization data extracted from channel 1 and 2. Fig-
ure 14 displays the autocorrelation of ∆s1 of channel 1 in blue
and the cross-correlation between ∆s1 of channel 1 and chan-
nel 2 in red. The left panel covers the time interval from 0 to
12 UTC time on June 3, 2020, an interval including the time of
the earthquake, while the right panel covers the time interval
from 12 to 24 UTC time of the same day. In both plots, ∆s1 of
channel 2 was inverted. Figure 15 shows the same quantities
for ∆s2. Notice that, differently from the state of polarization
data of channel 2 relative to the Oaxaca earhquake where, to
make the data compatible with those of channel 1, ∆s1 was left
unchanged and ∆s2 inverted, in this case ∆s1 was inverted and
∆s2 left unchanged. As we discussed previously, the change
of sign of only one of the components of the Stokes vector
of channel 2 is indicative of a change of parity. This could
potentially result from the unitary matrix used to derive the
polarization data for channel 2 being the transpose of that for
channel 1, suggesting a reversal in propagation direction.

Both Figs. 14 and 15 fail to show a clear proportional-
ity between autocorrelation and cross-correlation, because the
earthquake is not the dominant source of perturbation when
averaged over 12 hours. If we restrict the autocorrelations
and cross-correlation to a neighbour of the earthquake, we
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FIG. 14. Autocorrelation (blue) of ∆s1 of channel 1 and cross-
correlation (red) between ∆s1 of the channel 1 and channel 2, from
0 to 12 UTC time of 3 June 2020, which include the time of the
earthquake (left panel), and from 12 to 24 UTC time of the same day
(right panel). The cross-correlation is displayed with a sign inverted
(see text)
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FIG. 15. Autocorrelation of ∆s2 for channel 1 (blue) with over-
lapped cross-correlation between channel 1 and channel 2 delayed
by 519.9 s (red), from 0 to 12 UTC time of 3 June 2020, (left panel),
and from 12 to 24 UTC time of the same day (right panel).

expect this proportionality to rise up. This is confirmed by
looking at Figs. 16 and 17 which show the autocorrelations
of ∆s1 and ∆s2 for channel 1 and the cross-correlations of the
same quantities of channel 1 and 2, calculated from UTC time
t0 − 1000 s to t0 + 2000 s where t0 is the UTC time of the
earthquake, 07:35:33 of 3 June 2020. Autocorrelations and
cross-correlations have in this case a distinct similarity, as the
theory suggests.

Figure 18 shows the sum of the cross-spectrograms of ∆s1
and ∆s2 of channel 1 and channel 2, on the entire day of 3 June
2020, and one hour around UTC time 07:35:33. The trace of
channel 2 has been delayed by 519.9 s. Once again the sim-
ilarity with the autocorrelation of 13 is self evident, although
the amplitude of the cross-spectrogram appears smaller, com-
pared with the spectrogram, when compared to the similar fig-
ures for the Oxaca earthquake.

Let us delve deeper into the Oaxaca and Chile earthquakes
through the lens of the theory established earlier in this sec-
tion. Regarding the Oaxaca earthquake, the cable point closest
to the epicenter of the earthquake lies approximately 2,000
km from Los Angeles. Given the loop-back configuration
of the system, the transmitted signal encounters the earth-
quake’s perturbation twice during a round-trip. Assuming
the perturbation is small hence it affects the polarization lin-
early, we can infer that the effects of the two perturbations
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FIG. 16. Autocorrelation of ∆s1 for channel 1 (blue) with over-
lapped cross-correlation between channel 1 and channel 2 delayed
by 519.9 s (red), from UTC time t0 − 1000 s to t0 + 2000 s where
t0 is the UTC time of the earthquake, 3 June 2020 07:35:33 plotted
from −200 s to 200 s (left panel), and a zoom from −50 s to 50 s
(right panel).
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FIG. 17. Autocorrelation of ∆s2 for channel 1 (blue) with over-
lapped cross-correlation between channel 1 and channel 2 delayed
by 519.9 s (red), from UTC time t0 −1000 s to t0 +2000 s where t0
is the UTC time of the earthquake on 3 June 2020, 07:35:33 plotted
from −200 s to 200 s (left panel), and a zoom from −50 s to 50 s
(right panel).

add up. With the total length of the link from Los Ange-
les to Valparaiso being 10,500 km, when the signal encoun-
ters the earthquake for the first time, the propagation from the
transmitter is approximately zp(1) ≃ 2,000 km, resulting in
F(zp(1)) ≃ 0.85. When the signal encounters the earthquake

FIG. 18. Sum of the cross-spectrograms of ∆s1 and ∆s2 of channel
1 and channel 2, relative to M6.8 earthquake occurred approximately
200 km east of the city of Antofagasta, in Chile, on 3 June 2020,
UTC time 07:35:33. The trace of channel 2 has been delayed by
519.9 s. The abscissa reports to the UTC time. The left panel reports
the entire day of the earthquake while the right panel the zoom of one
hour time window around the earthquake time.
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for the second time, the distance traveled from the trans-
mitter is zp(2) ≃ 21,000 − 2,000 = 19,000 km, leading to
F(zp(2))≃ 0.21. Assuming equal efficiency of modulation in
both passes, the ratio between cross-correlation and autocorre-
lation would be approximately 0.5 ·0.85+0.5 ·0.21 = 0.531,
yet cross-correlation and autocorrelation displayed in Figs. 8
and 9 appear nearly identical, at least for nonzero time lags
where the effect of the clock misalignment is negligible. This
suggests that the coupling with the earthquake is likely to be
much stronger in the forward direction that in the backward.
We speculate that a possible reason could be that the polar-
ization modulation is imprinted in the fiber from Los Ange-
les to Valparaiso on a clean signal, whereas in the fiber from
Valparaiso to Los Angeles on a signal strongly depolarized
by the amplified spontaneous emission of the inline ampli-
fiers. Notice that the cable was designed for one-way opera-
tion, and hence the loop-back arrangement makes the ampli-
fied emission noise power close to the receiver in Los Angeles
approximately double the system’s nominal value. Since the
receiver can faithfully decode the signal modulation even in
the loop-back configuration, it can also detect the additional
polarization modulation imprinted by environmental pertur-
bations on a polarized optical field near the transmitter. On
the contrary, polarization modulation may be less efficient on
the return fiber because it is applied on a signal considerably
depolarized by the amplified emission noise power generated
by nearly twice the number of amplifiers specified in the sys-
tem’s design.

Concerning the Chile earthquake, we can assume that the
cable is perturbed around zp ≃ 10,000 km for both passes, re-
sulting in F(zp)≃ 0.44. Again, a significant, although smaller
than the previous case, correlation between the two traces is
expected and confirmed by the experimental traces in Figs. 16
and 17.

These observations suggest that, in principle, within a
single-pass configuration of an operational transmission sys-
tem, cross-correlation between two closely spaced channels,
whose spacing can be optimized for maximum accuracy, may
permit the localization of the position on the link where an
earthquake occurs. The optimization involves the choice of
a frequency spacing maximizing the sensitivity of F(zp) on a
zp ranging from 0 to the link span z. A good recipe may be
setting ∆z ≃ z.

To conclude the analysis, we will use the “continuous”
data provided in ref. 1 to highlight the impressive sensitiv-
ity at sub-hertz frequencies of environmental sensing achieved
through the detection of the light polarization. Furthermore,
we will experimentally confirm that the state of polarization
is primarily sensitive to variations of the hydrostatic pressure
rather than to mechanical vibrations in the environment. Envi-
ronmental vibrations are likely to be decoupled from the fiber
due to the loose-tube configuration of the cable and the pres-
ence of petroleum jelly in which the fibers are immersed.

Figures 19 and 20 (see also refs. 3 and 4) depict the sum of
the spectrograms of the two components of the Stokes vector
orthogonal to the input state of polarization, recorded from
June 1, 2022, to July 12, 2022 for channel 1 (Fig. 19) and
from June 2, 2022, to June 30, 2022 for channel 2 (Fig. 20).
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FIG. 19. Sum of the spectrograms of the two components of ∆⃗s
orthogonal to s⃗0, acquired from channel 1, between June 1, 2022, and
July 12, 2022. The abscissa represents the number of days elapsed
since June 1, 2022.

Two prominent features are observable. First, there are spec-
tral features attributed to ocean swells, which appear as dis-
persive wave structures. Remarkably, these structures are also
clearly visible in spectrograms obtained from onshore seismo-
graphs near Los Angeles.3 Notably, these structures are ex-
clusively present in the primary microseism band and lack a
corresponding second-harmonic spectral signature in the sec-
ondary microseism band. The secondary microseism is the
second-harmonic signal generated by the phase-matched ex-
citation by pressure variations on the seafloor of two nearly
counterpropagating seismic waves. The seconday microseism
is clearly visible in spectrograms from on-shore seismographs
(see Fig. 4, panels (B) and (C), of ref. 3) whereas it is ab-
sent in Figs. 19 and 20. This observation suggests that the
state of polarization is relatively insensitive to vibrations but
highly sensitive to strain induced by the direct action of pres-
sure variations caused by ocean swells.

The second spectral feature discerned from the analysis of
the spectrogram is a very distinct semidiurnal modulation at
around 20 mHz. This feature arises from the modulation of
the pressure applied to the fiber caused by ocean tides. It is re-
markable that this impressive sensitivity to ultralow frequency
perturbations was achieved through the use of a laser with a
linewidth in the hundreds of kHz range, a manifestation of the
immunity of the laser polarization from phase noise. Achiev-
ing comparable sensitivity at such low frequencies would be
challenging, if at all possible, using phase even with lasers of
ultralow linewidth.

X. CONCLUSIONS

In this paper, we initially established a theoretical frame-
work for understanding the sensing capabilities of optical
fibers. We delineated the advantages and limitations associ-
ated with utilizing polarization-averaged optical phase and the
light polarization as sensing tools, showing the distinct advan-
tage of polarization over phase to discriminate sub-hertz en-
vironmental processes. Subsequently, we proposed a scheme
capable of extracting the spectrum of perturbations affecting
the cable by detecting the state of polarization of the back-
reflected light. Exploiting the extensive dataset of ref. 1, we
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FIG. 20. Sum of the spectrograms of the two components of ∆⃗s
orthogonal to s⃗0, acquired from channel 2, between June 2, 2022, and
June 30, 2022. The abscissa represents the number of days elapsed
since June 1, 2022.

discussed two examples of earthquake detection and the detec-
tion of sea swells and ocean tides through the state of polariza-
tion reconstructed by the receiver of the Curie cable. Finally,
we gave the analytical expression of the polarization cross-
correlations between two channels at nearby frequencies and
demonstrated how the analysis of these correlations can pro-
vide valuable insights into the localization of earthquakes.

Appendix A: Continuous limit of Eqs. (58) and (59)

In this appendix, we derive the continuous limit of Eqs. (58)
and (59). After multiplying and dividing by the sampling time
T , Eqs. (51) and (52) become

Ñ(Ωk) =
1

nT

n−1

∑
h=0

N(hT )exp(iΩkhT )T, (A1)

ϕ̃(Ωk) =
1

nT

n−1

∑
h=0

ϕ(hT )exp(iΩkhT )T. (A2)

Letting T tend to zero and n to infinity while maintaining
nT = Twin finite, T becomes dt, hT in the exponents becomes a
continuous time t and the sums transform into integrals. Thus,
we arrive at the continuous limit of these expressions as

Ñ0(Ω) =
1

Twin

∫ Twin

0
exp(iΩt)N0(t)dt, (A3)

and

ϕ̃(Ω) =
1

Twin

∫ Twin

0
exp(iΩt)ϕ(t)dt. (A4)

Strictly speaking, Eq. (53) dictates that Ω takes on the discrete
values Ω = 2πk/(nT ) = 2πk/Twin, with k ∈ Z. We removed
the dependence on the integer k because we assume that Ω is
analytically continued over the entire real axis. Again, like
1/n in the discrete case, the normalization factor 1/Twin en-
sures that the peak amplitude of the Fourier transform of a si-
nusoidal modulation is independent of the time window Twin.

In the continuous limit, the laser phase noise is negligible over
the signal if

|Ñ0(Ω)|2 ≪ |Ω|2|ϕ̃(Ω)|2. (A5)

Inserting into |Ñ0(Ω)|2 the expression (A3), averaging the re-
sult and using Eq. (47) produces the equality

⟨|Ñ0(Ω)|2⟩= 2πν

Twin
. (A6)

Inserting this expression into Eq. (A5) and using the definition
f = Ω/(2π) yields

ν ≪ 2π| f |2|ϕ̃(2π f )|2Twin, (A7)

which is the continuous limit of Eq. (58). Using now the
definition f = 1/Tf , we obtain the continuous limit of Eq.
(59), namely

ν ≪ 2π| f ||ϕ̃(2π f )|2 Twin

Tf
. (A8)

Appendix B: Derivation of Eq. (123)

In this appendix, we detail the derivation of Eq. (123).
Equation (122) can be rewritten as

⟨∆⃗s′ω2
(z, t)∆⃗s′ω1

(z, t)⟩= ξ
2
∫ z

0
dz′
∫ z

0
dz′′ε(z′, t)ε(z′′, t)A(z′,z′′).

(B1)
where

A(z′,z′′) =
〈[

R−1
ω2
(z′)β⃗ (z′)× s⃗0

]
·
[
R−1

ω1
(z′′)β⃗ (z′′)× s⃗0

]〉
.

(B2)
If we define the auxiliary process β⃗0(z) = R−1

ω1
(z)β⃗ (z), Eq.

(B2) becomes

A(z′,z′′) =
〈[

R−1
∆ω

(z′)β⃗0(z′)× s⃗0

]
·
[
β⃗0(z′′)× s⃗0

]〉
, (B3)

with

R−1
∆ω

(z) = R−1
ω2
(z)Rω1(z). (B4)

Expanding the scalar product inside the integral yields

A(z′,z′′) = A1(z′,z′′)−A2(z′,z′′), (B5)

where

A1(z′,z′′) =
〈

R−1
∆ω

(z′)β⃗0(z′) · β⃗0(z′′)
〉
, (B6)

and

A2(z′,z′′) =
〈[

R−1
∆ω

(z′)β⃗0(z′) · s⃗0

][
β⃗0(z′′) · s⃗0

]〉
. (B7)

If we assume the delta function approximation for the correla-
tion function of the birefringence, Eq. (71), the same expres-
sion applies to β⃗0(z) because an isotropic rotation does not
change the statistics of the isotropic vector β⃗ (z)

⟨β⃗0(z′) · β⃗0(z′′)⟩= 2Lf⟨β 2⟩δ (z′− z′′). (B8)
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The delta function correlation permits the consideration of the
case z′ = z′′ only. As customarily done in the theory of po-
larization mode dispersion, we include the dependence of the
birefringence on frequency only in the rotation operators. If
we set β⃗ = β⃗ (ω1) as the birefringence at ω = ω1, the rotation
vector Eq. (B4) has the form

R−1
∆ω

(z)=
z′=0

∏
z′=z

exp
[
−dzβ⃗ (ω2)(z′)×

] z′=z

∏
z′=0

exp
[
dzβ⃗ (ω1)(z′)×

]
,

(B9)
where the products are ordered from right to left. Assume now
the following dependence of the birefringence on frequency

β⃗ (ω2) = β⃗ (ω1)+
β⃗ (ω1)

ω0
(ω2 −ω1), (B10)

which implies parallelism between β⃗ (ω2) and β⃗ (ω1). Sepa-
rating the inner term in the products in Eq. (B9) we obtain

R−1
∆ω

(z) =
z′=0

∏
z′=z−dz

exp
[
−dzβ⃗ (ω2)(z′)×

]
exp
[
−dzβ⃗ (ω2)(z)×

]
exp
[
dzβ⃗ (ω1)(z)×

]
z′=z−dz

∏
z′=0

exp
[
dzβ⃗ (ω1)(z′)×

]
, (B11)

which using the fact that β⃗ (ω1)(0) and β⃗ (ω2)(0) are parallel,
becomes

R−1
∆ω

(z) =
z′=0

∏
z′=z−dz

exp
[
−dzβ⃗ (ω2)(z′)×

]
exp
{
−dz

[
β⃗ (ω2)(z)− β⃗ (ω1)(z)

]
×
}

z′=z−dz

∏
z′=0

exp
[
dzβ⃗ (ω1)(z′)×

]
, (B12)

and using Eq. (B10)

R−1
∆ω

(z) =
z′=0

∏
z′=z−dz

exp
[
−dzβ⃗ (ω2)(z′)×

]
exp

[
−dz

β⃗ (ω1)

ω0
(ω2 −ω1)×

]
z′=z−dz

∏
z′=0

exp
[
dzβ⃗ (ω1)(z′)×

]
, (B13)

For the independence of the rotations, we can average the in-
ner term separately from the others. Using now the property
of Gauassian operators

⟨exp(G)⟩= exp
(

1
2
〈
G2〉) , (B14)

and the property that holds for any isotropic vector β⃗ (z′)〈{
dz
[
β⃗ (z′)/ω0

]
×
}2
〉
=−2

3

〈
|β⃗ (z′)|2∆ω2

〉
dz2

ω2
0

1, (B15)

and the equality 〈
|β⃗ (z′)|2

〉
dz2 = 2Lf⟨β 2⟩dz, (B16)

which is the limit for z′′ → z′ of Eq. (71), we obtain after
averaging the inner term

R−1
∆ω

(z) = exp
(
−2Lf⟨β 2⟩∆ω2dz

3ω2
1

)
1

z′=0

∏
z′=z−dz

exp
[
−dzβ⃗ (ω2)(z′)×

]
z′=z−dz

∏
z′=0

exp
[
dzβ⃗ (ω1)(z′)×

]
, (B17)

Iterating the procedure, we obtain

〈
R−1

∆ω
(z)
〉
= exp

(
−2Lf⟨β 2⟩∆ω2z

3ω2
1

)
1. (B18)

In Eq. (B6) β⃗0(z) differs from β⃗ (z) for a constant rotation.
Since this equation is nonzero only for z′ = z′′ and applying
a constant rotation to the two terms of a scalar product does
not affect the result, we may replace β⃗0(z′) with β⃗ (z′). Noting
now that R−1

∆ω
(z′) contains the birefringence of the fiber seg-

ments before the section z′ we may perform the average of the
rotation independently of β⃗ (z′) obtaining

A1(z′,z′′) = 2Lf⟨β 2⟩exp
(
−2Lf⟨β 2⟩∆ω2z′

3ω2
0

)
δ (z′− z′′).

(B19)
In Eq. (B7) we notice that β⃗0(z) preserves the isotropy of
β⃗ (z), and that the absolute orientation of isotropic vectors is
immaterial. Again for the property that A1(z′,z′′) is nonzero
only for z′ = z′′, β⃗0(z′) and β⃗ (z′) differ only for a constant
rotation, and hence we can replace β⃗0(z′) with β⃗ (z′). With
the same arguments used to derive Eq. (B19), we can also in
this case average the rotation operator independently of β⃗ (z′)
obtaining

A2(z′,z′′) =
1
3

2Lf⟨β 2⟩exp
(
−2Lf⟨β 2⟩∆ω2z′

3ω2
0

)
δ (z′− z′′).

(B20)
where we used that

〈[
β⃗0(z′) · s⃗0

][
β⃗0(z′) · s⃗0

]〉
= ⟨β⃗0(z′)2⟩/3

for the isotropy of β⃗0(z′). Adding the two contributions we
obtain

A(z′,z′′) =
2
3

2Lf⟨β 2⟩exp
(

2Lf⟨β 2⟩∆ω2z
3ω2

0

)
δ (z′− z′′).

(B21)
Using Eq. (75) we obtain

A(z′,z′′) =
π

4
ω

2
0 κ

2 exp
(
−πκ2∆ω2z

8

)
δ (z′− z′′). (B22)

Entering this result into Eq. (B1) we obtain Eq. (123).



Sensing with submarine optical cables 19

1Z. Zhan, “Curie Data - Zhan et al. (2021),” (2020),
https://data.caltech.edu/records/50509-xhf30.

2G. Marra, C. Clivati, R. Luckett, A. Tampellini, J. Kronjäger, L. Wright,
A. Mura, F. Levi, S. Robinson, A. Xuereb, B. Baptie, and
D. Calonico, “Ultrastable laser interferometry for earthquake detection
with terrestrial and submarine cables,” Science 361, 486–490 (2018),
https://www.science.org/doi/pdf/10.1126/science.aat4458.

3Z. Zhan, M. Cantono, V. Kamalov, A. Mecozzi, R. Müller, S. Yin,
and J. C. Castellanos, “Optical polarization–based seismic and water
wave sensing on transoceanic cables,” Science 371, 931–936 (2021),
https://www.science.org/doi/pdf/10.1126/science.abe6648.

4A. Mecozzi, M. Cantono, J. C. Castellanos, V. Kamalov, R. Muller, and
Z. Zhan, “Polarization sensing using submarine optical cables,” Optica 8,
788–795 (2021), https://opg.optica.org/optica/abstract.cfm?URI=optica-8-
6-788.

5N. J. Lindsey, T. C. Dawe, and J. B. Ajo-Franklin, “Illumi-
nating seafloor faults and ocean dynamics with dark fiber dis-
tributed acoustic sensing,” Science 366, 1103–1107 (2019),
https://www.science.org/doi/pdf/10.1126/science.aay5881.

6M. Landrø, L. Bouffaut, H. J. Kriesell, J. R. Potter, R. A. Rørstadbot-
nen, K. Taweesintananon, S. E. Johansen, J. K. Brenne, A. Haukanes,
O. Schjelderup, and F. Storvik, “Sensing whales, storms, ships and earth-
quakes using an arctic fibre optic cable,” Scientific Reports 12, 19226
(2022), https://doi.org/10.1038/s41598-022-23606-x.

7K. S. Y. Skarvang, S. Bjørnstad, R. A. Rørstadbotnen, K. Bozorgebrahimi,
and D. R. Hjelme, “Observation of local small magnitude earthquakes us-
ing state of polarization monitoring in a 250km passive arctic submarine
communication cable,” in Optical Fiber Communication Conference (OFC)
2023 (Optica Publishing Group, 2023) p. W1J.2.

8This property is an immediate consequence of the isomorphism between
SU(2) and SO(3) (the group of three dimensional rotations around the ori-
gin of Stokes space) and of the fact that the concatenation of rotations is
still a rotation.

9J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dis-
persion in optical fibers,” Proceedings of the National Academy of Sciences
97, 4541–4550 (2000), https://www.pnas.org/content/97/9/4541.full.pdf.

10J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Cambridge
University Press, 2017).

11A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Pro-
cessing, 2nd ed., Pearson education signal processing series (Upper Saddle
River, N.J.: Prentice Hall, 1999).

12J. P. Gordon, “Statistical properties of polarization mode dispersion,” in
Polarization Mode Dispersion (Springer New York, New York, NY, 2005)
pp. 52–59.

13A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Measurement
of birefringence correlation length in long, single-mode fibers,” Opt. Lett.
26, 962–964 (2001).

14J. Wuttke, P. Krummrich, and J. Rosch, “Polarization oscillations in aerial
fiber caused by wind and power-line current,” IEEE Photonics Technology
Letters 15, 882–884 (2003).

15M. Shtaif and A. Mecozzi, “Study of the frequency autocorrelation of the
differential group delay in fibers with polarization mode dispersion,” Opt.
Lett. 25, 707–709 (2000).

16S. Donadello, C. Clivati, A. Govoni, L. Margheriti, M. Vassallo, D. Brenda,
M. Hovsepyan, E. K. Bertacco, R. Concas, F. Levi, A. Mura, A. Herrero,
F. Carpentieri, and D. Calonico, “Seismic monitoring using the telecom
fiber network,” Communications Earth & Environment 5, 178 (2024).

17A. Mecozzi, C. Antonelli, M. Mazur, N. Fontaine, H. Chen, L. Dallachiesa,
and R. Ryf, “Use of optical coherent detection for environmental sensing,”
J. Lightwave Technol. 41, 3350–3357 (2023).

18M. Mazur, J. C. Castellanos, R. Ryf, E. Börjeson, T. Chodkiewicz, V. Ka-
malov, S. Yin, N. K. Fontaine, H. Chen, L. Dallachiesa, S. Corteselli,
P. Copping, J. Gripp, A. Mortelette, B. Kowalski, R. Dellinger, D. T. Neil-
son, and P. Larsson-Edefors, “Transoceanic phase and polarization fiber
sensing using real-time coherent transceiver,” in Optical Fiber Communi-
cation Conference (OFC) 2022 (Optica Publishing Group, 2022) p. M2F.2,
https://opg.optica.org/abstract.cfm?URI=OFC-2022-M2F.2.

19M. Mazur, N. K. Fontaine, M. Kelleher, V. Kamalov, R. Ryf, L. Dallachiesa,
H. Chen, D. T. Neilson, and F. Quinlan, “Advanced distributed submarine
cable monitoring and environmental sensing using constant power probe
signals and coherent detection,” (2023), arXiv:2303.06528 [eess.SP].

20F. Yaman, Y. Li, S. Han, T. Inoue, E. Mateo, and Y. Inada, “Polarization
sensing using polarization rotation matrix eigenvalue method,” in Optical
Fiber Communication Conference (OFC) 2023 (Optica Publishing Group,
2023) p. W1J.7.

21L. Costa, S. Varughese, P. Mertz, V. Kamalov, and Z. Zhan, “Localiza-
tion of seismic waves with submarine fiber optics using polarization-only
measurements,” Communications Engineering 2, 86 (2023).

22A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Reflectometric
characterization of hinges in optical fiber links,” IEEE Photonics Technol-
ogy Letters 20, 854–856 (2008).

http://dx.doi.org/10.22002/D1.1668
http://arxiv.org/abs/https://data.caltech.edu/records/50509-xhf30
http://dx.doi.org/10.1126/science.aat4458
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aat4458
http://dx.doi.org/10.1126/science.abe6648
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.abe6648
http://dx.doi.org/10.1364/OPTICA.424307
http://dx.doi.org/10.1364/OPTICA.424307
http://arxiv.org/abs/https://opg.optica.org/optica/abstract.cfm?URI=optica-8-6-788
http://arxiv.org/abs/https://opg.optica.org/optica/abstract.cfm?URI=optica-8-6-788
http://dx.doi.org/10.1126/science.aay5881
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aay5881
http://dx.doi.org/10.1038/s41598-022-23606-x
http://dx.doi.org/10.1038/s41598-022-23606-x
http://arxiv.org/abs/https://doi.org/10.1038/s41598-022-23606-x
http://dx.doi.org/10.1364/OFC.2023.W1J.2
http://dx.doi.org/10.1364/OFC.2023.W1J.2
http://dx.doi.org/10.1073/pnas.97.9.4541
http://dx.doi.org/10.1073/pnas.97.9.4541
http://arxiv.org/abs/https://www.pnas.org/content/97/9/4541.full.pdf
https://books.google.it/books?id=010yDwAAQBAJ
https://books.google.it/books?id=geTn5W47KEsC
https://books.google.it/books?id=geTn5W47KEsC
http://dx.doi.org/10.1007/0-387-26307-1_3
http://dx.doi.org/10.1364/OL.26.000962
http://dx.doi.org/10.1364/OL.26.000962
http://dx.doi.org/10.1109/LPT.2003.811143
http://dx.doi.org/10.1109/LPT.2003.811143
http://dx.doi.org/10.1364/OL.25.000707
http://dx.doi.org/10.1364/OL.25.000707
http://dx.doi.org/10.1038/s43247-024-01338-2
https://opg.optica.org/jlt/abstract.cfm?URI=jlt-41-11-3350
http://dx.doi.org/10.1364/OFC.2022.M2F.2
http://dx.doi.org/10.1364/OFC.2022.M2F.2
http://arxiv.org/abs/https://opg.optica.org/abstract.cfm?URI=OFC-2022-M2F.2
http://arxiv.org/abs/2303.06528
http://dx.doi.org/10.1364/OFC.2023.W1J.7
http://dx.doi.org/10.1364/OFC.2023.W1J.7
http://dx.doi.org/10.1038/s44172-023-00138-4
http://dx.doi.org/10.1109/LPT.2008.921845
http://dx.doi.org/10.1109/LPT.2008.921845

	Sensing with submarine optical cables
	Abstract
	Introduction
	Basic equations
	Wavevector perturbations
	Phase-based sensing
	Polarization-based sensing
	Comparison between phase and polarization accumulation
	The Jones matrix in the rotating frame
	Localization with polarization
	Environmental sensing using the state of polarization
	Conclusions
	Continuous limit of Eqs. (58) and (59)
	Derivation of Eq. (123)


