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The work examines a special behavior of the magnetic conductivity of metals that arises when
chaotic electron trajectories appear on the Fermi surface. This behavior is due to the scattering
of electrons at singular points of the dynamic system describing the dynamics of electrons in p -
space, and caused by small-angle scattering of electrons on phonons. In this situation, the electronic
system is described by a “non-standard” relaxation time, which plays the main role in a certain
range of temperature and magnetic field values.

I. INTRODUCTION

In this work we will consider galvanomagnetic phenom-
ena in pure metals in the limit of strong magnetic fields.
This limit can be defined as the condition for a strong
change of electronic states by the field during the elec-
tron free path time, which is assumed to be sufficiently
large. As was established in the 1950s - 1960s (in the
school of I.M. Lifshitz), the key role in the description of
galvanomagnetic phenomena in this limit is played by the
geometry of semiclassical electron trajectories in presence
of a magnetic field, determined by the system

ṗ =
e

c
[vgr(p) × B] =

e

c
[∇ǫ(p) × B] (I.1)

(see [1–4]).
As is well known, the quantity p in the system (I.1) is

the quasi-momentum of a particle, determined up to the
reciprocal lattice vectors. The system (I.1) can be con-
sidered both as a system in the three-dimensional torus
T
3 = R

3/L∗ and as a system in the complete p - space
R

3 . In the latter case, however, it is necessary to remem-
ber that the values of p , differing by reciprocal lattice
vectors, define the same quantum state. The dispersion
relation ǫ(p) can also be considered either as a smooth
function on the torus T

3 , or as a 3-periodic function on
R

3. At the same time, the motion of a particle in x -
space is given by the relation

ẋ = vgr(p) = ∇ǫ(p)

From the point of view of system (I.1), the condition
of a strong magnetic field can be determined by the re-
quirement that the electron covers a significant distance
(≫ pF ) along the trajectories of this system between two
successive scattering events. It is in this limit that most
effects will be determined by the geometry of the tra-
jectories of (I.1), and the limit itself can be called the
geometric limit.

Formally, this limit can be written as the condition
ωBτ ≫ 1 , where ωB plays the role of the electron cy-
clotron frequency in metal, and τ represents the electron
free path time.

B

FIG. 1: Trajectories of system (I.1) on a periodic Fermi sur-
face of a rather complex shape

The trajectories of system (I.1) in the full p - space
are given by the intersections of planes orthogonal to B

and the periodic surfaces ǫ(p) = const (Fig. 1). As is
also well known (see, for example, [1–6]), the main role
in the physical effects is played by trajectories lying near
the Fermi surface ǫ(p) = ǫF .

In describing galvanomagnetic phenomena (as well as
other transport electronic phenomena), the greatest dif-
ference is observed between closed and open (unclosed)
trajectories of (I.1), which give significantly different con-
tributions to transport phenomena in the limit B → ∞ .
For example, one can see a huge difference in the con-
tributions of closed and open periodic trajectories to the
conductivity tensor in this limit ([1])

σkl ≃
ne2τ

m∗




(ωBτ)
−2 (ωBτ)

−1 (ωBτ)
−1

(ωBτ)
−1 (ωBτ)

−2 (ωBτ)
−1

(ωBτ)
−1 (ωBτ)

−1 ∗


 ,

(I.2)
ωBτ → ∞ (closed trajectories),

σkl ≃
ne2τ

m∗




(ωBτ)
−2 (ωBτ)

−1 (ωBτ)
−1

(ωBτ)
−1 ∗ ∗

(ωBτ)
−1 ∗ ∗


 ,

(I.3)
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ωBτ → ∞ (open periodic trajectories).
In the formulas (I.2) - (I.3), the quantity n is of the

order of the charge carrier concentration, and m∗ repre-
sents the effective electron mass in the crystal. In both
cases, the direction of the z axis coincides with the direc-
tion of the magnetic field; in addition, in the second case,
the direction of the x axis is chosen along the mean di-
rection of periodic open trajectories in p - space. It can
be seen that the main feature of the (I.3) mode is the
strong anisotropy of conductivity in the plane orthog-
onal to B, which obviously corresponds to the specific
geometry of periodic open trajectories. Formulas (I.2)
- (I.3) determine the asymptotic behavior of the com-
ponents of the conductivity tensor; in particular, all the
given components contain, generally speaking, additional
constant factors of order 1. For the value ωB we can use
the approximate relation ωB ≃ eB/m∗c . In general, the
above regimes are observed in fairly pure single crystals
at fairly low temperatures and fairly large values of B .
Both modes (I.2) - (I.3) play an important role also in
a more general case when trajectories of various shapes
appear on the Fermi surface.

At the same time, as was established later, the (I.2)
- (I.3) modes are not the only possible ones, and other
types of open trajectories of system (I.1) can give signif-
icantly different contributions to the magnetotransport
phenomena in the limit B → ∞ .

The problem of classifying possible types of trajecto-
ries of system (I.1) with an arbitrary dispersion relation
was posed by S.P. Novikov in his work [7]. This prob-
lem was then intensively studied in his topological school
(see [8–15]) and can currently be considered solved in its
main formulation. In particular, as a result of studies of
the Novikov problem, all possible classes of open trajec-
tories of the system (I.1) were described, which can be
divided into topologically regular (stable and unstable)
and chaotic ones (of the Tsarev type and the Dynnikov
type). Based on the mathematical results, it also became
possible to introduce new topological quantities observed
in the conductivity of normal metals (see [16–19]), as well
as to describe new modes of behavior of the conductiv-
ity tensor in strong magnetic fields, which were unknown
before ([20, 21]).

As can be seen from the formulas (I.2) - (I.3), the con-
tribution of both closed and periodic open trajectories to
the conductivity tensor contains the parameter τ , which
plays the role of the relaxation time in the kinetic equa-
tion. This fact also occurs in more general cases, and,
as we have already said, the geometric limit in magne-
totransport phenomena corresponds to long relaxation
times and fast dynamics of electronic states in a magnetic
field. To calculate the main exponents in the asymptotic
behavior of the conductivity tensor, it is convenient to
use the τ - approximation in the kinetic equation which
gives the correct laws for the decrease of the components
σkl(B) as B → ∞ .

At the lowest temperatures, the time τ is determined
mainly by the time of electron scattering on impurities

τimp . The intensity of electron-electron and electron-
phonon scattering increases with increasing temperature,
and at higher T these processes become the main ones.
When calculating conductivity, electron-phonon scatter-
ing processes appear later than anything else, which is
caused by the small momentum of phonons at low T
and, as a consequence, long momentum relaxation times
in these processes. As we will see below, however, in
the most complex (from the ergodic point of view) cases,
the above picture can change significantly. The reason
for this is precisely electron-phonon scattering at small
angles, which greatly changes the situation in the pres-
ence of trajectories with complex ergodic behavior. As
a consequence of this, the role of electron-phonon colli-
sions begins to manifest itself much earlier, and the most
natural thing in this case is, in fact, the introduction of
some effective value τ0(B, T ) , determined not only by
the scattering processes, but also by the features of the
ergodic behavior of such trajectories.

Here we will be interested in the most complex tra-
jectories of system (I.1), namely, the Dynnikov chaotic
trajectories, which can arise only on Fermi surfaces of a
sufficiently complex shape. The ergodic behavior of Dyn-
nikov’s trajectories is the most complex (both in planes
orthogonal to B and on the Fermi surface SF ) and, as
we will explain below, has important differences from the
behavior of trajectories of other types. In particular, the
asymptotic behavior of conductivity in the presence of
trajectories of this type differs significantly from the (I.2)
and (I.3) regimes (see [20, 21]).

In the next section we will give a brief description of
the general properties of Dynnikov’s chaotic trajectories,
as well as the corresponding features of the conductivity
tensor, which we need for further consideration. In sec-
tion 3 we will consider the above-mentioned features of
the relaxation time in strong magnetic fields, which, in
fact, are inherent only in trajectories of this type.

II. THE EMERGENCE OF CHAOTIC

TRAJECTORIES AND THEIR GEOMETRIC

PROPERTIES

Chaotic trajectories of system (I.1) can arise only on
sufficiently complex Fermi surfaces (see, for example, Fig.
1) for specially selected directions of B. In particular, the
rank of the Fermi surface must be equal to 3, that is, the
surface must extend in three independent directions in p

- space.
The behavior of trajectories of (I.1) on complex Fermi

surfaces depends quite complexly on the direction of the
magnetic field. To describe them, it is convenient to use
the angular diagram indicating the type of trajectories of
(I.1) for each of the directions of B (i.e. for each point
on the unit sphere S

2).
For almost every direction of B, closed trajectories of

the system (I.1) are usually present on the Fermi sur-
face. We can also separately identify the directions B
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FIG. 2: Form of topologically regular open trajectories of
system (I.1) in planes orthogonal to B.

for which only closed trajectories of (I.1) are present on
the Fermi surface. The corresponding directions B form
open regions on the unit sphere, the union of which usu-
ally covers most of its area. Each of these regions can be
attributed to the “electronic” or “hole” type, depending
on whether the Hall conductivity is of the electronic or
hole type for the corresponding directions of B.

Generic angular diagrams can be divided into two main
types, namely, diagrams in which the regions described
above correspond to the same type (electron or hole) and
diagrams in which the regions of both types are present.
We will call diagrams of the first type type A diagrams,
and diagrams of the second type - type B diagrams.

In addition to the regions corresponding to the pres-
ence of only closed trajectories, complex angular diagram
contains directions B corresponding to the emergence of
open trajectories of various types (periodic, topologically
regular, Tsarev’s type chaotic, Dynnikov’s type chaotic)
on the Fermi surface. As can be shown, for each of these
directions B the emerging open trajectories are of the
same type (see, for example, [15]). It is this circum-
stance that makes it especially convenient to use angular
diagrams when describing trajectories of system (I.1).

The structure of complex angular diagrams is based on
“Stability Zones” Ωα ⊂ S

2 , corresponding to the emer-
gence of “topologically regular” open trajectories of sys-
tem (I.1) on the Fermi surface. Topologically regular
open trajectories are stable to all small rotations of B

(as well as variations in the value of ǫF ) and have a rel-
atively simple form in planes orthogonal to B, namely,
each such trajectory lies in a certain straight strip of fi-
nite width, passing through it (Fig. 2).

For the contribution of topologically regular trajecto-
ries to the tensor σkl(B) , in leading order, we can also
use the formula (I.3), provided that the x axis coincides
with their mean direction in p - space.

Each Stability Zone Ωα is a region with a piecewise
smooth boundary on the sphere S

2 (see [15]) and corre-
sponds, in fact, to some topological invariant observed in
conductivity in strong magnetic fields (see [16, 17]).

An important difference between type A diagrams and
type B diagrams is that type A diagrams contain a fi-
nite number of Stability Zones (Fig. 3). In contrast,
generic type B diagrams contain an infinite number of
Zones Ωα ([22, 23]). The zones Ωα in diagrams of type
B form quasi-one-dimensional clusters on S

2 , separating
the regions of electron and hole Hall conductivity, cor-

e

e

e

e

e

e e

e

e

ee

e

FIG. 3: Angular diagrams of type A (top) and B (bottom)
(schematic). The letters “e” and “h” denote the sets of direc-
tions B corresponding to the presence of only closed trajec-
tories on the Fermi surface and Hall conductivity of a fixed
type (electron and hole, respectively).

responding to the presence of only closed trajectories on
the Fermi surface (Fig. 3).

Clusters of Zones Ωα also contain infinite sets of direc-
tions B corresponding to the emergence of chaotic trajec-
tories of (I.1) on the Fermi surface. Thus, it is diagrams
of type B that correspond to Fermi surfaces on which
chaotic trajectories of system (I.1) can appear.

Angular diagrams of type B correspond to the general
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FIG. 4: The shape of Dynnikov’s chaotic trajectories in
planes, orthogonal to B.

situation and for generic dispersion relations ǫ(p) arise
in some finite energy interval ǫF ∈ (ǫB1 , ǫ

B
2 ). At the same

time, the width of the interval (ǫB1 , ǫ
B
2 ) can be rather

small for real relations ǫ(p) . As a consequence, the
search for materials satisfying the condition ǫF ∈ (ǫB1 , ǫ

B
2 )

represents a separate task. Here we will only note that
for a number of materials, apparently, the emergence of
a type B diagram can also be achieved by applying an
external force to the sample (see [24]).

As we have already said, chaotic trajectories of sys-
tem (I.1) are divided into two main classes, namely,
Tsarev-type trajectories and Dynnikov-type trajectories.
Tsarev-type trajectories have a simpler behavior in p -
space and resemble topologically regular open trajecto-
ries (they have an asymptotic direction, however, cannot
be contained in any straight strip of finite width in planes
orthogonal to B). These trajectories, however, have a
rather complex behavior on the compact Fermi surface
SF ⊂ T

3 and according to this criterion they belong to
the chaotic trajectories of the system (I.1). We also note
here that both Tsarev-type trajectories and Dynnikov-
type trajectories are unstable with respect to small rota-
tions of B.

Trajectories of the Dynnikov type have the most com-
plex behavior, exhibiting “chaotic” properties both in the
full p - space and on the surface SF ⊂ T

3 . In particular,
such trajectories are characterized by “chaotic” wander-
ing in planes orthogonal to B, with gradual filling of all
sections of such planes (Fig. 4).

When describing Dynnikov’s trajectories on the sur-
face SF ⊂ T

3 we must immediately mention that such
trajectories, generally speaking, appear on the Fermi sur-
face together with closed trajectories of the system (I.1).
The closed trajectories are combined into a finite number
of (non-equivalent) cylinders bounded by singular closed
trajectories of (I.1) (Fig. 5). Removing the cylinders
of closed trajectories gives us a new surface (with edge)

ŜF (B) containing only open trajectories of system (I.1).

FIG. 5: Examples of cylinders of closed trajectories of system
(I.1) on the Fermi surface

In the presence of Dynnikov’s trajectories on the sur-

face SF , the surface ŜF (B) remains a surface of rather
high complexity, in particular, its genus (defined after

filling the boundary of ŜF (B) with flat disks) is always
at least 3. In the overwhelming majority of cases, we can

assume that ŜF (B) is a surface of genus 3, invariant un-
der the change p → −p , and each chaotic trajectory is

everywhere dense on the entire surface ŜF (B) . In gen-
eral, the stochastic properties of Dynnikov’s trajectories
have a huge number of very interesting features that are
actively being studied at the present time (see, for exam-
ple, [12–14, 20, 21, 25–40]).

One of the consequences of such a complex behavior of
Dynnikov’s trajectories is their nontrivial contribution to
the conductivity tensor in strong magnetic fields. In par-
ticular, this contribution vanishes in the limit B → ∞
for all components σkl(B) , including conductivity along
the direction of B ([20]). In the interval ωBτ ≫ 1 the
components σkl(B) have “scaling” behavior, reflecting
the scaling properties of chaotic trajectories ([20, 21]).
It will also be especially important for us here that sur-
faces of this kind always contain saddle singular points
of the system (I.1), which have an important influence
on the electron dynamics in the presence of a small-angle
scattering.

In the general case, the scaling behavior of chaotic tra-
jectories has anisotropic properties and, with a suitable
choice of the x and y axes, we can write for conductivity
along the main directions

∆σxx(B) ≃
ne2τ

m∗
(ωBτ)

2α1−2
, ωBτ → ∞ , (II.1)

∆σyy(B) ≃
ne2τ

m∗
(ωBτ)

2α2−2
, ωBτ → ∞ , (II.2)

∆σzz(B) ≃
ne2τ

m∗
(ωBτ)

2α3−2
, ωBτ → ∞ (II.3)

(0 < α1, α2, α3 < 1).
Here we should immediately note that, in contrast

to the relations (I.2) - (I.3), the relations (II.1) - (II.3)
are not the main term of any asymptotic expansion for
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σ kl

1 B

FIG. 6: Behavior of the components of the conductivity tensor
corresponding to the contribution of chaotic trajectories of
(I.1) of Dynnikov’s type

σkl(B) . Instead, they define a general “trend” of de-
creasing components σkl(B) as B → ∞ , which may
also have an additional (cascade) structure in the inter-
val ωBτ ≫ 1 (Fig. 6).

It can also be noted that the contribution of chaotic
trajectories to conductivity should in general be added
to the contribution of closed trajectories (I.2), which can
also be present on the Fermi surface. It can be seen
that the contribution of chaotic trajectories noticeably
exceeds the contribution of closed trajectories to conduc-
tivity in the plane orthogonal to B, and is noticeably less
than their contribution to conductivity along the mag-
netic field. From this point of view, perhaps it is the
study of conductivity in the plane orthogonal to B that
is most convenient when studying the geometry of chaotic
trajectories.

As a rule, when studying the geometric properties of
trajectories of (I.1), the dependence of σkl(B) on the
value of B is studied for a fixed (maximum) value of
τ . Here we will be interested in its dependence on both
quantities B and τ in the interval ωBτ ≫ 1 .

As can be seen from the formulas (II.1) - (II.3), the
values σll(B) can both decrease (αl < 1/2), and increase
(αl > 1/2), with increasing τ . This circumstance, in fact,
is caused by an increase in the values of σll for B = 0
with increasing τ , and the ratio σll(B, τ)/σll(0, τ) is a
decreasing function of τ . Note also that the relations
(II.1) - (II.3) should be used in the interval σll(B, τ) ≪
σll(0, τ) (ωBτ ≫ 1).

In general, both dependences of σll(B, τ) on both ar-
guments can be used to determine the scaling parameters
of chaotic trajectories. The dependence on τ (for a fixed
B) is strongest for αl , noticeably different from 1/2 ,
and disappears for αl ≃ 1/2 .

A more detailed discussion of the relations (II.1) - (II.3)
is presented in [16, 17]. Here we note only the main
reason for this behavior of the components σkl(B) . As
we have already said, it lies in the geometric properties
of the chaotic trajectories in p - space, as well as their
properties on the compact Fermi surface SF ⊂ T

3 .
Namely, for the behavior of conductivity (and other

magnetotransport phenomena), the geometry of sections
of chaotic trajectories of length of the order of vF τ in
coordinate space (or l ∼ pFωBτ in p - space) turns out
to be especially important. More precisely, it is impor-
tant to know the average deviation of the ends of such
sections along each of the coordinates x , y and z . The
corresponding averages grow in a power-law manner in
p - space

|∆px(l)| ≃ pF

(
l

pF

)α2

, |∆py(l)| ≃ pF

(
l

pF

)α1

and respectively,

|∆xi| ∼
vF
ωB

(ωBτ)
αi ∼

cpF
eB

(ωBτ)
αi

in coordinate space.
The values αi lie in the interval (0, 1) , and we have

different degrees α2 and α1 for some principal directions
px and py in p - space. This behavior also extends to
coordinate space (note that the projections of trajectories
in x - space onto the plane orthogonal to B are similar
to the trajectories in p - space rotated by 90◦). Sep-
arately, the scaling parameter α3 arises for deviations
along the z axis in the coordinate space. Anistropic
scaling behavior of the quantities |∆xi| is expressed in
the corresponding anisotropy of the electron drift in an
external electric field, which, in turn, is expressed in the
dependences (II.1) - (II.3).

From the kinetic equation in the τ - approximation it
is not difficult to get the formula

∆ skl(B) = e2 τ

∫∫

ŜF

〈vkgr〉B 〈vlgr〉B
dpz ds

(2π~)3

for the contribution of chaotic trajectories to the symmet-
ric part of the conductivity tensor (taking into account
spin), where s = teB/c and t is the travel time along
the trajectories.

The values 〈vkgr〉B (pz, t) are defined by the averaging
on the corresponding trajectory

〈vkgr〉B (pz , t) ≡
1

τ

∫ t

−∞

vkgr (pz, t
′) e

(t′−t)
τ dt′ ,

and can be approximated by the formula

〈vkgr〉B (pz, s) ≃
1

τ

∫ t

t−τ

vkgr (pz , t
′) dt′

for large values of τ .
Assuming directly from the system (I.1):

|〈vxgr〉B| =

∣∣∣∣
c∆py
eBτ

∣∣∣∣ , |〈vygr〉B | =

∣∣∣∣
c∆px
eBτ

∣∣∣∣ ,

we in the same way obtain a connection between the scal-
ing parameters of the trajectory in p - space with the
scaling parameters of the conductivity tensor. (Similarly,
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B

FIG. 7: A reconstruction of a chaotic trajectory in p - space
during a crossing of a saddle singular point by a plane orthog-
onal to B

the scaling parameter α3 arises from the estimating of
the average value 〈vzgr〉B along the trajectory).

It can be seen that the behavior of Dynnikov’s tra-
jectories is noticeably different from ordinary diffusion,
despite their obvious “chaotic” wandering in planes or-
thogonal to B. To some extent, this is explained by the
absence of self-intersections in such trajectories, and in
general, by the presence of velocity correlations (with
non-trivial scaling properties) on all their scales.

It is extremely important in our situation that the
main directions, as well as the scaling parameters αi

(the Zorich - Kontsevich - Forney indices) are the same
for all chaotic trajectories (in all planes orthogonal to
magnetic field) for a given direction of B . This is due
to a specific behavior of such trajectories on the surface

ŜF (B) , reflecting the general features of the system (I.1).
The above properties hold in all planes orthogonal to

B, despite multiple reconstructions of chaotic trajectories
with changing pz . The latter occur due to the presence
of saddle singular points of the system (I.1) inside the

surface ŜF (B) , which cause such reconstructions when
they are intersected by planes orthogonal to B (Fig. 7).
These points, repeating periodically in p - space, cause
reconstructions in the geometry of chaotic trajectories
on all scales (Fig. 8). At the same time, as we have
already said, this does not change the main directions and
scaling parameters of the trajectories. The last property
is explained by the fact that reconstructions at different
points are not independent, but, in fact, are coordinated
with each other in a special (complex) way.

The parameter τ , as is easy to see, plays the role of
the time of destruction of correlations in the motion of a
particle in x - and p - space. The parameter ωBτ de-
termines the scale of the geometric length (in p - space)
at which correlations are still preserved. Looking ahead,
we note that here we will be interested in the processes
of destruction of correlations in the motion of an elec-
tron, caused by the “vibration” of the value pz due to
small-angle scattering on phonons, leading to random re-
constructions of chaotic trajectories near singular points
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FIG. 8: Multiple reconstructions of a chaotic trajectory in p

- space when changing the value of pz (schematically)

of the system (I.1). These processes, as we will see, lead
to the emergence of a new effective value τ , which in
general differs from the relaxation times due to other
scattering processes.

III. MEAN FREE PATH TIME ON CHAOTIC

TRAJECTORIES

We will now consider the behavior of the free path time
of electrons on chaotic trajectories in the low tempera-
ture regime, where this time is quite large. As is well
known (see, for example, [4–6]), the free path time of
electrons in a single crystal is determined mainly by three
processes, namely electron-electron scattering, electron-
phonon scattering and scattering by impurities. The first
two processes are characterized by a strong dependence
on temperature, while the latter is almost independent
of T .

To achieve the longest free path time, very clean sam-
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ples are usually used at very low temperatures. In this
case, electron-electron and electron-phonon scattering
become insignificant, and the time τ is completely deter-
mined by residual scattering on impurities. In our case,
however, we will consider slightly higher temperatures,
when all three of these processes appear.

Let us present here the most approximate estimates of
the temperature intervals corresponding to the intensities
of the above processes that interest us, using the most
general assumptions.

Let us note first of all that in the purest samples
the time of electron scattering on impurities τimp can
reach 10−8 sec, which corresponds to the mean free path
l ∼ 1 cm . This value can apparently be used as an
upper estimate for τimp , although, in reality, for our
effects, noticeably smaller values of τ are often suffi-
cient (note, that for τ ∼ 10−9 sec the value of ωBτ
in the interval 0.1Tl ≤ B ≤ 10Tl can be estimated as
10 ≤ ωBτ ≤ 1000 , which is, of course, enough to manifest
the geometry of complex trajectories we are considering
here).

The time of the electron-electron scattering can be es-
timated (see, for example, [6]) using the formula

τee ≃
~

kT

ǫF
kT

(III.1)

(where ~ ≃ 6.582 ·10−16 eV ·sec , ǫF ≃ 5 eV), which gives
the value τee ≃ 10−8 sec at T = 5K .

Thus, (roughly) we can assume that in our situation
the processes of electron-electron scattering become in-
significant in comparison with the processes of scattering
by impurities already at temperatures of the order of sev-
eral kelvins.

The average time between electron scatterings on
phonons can be (see [6]) estimated as

τ ǫph ≃
~

kT

(
TD

T

)2

(III.2)

As is well known, however, this time is the time of
the energy relaxation of electrons due to scattering by
phonons. The momentum relaxation time τpph is much
longer in this case, since the phonons have a very small
momentum

pph ≃
T

TD
pF ≪ pF ,

transferred to electrons during the scattering processes.
As a result, an electron undergoes a “diffusion” mo-
tion along the Fermi surface, repeatedly scattering on
phonons, and its momentum relaxation time can be esti-
mated as

τpph ≃ τeph

(
TD

T

)2

≃
~

kT

(
TD

T

)4

Setting TD ≃ 300K , for the value T = 5K we ob-
tain the values τ ǫph ≃ 5 · 10−9 sec and τpph ≃ 2 · 10−5 sec .

It can be seen, therefore, that for given parameters, the
temperature region where all three relaxation processes
are significant lies near the values of T ≃ 5K . Certainly,
all the above estimates are correct only in order of mag-
nitude; in addition, the values ǫF and TD can differ
noticeably (by an order of magnitude) for different sub-
stances. In general, we can assume that the interval of
interest to us lies near the values of T of the order of ten
(or tens) kelvins and strongly depends on the individual
parameters of a conductor.

As can also be seen, in the above example, the electron-
phonon scattering does not play a big role in calculating
conductivity in the standard situation due to the large
value of τpph compared to other times. (At the same time,
it plays the main role in calculating thermal conductivity
due to the small value of τ ǫph).

As we said above, we are going to consider here a “non-
standard” situation, namely, the situation of the emer-
gence of chaotic trajectories on the Fermi surface. As we
have also already said, the main role in this case will be
played by the presence of saddle singular points inside the
carrier of chaotic trajectories. The source of the special
behavior of τ in this case is the “vibration” of the value
of pz due to small-angle scattering on phonons, leading
to ambiguity of motion along a trajectory near singular
points (Fig. 7). In this situation, small-angle scatter-
ing begins to play a very significant role and, thus, the
time τ ǫph becomes significant when calculating σkl(B)
in strong magnetic fields.

We will be most interested in the situation when this
effect is the main one, which implies the relations

τ ǫph < τee , τimp

As we saw above, for “standard” values ǫF (5 eV) and
TD (300 K) in ultrapure metals, this relation holds for
T ≥ 5K . This threshold value may be lower for mate-
rials with special parameters (relatively speaking, high
values of ǫF and low values of TD , as well as weaker
electron-electron interaction and strong electron-phonon
interaction).

The temperature range suitable for us is limited from
above by the condition ωBτ

ǫ
ph ≫ 1 . Assuming, for exam-

ple, ωBτ
ǫ
ph ≥ 10 , for the “standard” value TD ≃ 300K

we get the estimates

T ≤ 40K at B ≃ 10Tl ,

T ≤ 20K at B ≃ 1Tl

(The upper threshold value of T may be higher for mate-
rials with larger values of TD, as well as for larger values
of B).

As we have already said, in our situation another free
path time τ0(B, T ) arises, which is determined by the
“scattering” of electrons at the saddles of the system (I.1).

To estimate the time τ0(B, T ) we must consider
changes in the value of pz along the chaotic trajecto-
ries of system (I.1). Since such changes are caused by
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FIG. 9: Narrow band limited by the original and true electron
trajectory on a complex Fermi surface (schematically)

small-angle scattering on phonons, we, in any case, have
the inequality

τ0(B, T ) ≥ τ ǫph

The change in electron momentum during each scat-
tering is of the order of

δp0 ≃
T

TD
pF ≪ pF

The change in electron energy in this case is of the
order of δǫ ≃ kT ≪ ǫF . Note that due to the relation

kT/ǫF ≪ T/TD

we can assume that the electron actually remains on the
Fermi surface all the time, “drifting” along the trajecto-
ries of system (I.1) with multiple scattering on phonons.

An electron trajectory (in p - space) almost does not
change during small-angle scattering far from the sad-
dle singular points of the system (I.1). As can be seen,
together with the original trajectory, it limits a narrow
band on the Fermi surface, the width of which changes in
each scattering event (Fig. 9). If, at some point, a saddle
singular point of the system (I.1) falls inside this band,
the initial and true trajectories of the electron quickly
diverge in p - space (Fig. 10). In the latter case, we
can say that the electron was scattered at the saddle sin-
gular point of the system (I.1), which was caused by its
small-angle scattering on phonons. Scattering at singu-
lar points are independent and destroy electron velocity
correlations at times exceeding τ0(B, T ) .

Let us especially note here that the last property holds
precisely for saddle points lying inside the carrier of open
trajectories, and does not apply to singular points lying

on the boundary of ŜF (B) . This circumstance is due
to the different geometry of the trajectories adjacent to
such points in the first and second cases (Fig. 11). As can
be seen, reconstructions of open trajectories near points

FIG. 10: Electron scattering at a saddle singular point of
system (I.1) caused by small-angle scattering on phonons

FIG. 11: Trajectories adjacent to the saddle singular points

of system (I.1) inside the surface ŜF (B) and on its boundary.

of the second type does not significantly change their
geometry on large scales. Note also that the presence of
singular points of the system (I.1) inside the carrier of
open trajectories is one of the main distinctive features
of chaotic trajectories of the Dynnikov type and is not
characteristic of trajectories of other types (see [8, 11, 13–
15]).

To estimate the mean length l0 corresponding to scat-
tering at a singular point, we can equate the area Σ(l0)
of the strip in Fig. 9 to the area of the carrier of chaotic
trajectories (divided by the number of singular points
inside it).

The area ŜF (B) is approximately equal to p2F with
a certain geometric coefficient, which can be noticeable

greater than 1. On the surface ŜF (B) of genus 3, how-
ever, there are 4 different saddle points of the system
(I.1), therefore for the corresponding area Σ(l0) we can
write approximately

Σ(l0) ≃ p2F (III.3)

In particular, the condition τ0(B, T ) = τ ǫph(T ) is de-
termined by the inequality

δp0 · ωB τ ǫph pF ≥ p2F ,

i.e.

ωB ≥
kT

~

T

TD
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τ 0
(B,T) τ

ε

ph (T)>

B

10 Tl

5 Tl

20 K 40 K T

τ 0
(B,T) τ

ε

ph (T)=

FIG. 12: Conditional curve separating areas with τ0(B, T ) =
τ ǫ
ph(T ) and τ0(B, T ) > τ ǫ

ph(T ) for standard values of ǫF (5
eV) and TD (300 K). The shaded area corresponds to the
values of T at which the times τee and τimp begin to play a
major role (approximately).

(assuming that at length l0 ≃ ωBτ
ǫ
phpF only one scat-

tering by a phonon occurs).
The shape of the curve

ωB =
kT

~

T

TD
, (III.4)

separating the modes τ0(B, T ) = τ ǫph(T ) and τ0(B, T ) >

τ ǫph(T ) , for “standard” metal parameters is shown in Fig.
12. It must be said, certainly, that this curve is to a large
extent conditional, and we can rather talk about a cer-
tain region near it, separating the two indicated regimes.
Its position also, in reality, strongly depends on the pa-
rameters of the conductor.

The value ωBτ0(B, T ) on the curve (III.4) is equal to

ωBτ0 ≃
kT

~

T

TD

~

kT

(
TD

T

)2

=
TD

T

and satisfies the condition ωBτ0 ≫ 1 in the interval of
interest to us. This condition is also well satisfied (in
the temperature range of interest to us) in the region
τ0(B, T ) = τ ǫph(T ) (above the curve).

The fulfillment of the condition ωBτ0 ≫ 1 in the area
under the curve (III.4) requires a separate study (primar-
ily due to a decrease in the value of ωB in this area). In
the general case, the dependence of time τ0 on the values
of B and T here can be quite complex.

In the limit τ0(B, T ) ≫ τ ǫph(T ) to determine the mean

deviation |∆p| along the corresponding section of the
trajectory we can set

|∆p| ≃ δp0

√
τ0
τ ǫph

For the corresponding strip area in Fig. 9, assuming
l0 ≃ ωBτ0pF , we can use then the estimate

Σ(τ0) ≃ δp0

√
τ0
τ ǫph

ωB τ0 pF ≃
T

TD

τ
3/2
0√
τ ǫph

ωB p2F

Using the relation (III.3), for the time τ0(B, T ) we
obtain

τ0(B, T ) ≃

(
TD

T

√
τ ǫph
ωB

)2/3

≃

(
TD

T

)4/3(
~ωB

kT

)1/3
1

ωB

(III.5)
and thus

ωB τ0(B, T ) ≃

(
TD

T

)4/3 (
~ωB

kT

)1/3

It must be said, however, that the indicated limit, ap-
parently, can be observed extremely rarely, and the de-
pendence τ0(B, T ) rather has some intermediate form
between (III.5) and τ0 = τ ǫph .

Summarizing the above, we can see that when Dyn-
nikov’s chaotic trajectories appear on the Fermi surface,
the behavior of the conductivity tensor in strong mag-
netic fields depends significantly on the value of τ ǫph (or

τ0(B, T )). For ultrapure materials, moreover, it is pos-
sible to indicate temperature and magnetic field inter-
vals where this dependence is decisive for the behavior
of σkl(B, T ) . In a more general situation, the relax-
ation time is also determined by the processes of electron-
electron scattering and scattering by impurities, and is
given by the relation

τ−1 ≃ τ−1
0 (B, T ) + τ−1

ee (T ) + τ−1
imp

Let us note here that the above property is associated
precisely with the contribution of chaotic trajectories to
the tensor σkl(B, T ) , in particular, in the accompany-
ing contribution (I.2) of closed trajectories the time τ is
determined by the relation

τ−1 ≃ τ−1
ee (T ) + τ−1

imp

(considering the time τpph noticeably larger in our tem-

perature range).
In the limit of very low temperatures (T < 1K), where

the relations

τ ǫph, τee ≫ τimp

hold, the time τimp plays the role of the universal relax-
ation time when calculating the conductivity tensor.

As we have already noted, due to the specificity of
the contribution of chaotic trajectories to σkl(B, T ) , its
dependence on τ is most pronounced when the scaling
parameters αl are noticeably different from 1/2. This
situation, as a rule, also corresponds to the greatest
anisotropy of chaotic trajectories in planes orthogonal to
B (for example, α1 < 1/2, α2 > 1/2). When determin-
ing the dependence τ0(B, T ) in the interval considered
above, one can use the values of αl measured from the
dependence σkl(B) in the limit of very low temperatures
(τ = τimp), where they can be determined with the great-
est accuracy.
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IV. CONCLUSION

The paper examines the behavior of the magnetic con-
ductivity of a metal in a special situation, namely, when
chaotic electron trajectories arise on the Fermi surface.
It is shown that, in a certain range of temperatures and
magnetic fields, the behavior of conductivity in this case
is determined by the electron-phonon energy relaxation
time τ ǫph (or the associated time τ0(B, T )), which usu-
ally does not play a role in calculating conductivity. The

reason for this is the scattering of electrons at singu-
lar points of the system, which describes the dynam-
ics of an electron on the Fermi surface in the presence
of an external magnetic field. Such scattering is actu-
ally caused by small-angle scattering of electrons on low-
momentum phonons and provides rapid momentum re-
laxation of electrons in this situation. The general de-
pendence of the conductivity tensor on the values of T
and B is determined both by the function τ0(B, T ) and
by the geometric features of chaotic trajectories.
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