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Abstract. We generalize free monoids by defining k-monoids. These are

nothing other than the one-vertex higher-rank graphs used in C∗-algebra the-
ory with the cardinality requirement waived. The 1-monoids are precisely the

free monoids. We then take the next step and generalize k-monoids in such a
way that self-similar group actions yield monoids of this type.

1. Introduction

The goal of this paper is to generalize free monoids to higher dimensions. We
make no pretence of novelty since the monoids considered in this paper are nothing
other than the one-vertex higher-rank graphs with the usual cardinality restriction
waived. Higher-rank graphs were introduced in [10] (formalizing some ideas to be
found in [25]) and the monoids within this class have been considered by a number
of authors, such as [7, 8]. They are well-known within the operator algebra com-
munity, but, we maintain, they should also be interesting to those working within
semigroup theory. Whereas free monoids are concretely monoids of strings, our
monoids will have elements that we can regard as ‘higher-dimensional strings’; for
example, in two dimensions our elements can be regarded as rectangles. Our gen-
eralization of free monoids is called k-monoids; the 1-monoids will turn out to be
precisely the free monoids. Classes of k-monoids were studied in [18] where they
were used to construct groups via inverse semigroups. This work is summarized in
Section 4. Our point of view is that any result for free monoids should be general-
ized to k-monoids.

Acknowledgements The authors would like to thank Aidan Sims for his com-
ments on an earlier draft of this paper. Whilst this paper was being prepared, the
authors were sad to learn of the passing of Iain Raeburn. Iain contributed greatly
to the theory of C∗-algebras in general, and higher-rank graphs in particular.

2. Free monoids

You can read all about free monoids in Lallement’s book [11, Chapter 5] but we
shall go over what we need here. Our goal is to motivate the definition of k-monoids
which will be given in the next section. Let A be any set, called in this context
an alphabet and whose elements will be called letters. We do not need to assume
that A is finite and, although it could be empty, that is not a very interesting case.
By a string over A we mean a finite sequence of elements of A. We shall dispense
with brackets and so strings shall simply be written as words over the alphabet
A. The empty string is denoted by ε. The set of all strings over A is denoted by
A∗. The set A∗ becomes a semigroup with operation · when we combine strings
via concatenation: thus x · y = xy. This really makes A∗ into a semigroup and,
in fact, a monoid with identity ε. As usual, we shall omit explicit reference to
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2 MARK V. LAWSON AND ALINA VDOVINA

the semigroup operation ·. Monoids that are isomorphic to the monoids A∗ are
called free monoids. Free monoids are even simpler than free groups since there
are no pesky inverses to deal with. The elements of A are called the generators
of the free monoid. The simplest interesting free monoids are those with exactly
one generator; such monoids are isomorphic to the monoid (N,+). So, arbitrary
free monoids can be regarded as non-commutative arithmetic. The case where A is
empty is special: the free monoid on no generators is just the one-element monoid.

Free monoids have some important algebraic properties but to state these, we
need some definitions. We say that a monoid S is equidivisible if xy = uv in S
implies there exists an element t ∈ S such that either u = xt and y = tv or x = ut
and v = ty. If x is any string in a free monoid, denote its length by |x|; this simply
counts the total number of letters of A occurring in x including multiplicities. Free
monoids are cancellative: this means that if xy = xv then y = v and if xy = uy
then x = u. Now, suppose that xy = uv in a free monoid A∗ and that |x| < |u|, in
the first instance. Then u = xt for some string t. We therefore have that xy = xtv.
It follows from cancellation that y = tv. The alternative is that |x| ≥ |u|. Then
x = ut, for some string t thus uty = uv. It follows from cancellation that ty = v
This proves that free monoids are equidivisble.

Free monoids come equipped with a monoid homomorphism δ which associates
with a string its length. Thus, there is a monoid homomorphism δ : A∗ → N given
by δ(x) = |x|. It is possible to characterize free monoids by means of the properties
of the monoid homomorphism δ. The following [11, Corollary V.1.6] was first proved
by F. W. Levi in [23].

Theorem 2.1 (Levi). A monoid S is free if and only if S is equidivisible and there
exists a homomorphism θ : S → N such that θ−1(0) is the identity of S.

We shall use the above theorem to obtain a new characterization of free monoids
that will motivate this paper. Let x ∈ A∗. Then |x| ∈ N. Suppose that m,n ∈ N
such that m+ n = |x|. Then there are unique elements u, v ∈ A∗ such that x = uv
where |u| = m and |v| = n. To see that this is true, just remember that the elements
of the free monoid are strings.

More generally, we say that a monoid S has the unique factorization property
(UFP) if it is equipped with a monoid homomorphism θ : S → N such that if
θ(a) = m + n then there are unique elements b, c ∈ S such that a = bc where
θ(b) = m and θ(c) = n. We shall derive a couple of results about such monoids.

Lemma 2.2. Let S be a monoid and let θ : S → N be a monoid homomorphism
that satisfies the (UFP). Then S is equidivisible.

Proof. Suppose that xy = uv. We shall compare θ(x) with θ(u). The set N is
linearly ordered, so that either θ(x) < θ(u) or θ(x) ≥ θ(u). Suppose first that
θ(x) < θ(u). Then, we can write θ(u) = θ(x) + n, for some natural number n.
By the (UFP), we can write u = xt where t ∈ S is the unique element such that
θ(t) = n. It follows that xy = xtv. Take θ of both sides, and use basic algebra, to
get that θ(y) = θ(t) + θ(v). By the (UFP), it follows that y = tv. the case where
θ(x) ≥ θ(u) can be handled similarly. □

Lemma 2.3. Let S be a monoid and let θ : S → N be a monoid homomorphism
that satisfies the (UFP). Then the identity of S is the only element that maps to 0.

Proof. Because θ is a monoid homomorphism, we have that θ(1) = 0. Now, let
e ∈ S be such that θ(e) = 0. Then e = 1e = e1, since 1 is the identity. But
θ(e) = 0+ 0. By the (UFP), we may write e = e1e2 uniquely where θ(e1) = 0 and
θ(e2) = 0. But e = 1e = e1, also. It follows that e1 = 1 and e2 = 1. We deduce
that e = 1. □
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We can now provide a different characterization of free monoids which follows
immediately by Theorem 2.1, Lemma 2.2 and Lemma 2.3.

Theorem 2.4. The monoids that satisfy the unique factorization property are pre-
cisely the free monoids.

The above theorem directly motivates the definition of the next section.
There are a couple of further definitions that will be useful to us later. Let

A∗ be a free monoid. We say that strings x and y are (prefix) incomparable if
xA∗ ∩ yA∗ = ∅; otherwise, we say they are (prefix) comparable. A subset X ⊆ A∗

is said to be a prefix code if its elements are prefix incomparable. A maximal prefix
code can be characterized as a prefix code with the property that every element of
A∗ is prefix comparable with an element of the prefix code [1]. By [2], every right
ideal of A∗ is generated by a prefix code. The right ideal is essential (a term we
shall define below) precisely when it is generated by a maximal prefix code.

3. k-monoids

The previous section set the scene for what we shall do in this section: essentially,
we shall replace N by Nk. We shall need a little notation first. The monoid Nk

should be viewed as the positive cone of the lattice-ordered abelian group Zk. If
m ∈ Nk then

m = (m1, . . . ,mi, . . . ,mk)

and we definemi = mi. The partial order in Zk is defined componentwise: m ≤ n if
and only if mi ≤ ni for 1 ≤ i ≤ k. The join operation is (m∨n)i = max(mi, ni) and
the meet operation is (m∧n)i = min(mi, ni). Put 0 = (0, . . . , 0) and 1 = (1, . . . , 1)
both elements of Nk. Define ei, where 1 ≤ i ≤ k, to be that element of Nk which is
zero everywhere except at i where it takes the value 1.

Definition. A monoid S is said to be a k-monoid if there is a monoid ho-
momorphism δ : S → Nk satisfying the unique factorization property (UFP): if
δ(x) = m+ n then there exist unique elements x1 and x2 of S such that x = x1x2

where δ(x1) = m and δ(x2) = n. We call δ(a) the size of a.

Using the terminology we have introduced, we proved in the previous section that
the 1-monoids are precisely the free monoids. Thus k-monoids really do generalize
free monoids. However, the direct product of free monoids is not usually free. One
particularly pleasant feature of k-monoids is that they are closed under finite direct
products. To see this, let S be a k-monoid and let T be an l-monoid. We shall
denote their respective monoid homomorphisms by δS : S → Nk and δT : T → Nl.
There is a natural isomorphism µ : Nk × Nl → Nk+l where we take the ordered
pair ((m1, . . . ,mk), (n1, . . . , nl)) to the single (k+ l)-tuple (m1, . . . ,mk, n1, . . . , nl).
Define δ : S×T → Nk+l by δ(s, t) = µ(δS(s), δT (t)). In this way, it is easy to prove
that S × T is a (k + l)-monoid. We have therefore established the following [10,
Proposition 1.8].

Lemma 3.1. If S is a k-monoid and T is an l-monoid then S×T is a k+l-monoid.

Example 3.2. The direct product of k free monoids is therefore a k-monoid by
Lemma 3.1. However, the product of free monoids is not free in general. For
example, the free monoid on one generator is N. But N × N is not isomorphic to
the free monoid on one generator but it is abelian. Thus, it cannot be free.

We may therefore easily construct examples of k-monoids for any finite k. We
say that a monoid S is singly aligned if aS ∩ bS ̸= ∅ implies that aS ∩ bS = cS for
some c ∈ S. The proof of the following is easy.
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Lemma 3.3. The product of two singly aligned monoids is singly aligned.

It follows that a direct product of k free monoids is always singly aligned. This
tells us that these are special kinds of k-monoids.

The following portmanteau lemma (proved in [10]) summarizes some of the im-
portant algebraic properties of k-monoids. Recall that a monoid is said to be conical
if its group of units is trivial.

Lemma 3.4. Let S be a k-monoid with identity 1 and with monoid homomorphism
δ : S → Nk.

(1) S is cancellative.
(2) δ(1) = 0 and is the only element that is mapped by δ to 0.
(3) S is conical.

Proof. (1) Let z = xy = xv. We have that δ(y) = δ(v) and so, by the (UFP), we
have that y = v. Now, suppose that xy = uy. We apply the (UFP) again to deduce
that x = u.

(2) We have that 11 = 1 and so δ(11) = δ(1) + δ(1) = δ(1). It follows that
δ(1) = 0. Now, suppose that δ(a) = 0 where a ∈ S. Then a = a1a2 where
δ(a1) = 0 = δ(a2). But a = a1 = 1a. We have that δ(a) = 0+ 0. We deduce that
a = 11 = 1.

(3) Suppose that xy = 1. Then δ(x) = δ(y) = 0. By part (2) above both x and
y is equal to the identity. □

The biggest difference between k-monoids, where k ≥ 2, and free monoids lies
in the fact that whereas the set N is linearly ordered the set Nk is not. Here is the
appropriate analogue of Theorem 2.1.

Lemma 3.5. Let S be a k-monoid. Let xy = uv and suppose that δ(x) ≥ δ(u).
Then there is t ∈ S such that x = ut and v = ty. In particular, if δ(x) = δ(u) then
x = y.

Proof. Put z = xy = uv. There exists r ∈ Nk such that δ(x) = δ(u) + r. By the
(UFP), we have that x = u′t where δ(u) = δ(u′) and δ(t) = r. We therefore have
that u′ty = uv. We now apply the (UFP) again, to deduce that u′ = u and v = ty.
If δ(x) = δ(u) then we get x = u from x = ut. □

We return briefly to 1-monoids. Let S be a free monoid on the alphabet A. The
associated monoid homomorphism δ : S → N is always surjective except in the case
where A is empty. This can be generalized.

Lemma 3.6. Suppose that δ : S → Nk is a k-monoid. If δ is not surjective then
there exists a monoid homomorphism δ′ : S → Nk−1 such that S is a (k−1)-monoid.

Proof. Suppose that there exists a ∈ S such that δ(a) does not have a zero appear
in any component. Thus δ(a) = (m1, . . . ,mk) where mi > 0 for all 1 ≤ i ≤ k.
Then, for any positive natural number n, we have that δ(an) = (nm1, . . . , nmk).
Let n = (n1, . . . , nk) be any element of Nk. Choose n big enough so that ni ≤ nmi

for all 1 ≤ i ≤ k. It then follows by the (UFP), that every element of Nk is
in the image of δ. Thus δ is surjective. It follows that there exists an element
of m ∈ Nk which is not in the image of δ and which has a component which is
zero. By permutating the components if necessary, we can assume, without loss of
generality, that it is the kth component of m which is 0. Observe that no element
in the image of δ can have a non-zero entry in the kth position. Suppose to the
contrary that δ(a) has a non-zero entry in the kth position. Then, for some n, we
have that δ(an) ≥ m. By the (UFP), there is an element b ∈ S such that δ(b) = m.
This is a contradiction. Define δ′ : S → Nk−1 to be δ followed by the map from
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Nk → Nk−1 given by (n1, . . . , nk−1, nk) 7→ (n1, . . . , nk−1). Then δ′ is a monoid
homorphism and satisfies the (UFP). □

An atom in a monoid is an element a such that if a = bc then at least one of b
or c is invertible.

Lemma 3.7. Let S be a k-monoid.

(1) The atoms in S are the elements a where δ(a) = ei.
(2) Every non-identity element is a product of atoms

Proof. (1) Suppose that a is such that δ(a) = ei. We prove that a is an atom.
Suppose that a = bc. Then δ(a) = δ(b) + δ(c). But δ(a) = ei. Thus either δ(b) = 0
or δ(c) = 0. It follows that either b is invertible or c is invertible (in fact, the
identity).

(2) Let a be a non-identity element. Then we may write δ(a) = m1e1+. . .+mkek
where m1, . . . ,mk are natural numbers. Using the fact that m1e1 = e1 + . . . + e1
and so on and the (UFP), we may now use (1) and deduce that every non-identity
element is a product of atoms. □

In free monoids A∗, the atoms are nothing other than the letters. But, whereas
free monoids have one alphabet, k-monoids have k, which we now define. Fix k and
let 1 ≤ l ≤ k. Define πl : Nk → N by (m1, . . . ,ml, . . . ,mk) 7→ ml. This is a monoid
homomorphism. Let δ : S → Nk be a k-monoid. Define Sl to consist of all elements
a ∈ S such that δ(a) has 0’s eveywhere except possibly at the lth component.
The set Sl is non-empty since it must contain the identity. Thus Sl is clearly a
submonoid of S. Observe that δl = πlδ : Sl → N shows that Sl is a 1-monoid, and
so free. If s ∈ S then δ(s) = m1e1 + . . . + mkek. We may write S = S1 . . . Sl

uniquely. It follows that k-monoids are constructed from k free monoids. In the
case k = 2, we can construct 2-monoids from certain Zappa-Szép products [4] of
free monoids. For each 1 ≤ l ≤ k, define Xl = δ−1(el). We call (X1, . . . , Xk) the k
alphabets associated with the k-monoid S. Each set Xl (which could be empty) is
a set of free generators of the free monoid Sl.

The proof of the following lemma is immediate by the (UFP); it shows that in a
k-monoid there are certain relationships between the atoms.

Lemma 3.8. Let S be a k-monoid with the above notation. If a and b are atoms
with a ∈ Xi and b ∈ Xj, where i ̸= j, then there exist unique atoms a′ ∈ Xi and
b′ ∈ Xj such that ab = b′a′.

It follows immediately from the above lemma, that XiXj ⊆ XjXi for all i ̸= j.
An extreme case of the above lemma leads to finite direct products of free monoids.

Lemma 3.9. Let S be a k-monoid with k alphabets (X1 . . . , Xk). Suppose that
a ∈ Xi and b ∈ Xj, where i ̸= j, implies that ab = ba. Then S is isomorphic to a
finite direct product of free monoids.

Proof. It is enough to prove that S ∼= S1 × . . . × Sk. For each s ∈ S let s =
u1 . . . uk be the unique representation of s as a product of elements on Si where
1 ≤ i ≤ k. We define θ(s) = (u1, . . . , uk). Clearly, this is a bijection. Suppose
that t = v1 . . . vk. Then st = u1 . . . ukv1 . . . vk. By our assumption, v1 commutes
with all the elements u2, . . . , uk. Thus we may write st = (u1v1)u2 . . . ukv2 . . . vk.
Repeating, we obtain that st = (u1v1)(u2v2) . . . (ukvk). This calculation shows that
θ is a homomorphism. □

The following describes the ‘degenerate’ k-monoids.
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Proposition 3.10. Let S be a k-monoid whose associated monoid homomorphism
is surjective and with associated k-alphabets (X1, . . . , Xk). Then S ∼= Nk if and
only if |X1| = |X2| = . . . = |Xk| = 1.

Proof. Only one direction needs proving. Suppose that |X1| = |X2| = . . . = |Xk| =
1. Then X∗

i
∼= N. The homomorphism d : S → Nk is already surjective and it is

injective by the (UFP). □

We shall now obtain a more geometric way of thinking about the elements of
k-monoids. We start with free monoids. Let A be a (non-empty) alphabet. We
shall now regard elements of A as directed (to the right) line segments of unit length
labelled by an element of A. A (non-empty) string a over A can now be regarded
as the concatenation of |a| such directed line segments each of length 1. Thus the
total length of the line segment that results is |a|. We therefore regard the elements
of A∗ as being labelled lines. Suppose now that k = 2. Let S be a 2-monoid. There
are two alphabets X1 and X2 and each element of a ∈ S can be written uniquely as
a = uv where u ∈ X∗

1 and v ∈ X∗
2 . It is therefore tempting to view a as consisting

of two strings over different alphabets. But we shall argue that it makes more
sense to regard a as a rectangle with area m × n where δ(a) = (m,n). Observe,
first, that any representation of a as a product of atoms must contain exactly m
atoms from X1 and exactly n atoms from X2. None of these ways of representing
a is privileged. Represent elements of X1 by horizontal line segments directed to
the right and represent elements of X2 by vertical line segments directed upwards.
Then each way of representing an element a can be regarded as a sequence of
directed line segments some horizontal and some vertical. These can be labelled by
elements of X1∪X2. We therefore obtain an m×n grid in which the horizontal line
segments are labelled by elements of X1 and the vertical line segments are labelled
by elements of X2. We can use this geometrical way of regarding the elements of
k-monoids to demonstrate how the multiplication works. We are given x and y to
calculate xy. We place the top right-hand corner of x against the bottom left-hand
corner of y:

x

y

We do not yet have a rectangle, so we use the (UFP) to fill in the gaps

x

y

and now we get the result xy represented as a rectangle

xy

What we have said for k = 2 applies to any value of k. We can therefore regard
the elements of a k-monoid as being k-boxes. It is in this way, that we can regard
k-monoids as being higher dimensional free monoids. It is therefore natural to view
the elements of k-monoids as being k-strings.
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A good source of examples of k-monoids can be obtained by considering simply
transitive groups actions on products of trees, as constructed in [29] and [26].

Proposition 3.11. Let B be a product of k trees equipped with a simply transitive
action of a group G. Then the rectangular subsets of apartments in B, decorated by
the action of G, are k-strings.

Example 3.12. The group with relations 1,2,3,4 below acts on a product of two
trees. The relations can be viewed as two-dimensional letters, where each relation
gives four letters.

a1b1a1b2 a1b1a2b1
-1 -1

a1b2a2b2
-1 -1-1

a2b1a2b2
-1

1 2 3 4

a1

b2 b1 b2

a2
a1 a2

b2 b1 b2

b2b1 b2

a2
a2

a2 a134

3 2 3

4

a1a2

b1

b2 b1

a1

b1

b2

a2

b2

b2

a1

b1

Example 3.13. Let

X1 = {a, a1, a2, a3}, X2 = {b, b1, b2, b3, b4}, and X3 = {c, c1, c2, c3}.
We suppose that the following relations are satisfied: ab = b1a1, bc = c2b2, a1c =
c1a2, ac2 = c3a3, a3b2 = b3a2 and b1c1 = c3b4, with all other relations being of the
form xy = yx where x ∈ Xi and y ∈ Xj and i ̸= j. Let S be the monoid generated
by the set X1 ∪ X2 ∪ X3 subject to the above relations. We shall prove that S
is not a 3-monoid. We calculate abc in two ways. First, abc = (ab)c = b1a1c =
b1c1a2. Second, abc = a(bc) = ac2b2 = c3a3b2. By associativity, we must have
that b1c1a2 = c3a3b2. Now (b1c1)a2 = c3b4a2 = c3a2b4. In S, we therefore have
that c3a3b2 = c3a2b4. If S were a k-monoid, it would be cancellative. This would
imply that a3b2 = a2b4. But this contradicts the fact that in a 3-monoid such a
factorization would have to be unique.

There is one other property that will be crucial when we come to describe pre-
sentations of k-monoids.

Lemma 3.14. Let S be a k-monoid with k alphabets (X1, . . . , Xk). Let Xi, Xj and
Xk be distinct alphabets. Let f ∈ Xi, g ∈ Xj and h ∈ Xk. Suppose that fg = g1f1,
f1h = h1f2, g1h1 = h2g2, gh = h1g1, fh1 = h2f1 and f1g1 = g2f2. Then f2 = f2,
g2 = g2, and h2 = h2.

We shall now work quite generally although motivated by the Lemmas 3.8 and
3.14. Let X be any non-empty set partitioned into k-blocks X1, . . . , Xk, each
of which is assumed non-empty. We shall refer to the elements of block Xi as
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having the ‘colour i’. For each ordered pair (a, b) ∈ Xi × Xj , where i ̸= j (thus
a and b have different colours), we suppose that we are given a unique ordered
pair (b′, a′) ∈ Xj ×Xi. Put R equal to the binary relation on X∗ which contains
precisely the ordered pairs (ab, b′a′) and (b′a′, ab). We call such a binary relation R
a complete set of squares over X. We need an extra condition on R. Suppose that
(ab, b1a1), (a1c, c1a2), (b1c1, c2b2) ∈ R and also (bc, c1b1), (ac1, c2a1), (a1b1, b2a2) ∈
R together imply that a2 = a2, b

2 = b2 and c2 = c2. We call this the asociativity
condition.

The following result was proved in the more general setting of category theory
in [9]. It gives a monoid presentation of k-monoids with surjective monoid homo-
morphisms.

Theorem 3.15. Let X be any non-empty set partitioned into k-blocks X1, . . . , Xk.
Let R be any complete set of squares over X that satisfies the associativity condition.
Let ρ be the congruence generated by R. Then S = X∗/ρ is a k-monoid, and every
k-monoid (whose associated monoid homomorphism is surjective) is isomorphic to
one of this type. Specifically, the quotient map from X∗ to S is injective on X, and
so we may identify X with its image in S. There is a unique monoid homomorphism
δ : S → Nk such that δ(a) = ei whenever a ∈ Xi.

4. How to construct Thompson-Higman type groups

The main goal of this section is to explain how to construct groups from certain
kinds of k-monoids. This work goes back to a paper by Birget [2], was devel-
oped using free monoids in [14, 15] and then generalized to classes of k-monoids in
[18, 20]. The paper [17] provides a retrospective on the older work. In the papers
[14, 15], it was shown that the Thompson group Gn,1 arises from the free monoid
on n-generators. In unpublished work, John Fountain described how the Thomp-
son groups might be generalized but a suitable generalization of free monoids was
lacking. A class of k-monoids provides just what we are looking for.

The intersection of principal right ideals in a free monoid, if non-empty, is always
a principal right ideal. More generally, we say that a k-monoid S is finitely aligned
if the intersection aS∩ bS is either empty or finitely generated as a right ideal. The
notion of a monoid being finitely aligned was first defined by Gould [6], and then
further studied in [5]. Independently, it became very important in the theory of
higher-rank graphs and their C∗-algebras [24, 27, 28]. It will be useful to have some
definitions centred around principal right ideals. If xS∩yS ̸= ∅, we say that x and
y are comparable whereas if xS ∩ yS = ∅, we say that x and y are incomparable.
Incomparable subsets of k-monoids are analogues of prefix codes in free monoids,
so we call incomparable sets generalized prefix codes. Let a ∈ S. We say that it is
dependent on a set X, if au = xv for some x ∈ X and u, v ∈ S. A generalized prefix
code X is said to be maximal if every element of S is dependent on an element of
X. In free monoids, maximal prefix codes are precisely those prefix codes maximal
in the above sense.

We investigate first the intersection of principal right ideals in complete gen-
erality. The following is a folklore result known to many working on higher-rank
graphs. It is therefore important but not original.

Lemma 4.1. Let S be a k-monoid. Assume that a and b are comparable and let
c ∈ aS ∩ bS. Then there exists an element d ∈ S such that c = dt, for some t ∈ S,
where d ∈ aS ∩ bS and δ(d) = δ(a) ∨ δ(b).

Proof. By assumption, c = ax = by for some x, y ∈ S. It follows that δ(c) ≥
δ(a), δ(b). Thus δ(c) ≥ δ(a)∨ δ(b). We may therefore write δ(c) = (δ(a)∨ δ(b))+m
for some m ∈ Nk. Thus by the (UFP), we may write c = dt where δ(d) = d(a)∨d(b)
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and δ(t) = m. Now c = dt = ax. But δ(d) = δ(a)∨δ(b) = δ(a)+n for some n ∈ Nk.
By the (UFP), we may therefore write d = a′u where δ(a′) = δ(a) and δ(u) = n.
Thus a′ut = ax. It now follows by the (UFP), that a = a′. We have therefore
proved that d ∈ aS. We may similarly prove that d ∈ bS. □

The proof of the following is now immediate by the above.

Corollary 4.2. Let S be a k-monoid. Suppose that aS ∩ bS ̸= ∅. Then aS ∩ bS =⋃
d∈aS∩bS, δ(d)=δ(a)∨δ(b) dS.

Our goal is to construct a group from a suitable k-monoid. We shall do this by
going via inverse monoids. But there is a problem, which we now explain. If T is an
inverse semigroup with zero then T/σ, where σ is the minimum group congruence
[13], is trivial. In order to contruct interesting groups, we need to focus on ‘large’
elements of T . This is why we need the following definition. Let T be any inverse
monoid with a zero. A non-zero idempotent e of T to be essential if for any non-
zero idempotent f we have that ef ̸= 0. We say an element a ∈ T is essential if
both idempotents a−1a and aa−1 are essential. The essential part of T , denoted by
T e, is the set of all essential elements of T . It is an inverse monoid; see [15]. The
key point is that the zero is not an essential element and so does not belong to the
essential part of our inverse monoid.

Lemma 4.3. Let S be a finitely aligned k-monoid. Let R = XS be a finitely gen-
erated right ideal of S. Then the identity function on R is an essential idempotent
if and only if every element of S is dependent on an element of X.

Proof. Suppose first that the identity function on R is an essential idempotent.
Let a ∈ S be any element. Then aS is a right ideal. It follows that the identity
function on aS is an idempotent. By assumption, this has a non-zero product with
the identity function on R. It follows that aS ∩R ̸= ∅. Thus there is some element
u ∈ S such that au ∈ R. Whence, au = xv for some x ∈ X and v ∈ S. The
converse is proved from the observation that a is dependent on an element of X if
and only if aS ∩R ̸= ∅. □

Let S be a k-monoid which is finitely aligned. We shall now show how to con-
struct a group from S. Let R1 and R2 be right ideals of S. A function θ : R1 → R2

is called a morphism if θ(as) = θ(a)s for all a ∈ R1 and s ∈ S. A bijective morphism
is called an isomorphism. Define R(S) to be the set of all isomorphisms between the
finitely generated right ideals of S. If S is finitely aligned then the intersection of
any two finitely generated right ideals is either empty or again a finitely generated
right ideal. With this condition, R(S) is an inverse monoid. We define the group
associated with S as follows:

G (S) = R(S)e/σ.

The only problem with this group is that we can, in general, say nothing about
it. So, we shall now define an apparently different group using generalized prefix
codes.

Lemma 4.4. Let S be a finitely aligned k-monoid. Then if aS ∩ bS ̸= ∅ the right
ideal aS ∩ bS is generated by a finite generalized prefix code.

Proof. By assumption, aS ∩ bS = XS where X is a finite set. By Lemma 4.1, for
each x ∈ X there exists an element dx such that x = dxt for some t ∈ S, where
dx ∈ aS ∩ bS and δ(dx) = δ(a) ∨ δ(b). Put D = {dx : x ∈ X}. This is a finite set
since X is a finite set. We claim that aS ∩ bS = DS. By design, we have that
DS ⊆ aS ∩ bS. If s ∈ aS ∩ bS then s = xu for some x ∈ X and u ∈ S. It follows
that s = dxtu and so s ∈ DS. We have therefore proved that aS ∩ bS = DS. But
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any two elements of D have the same size. Suppose that d, d′ ∈ D are comparable.
Then dp = d′q for some p, q ∈ S. By Lemma 3.5, it follows that d = d′. □

Let S be a finitely aligned k-monoid. If a, b ∈ S define a ∨ b = ∅ if a and b are
incomparable, otherwise, define a ∨ b to be any finite generalized prefix code such
that aS ∩ bS = (a ∨ b)S. The proof is straightforward and can be found in [20,
lemma 3.24].

Lemma 4.5. Let S be a finitely aligned k-monoid. Then the intersection of any two
right ideals generated by a finite generalized prefix code is either empty or generated
by a finite generalized prefix code.

We can now define our second group associated with a finitely aligned k-monoid.
The following definition arose from unpublished work of John Fountain. A finitely
generated right ideal of S is said to be projective if it is generated by a finite
generalized prefix code. Recall that in free monoids all right ideals are generated
by prefix codes. Let S be a finitely aligned k-monoid. Define P(S) to be all the
isomorphisms between the finitely generated right ideals generated by generalized
prefix codes. By Lemma 4.5, P(S) is an inverse monoid. This leads to our second
group associated with S:

G ′(S) ∼= P(S)e/σ.

This group is constructed from the inverse monoid of all isomorphisms between the
right ideals generated by the finite maximal generalized prefix codes.

We potentially have two groups associated with a finitely aligned k-monoid. We
shall now prove that for a natural class of k-monoids, the two groups we have
defined are, in fact, isomorphic.

We need one further assumption on our k-monoids. We shall assume that the as-
sociated monoid homomorphism δ is surjective. This assumption has an important
consequence. Let m ∈ Nk be any element. Define Cm to be all the elements a of
S such that δ(a) = m. Because δ is surjective, the set Cm is non-empty. Suppose
that a, b ∈ Cm are comparable. Then au = bv where u, v ∈ S. But a and b have
the same size and so a = b. Thus Cm is a generalized prefix code. We now show
that it is maximal. Let a be any element of S. Then we can find an element u such
that δ(au) ≥ m. It follows by the (UFP) that au = bv where δ(b) = m. We have
therefore proved the following.

Lemma 4.6. Let S be a k-monoid the associated monoid homomorphism of which
is surjective. Then for each m ∈ Nk we have that Cm is a maximal generalized
prefix code.

The proof of the following is key.

Lemma 4.7. Let S be a k-monoid in which δ is surjective. Then every essential,
finitely generated right ideal of S contains a right ideal generated by a finite maximal
generalized prifix code.

Proof. Let XS be an essential right ideal where X is finite. Let m be the joint of
the sizes of the elements of X. We prove that CmS ⊆ XS. Let a ∈ Cm. Since XS
is essential, there exist elements u, v ∈ S such that au = xv for some x ∈ X. By
assumption, δ(a) ≥ δ(x). Thus by Lemma 3.5, we have that a = xt for some t ∈ S.
We have proved that Cm ⊆ XS. □

It can now be proved that that each element of R(S)e extends an element of P(S)e

[18, Lemma 7.9]. This implies that the groups G ′(S) and G (S) are isomorphic. We
now summarize what we have found.
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Theorem 4.8. Let S be a finitely aligned k-monoid the asspociated monoid ho-
momorphism of which is surjective. Then there is a group G (S) associated with S
which can be constructed either as R(S)e/σ or as P(S)e/σ.

Our group is therefore intimately connected with the structure of the finite,
maximal generalized prefix codes on S.

We can now construct some groups using the above theorem. Let A1, . . . , Ak

be k free monoids on non-empty alphabets. Then A∗
1 × . . . × A∗

k is a k-monoid
in which the associated monoid homomorphism is surjective and which is finitely
aligned. Accordingly, we may construct the group G (A∗

1 × . . .×A∗
k). When k = 1,

we are back to the Thompson groups contructed in [14, 15]. When A = A1 contains
2 elements, and we take the n-fold direct product A∗ × . . . × A∗ then the group
G (A∗× . . .×A∗) is the group nV , the higher dimensional Thompson group of Matt
Brin [3]. See [18] for details.

Generalized prefix codes turns out to be the most efficient way to describe the
higher dimensional Thompson groups since the standard way using homeomor-
phisms of dyadic intervals does not work in dimension 3 and higher. See example
below.

Example 4.9. The following is a generalized prefix code in {a1, a2}∗ ×{b1, b2}∗ ×
{c1, c2}∗:

C = {a1b1, a2c1, b2c2, a1b2c1, a2b1c2}.
It can be viewed diagrammatically as follows:

See [19, Example 12.8] for more details.

We do not show this here, but the groups we have constructed also occur as
the groups of units of Boolean inverse monoids [30]. To prove this requires us to
generalize the right-infinite strings over an alphabet A to higher dimensions. How
this is done is described in [18, 20].

5. Further generalizations

We may generalize k-monoids in the way described in [19] by allowing the group
of units to be non-trivial. Let S be a monoid. We say that a monoid homomor-
phism λ : S → Nk is a size map if λ−1(0) is precisely the group of units of S.
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Definition. A monoid S is said to be a generalized k-monoid if there is a size
map δ : S → Nk satisfying the weak factorization property (WFP): if δ(x) = m+ n
then there exist elements x1 and x2 of S such that x = x1x2 where δ(x1) = m
and δ(x2) = n and, furthermore, if x′

1 and x′
2 are any elements such that x = x′

1x
′
2

where δ(x′
1) = m and δ(x′

2) = n then x′
1 = x1g and x′

2 = g−1x2 for some invertible
element g.

Observe that k-monoids are simply the generalized k-monoids having a trvivial
group of units. One of the goals of this section is to prove that self-similar group
actions lead naturally to examples of generalized k-monoids [16, 21, 22]. We shall
use the following concept. A Levi monoid is a monoid S equipped with a size map
λ : S → N which is equidivisible and which contains at least one non-invertible
element [21]. We may assume, without loss of generality, that a ∈ S is an atom if
and only if λ(a) = 1 by [21, Proposition 2.8]. Every generalized 1-monoid is a Levi
monoid by [19, Theorem 3.4 (2)]. We prove the converse.

Proposition 5.1. Every Levi monoid is a generalized 1-monoid.

Proof. Let S be a Levi monoid with size map λ : S → N having the property that
a ∈ S is an atom if and only if λ(a) = 1. We prove that S is a generalized 1-
monoid. Let a ∈ S be any element. If a is invertible then λ(a) = 0. Suppose that
a = gh = g1h1 where g, h, g1, h1 are call invertible. Put k = g−1g1, an invertible
element. Then gk = g1 and k−1h = h1. We may therefore suppose that a is not
invertible. By [21, Lemma 2.6 (4)], we may write a as a product of λ(a) atoms. Thus
a = a1 . . . as where s = λ(a). Suppose that s = m+n. Then we may factorize a = bc
where b = a1 . . . am and c = am+1 . . . as. Suppose that a = de where λ(d) = m
and λ(e) = n. Then we may write d = d1 . . . dm, all atoms, and e = em+1 . . . es,
also all atoms. Thus a = d1 . . . dmem+1 . . . es. By [21, Lemma 2.11 (2)], there
are invertible elements g1, . . . , gs−1 such that a1 = d1g1, . . . , am = g−1

m−1dmgm,

and am+1 = g−1
m es, . . . , as = g−1

s−1es. Thus b = dgm and c = g−1
m e where gm is

invertible. □

Recall that the left cancellative Levi monoids are precisely the left Rees monoids;
these are the subject of [16] and are precisely the Zapp-Szép products of free
monoids and groups and so they contain the self-similar group actions. We have
therefore proved the following.

Proposition 5.2. Self-similar group actions give rise to generalized 1-monoids.

In [19], self-similar group actions were generalized from groups acting on free
monoids to groups acting on k-monoids.

Several infinite series of groups acting simply transitively on products of k trees
were constructed in [26]. Each such group gives an explicit example of a generalized
(k − 1)-monoid.

Example 5.3. We give here an example of a group acting simply transitively on
a product of three trees, which will be used to construct a generalized 2-monoid.
Hamiltonian quaternions can be used to get a (cubical) building of any dimension,
for any set of odd primes. See [26] for details.

a1 = 1 + j + k, a2 = 1 + j − k, a3 = 1− j − k, a4 = 1− j + k,
b1 = 1 + 2i, b2 = 1 + 2j, b3 = 1 + 2k, b4 = 1− 2i, b5 = 1− 2j, b6 = 1− 2k,
c1 = 1 + 2i+ j + k, c2 = 1− 2i+ j + k, c3 = 1 + 2i− j + k, c4 = 1 + 2i+ j − k,
c5 = 1− 2i− j − k, c6 = 1 + 2i− j − k, c7 = 1− 2i+ j − k, c8 = 1− 2i− j + k.

With this notation we have a−1
i = ai+2, b

−1
i = bi+3, and c−1

i = ci+4, and the
following group corresponds to the primes 3,5,7. This group acts on the product of
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three trees of valencies 4,6,8 with one orbit, and it is a fundamental group of the
polyhedron P glued from squares decorated by the following relations.

Γ{3,5,7} =

〈 a1, a2
b1, b2, b3

c1, c2, c3, c4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1b1a4b2, a1b2a4b4, a1b3a2b1,
a1b4a2b3, a1b5a1b6, a2b2a2b6

a1c1a2c8, a1c2a4c4, a1c3a2c2, a1c4a3c3,
a1c5a1c6, a1c7a4c1, a2c1a4c6, a2c4a2c7

b1c1b5c4, b1c2b1c5, b1c3b6c1,
b1c4b3c6, b1c6b2c3, b1c7b1c8,
b2c1b3c2, b2c2b5c5, b2c4b5c3,
b2c7b6c4, b3c1b6c6, b3c4b6c3

〉
.

In [12], it was shown that any group acting cocompactly on a product of k
trees can be used to obtain a higher-rank graph with the number of vertices equal
to the number of orbits. Thus a group acting simply transitively leads to a k-
monoid. There are three alphabets, A = {a±1 , a

±
2 }, B = {b±1 , b

±
2 , b

±
3 }, and C =

{c±1 , c
±
2 , c

±
3 , c

±
4 }. The relations of Γ{3,5,7} containing the elements of alphabets of B

and C only define a 2-monoid M . The geometric realization of the (3, 5, 7) example
consists of 24 cubes. The elements of the alphabet A act on M according to the
cubes of P . See the following picture:

a1 a2

a2 a1

b1

b2

b1

b2
c4

c1

c2

c3

We do not know what the group is in this case.

The approach adopted in the example above can be applied to any of the groups
constructed in [26]. It would be interesting to know which groups of actions on
(k − 1)-monoids arise.
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