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Abstract

Many countries have established population-based biobanks, which are being used
increasingly in epidemiolgical and clinical research. These biobanks offer opportunities
for large-scale studies addressing questions beyond the scope of traditional clinical trials
or cohort studies. However, using biobank data poses new challenges. Typically, biobank
data is collected from a study cohort recruited over a defined calendar period, with subjects
entering the study at various ages falling between cL and cU . This work focuses on biobank
data with individuals reporting disease-onset age upon recruitment, termed prevalent
data, along with individuals initially recruited as healthy, and their disease onset observed
during the follow-up period. We propose a novel cumulative incidence function (CIF)
estimator that efficiently incorporates prevalent cases, in contrast to existing methods,
providing two advantages: (1) increased efficiency, and (2) CIF estimation for ages before
the lower limit, cL.

keywords: Aalen-Johansen estimator, Delayed entry, Illness-death model, Left trun-
cation, Survival analysis.
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1 Introduction

We consider the problem of estimating the incidence of some disease using population-
based biobank data. We work with the illness-death model of Fig. 1, also known as the
semi-competing risks model. Here, individuals start in a healthy state and can then move
to the diseased state, signifying being diagnosed with the disease of interest, and from
there to the dead state. Individuals can also move directly from the healthy state to
the dead state. Each arrow in the figure represents a different hazard function. Let the
random variables T1 and T2 represent the age at diagnosis and age at death, respectively.
Assume for simplicity that (T1, T2) are absolutely continuous. Since the disease cannot
occur after death, the density function of (T1, T2) is concentrated on the upper wedge
t2 ≥ t1. The joint density of (T1, T2), denoted by fT1,T2(t1, t2), is defined for t2 ≥ t1 ≥ 0
and ∫ ∞

0

∫ ∞

t1

fT1,T2(t1, t2)dt2dt1 = Pr(T1 < ∞) ≤ 1 .

For those who died without having the disease, we set T1 = ∞, and the conditional density
of T2 is defined over t2 > 0. This description of the model specifies no probability content
in the lower wedge t2 < t1 < ∞, which is a true reflection of the physical situation, and
is therefore recommended for semi-competing risks, as described by Xu et al. (2010).

Our current goal is to use biobank data to estimate the probability of having the
disease by time t, which is the cumulative incidence function (CIF), given by

G1(t) = Pr(T1 ≤ t, T2 > T1) t ∈ [0, τ ]

for a constant τ > 0 representing the maximum age at end of follow-up, or alternatively,
the conditional CIF,

G1(t|T2 > cL) = Pr(T1 ≤ t, T2 > T1|T2 > cL) t ∈ [0, τ ]

for a constant cL > 0 representing the minimum age of entry into the study.
Population-wide biobanks have been established in various countries, such as the UK,

Sweden, Denmark, Canada, South Korea, China, Japan, Singapore, and the USA. These
extensive repositories gather, analyze, and store phenotypic and genetic information from
representative samples of their respective populations. Medical data recorded routinely in
these biobanks are increasingly employed for research purposes. Their utilization presents
an opportunity for large-scale, high-quality studies that can address questions not easily
tackled by randomized clinical trials or classical cohort studies involving bespoke data
collection. However, the use of biobank data also introduces new challenges. The aim
of this work is to solve one open problem related to analysis of time-to-event data, that
represents a major leap forward in the area of survival analysis in general, and in analyzing
biobank data in particular.

Typically, biobank data are collected from a study cohort recruited over a defined
calendar period, with subjects entering the study at various ages falling between specified
limits cL and cU . In the UK Biobank (UKB) data, for instance, cL is set at 40, and
cU at 69. Following recruitment, the biobank participants undergo prospective follow-up.
This study design introduces certain ascertainment-related challenges. Firstly, there is no
information available regarding deaths occurring before the minimal recruitment age, cL.
Secondly, the data represents only the segment of the population that survived up to the
recruitment age, a challenge recognized as left truncation or delayed entry. Addressing
these issues is crucial to prevent biased results, see Keiding (1991); Saarela et al. (2009);
Vakulenko-Lagun and Mandel (2016) among others.

When UKB data are used to estimate the conditional CIF, G1(t|T2 > cL), of a specific
disease, participants are categorized into three groups: “prevalent” cases—individuals
already diagnosed with the disease at the time of recruitment; “incident” cases—those
diagnosed during the follow-up period; and right-censored observations—individuals who
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were not diagnosed with the disease by the conclusion of the follow-up (or analysis time).
For instance, among the current 502,420 observations in the UKB, there are a total of 383
cases of acute myeloid leukemia (AML) cancer, with 20% of them classified as prevalent.

Estimating from left-truncated and right-censored data is typically done either through
risk-set correction or inverse-probability weighting (IPW). The well-known Aalen-Johansen
estimator (Aalen and Johansen, 1978) can be easily adjusted for delayed entry (see Allignol
et al. (2010) and Section 2.1 below), where the adjustment is based on risk-set correction.
An individual enters the risk set after its left-truncation (i.e., enrollment) time, and the
individual stays in the risk set until its event or censoring event time, whichever comes
first. However, this risk-set adjustment omits prevalent cases from the estimation pro-
cedure, since the event time precedes the entry time. Besides the potential reduction in
efficiency, it also implies that the Aalen-Johansen estimator can estimate CIF only for
t > cL, conditional on being event-free at the time of recruitment.

Chang and Tzeng (2006) and Vakulenko-Lagun et al. (2017) provided nonparametric
estimators employing IPW methods. Unlike the Aalen-Johansen estimator, these ap-
proaches do not exclude prevalent observations, but correct for the sampling bias by
IPW. Their methods assign positive masses only to completely uncensored observations,
and the weights depend on the distributions of censoring and truncation. However, both
methods require the condition that the upper limit of the support of the distribution of
age at censoring be greater than the upper limit of the support of the distribution of age
at death. If this condition is violated, the estimators can be very seriously biased. As an
example, Fig. 2 presents a graph of the mean of the Chang-Zheng estimator along with
the true CIF, the mean of the Aalen-Johansen estimator, and the mean of our proposed
estimator for the setting of Scenario 2111 in our simulation study below. The bias of
the Chang-Zheng estimator is pronounced. As a result, we will not explore these works
further.

Our work here presents a solution to the problem of how to use the information from
the prevalent cases without imposing the foregoing restrictive condition on the support
of the age at censoring. We introduce a novel CIF estimator that efficiently utilizes the
entire available data, including prevalent cases. The inclusion of prevalent cases offers two
advantages: (1) increasing the number of observed events, and (2) estimating CIF at ages
prior to age cL. This can be particularly valuable for diseases with low fatality rates at
early ages.

2 CIF Estimators

Consider n independent observations. Let T1i and T2i be the age at diagnosis and age at
death, respectively, of the ith observation, i = 1, . . . , n. If the participant dies without
being diagnosed with the disease under study, we set T1i = ∞. Define Ci as the right-
censoring time and Ri as the age at recruitment, where cL ≤ Ri ≤ cU signifying that
subjects are recruited at ages between cL and cU . We focus on the homogeneous case,
i.e., without covariates. We assume that Ci is independent of (T1i, T2i) and that Ri

is independent of the age of disease onset and quasi-independent (Tsai, 1990) of death
and censoring ages. Define V1i = min(T1i, T2i, Ci), V2i = min(T2i, Ci), δ1i = I(T1i ≤
min(T2i, Ci)), and δ2i = I(T2i ≤ Ci). The observed data consist of {V1i, V2i, δ1i, δ2i, Ri , i =
1, . . . , n}.

2.1 Left-Truncation Adjusted Aalen-Johansen Estimator

Denote the hazard functions of transitions 0 → k, k = 1, 2 (see Fig. 1) by

λk(t) = lim
dt↓0

(dt)−1Pr(t ≤ Tk < t+ dt|T1 ≥ t, T2 ≥ t) .
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G1(t) can then be written as

G1(t) =

∫ t

0
λ1(u)Pr(T1 ≥ u, T2 ≥ u)du =

∫ t

0
λ1(u)Pr(T

∗ ≥ u)du ,

where T ∗ = T1 ∧ T2. Let N1i(u) = δ1iI(V1i ≤ u) be the counting process for disease
occurrence, and let Y1i(u) be the at-risk indicator, equal to 1 if the particicipant is still
at risk and equal to 0 if not. The Aalen-Johansen estimator of the CIF is then given by

ĜAJ
1 (t) =

∫ t

0
ŜT ∗(u−)

∑n
i=1 dN1i(u)∑n
i=1 Y1i(u)

,

where ŜT ∗(·) is the Kaplan-Meier estimator of the survival function of T ∗. For data with
left censoring, estimation is based on risk-set adjustment for delayed entry. Namely, at
time t, the at-risk process of individual i is defined by Y1i(t) = I(Ri ≤ t ≤ V1i). Clearly,
this estimator excludes prevalent cases, i.e., individuals with V1i < Ri. Therefore, the
estimand of ĜAJ

1 (t) is the CIF given that T1 ≥ cL and T2 ≥ cL, namely, G1(t|T1 ≥
cL, T2 ≥ cL). The estimator ĜAJ

1 (t) is a consistent estimator of this estimand.

2.2 The Proposed Estimator

We redefine the CIF function as G1(t) = Pr(T1 ≤ t1, T2 > T1, T2 ≤ τ) and assume that the
probability of surviving up to time τ is positive but small, so that the bias introducedby
including the event T2 ≤ τ is minimal. Then, one can write

G1(t1) =

∫ τ

0
lim
dt↓0

(dt)−1Pr(T1 ≤ t1 ∧ t2, T2 ∈ [t2, t2 + dt))dt2

=

∫ τ

0
F1|2(t1 ∧ t2|t2)dF2(t2) (1)

where F1|2(t1|t2) = 1 − S1|2(t1|t2) = 1 − Pr(T1 > t1|T2 = t2) and F2(·) is the cumulative
distribution function of age at death. By focusing on the conditional distribution of age
at diagnosis, given age at death, we can easily accommodate delayed entry, as explained
in further detail below.

It is easy to verify that since Ri is independent of T1i and quasi independent of T2i,
given the death age, the recruitment age has no additional predictive value for the age at
onset T1i. Specifically, for any r ∈ [cL, cU ], t2 > t1 ≥ 0 and t2 > r,

S1|2(t1|t2) = Pr(T1 > t1|T2 = t2, R = r) .

Let the disease-at-risk process, adjusted for delayed entry, be defined by

Yi(t1, t2) = I(t1 ≤ V1i)I(Ri ≤ t2) i = 1, . . . , n

such that subject i is at risk at (t1, t2) if the subject is alive, non-censored and free of the
disease by time t1 and is also recruited by time t2. The disease counting process is again
defined by N1i(t1) = δ1iI(V1i ≤ t1).

We now need to construct estimators of F1|2(t1|t2) and F2. In regard to F2, we take

F̂2(t) = 1 − Ŝ2(t) and Ŝ2(·) is the Kaplan-Meier (KM) estimator of death based on
{V2i, δ2i, Ri , i = 1, . . . , n} with the risk-set correction for left-truncated and right-censored
data. In regard to F1|2, we proceed as follows. Given T2i, by standard martingale theory
one can write

dMi(t1) = dN1i(t1)− Yi(t1, T2i)Λ1|2(dt1|T2i) t1 < T2i (2)

where Λ1|2(t1|t2) = − logS1|2(t1|t2) and Mi(t1) is a zero-mean martingale with respect to
the filtration

F (i)
t1,t2

= {Ri, T2i, N1i(s), Yi(s, t2) ; 0 ≤ s ≤ t1 ≤ t2} .
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Since the martingale term is mean-zero noise, the above leads to

Λ̂(dt1|t2) =
∑n

i=1 δ2iI(V2i = t2)dN1i(t1)∑n
i=1 δ2iI(V2i = t2)Yi(t1, t2)

. (3)

An estimator of S1|2(t1|t2) is obtained by the product integral of 1− Λ̂1|2(dt1|t2),

Ŝ1|2(t1|t2) =
∏
s≤t1

{
1− Λ̂1|2(ds|t2)

}
.

Finally,

G̃1(t1) =

J2∑
j=1

{1− Ŝ1|2(t1 ∧ t2,j |t2,j)}∆F̂2(t2,j) (4)

where t2,j , j = 1, . . . , J2, are the ordered distinct observed death ages, Clearly, G̃1 is an

estimator of CIF given that T2 ≥ cL. However, in contrast to ĜAJ
1 , owing to prevalent

events that may occur at times less than cL, the estimator G̃1(t) is not restricted to t > cL.
We emphasize that even when the goal is to estimate G1(t|T1 ≥ cL, T2 ≥ cL), the

estimator G̃1(t) based on the subsample restricted by T1 ≥ cL only is expected to be more
efficient than ĜAJ

1 since some of the prevalent observations (and often the majority of
them) are with T1 ≥ cL.

In case of no tied death ages, Λ̂1|2(dt1|T2i) = δ1iδ2iI(V1i = t1) and therefore 1 −
Ŝ1|2(t1|T2i) = δ1iδ2iI(V1i ≤ t1). Hence, G̃1(t) reduces to

Ĝ1(t1) =
n∑

i=1

δ1iδ2iI(V1i ≤ t1)∆F̂2(T2i)

=
1

n

n∑
i=1

δ1iδ2iI(V1i ≤ t1)
Ŝ2(T

−
2i )

Ȳ2.(T2i)
(5)

where Y2i(t) = I(Ri ≤ t ≤ V2i) and Ȳ2.(t) = n−1
∑n

i=1 Yi2(t). The estimator formulated
in (5) exhibits good performance not only in scenarios without tied death times, but also
in cases with a moderate amount of tied death times. Consequently, we adopt (5) as our
ultimate proposed estimator, regardless of whether the data exhibit tied death times or
not.

Define Y2(v) = E{Y2i(v)|T2i ≥ Ri}, K(v) = S2(v
−|cL)/Y2(v), S2(t|s) = Pr(T2 >

t|T2 > s) and K̂(v) = Ŝ2(v
−)/Ȳ2.(v). We can then write

Ĝ1(t1) =
1

n

n∑
i=1

δ1iδ2iK̂(V2i)I(V1i ≤ t1) . (6)

The asymptotic properties of Ĝ1 are outlined in the following theorem. The assumptions
and the proof of consistency are detailed in Appendix 1, while the proof of asymptotic
normality is provided in the Supplementary Material.

Theorem 1. If Assumptions A.1 - A.3 hold, as n → ∞,

sup
t∈[0,τ ]

|Ĝ1(t)−G1(t|T2 ≥ cL)| = oa.s.(1)

and
√
n{Ĝ1(t)−G1(t|T2 ≥ cL)} converges weakly to a Gaussian process.

We can also form a combination estimator Ĝcmb
1 (t) as Ĝcmb

1 (t) = 0.5ĜAJ
1 (t)+0.5Ĝ1(t).
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3 CIF Point-wise Confidence Intervals and Simul-

taneous Confidence Band

In the Supplementary Material, Ĝ1(t)−G1(t|T2 ≥ cL) is represented as a mean of indepen-
dent, identically distributed terms with zero mean plus a negligible remainder. Namely,

Ĝ1(t)−G1(t|T2 ≥ cL) =
1

n

n∑
i=1

Ψi(t) + op(n
−1/2) , (7)

where detailed expressions are given in the Supplementary Material for Ψi(t) and its
estimator Ψ̂i(t). The estimator Ψ̂i(t) is the sum of two terms: a main term, given by

Ψ̂1i(t) = δ1iδ2iI(V1i ≤ t1)K̂(V2i)− Ĝ1(t1) (8)

and an auxiliary term Ψ̂2i(t) that arises from taking into account the fact that the es-
timator (6) involves an estimate K̂ of K rather than K itself. Given the representation
(7), the variance Var(

√
n {Ĝ1(t) − G1(t|T2 > cL)}) can be estimated using the empirical

estimator

s2(t) = V̂ar(
√
n {Ĝ1(t)−G1(t|T2 > cL)}) =

1

n

n∑
i=1

Ψ̂2
i (t)

We can then form a point-wise 100(1− α)% confidence interval for G1(t) as

Ĝ1(t)± ζ1−α/2
s(t)√
n
, ζ1−α/2 = Φ−1(1− α/2) .

Alternatively, we can form a confidence interval on a transformed scale, using, for example,
the log transformation g(u) = − log(1 − u) or the arcsine-root transformation g(u) =
π/2− arcsin

√
1− u. This confidence interval takes the form

g(Ĝ1(t))± ζ1−α/2 g
′(Ĝ1(t))

s(t)√
n
,

and we can then apply the inverse transformation to obtain a confidence interval on the
original scale.

To construct a simultaneous confidence band for G1(t|T2 ≥ cL) along the lines of the
equal-precision band of Nair (1984), we use the resampling approach of Lin et al. (1994).
Suppose we want a simultaneous confidence band over the interval [τ1, τ2]. Let Zbi be
independent standard normal random variables, b = 1, . . . , B, i = 1, . . . , n, and define

∆(b)(t) =
1

n

n∑
i=1

ZbiΨ̂i(t) ,

Γ(b)(t) = s(t)−1∆(b)(t) .

Let M (b) = maxt∈[τ1,τ2] |Γ(b)(t)| and define να to be the 1− α quantile of M (1), . . . ,M (B).
The confidence band is then given by

Ĝ1(t)± να
s(t)√
n
, t ∈ [τ1, τ2] .

It is also possible to form a confidence band on a transformed scale. Define

Ǧ
(b)
1 (t) = Ĝ1(t) +

1

n

n∑
i=1

ZbiΨ̂i(t)−
1

n

n∑
i=1

Ψ̂i(t) ,

∆̌(b)(t) = g(Ǧ
(b)
1 (t))− g(Ĝ1(t)) ,

Γ̌(b)(t) =
(
g′(Ǧ

(b)
1 (t))s(t)

)−1
∆̌(b)(t) ,

M̌ (b) = max
t∈[τ1,τ2]

|Γ̌(b)(t)| .
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In addition, define ν̌α to be the 1 − α quantile of M̌ (1), . . . , M̌ (B). The confidence band
on the transformed scale is then

Ĝ1(t)± ν̌αg
′(Ĝ1(t))

s(t)√
n
, t ∈ [τ1, τ2] ,

and we can apply the inverse transformation to obtain a simultaneous confidence band
on the original scale.

A similar confidence band procedure can be developed for the Aalen-Johansen estima-
tor; see the Supplementary Materials for details.

4 Simulation Study

We conducted an extensive simulation study to examine the finite-sample properties of the
proposed estimator, Ĝ1, in comparison with the Aalen-Johansen estimator, ĜAJ

1 , adjusted
for left truncation. Table 1 summaries the configurations examined. Each configuration
was studied with 1,000 repetitions and 250 bootstrap samples, with sample sizes of 2,500,
5,000 and 7,500. The arcsine-root transformation was used for the point-wise confidence
intervals and simultaneous confidence bands.

In preliminary investigations, we found that the variance estimator based only on the
main term (8) produced estimates similar to those obtained using both the main term and
the auxiliary terms. Accordingly, to expedite computation, the final simulation results
exclude the auxiliary terms from the variance estimator. The R code implementing the
methods give the user the option to include or exclude the auxiliary terms.

Figures 3 and 4 summarize the results of 16 configurations in which the disease hazard
is zero up until the minimum recruitment age of 40 years. The plots show the results
of three estimators, the Aalen-Johansen estimator, the new proposed estimator, and the
combination estimator, with n = 5, 000 observations, for ages between 40 and 80. The
estimated standard deviation of the Aalen-Johansen estimator was obtained using the
function etmCIF in the R package etm; estimates obtained using the approach used for
the new proposed estimator yielded essentially identical results. The graphs in the fig-
ures present the mean, empirical standard deviation, and point-wise confidence interval
coverage of the estimators over the 1,000 simulation replications, as a function of t. The
Supplementary Material provides additional information, including median, interquar-
tile range, comparison of mean estimated standard deviation and the empirical standard
deviation, confidence interval widths, and confidence band widths. The Supplemental
Materials also include results for n = 2, 500 and n = 7, 500.

In general, all the three estimators are similarly well-behaved in terms of bias. A
slight downward bias was seen with the new estimator at the upper end of the age range
(ages 75 to 80) for Scenarios 1211, 1221, 2211, and 2221. These were scenarios which
involved both a short duration of follow-up and a long length of time between disease
diagnosis and death. The new estimator tends to yield a smaller standard deviation than
the Aalen-Johansen estimator over the age range from 40 to 75. An upturn in the standard
deviation was seen occasionally with the new estimator in the age range from 75 to 80.
The standard deviation with the combination estimator was similar, although somewhat
higher, to that with the new estimator over most of the age range. The upturn in the
standard deviation of the new estimator at the upper end of the age range was dampened
by the combination estimator.

The empirical coverage rates of the three methods are usually reasonably close to the
nominal level of 95%, with some advantage seen with the new method. For Scenarios
1211, 1221, 2211, and 2221, the confidence interval coverage with the new estimator was
substantially lower than nominal in the upper end of the age range, in line with the
downward bias previously noted.
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Figure 5 provides a similar summary of simulation results, but for eight settings where
the disease hazard before the minimum recruitment age of 40 is positive. Clearly, the
Aalen-Johansen estimator and the new estimator are targeting different survival curves.
Hence, empirical coverage rates are presented only for the proposed approach. Again, the
proposed approach performs well in terms of bias and point-wise coverage rates.

Table 2 presents the empirical coverage rates of the 95% simultaneous confidence
bands. For Scenarios 1xxx and 2xxx, the confidence band was computed over the age range
50-80, except for Scenarios 1211, 1221, 2211, and 2221, for which the band was computed
over the age range 50-75. For Scenarios 3xxx, the age range was 35-80. Although all
estimators show excellent performance in terms of bias and point-wise coverage rates
already with n = 2, 500 (see the Supplemental Materials), achieving adequate coverage
rates for the confidence bands necessitates a larger sample size. In certain settings, the
coverage rates are reasonably close to 0.95, yet in others, a larger sample size is essential
for satisfactory coverage. Notably, the new estimator often surpasses the Aalen-Johansen
estimator in terms of empirical coverage rates.

5 UK Biobank Data Analysis

The Aalen-Johansen estimator and the proposed estimator were applied for two types
of cancers, acute myeloid leukemia (AML) and brain cancer, separately for males and
females. Since the UKB recruited volunteers aged 40 to 69, the Aalen-Johansen CIF
estimator begins at age 40. The Aalen-Johansen estimator estimates the CIF given being
alive and free of the disease by age 40. The new approach provides a CIF estimator given
being alive by age 40, facilitating straightforward interpretation for non-lethal diseases
before the age of 40, like AML and most types of brain cancer.

Disease failure times were determined using the first record of ICD9 and ICD10 codes.
Censoring occurred at loss to follow-up or being healthy at recent dataset update. To
ensure anonymity, UKB only reports birth month and year, excluding exact birth dates,
except for cancer diagnoses or deaths where exact birth dates were inferred from available
data. If this was not feasible, birth dates were assigned as the first of the reported birth
month.

Table 3 summarizes the sample sizes, number of cases, number of prevalent cases, and
number of incident cases. Clearly, the majority of the prevalent events occurred at an
onset age beyond 40. Therefore, even an analysis that conditions on being alive and free
of the disease by age 40, can benefit from the proposed approach. The prevalent event
proportion among all observations diagnosed with the disease ranges from 13% to 26%.
Additionally, the minimum ages at onset range from 25 to 37 years among prevalent events
and from 42 to 46 years among incident events, with differences between 8 to 17 years.

Figure 6 displays the CIF estimates and confidence bands, including the widths of
the confidence bands and point-wise standard errors, all as functions of age. Clearly, the
CIF estimates from both methods are very similar, yet in most instances, the proposed
approach yields notably smaller point-wise standard errors and narrower confidence bands.
For instance, in the case of AML in males, the confidence band produced by the proposed
method is up to 27% narrower compared to the one from the Aalen-Johansen estimator.

6 Concluding Remarks

In this paper, we introduce a new CIF estimator that effectively utilizes prevalent data.
Its utility is demonstrated through an extensive simulation study and analysis of UK
Biobank data, which features a high rate of prevalent events, as is commonly expected in
population-based biobanks. While we have demonstrated its advantages over the Aalen-
Johansen CIF estimator, it is important to highlight a limitation: for diseases with a

8



relatively young onset age and very low excess mortality rate, such as breast cancer, our
proposed estimator is currently inapplicable. This limitation stems from the current lack
of sufficient data to estimate S(t1|t2). In particular, in the UKB breast cancer data, there
are 8,729 prevalent case and 8,731 incident cases, among the 17,458 breast cancer cases,
but currently, only 2,233 died after breast cancer diagnosis. However, as longer follow-up
periods become available in the future, our proposed estimator will facilitate the inclusion
of the 8,729 prevalent events and enable the estimation of the breast cancer survival curve
before the age of 40. In practical terms, if Ĝ1 is substantially lower than ĜAJ

1 , it may
indicate that there is insufficient data for properly estimating S(t1|t2).

R code for the estimation procedure and simulations can be found at
https://github.com/david-zucker/illness-death.
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(0) Healthy (1) Disease
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Figure 1: Semi-competing risks of a chronic disease
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Figure 2: Simulation results of configuration 2111 demonstrating a substantial biased results
of Chang and Tzeng (2006) (Chang) versus Aalen-Johansen (AJ) and the proposed estimators
(New).

Table 1: Summary of simulation settings: Age at death is sampled based on the UK Office of
National Statistics

Random Variable Distributions Setting Notation
Age at disease diagnosis, T1 Truncated Weibull with shape=4, scale=115, truncation at 40 (1, ·, ·, ·)

Truncated Weibull with shape=4, scale=130, truncation at 40 (2, ·, ·, ·)
Weibull with shape=3.5, scale=200 (3, ·, ·, ·)

Age at death, T2 expected survival after disease diagnosis equals 2.5 years for Setting 1 or 2 of T1 (1 or 2, 1, ·, ·)
expected survival after disease diagnosis equals 7.5 years for Setting 1 or 2 of T1 (1 or 2, 2, ·, ·)

expected survival after disease diagnosis equals 5 years for Setting 3 of T1 (3, 1, ·, ·)
expected survival after disease diagnosis equals 10 years for Setting 3 of T1 (3, 2, ·, ·)

Recruitment age, R Uniform distribution over [40, 69] (·, ·, 1, ·)
The recruitment distribution of the UKB (·, ·, 2, ·)

Censoring age, C Recruitment age + uniform over [11, 15] (·, ·, ·, 1)
Recruitment age + uniform over [11, 25] (·, ·, ·, 2)

Table 2: Summary of simulation results: empirical coverage rates of the 95% confidence-band

n = 2500 n = 5000 n = 7500
Setting AJ New Combo AJ New Combo AJ New Combo
1111 0.901 0.912 0.900 0.919 0.923 0.923 0.937 0.916 0.931
1112 0.906 0.939 0.911 0.922 0.939 0.925 0.937 0.933 0.940
1121 0.883 0.900 0.900 0.914 0.919 0.928 0.909 0.925 0.913
1122 0.886 0.911 0.899 0.915 0.935 0.932 0.902 0.919 0.914
1211 0.915 0.901 0.921 0.914 0.898 0.905 0.897 0.905 0.920
1212 0.920 0.923 0.926 0.922 0.924 0.919 0.895 0.941 0.927
1221 0.895 0.897 0.880 0.916 0.904 0.922 0.908 0.908 0.918
1222 0.894 0.921 0.899 0.914 0.929 0.927 0.912 0.939 0.925
2111 0.919 0.912 0.926 0.939 0.945 0.956 0.934 0.947 0.934
2112 0.923 0.940 0.934 0.932 0.951 0.951 0.929 0.951 0.946
2121 0.919 0.924 0.926 0.918 0.938 0.935 0.932 0.916 0.937
2122 0.924 0.940 0.930 0.916 0.946 0.936 0.934 0.948 0.942
2211 0.931 0.920 0.924 0.937 0.899 0.932 0.930 0.910 0.922
2212 0.929 0.941 0.931 0.932 0.936 0.937 0.934 0.944 0.940
2221 0.909 0.898 0.906 0.928 0.918 0.911 0.916 0.901 0.921
2222 0.907 0.934 0.919 0.931 0.946 0.931 0.927 0.948 0.928
3111 - 0.864 - - 0.900 - - 0.904 -
3112 - 0.861 - - 0.905 - - 0.902 -
3121 - 0.770 - - 0.875 - - 0.894 -
3122 - 0.769 - - 0.873 - - 0.892 -
3211 - 0.923 - - 0.937 - - 0.936 -
3212 - 0.921 - - 9.936 - - 0.936 -
3221 - 0.910 - - 0.926 - - 0.930 -
3222 - 0.911 - - 0.926 - - 0.927 -
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Figure 3: Simulation results of eight configurations: Mean over estimates, standard deviations
(SD), and empirical coverage rates of 95% point-wise confidence intervals, for each of the three
methods, AJ, the new estimator, and the combination estimator (Comb).
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Figure 4: Simulation results of eight configurations: Mean over estimates, standard deviations
(SD), and empirical coverage rates of 95% point-wise confidence intervals, for each of the three
methods, AJ, the new estimator, and the combination estimator (Comb).
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Figure 5: Simulation results of 8 configurations: Mean over estimates, standard deviations
(SD), and empirical coverage rates of 95% point-wise confidence intervals, for AJ and the new
estimator.

Table 3: UK Biobank Data: Number of participants alive or died with and without the disease,
number of prevalet event before and after age 40, number of incident events, and the minimum
observed age at onset among the prevalent and incident participants.

Alive without Died without Alive with Died with Number of Number of Number of Minimal onset age
Sex Disease disease disease disease disease prev < 40 prev ≥ 40 incidents Prevalents Incidents
Male AML 208,259 20,629 54 147 7 25 169 36 46

Brain 208,236 20,322 73 458 27 41 462 25 42
Female AML 259,038 14,111 69 113 14 33 135 37 45

Brain 259,024 13,937 77 293 21 37 312 27 44
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Figure 6: UK Biobank Data: analysis of acute myeloid leukemia (AML) and Brain cancer, by
sex. Within each sex group, the CIF estimates based on AJ and the new method are provided,
along with confidence bands. The bandwidths of the confidence bands and point-wise standard
error as a function of age are presented alongside.
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Appendix 1: Consistency Proof

For ease of presentation, the proof is presented for the setting where Ri, T1i, T2i, and Ci

are all absolutely continuous. We will use the letters F , S and f with subscripts to denote
cumulative distribution, survival and density functions.

For the asymptotic theory, we make the following standard assumptions.

A.1 Ci is independent of (T1i, T2i).

A.2 Ri is independent of T1i and quasi-independent of T2i and Ci. Namely, for r, t2, and
c with cL ≤ r ≤ t2 and cL ≤ r ≤ c, we have

Pr(Ri ≤ r, T2i > t2, Ci > c|T2i ≥ Ri, Ci ≥ Ri) = a−1FR(r)S2(t2|cL)SC(c)

where S2(t2|cL) = Pr(T2 > t2|T2 > cL) and a =
∫ ∫ ∫

r≤t2∧c dFR(r)dS2(t2|cL)dSC(c).

A.3 Pr(Y2i(τ) = 1|T2i ≥ Ri) > 0 where Y2i(t) = I(Ri ≤ t)I(V2i ≥ t).

Our starting point for the consistency proof is the representation (6) of the estimator:

Ĝ1(t1) =
1

n

n∑
i=1

δ1iδ2iK̂(V2i)I(V1i ≤ t1)

Using Assumptions A.1–A.2, we have

K(v) =
S2(v − |cL)

P (Ri ≤ v, V2i ≥ v|T2i ≥ Ri)

=
S2(v − |cL)

P (Ri ≤ v, T2i ≥ v, Ci ≥ v|T2i ≥ Ri)

=
a

FR(v)SC(v−)
(9)

We thus see that the proposed estimator has the form of an IPW estimator, but it is
different from the IPW estimators of Chang and Tzeng (2006) and Vakulenko-Lagun
et al. (2017) (applicable for cL > 0 and much simpler). Write

Hi(t1) = δ2iK(T2i)I(T1i ≤ T2i)I(T1i ≤ t1) = δ1iδ2iK(V2i)I(V1i ≤ t1)

Ĥi(t1) = δ2iK̂(T2i)I(T1i ≤ T2i)I(T1i ≤ t1) = δ1iδ2iK̂(V2i)I(V1i ≤ t1) .

Our estimator can be written as

Ĝ1(t1) =
1

n

n∑
i=1

Ĥi(t1) . (10)

Defining ∥c∥∞ = supt∈[0,τ ] |c(t)|, it follows from the Glivenko-Cantelli theorem that ∥Ȳ2n−
Y2∥∞ = oa.s.(1) and from known theory for the Kaplan-Meier estimator that ∥Ŝ2−S2∥∞ =
oa.s.(1). Consequently,

Ĝ1(t1) =
1

n

n∑
i=1

Hi(t1) + oa.s.(1) (11)

In the Supplementary Material, an expansion of the remainder term is presented. Mean-
time, from the above equation, we see that Ĝ1(t1) converges almost surely to E[Hi(t1)|T2i ≥
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Ri]. We now show that E[Hi(t1)|T2i ≥ Ri] = G1(t1). We have

E[Hi(t1)|T2i ≥ Ri]

= a−1

∫ ∫
f(T1,T2|T2>cL)(t

◦
1, t2|T2 > cL)K(t2)I(t

◦
1 ≤ t2)I(t1 ≤ t◦1){∫

fR(r)I(r ≤ t2)dr

∫
fC(c)I(C ≥ t2)dc

}
dt◦1dt2

= a−1

∫ ∫
f(T1,T2|T2>cL)(t

◦
1, t2|T2 > cL)K(t2)I(t

◦
1 ≤ t2)I(t1 ≤ t◦1)Pr(Ri ≤ t2)Pr(Ci ≥ t2)dt

◦
1dt2

= a−1

∫ ∫
f(T1,T2|T2>cL)(t

◦
1, t2|T2 > cL)

{
a

FR(t2)SC(t
−
2 )

}
I(t◦1 ≤ t2)I(t

◦
1 ≤ t1)

Pr(Ri ≤ t2)Pr(Ci ≥ t2)dt
◦
1dt2

(using 9)

=

∫ ∫
f(T1,T2|T2>cL)(t

◦
1, t2|T2 > cL)I(t

◦
1 ≤ t2)I(t

◦
1 ≤ t1)dt

◦
1dt2

= G1(t1|T2 > cL)

We have thus shown that Ĝ1(t1) is an almost-sure consistent estimator of G1(t1|T2 > cL).

Supplementary Material

Proof of Theorem 1 - Asymptotic Normality

Recall the expression for Ĝ1(t1):

Ĝ1(t1) =
1

n

n∑
i=1

δ1iδ2i

{
Ŝ2(V2i−)

Ȳ2n(V2i)

}
I(V1i ≤ t1) =

1

n

n∑
i=1

Ĥi(t1)

If we knew S2 and Y2, we would write

Ĝ1(t1) =
1

n

n∑
i=1

δ1iδ2i

{
S2(V2i−)

Y2(V2i)

}
I(V1i ≤ t1) =

1

n

n∑
i=1

Hi(t1) (12)

In this case, Ĝ1(t1) would be a simple average of i.i.d. random variables, asymptotically
normal by the classical central limit theorem, with variance that could be estimated using
the empirical estimator

V̂ar(Ĝ1(t1)) =
1

n

(
1

n

n∑
i=1

(Hi(t1)− H̄(t1))
2

)
=

1

n

(
1

n

n∑
i=1

(Hi(t1)− Ĝ1(t1))
2

)
(13)

With S2 and Y2 unknown, we plug in the estimates Ŝ2 and Ȳ2n. We might then use the
variance estimator

V̂ar(Ĝ1(t1)) =
1

n

(
1

n

n∑
i=1

(Ĥi(t1)− Ĝ1(t1))
2

)
(14)

This estimator, however, would not be entirely correct since it doesn’t account for the
variability due to estimation of S2 and Y2.

A more complete characterization of the asymptotic behaviour of Ĝ1(t1) is presented
below. The development involves representing Ĝ1(t

◦
1) as the mean of i.i.d. quantities up to
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an error of oP (n
−1/2). We will develop this representation using empirical process theory

and the functional delta method (Chapters 19 and 20 of van der Vaart (1998)).
We remark that in our numerical work we found that accounting for the estimation

error in S2 and Y2 leads to a generally modest (and often negligble) difference relative to
estimating the variance using (14).

Define N̄2n(v) = n−1
∑n

i=1N2i(v) and N2(t) = E[N2i(v)|T2i ≥ Ri]. Also define

Qn(v; t1) =
1

n

n∑
i=1

δ1iδ2iI(V1i ≤ t1)I(V2i ≤ v)

Q(v; t1) = E[δ1iδ2iI(V1i ≤ t1)I(V2i ≤ v)]

We can then write

Ĝ1(t1) =

∫ τ

0
K̂(v) dQn(v; t1) =

∫ τ

0

Ŝ2(v−)

Ȳ2n(v)
dQn(v; t1) (15)

and

Ŝ2(v) = P[0,v]

(
1− dN̄2n(ṽ)

Ȳ2n(ṽ)

)
(16)

where P denotes the product integral. We will regard N̄2n(v) as a stochastic process
taking values in the space D[0, τ ] of functions on [0, τ ] that are right-continuous with left
limits and Ȳ2n(v) as a stochastic process taking values in the space D−[0, τ ] of functions
on [0, τ ] that are left-continuous with right limits. We will use the abbreviations D and
D− for these spaces. We endow D and D− with the uniform norm ∥ · ∥∞. In addition, we
regard Qn(v; t1) as a stochastic process taking values in the space H of functions b(v; t1)
whose total variation with respect to v is bounded by 1 for every t1, and we endow this
space with the norm ∥b∥H given by the supremum over t1 of the total variation of b of
b(v; t1) with respect to v. We will write G = D ×D− ×H.

We now introduce the following definitions:

M1 : G → G defined as M1(A1,A2,A3) = (A1,A−1
2 ,A3)

M2 : G → G defined as M2(B1,B2,B3) =

(∫
[0,·]

B2 dB1,B2,B3

)
M3 : G → G defined as M3(C1, C2, C3) = (P[0,·](1− dC1), C2, C3)

M4 : G → D defined as M4(D1,D2,D3) =

∫ τ

0
D1(v−)D2(v) dD3(v; ·)

Defining M to be the composition of all four of the above maps, we have Ĝ1(·) =
M(N̄2, Ȳ2, Qn).

From the development in Gill and Johansen (1990), we see that the first three maps
are Hadamard differentiable with the following derivatives:

M′
1(α1, α2, α3|A1,A2,A3) = (α1,−A−2

2 α2, α3)

M′
2(β1, β2, β3|B1,B2,B3) =

(∫
[0,·]

(B2 dβ1 + β2 dB1), β2, β3

)

M′
3(γ1, γ2, γ3|C1, C2, C3) =

(
−C∗

1

∫
[0,·]

C∗
1−
C∗
1

dγ1, γ2, γ3

)
, C∗

1 = P[0,·](1− dC1)

Further, by arguments similar to those in the proofs of Lemma 20.10 of van der Vaart
(1998) and Lemma 12.3 of Kosorok (2008), we find that M4 is Hadamard differentiable
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with derivative

M′
4(ϵ1, ϵ2, ϵ3|D1,D2,D3) =

∫ τ

0
ϵ1(v−)D2(v) dD3(v; ·) +

∫ τ

0
ϵ2(v)D1(v−) dD3(v; ·)

+

∫ τ

0
D1(v−)D2(v) dϵ3(v; ·) (17)

Consequently, applying the chain rule, M is Hadamard differentiable at (N2,Y2, Q) with
derivative

M′(α1, α2, α3|N2,Y2, Q) = Ω1(t1) + Ω2(t1)− Ω3(t1) (18)

where

Ω1(t1) =

∫ τ

0
K(v) dα3(v)

Ω2(t1) =

∫ τ

0

{
−S2(v−)

∫
[0,v)

S2−
S2

Y−1
2 [dα1 − α2Y−1

2 dN2]

}
Y2(v)

−1 dQ(v; ·)

Ω3(t1) =

∫ τ

0
Y2(v)

−1K(v) dα2(v; ·)

Next, define Zn =
√
n (N̄2n − N2, Ȳ2n − Y2, Qn − Q). By standard empirical process

theory, Zn converges weakly to a mean-zero Gaussian process Z with the same covariance
structure as that of Zn. Therefore, by the functional delta method (Theorem 20.8 of ?),√
n (Ĝ1(t1)−G1(t1)) converges weakly to a Gaussian process and we can write

Ĝ1(t1)−G1(t1) = M(N̄2, Ȳ2, Qn)−M(N2,Y2, Q)

= M′(N̄2n −N2, Ȳ2n − Y2, Qn −Q) + oP (n
−1/2)

= Ω∗
1(t1) + Ω∗

2(t1)− Ω∗
3(t1) + oP (n

−1/2)

with

Ω∗
1(t1) =

∫ τ

0
K(v) d(Qn(v; t1)−Q(v; t1))

Ω∗
2(t1) =

∫ τ

0

{
−S2(v−)

∫
[0,v)

S2−
S2

Y−1
2 [d(N̄2n −N2)− (Ȳ2n − Y2)Y−1

2 dN2]

}
Y2(v)

−1 dQ(v; t1)

=

∫ τ

0

{
−S2(v−)

∫
[0,v)

S2−
S2

Y−1
2 [d(N̄2n −N2)− Y−1

2 Ȳ2n dN2 + dN2]

}
Y2(v)

−1 dQ(v; t1)

=

∫ τ

0

{
−S2(v−)

∫
[0,v)

S2−
S2

Y−1
2 [dN̄2n − Y−1

2 Ȳ2n dN2]

}
Y2(v)

−1 dQ(v; t1)

Ω∗
3(t1) =

∫ τ

0
Y2(v)

−1K(v)(Ȳ2n(v)− Y2(v)) dQ(v; t1)

The term Ω∗
1(t1) corresponds to the asymptotic behaviour of (12). The term Ω∗

2(t1) is
the contribution due to estimation of S2, and the term Ω∗

3(t1) is the contribution due to
estimation of Y2.

We can further write

Ĝ1(t1)−G1(t1) =
1

n

n∑
i=1

Ψi(t1) + oP (n
−1/2) (19)

where
Ψi(t1) = Ω∗

1i(t1) + Ω∗
2i(t1)− Ω∗

3i(t1) (20)
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with

Ω∗
1i(t1) = δ1iδ2iI(V1i ≤ t1)K(V2i)−G1(t1)

Ω∗
2i(t1) =

∫ τ

0

{
−S2(v−)

∫
[0,v)

S2−
S2

Y−1
2 [dN2i − Y−1

2 Y2i dN2]

}
Y2(v)

−1 dQ(v; t1)

= −
∫ τ

0

{
Y2(V2i)

−1δ2iI(V2i < v)−
∫ V2i∧v−

Ri

(
S2(s−)

S2(s)

)
Y2(s)

−2dN2(s)

}
S2(v−)Y2(v)

−1 dQ(v; t1)

Ω∗
3i(t1) =

∫ τ

0
Y2(v)

−1K(v)(Y2i(v)− Y2(v)) dQ(v; t1)

We have now exhibited Ĝ1(t1)−G1(t1) as a sum of i.i.d. mean-zero terms plus a negligible
remainder. We can estimate Var(

√
n {Ĝ1(t1)−G1(t1)}) using the empirical estimator

s2(t1) = V̂ar(
√
n {Ĝ1(t1)−G1(t1)}) =

1

n

n∑
i=1

Ψ̂i(t1)
2 (21)

where
Ψ̂i(t1) = Ω̂∗

1i(t1) + Ω̂∗
2i(t1)− Ω̂∗

3i(t1)

with

Ω̂∗
1i(t1) = δ1iδ2iI(V1i ≤ t1)K̂(V2i)− Ĝ1(t1)

Ω̂∗
2i(t1) = − 1

n

n∑
j=1

δ1jδ2jI(V1j ≤ t1)Ȳ2n(V2j)
−1Ŝ2(V2j−)

×

{
Ȳ2n(V2i)

−1δ2iI(V2i < V2j)−
∫ V2i∧V2j−

Ri

(
Ŝ2(s−)

Ŝ2(s)

)
Ȳ2n(s)

−2dN̄2n(s)

}

Ω̂∗
3i(t1) =

1

n

n∑
j=1

δ1jδ2jI(V1j ≤ t1)Ȳ2n(V2j)
−1K̂(V2j)(Y2i(V2j)− Ȳ2n(V2j)) .

Representation of the Aalen-Johansen Estimator

The Aalen-Johansen estimator can be represented in a similar way. Recall the definition
N1i(u) = δ1iI(V1i ≤ u). Let us define the following additional notation:

n0 = number of subjects alive and free of disease at the time of recruitment

A = set of indices of subjects alive and free of disease at the time of recruitment

S∗ = survival function for time to first transition (to either diseased or dead), conditional
on being alive and free of disease at the time of recruitment

Ŝ∗ = the corresponding Kaplan-Meier estimate

T3i = min(T1i, T2i)

V3i = min(T3i, Ci)

δ∗i = I(T3i ≤ Ci)

ξi = I(i ∈ A) = I(T3i ≥ Ri)

π = P (T3i ≥ Ri)

π̂ = n0/n

Y ◦
1i(t) = ξiI(Ri ≤ t)I(V3i ≥ t)

N◦
1i(t) = ξiδ1iI(V1i ≤ t)
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Y◦
1 (t) = E[Y ◦

1i(t)]

N ◦
1 (t) = E[N◦

1i(t)]

Ȳ ◦
1 (t) = n−1

∑n
i=1 Y

◦
1i(t)

N̄◦
1 (t) = n−1

∑n
i=1N

◦
1i(t)

Y∗
1 (t) = π−1Y◦(t)

Ȳ ∗
1 (t) = π̂−1Ȳ ◦

1 (t) = n−1
0

∑
i∈A Y1i(t)

K†(t) = S∗(t−)/Y◦
1 (t)

K̂†(t) = Ŝ∗(t−)/Ȳ ◦
1 (t)

The Aalen-Johansen estimator can be written as

Ĝ
(AJ)
1 (t1) =

∫ t1

0
Ŝ∗(u−)

∑n
i=1 dN

◦
1i(t)∑n

i=1 Y
◦
1i(t)

=

∫ t1

0
K̂†(u)dN̄◦

1 (u)

=

∫ t1

0
K†(u)dN̄◦

1 (u) +

∫ t1

0
(K̂†(u)−K†(u))dN̄1(u)

=

∫ t1

0
K†(u)dN̄◦

1 (u) +

∫ t1

0
Ȳ ◦
1 (u)

−1
(
Ŝ∗(u−)−K†(u)Ȳ ◦

1 (u)
)
dN̄◦

1 (u)

=

∫ t1

0
K†(u)dN̄◦

1 (u) +

∫ t1

0
Y◦
1 (u)

−1
(
Ŝ∗(u−)−K†(u)Ȳ ◦

1 (u)
)
dN ◦

1 (u) + oP (n
−1/2)

=

∫ t1

0
K†(u)dN̄◦

1 (u)

+

∫ t1

0
Y◦
1 (u)

−1
(
[Ŝ∗(u−)− S∗(u−)]−K†(u)[Ȳ ◦

1 (u)− Y◦
1 (u)]

)
dN ◦

1 (u) + oP (n
−1/2)

= G1(t1) +
1

n

n∑
i=1

Ψ
(AJ)
i (t1) + oP (n

−1/2)

where for i ∈ A we define

Ψ
(AJ)
i (t1) = [δ1iI(Vi1 ≤ t1)K

†(V1i)−G1(t1)]

− 1

π

∫ t1

0
K†(u)

{
δ∗i

Y∗(V3i)
I(V3i < u)

−
∫ V3i∧u−

Ri

(
S∗(s−)

S∗(s)

)
Y∗(s)−2dN ∗(s)

}
dN ◦

1 (u)

−
∫ t1

0
Y◦
1 (u)

−1K†(u)(Y ◦
1i(u)− Y◦

1 (u)) dN ◦
1 (u) (22)

and for i /∈ A we define Ψ
(AJ)
i (t1) = 0. An estimate Ψ̂

(AJ)
i (t1) of Ψ

(AJ)
i (t1) for i ∈ A can

be obtained by replacing S∗ by Ŝ∗, N ◦
1 by N̄◦

1 , N ∗ by N̄∗, Y◦
1 by Ȳ ◦

1 , Y∗ by Ȳ ∗, and G1

by Ĝ1. This yields

Ψ̂
(AJ)
i (t1) = Ω̂

(AJ)
1i (t1) + Ω̂

(AJ)
2i (t1)− Ω̂

(AJ)
3i (t1)

with

Ω̂
(AJ)
1i (t1) = δ1iI(V1i ≤ t1)K̂

†(V1i)− Ĝ1(t1)

Ω̂
(AJ)
2i (t1) = − 1

π̂

n∑
j=1

ξjδ1jI(V1j ≤ t1)K̂
†(V1j)
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×

{
Ȳ ∗(V3i)

−1δ∗i I(V3i < V1j)−
∫ V3i∧V1j−

Ri

(
Ŝ∗(s−)

Ŝ∗(s)

)
Ȳ ∗(s)−2dN̄∗(s)

}

Ω̂
(AJ)
3i (t1) =

1

n

n∑
j=1

ξjδ1jI(V1j ≤ t1)Ȳ
◦(V1j)

−1K̂†(V1j)(Y
◦
1i(V1j)− Ȳ ◦

1 (V1j))

We can then construct pointwise confidence intervals and a simultaneous confidence band

based on Ĝ
(AJ)
1 using procedures similar to those used for Ĝ1.
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