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Numerical simulations of turbulent flows are well known to pose extreme computational chal-
lenges due to the huge number of dynamical degrees of freedom required to correctly describe the
complex multi-scale statistical correlations of the velocity. On the other hand, kinetic mesoscale
approaches based on the Boltzmann equation, have the potential to describe a broad range of flows,
stretching well beyond the special case of gases close to equilibrium, which results in the ordinary
Navier-Stokes dynamics. Here we demonstrate that, by properly tuning, a kinetic approach can
statistically reproduce the quantitative dynamics of the larger scales in turbulence, thereby provid-
ing an alternative, computationally efficient and physically rooted approach towards subgrid scale
(SGS) modeling in turbulence. More specifically we show that by leveraging on data from fully re-
solved Direct Numerical Simulation (DNS) data we can learn a collision operator for the discretized
Boltzmann equation solver (the lattice Boltzmann method), which effectively implies a turbulence
subgrid closure model. The mesoscopic nature of our formulation makes the learning problem fully
local in both space and time, leading to reduced computational costs and enhanced generalization
capabilities. We show that the model offers superior performance compared to traditional methods,
such as the Smagorinsky model, being less dissipative and, therefore, being able to more closely
capture the intermittency of higher-order velocity correlations.

Introduction.— Studying turbulent flows by means of
fully resolved numerical simulations is known to pose out-
standing computational challenges. The number of dy-
namical degrees of freedom, whose dynamics needs to be
accurately resolved, is typically huge as it rapidly grows
as the 9/4 power of the Reynolds number (Re) [1–3].
Despite the ever increasing availability of computing re-
sources, Direct Numerical Simulations (DNS) of turbu-
lent flows are still far out of reach for most real-world
applications, strongly motivating a continuous effort to-
wards the development of accurate and computation-
ally cheaper reduced order models. Alongside Reynolds-
Averaged Navier-Stokes (RANS) models [4], where the
Navier-Stokes equations are averaged over time (sepa-
rating the flow into mean and fluctuating components)
large-eddy simulations (LES) [5] are among the most
popular choices. In LES only a portion of the dynam-
ical degrees of freedom, associated to the larger scales,
are directly resolved, whereas the effect of the smaller
scales on the large scales is parametrized by a subgrid-
scale (SGS) model. In general, considering the filtered
version of the macroscopic fields of interest, u and p (re-
spectively, velocity and pressure), one can write down the
Navier-Stokes equations filtered to describe only scales
larger than ℓ:

∂u

∂t
+∇ · (u u+ T ) = −∇p+ ν∇2u. (1)

In this filtered equation, we have assumed the density
ρ = 1, ν is the kinematic viscosity of the fluid and T =
uu − u u is the Reynolds stress tensor, accounting for

the SGS fluctuations, from which one can define a local
subgrid energy flux [6]. The problem of defining an SGS
closure consists in modelling the unknown term T as a
function of only the resolved velocity field u. Over the
years, several approaches to SGS turbulence modeling
have been developed, relying on specific assumptions to
approximate the effects of the unresolved scales. The
first SGS model was proposed by Smagorinsky [7] and,
in view of its simplicity and stability, it is one of the most
widespread adopted approaches to estimate the action of
smaller scales on the larger scales by means of an effective
eddy viscosity, defined on the basis of the local derivatives
of the resolved velocity field:

T
smag

= 2νeff |S| − pI, νeff = ν + (Cs∆)2|S|, (2)

where |S| =
√
2SijSij , Sij = 1/2(∂iuj +∂jui) represents

the magnitude of the filtered strain-rate, ∆ is the filter
width, and Cs is a non-dimensional coefficient called the
Smagorinsky constant. The Smagorinsky model can be
shown to be a direct consequence of the Refined Kol-
mogorov Similarity Hypothesis [8] and has been gener-
alized to non homogeneous flows [9]. Other approaches,
such as the Spalart-Allmaras (S-A) model [10] and the
k − ϵ and k − ω models [11], resolve the eddy viscosity
in terms of additional variables, supplementing the equa-
tions for mass and momentum with additional equations.
Despite their widespread use, these models often face lim-
itations in accurately representing the (statistical) prop-
erties of turbulent flows, particularly in scenarios with
strong inhomogeneity and anisotropy. Recent advances
in Machine Learning have opened up new perspectives
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FIG. 1: Snapshots of the vorticity magnitude (|ω|) from 3D simulations of HIT at Re ≈ 6000. In panel a) the upper
half of the domain is taken from filtered DNS data with cg = 2, while the lower half is obtained from a simulation
using NBLM. We show that at a qualitative level the structures generated by NLBM closely resemble those from

filtered DNS. This is further highlighted in panel b) and c) where we show 2D slices of |ω| (cf. red box in panel a) ),
respectively at coarse graining factor cg = 2 and cg = 4.

for employing Artificial Neural Networks (ANN) [12]
to enhance computational fluid dynamic solvers [13–15],
and for the development of data-driven turbulence mod-
elling [16–18]. Specifically to the LES context, several
attempts have been reported in the literature [19–24] to
establish SGS closure models from extensive datasets of
fully resolved turbulent flows, leveraging on the capabil-
ity of ANN to handle high-dimensional and statistically
complex data. In general, two main approaches have
been adopted; the first, which can be regarded as the
”black-box” approach, consists in making no assumption
on the form of the SGS terms [25–28], while in the sec-
ond one the task of the ANN consists in tuning the free-
parameters of an already established SGS model [29–31].

In this Letter we take a fresh look at the problem of
establishing a SGS closure model with ANN, and intro-
duce for the first time, to the best of our knowledge, a
data-driven kinetic-based approach to turbulence mod-
eling. We employ Physics-Informed Machine Learning
(PIML) to enhance the capabilities of the Lattice Boltz-
mann Method (LBM) [34], and exploit the extra de-
grees of freedom provided by the mesoscopic description
to learn a new collision operator which effectively acts
as SGS model. Our framework relies on the pathway
connecting kinetic theory to hydrodynamics, offering the
possibility to learn from data macroscopic equations that
extend beyond the Navier-Stokes level. Thanks to the lo-
cality of the collision operator, at no point this scenario
involves the evaluation of spatial derivatives of macro-
scopic fields [32], drastically simplifying the training pro-
cess and, in turn, the interpretability of the model. Re-
markably, and at variance with respect to other fully local
SGS models, our formalism shows the potential for cap-
turing the inverse transfer of energy from small to large
scales.

Methods.— The Lattice Boltzmann Method
(LBM) [33–35] has emerged in the past decades as
a popular solver for computational fluid dynamics.
At variance with methods that explicitly discretize
the Navies-Stokes equations, LBM operates at the
mesoscopic level, providing the description of a fluid
system in terms of a (small) set of particle distribution
functions (populations) whose dynamic is governed by
the discrete Boltzmann equation:

fi(x+ ci∆t, t+∆t) = fi(x, t) + Ωi(x, t), (3)

where at each grid node x, lattice populations fi(x, t) are
defined along the discrete components of a velocity stencil
{ci}, i = 1, . . . , Q. A popular choice for the collision
operator Ω is the single-time relaxation BGK model [36]:

Ωi(x, t) = −
∆t

τ
(fi(x, t)− f eq

i (x, t)) , (4)

which models collisions as a relaxation towards an equi-
librium distribution, with τ the relaxation rate. The
macroscopic variables of interest can be obtained as the
lower-order moments of the lattice populations. More-
over, it can be shown via an asymptotic analysis that
Eq. 3 yields a second order approximation of the Navier-
Stokes equations [35].
It is an expedient for the description of our method to

split the time evolution of Eq. 3 into two steps, following
the stream and collide paradigm:

fpost
i (x, t) = fpre

i (x, t) + Ωi(x, t), (5)

fpre
i (x, t+∆t) = fpost

i (x− ci∆t, t), (6)

where here and in what follows we will denote with fpre
i

(fpost
i ) the pre(post)-collision populations.
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FIG. 2: Schematic representation of the training process for the turbulence SGS model. The upper panel
corresponds to the DNS simulation on a L3 grid, while in lower panel the Neural LBM (NLBM) operates on a

(L/cg)3 grid, with coarse-graining factor cg. The mapping between DNS into coarse-grained data is given by the
application of a filter: the pre-collision state at a generic time step t at the coarse grained level ( fpre

cg (t) ) is
obtained by filtering the DNS pre-collision state ( fpre

DNS(t) ). Similarly, the post-collision data at the coarse-grained
level ( fpost

cg (t) ) is obtained by first filtering the post-collision DNS state at time step t+ cg∆t, and then by
applying the inverse of the streaming operator. Following this procedure it is possible to create an arbitrarily large

dataset for training an ANN to which we assign the task of minimizing the mismatch between
f̃post
cg (t) = ΩNN(f

pre
cg (t)) and fpost

cg (t) under a given error-metric L.

Following the framework introduced in Ref. [37], we
replace the collision operator with a ANN:

f̃post
i (x, t) = fpre

i (x, t) + ΩNN (fpre
i (x, t)) . (7)

The resulting algorithm, to which we refer as Neural
Lattice Boltzmann Method (NLBM), employs a physics-
constrained ANN to establish a data-driven SGS model.
Our approach leverages on two key ingredients of the
LBM algorithm:

1. The LBM mesoscopic representation makes use of
a larger number of degrees of freedom (i.e. the
number of discrete lattice populations) than the
macroscopic observable of interest. This observa-
tion opens up the possibility of using ANN to en-
code extra information in the model.

2. The non-linear terms encountered at the NS level
of description (cf. Eq. 1) are fully embedded in the
LBM via the collision operator and thus purely lo-
cal (in LBM “non-linearity is local, non-locality is
linear” [34]). This observation drastically reduces
the cost of training ANN, since it offers the possi-
bility to restrict the input and output of the net-
work to local quantities without explicit evaluation
of gradients of macroscopic fields.

We summarize here the main steps required to train
the ANN, as sketched in Fig. 2, leaving full technical de-
tails to the Supplementary Material. We consider simula-
tions of Homogeneous Isotropic Turbulence (HIT), fully
resolved on a L3 domain using the standard LBM formu-
lation (Eq. 3) with BGK collision operator (Eq. 4). We
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regard this as the target ground truth DNS data (upper
panel in Fig. 2). Next, we define a coarse-graining factor
cg, and define a filter which projects, at a given time step
t, data from the DNS grid to a coarse-grained grid of size
(L/cg)3, where the SGS model will operate (lower panel
in Fig. 2). In order to define an arbitrarily large training
dataset consisting of pre and post collision data at the
coarse-grained level, respectively fpre

cg (t) and fpost
cg (t), we

take the following steps: We start from the pre-collision
populations at the DNS level, fpre

DNS(t), and immediately
apply the filter in order to obtain fpre

cg (t). Next, we ad-
vance the DNS simulation for cg∆t time-steps, yield-
ing the pre-collision (and post-streaming) populations
fpre
DNS(t + cg∆t). Since ∆t steps at the coarse-grained
level correspond to cg∆t steps at the DNS level, by fil-
tering fpre

DNS(t + cg∆t) we obtain fpre
cg (t + ∆t). Finally,

we obtain fpost
cg (t) by reversing the streaming operation,

i.e. we anti-stream populations on the coarse grid with
respect to the corresponding velocity component −ci.
At this stage, we can train a ANN which, under a given

error-metric L, minimizes the mismatch between fpost
cg (t)

and the prediction of the network taking fpre
cg (t) as input:

L
(
ΩNN(fpre

cg (t)), fpost
cg (t)

)
. (8)

We have observed that the two main ingredients allow-
ing for training models which deliver accurate and stable
results throughout an entire simulation are i) imposing
hard-constraints on the preservation of mass and momen-
tum [37] and ii) using unrolled training [38] to compute
the loss over consecutive timesteps. Full details on the
ANN architecture and the training process are provided
as Supplementary Information.

100 101

k

10−8

10−6

10−4

E(k)

∼ k−5/3

DNS

NLBM

Smagorinsky

cg = 2

cg = 4

FIG. 3: Energy spectrum for simulations of HIT at
Re ≈ 6000. The results from DNS (blue curve) are

compared with NLBM (red) and Smagorinsky (green).
For the two SGS models we report the average

spectrum from 100 simulations starting from different
initial conditions. The shaded curves corresponds to

one standard deviation from the average value.

Numerical results.— We consider numerical simula-

tions of HIT, with for reference a DNS on a L = 1283

grid at Reynolds number Re ≈ 6000. The parameters
are selected in such a way that the plain LBM algorithm
would encounter numerical instabilities when working on
coarse-grained grids with cg = {2, 4}. Fig. 1 qualita-
tively summarizes our findings. Starting from the same
initial configuration, we present 3D and 2D representa-
tion of the absolute value of the vorticity |ω| = |∇ × u|
at a late stage of the simulation, comparing results from
the filtered DNS with NLBM. Our model provides stable
simulations, with flow patterns virtually indistinguish-
able from those of the filtered DNS.

100 101

S3

100

102

104

Sp

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

Filtered DNS

NLBM

Smagorinsky

1 2 3 4 5 6

p

−0.2

0.0

ξ p
−

p 3

FIG. 4: Structure functions (cf. Eq. 9) of order p,
ranging between p = 1 to p = 6, versus S3, with in blue
data from filtered DNS with cg = 4, in red data from
simulations using NLBM, and in green data from

simulations using the Smagorinsky model. The inset
shows the deviation for the scaling exponents ξp from

the K41 scaling p
3 .

On a more quantitative ground, we now turn to the
evaluation of the statistical properties of the turbulent
flows produced by NLBM simulations. For comparison,
we hereafter also take into consideration LBM simula-
tions equipped with the Smagorinsky SGS (Eq. 2), which
allows for stable simulations of the coarse domains. In
Fig. 3 we present the kinetic energy spectrum E(k). We
observe that NLBM well compares with the results pro-
duced by Smagorinsky, with slightly superior results at
cg = 4, where we can observe a spectrum less dissipative
than the Smagorinsky one, and closer to the scaling of
DNS data. Next, we study the scaling behaviour of high-
order Eulerian Structure function, which for a generic
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order p can be computed from numerical data as

Sp(l) =
〈[

(u(x+ l)− u(x)) · l̂
]p〉

. (9)

We use the extended self similarity (ESS) [39] to deter-
mine the scaling exponents ξp. In Fig. 4 we plot the
structure functions of order p, ranging between p = 1 to
p = 6, versus S3(l), comparing data from filtered DNS
with cg = 4, and data from simulations using NLBM and
the Smagorinsky model. In the inset of Fig. 4 we report
the deviation of ξp from the K41 scaling p/3. The results
highlight that, due to its lower dissipation at small scales,
NLBM provides anomalous scaling within error bars from
filtered DNS. On the other hand, the discrepancies ob-
served in the Smagorinsky model are due to the fact that
under these parameters the inertial range is shrinked (see
the supplementary material for a more detailed analysis).

A major advantage of our kinetic-based approach lies
in the possibility of having a physical interpretation of
the action of the ANN, by projecting the lattice pop-
ulations to the velocity moment space (see Supplemen-
tary Material). We have observed that NLBM extends
the single-relaxation BGK collision operator, from where
DNS data was generated, to a multi-relaxation collision
operator [40, 41]. The model introduces a non-linear re-
lation for pre and post collision values of the moments
related to the bulk-viscosity, something which is often
used to increase the stability of numerical simulations.
The model preserves a linear-dependency for the pre and
post collision values of the moments related to the kinetic
viscosity. This allows to fit the effective viscosity from
the numerical data, which can be used to establish a di-
rect comparison with the Smagorinsky model (Eq. 2). In
Fig. 5 we compare the probability distribution function
(PDF) of the value of the Smagorinsky constant C2 fitted
from NLBM data. The average value of the Smagorin-
sky constant for NLBM (⟨C2

NLBM⟩ ≈ 0.11) is about a
factor two smaller than the one used in simulations with
the Smagorinsky SGS model (C2 = 0.2). Remarkably, in
Fig. 5 we observe a tail taking negative values, suggesting
that our model occasionally displays an inverse transfer
of energy from small to large scales, a feature completely
lacking to the Smagorinski model which is, by its own
nature, fully dissipative.

Conclusion.— Summarizing, we have introduced a
novel kinetic-based approach to SGS modeling, combin-
ing LBM with physics informed ANN. Our model allows
for stable simulations on coarse domains, offering the
possibility of reducing the computational costs of DNS,
in turn preserving the statistical properties of turbulent
flows under HIT settings. The model compares well with
Smagorinsky, and our results highlight a better agree-
ment with DNS in terms of energy spectra and estimation
of the anomalous scaling exponents. Moreover, we have
shown that the model in principle supports the possibil-
ity to describe the inverse transfer of energy from small

−10 −5 0 5 10

C2

10−3

10−2

10−1

100

PDF

NLBM

Smagorinsky

−0.5 0.0 0.5
0

1

FIG. 5: Probability distribution function (PDF) of the
fitted value of the Smagorinsky constant C2 from
NLBM data. The inset highlights that the average

value < C2
NLBM >≈ 0.11 is about a factor two smaller

than the one used in simulations with the Smagorinsky
SGS model (C2 = 0.2). The presence of a tail with

negative values highlights the fact that in NLBM it is
possible to capture the inverse transfer of energy from

small to large scales.

to large scales, which we regard as promising particularly
in vision of future application to more involved numerical
setups. To conclude, this work opens up the possibility of
exploiting the extra degrees of freedom of the mesoscopic
representation in the LBM to develop novel SGS models.
In future works, we plan to extend our analysis to flows
subject to anisotropy as well as wall-bounded flows. A
further intriguing question concerns the application of
this framework beyond SGS. Work to explore employ-
ing our kinetic data-driven approach in other contexts is
currently underway.
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Supplementary Information for
“Kinetic data-driven approach to turbulence subgrid modeling”

NUMERICAL METHOD

In this section, we provide a basic introduction to the Lattice Boltzmann Method (LBM). The reader is referred
to Ref. [S1, S2] for a thorough introduction to the topic. The LBM is a class of numerical fluid-dynamics solvers. At
variance with conventional methods that explicitly discretize the Navies-Stokes equations, LBM takes root from the
mesoscopic Boltzmann equation:

∂f

∂t
+ ξα

∂f

∂xα
+ Fα

∂f

∂ξα
= Ω(f) (S1)

where f(x, ξ, t) is the particle distribution function, representing the average number of particles in a small element
of phase-space centered at position x with velocity ξ at time t, and Fα is the sum of external forces acting on the
system. The right hand side of the equation, Ω(f), is the collision operator, describing the changes in f due to particle
collisions.

FIG. S1: D3Q19 Velocity stencil

Index ci wi

0 (0, 0, 0) 1/3
1 (−1, 0, 0) 1/18
2 (0,−1, 0) 1/18
3 (0, 0,−1) 1/18
4 (0, 0, 1) 1/18
5 (0, 1, 0) 1/18
6 (1, 0, 0) 1/18
7 (−1,−1, 0) 1/36
8 (−1, 0,−1) 1/36
9 (−1, 0, 1) 1/36
10 (−1, 1, 0) 1/36
11 (0,−1,−1) 1/36
12 (0,−1, 1) 1/36
13 (0, 1,−1) 1/36
14 (0, 1, 1) 1/36
15 (1,−1, 0) 1/36
16 (1, 0,−1) 1/36
17 (1, 0, 1) 1/36
18 (1, 1, 0) 1/36

TABLE S1: D3Q19 Velocity stencil - discrete velocity vec-
tors ci and corresponding weights wi.

The lattice time-discrete counterpart of Eq. S1 reads as

fi(x+ ci∆t, t+∆t) = fi(x, t) + Ωi(x, t) + f ext
i , (S2)

In the above equation, known as lattice Boltzmann equation, the discrete particle distribution functions (populations)
fi(x, t) move at the next time step t+∆t with velocity ci to a neighboring grid cell x+ ci∆t. Moreover, f ext

i is the
discrete version of the external force term. The discretization of the velocity space is a key element in the definition
of LBM; it consists in replacing the continuum velocity space with a small set of discrete velocities V = {ci ∈ R3}
corresponding to the abscissa of a Gauss-Hermite quadrature (with corresponding weights wi ) that ensure that all
moments of the distribution function up to a prescribed order are correctly recovered [S3, S4]. In this work, we use
the D3Q19 velocity stencil (Fig. S1), defined in Tab. S1, which allows to express mass and momentum as weighted
sums of fi(x, t):

ρ =
∑
i

fi, ρu =
∑
i

fici. (S3)
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There are several possible choices to approximate the collision operator Ωi. Arguably the simplest one that can be
used for Navier-Stokes simulations is the Bhatnagar-Gross-Krook (BGK) [S5] operator:

Ωi(f) =
∆t

τ
(f eq

i − fi), (S4)

which relaxes the populations at rate τ towards a local equilibrium defined by the Maxwell-Boltzmann distribution,
for which we use a second order polynomial expansion:

f eq
i (ρ,u) = wiρ

(
1 +

u · ci
c2s

+
(u · ci)2 − (cs|u|)2

2c4s

)
,

with cs = 1/
√
3 the sound speed in the lattice, and wi a lattice-dependent set of weighting factors (see Tab. S1).

Several options are available for implementing the body forces in LBM [S1]. In this work we adopt the Exact
Difference Method (EDM) scheme [S6], where the external forcing term is computed as

f ext
i = f eq,shift

i − f eq
i , (S5)

where the shifted equilibrium f eq,shift
i is computed from Eq. S5 based on the shifted velocity ushift = u+ F

ρ .

Following an asymptotic analysis, such as the Chapman-Enskog expansion [S7], it can be shown that Eq. S2
combined with Eq. S4 delivers in the low-Mach number limit a second order approximation of the Navier-Stokes
equations, with the following expression putting in relationship the relaxation time parameter τ with the kinematic
viscosity ν of the fluid:

ν =

(
τ − ∆t

2

)
c2s . (S6)

Implementing the Smagorinsky Turbulence Model in LBM

In the main text we have reported numerical results of LBM simulations equipped with the Smagorinsky SGS model.
The model involves adding an eddy viscosity term to the governing equations to account for unresolved turbulent
fluctuations at the grid scale. This eddy viscosity is computed as:

νeff = ν + (Cs∆)2|S|, (S7)

where |S| =
√

2SijSij , Sij = 1/2(∂iuj + ∂jui) is the magnitude of the filtered strain-rate, ∆ is the filter width, and

Cs is a non-dimensional coefficient called the Smagorinsky constant.
In order to incorporate the Smagorinsky model in a LBM scheme one needs to i) compute the strain rate tensor in

each cell to then ii) compute the eddy viscosity νeff to finally iii) locally adjust the relaxation time to match νeff . In
LBM the strain rate tensor can be computed locally from the non-equilibrium part of the distribution function:

Sij = −
3τ

2
Πneq

ij , Πneq
ij =

∑
q

cqicqj
(
fq − f eq

q

)
. (S8)

By combining Eq. S6 with Eq. S7 it is then possible to compute the local relaxation time due to the Smagorinsky
model:

τeff =
νeff
c2s

+
∆t

2
. (S9)

ARTIFICIAL NEURAL NETWORK ARCHITECTURE AND TRAINING PROCESS

Definition of the Training Dataset

The ground truth data used to train the ANN consists of N pairs of 19-tuples{(
fpre
i,k , fpost

i,k

)
, k = 1, 2, . . . , N

}
. (S10)
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The data is obtained from Direct Numerical Simulation (DNS) of Homogeneous Isotropic Turbulence. We conduct
LBM simulations in a three-dimensional cubic domain of side L = 128, with periodic boundary conditions and
∆t = 1. Simulations are driven by a stationary external force, ensuring a divergence-free flow, defined for the x, y
and z components as: 

Fx(y) = F sin
(
2π
L y

)
Fy(z) = F sin

(
2π
L z

)
Fz(x) = F sin

(
2π
L x

) . (S11)

We work at a value of the Reynolds number Re ≈ 6000, achieved tuning the relaxation time τ and the magnitude of
the external force as detailed in Tab. S2. We collect data after an initial transient phase of T0 timesteps, ensuring that
the dynamics reaches a statistically stationary state. The full state of the system (in terms of lattice populations) is
sampled every δT timesteps, for a total of NT timesteps. Next, we define a coarse graining factor cg and a filter ϕ,
which allows mapping at a generic time step t lattice populations from the L3 DNS grid to the (L/cg)3 coarse-grained
grid:

f cg
i (t)← ϕ(fDNS

i (t)). (S12)

Several possible choices can be made for the filter ϕ, which may substantially impact the quality of the results. In this
work we consider a sub-sampling strategy, and define the coarse-grained grid by sampling one every cg lattice points
along the different coordinates. We leave as a future work a careful evaluation and comparison of different choices for
ϕ.

At this stage, we can establish the training set (Eq. S10) at the coarse grained level, following the procedure sketched
in Fig. 2 of the main text, which we here summarize:

1. We start from the pre-collision populations at the DNS level, fpre
DNS(t), and apply a filter in order to obtain

fpre
cg (t).

2. We advance the DNS simulation for cg∆t time-steps obtaining the post-streaming state, i.e. fpre
DNS(t+ cg∆t).

3. By filtering the DNS level we obtain fpre
cg (t+∆t).

4. In order to obtain the pre-streaming state, i.e. the post-collision values at time t, we apply the inverse of the
streaming operation at the coarse grained level by reversing the streaming direction, i.e. with respect to −ci.

For the results reported in the main text we have used cg = 2 and cg = 4, resulting in effective lattice sizes of,
respectively, L′ = 64 and L′ = 32. Note that to achieve the same Re on the coarse grids one could use the same
numerical parameters provided in Tab. S2, alongside a rescaling of the relaxation time parameter

τ ′ =
1

cg

(
τ − 1

2

)
+

1

2
. (S13)

However, we shall remark that the choice of the parameters is such that plain LBM simulations at the coarse grid
level would lead to numerical instabilities.

Neural Network Architecture and Optimization

In this section we detail our ANN model, which consists in learning a correction term adding to the BGK collision
operator. We define the post-collision state as

f̃post
i = fpre

i +Ω(fpre
i ) +

1

τ
ΩNN(fpre

i ) (S14)

where Ω is the BGK collision operator in Eq. S4, while ΩNN is the correction term due to the ANN.
We consider an ANN consisting of a Multi-layer Perceptron (MLP) with input and output layers of size 19 (equal

to the number of lattice populations sitting on one single grid point), and three fully connected hidden layers of size
[300, 300, 100], in combination with LeakyReLU activation function. Following Ref. [S8], before the output layer we
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Parameter Description Value
Re Reynolds Number 6× 103

τ Relaxation time Parameter 0.5032
F Force term Amplitude 5× 10−6

L Lattice Size for DNS 128
∆x Grid size 1
∆t Timestep 1
T0 Transient Phase Duration 5× 104

δT Sampling Interval 103

NT Total Number of Timesteps 103

M Lattice Points Sampled per
Timestep

512

λ Learning rate 1× 10−4

ω Weight decay rate 1× 10−6

TABLE S2: The table reports the numerical parameters used in DNS numerical simulations (top), for the definition
of the training dataset (middle) and for the hyper-parameters used by the ADAM optimizer to train the ANN.

also include a non-trainable layer posing hard constraints on the conservation of mass and momentum. In our case we
require that the correction term given by the ANN does not introduce additional mass and momentum in the output:∑

i

ΩNN(fpre
i ) = 0, (S15)∑

i

ΩNN(fpre
i )ci = 0. (S16)

The above equations are satisfied using

f̂i = ΩNN(fpre
i ) + κ1 + κ2ci,x + κ3ci,y + κ4ci,z, (S17)

with the following coefficients specific to the D3Q19 model:

κ1 = − 1

19

∑
i

ΩNN(fpre
i ),

κ2 = − 1

10

∑
i

ΩNN(fpre
i )ci,x,

κ3 = − 1

10

∑
i

ΩNN(fpre
i )ci,y,

κ4 = − 1

10

∑
i

ΩNN(fpre
i )ci,z.

We have observed that the model defined in Eq. S14, albeit performing well in one-step predictions, once plugged
in a simulation typically leads to numerical instabilities after just few iterations. This behavior is commonly observed
in autoregressive models, i.e. models that feed in the output as an input for the next step [S9]. This is due to
accumulations of errors that eventually deviate the dynamics of the system towards configurations not covered in
the training dataset, a phenomenon known in literature as distribution shift [S10]. In the next section we discuss a
procedure which allows to mitigate this problem.

Unrolled training

In this section we discuss the Unrolled training technique, which we employ to enhance the stability of the model. In
an auto-regressive model, i.e. a model that recursively uses its output as an input for the successive timesteps, one must
ensure the stability of the model with respect to the accumulation of errors. This is a requirement, for example, for
any time integration scheme, where the stability hinges on both the system’s dynamics and the discretization scheme
employed. Moreover, in the domain of Machine Learning, another phenomenon may arise, since the accumulation of
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errors may lead the dynamics of the system into unexplored regions of the optimization space, deviating from the
training conditions. This problem is typically framed in the context of distribution shift, and deals with scenarios
in which the data distribution during training differs from that encountered during testing. Fields such as language
modeling and robotics commonly encounter such challenges. For instance, maintaining coherence in generated text
over multiple iterations is a complex task for language models [S11].

Several solutions have been proposed to deal with this problem. One possibility is to modify the architecture of
the Neural Network, for example forcing the spectra of the linear matrices, stabilizing the dynamics. Examples of
this approach are Antisymmetric Neural Networks [S12]. Another possibility is to use regularization strategies such
as noise injection in the input and/or the output of the Neural Network [S13].

In this work, we employ a technique known in literature as unrolled training or trajectory learning [S9]. In short, it
consists in applying the model to make predictions over LT consecutive timesteps at training time, backpropagating
the gradients through some or all such timesteps. This is similar to the Backpropagation Through Time method, used
for training Recurrent Neural Networks, with the main difference being that in unrolled training no memory term is
present in the Neural Network.

We train the model using the following error metric:

L =
∑
xi∈S

(
f̃post(xi, t0 + Lt)− fpost(xi, t0 + Lt)

)2

, (S18)

where for each training epoch S represents a randomly selected subset of the lattice points. One single training epoch
consists of the following steps:

1. We select a snapshot from the ground truth dataset, i.e. the pre-collision populations on the entire filtered grid
of size (L/cg)3 at a fixed time step. This serves as the initial condition.

2. We randomly select a subset of lattice points, denoted as S = {xi}batch size
i=0 , which will be used compute the

loss.

3. We evolve the system for LT timesteps, alternating the collision step via Eq. S14, and the streaming step.

4. We compute the loss via Eq. S18 comparing against ground-truth values at time t+ LT .

5. Finally, we backpropagate the loss through all the timesteps to compute the gradients and update the weights
of the Neural Network.

We remark that, while the full domain is evolved using the ANN, the loss term is computed only on randomly selected
subset of points. The reason for this is twofold. First, it allows reducing computational costs, both in terms of
memory requirements as well as overall training time. Second, it allows to increase stochasticity in the computation
of gradients for updating the weights of the network.

This strategy introduces a few extra hyperparameters in the training of the network. The results reported in the
main text have been obtained using a batch size |S| of 512 elements, with a trajectory lenght of LT = 12. The choice
of these parameters impacts the time and memory requirements of the training process (longer trajectories and bigger
batch sizes require more time and memory), and on the resulting stability of the model (too short trajectories give
less stable models). The optimization is done using Adam Optimizer, training for a total of 2× 104 epochs with early
stopping based on test loss. The optimization parameters are reported in Table S2.

STRUCTURE FUNCTIONS AND EXTENDED SELF SIMILARITY

In Fig. 4 in the main text we have reported results with of high order statistical properties of turbulence, analyzing
data from simulations using our data-driven SGS model. In this section we provide further details; for the convenience
of the reader we state once again the definition of the Eulerian Structure function of order p:

Sp(l) =
〈[

(u(x+ l)− u(x)) · l̂
]p〉

. (S19)

In Fig. S2, the first row refers to results for a grid with coarse graining factor cg = 2, whereas the second row
shows results for cg = 4. For all cases we show in blue color filtered DNS data, in red our NLBM model, and for
comparison in green results using Smagorinsky. In the first column we plot the structure functions Sp vs l, with p
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FIG. S2: Results for structure functions (cf. Eq. 9) of order p, ranging between p = 1 to p = 6, with in blue data
from filtered DNS, in red data from simulations using NLBM, and in green data from simulations using the

Smagorinsky model. On the top row (panels (a)-(c)) results for cg = 2, on the bottom row (panels (d)-(f)) results
for cg = 4. In the first column we report the Structure function Sp(l) versus l, in the second column Sp versus S3,

and in the third column the logarithmic derivative ∂log(Sp)
∂log(S3) .

ranging between 1 to 6. The central column shows the results of the extended self similarity analysis, where this time
we plot the structure functions Sp versus versus S3. The insets shows the deviation of the scaling exponents ξp from
K41 scaling p/3. The scaling exponents have been computed fitting the slopes, which are better highlighted in the

third column, where we show the logarithmic derivative ∂log(Sp)
∂log(S3) . The fitting ranges are defined considering intervals

where the logarithmic derivative stays approximately constant, avoiding the dissipative interval by excluding the first
point, resulting in S3 values of [4, 20] for cg = 2 and [8, 40] for cg = 4.

The results here presented strengthen the message and the considerations made in the main text, showcasing that
NLBM better captures the kinetic energy at the large scales with respect than Smagorinsky, which exhibits instead
larger dissipation.

GENERALIZATION

A primary concern in data-driven modelling is over-fitting and poor generalization [S12], connected to the challenge
of generating a comprehensive, high-quality training dataset that can cover all potential uses. Additionally, ANN
models often lack interpretability and physical consistency, rendering them unreliable in application contexts. In this
section, we discuss the generalization capabilities of our model.

We consider the ANN trained with the parameters from Tab. S2, with cg = 4, and consider a few scenarios slightly
departing from the training conditions. In Fig. S3 we report the energy spectrum for four different cases, comparing
the results of DNS simulations, NLBM and Smagorinsky, changing the following parameters. Panels from (a) to (d)
cover the following set of parameters:
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(a) Different magnitude of the forcing term (for reference, value used during training: F = 5× 10−6, Re ≈ 6× 103)

• F = 1× 10−5 ( Re ≈ 1.2× 104) ,

• F = 1× 10−6 ( Re ≈ 1.2× 103) .

(b) A non-homogeneous forcing term: 
Fx(y) = 2F sin

(
2π
L y

)
Fy(z) = 0

Fz(x) = 0

.

(c) A higher wave number in the sine function:
Fx(y) = F sin

(
2 2π

L y
)

Fy(z) = F sin
(
2 2π

L z
)

Fz(x) = F sin
(
2 2π

L x
) .

(d) Higher and lower values of the kinematic viscosity, changing the relaxation time (for reference, value used in
training τ = 0.5032, Re ≈ 6× 103)

• τ = 0.5048 ( Re ≈ 4× 103) ,

• τ = 0.5024 ( Re ≈ 8× 103) .

The results show that the NLBM yields stable simulations for all the cases covered, considering both higher and
lower value for Re with respect to the one considered for training the ANN. NLBM provides results systematically
in better agreement with DNS with respect to Smagorinsky, with the exception of one case in Fig. S3(a) where the
absolute value of the external force was taken to be 5 times smaller than the one used during training. We attribute
this to a possible overfitting of the small scales, which, as can be seen in the plot, overlap for NLBM regardless of the
magnitude of the external force.

We should also remark that the generalization capabilities of the model do not extend to different grid sizes and
different coarse graining factor; such cases currently require the training of a new model from scratch.

PHYSICAL INTERPRETATION OF MODEL ACTION

In this section we provide a physical interpretation of the action of the ANN. While our model works at the kinetic
level, it is simple to map the lattice populations f to the moments space, and observe the action of the model in terms
of physical quantities. In order to outline the procedure, we start from Eq. S2 with the single-relaxation time BGK
operator in Eq. S4, introduce an invertible matrix M , and recast the equation in the following form:

fpost − fpre = M−1 1

τ
M (f eq − fpre) + f ext

= M−1SM (f eq − fpre) + f ext
, (S20)

where M defines a transformation from lattice populations f(x, t) to macroscopic moments m = Mf(x, t), and the
relaxation matrix S = diag

(
1
τ , . . . ,

1
τ

)
acts on macroscopic moments space.

A generalization of the BGK collision operator in given by theMulti-Relaxation Time (MRT) collision operator [S14],
which allows for individual relaxation rates for the different macroscopic moments. In this framework, several possible
choices can be operated for the matrix M , corresponding to a map of the lattice populations into different sets of
macroscopic momentsm, in which the individual relaxation times τ1, ..., τ19 can have different physical interpretations.



8

100 10110−8

10−6

10−4

E(k)

∼ k−5/3

F = 1× 10−5

F = 1× 10−6

100 10110−8

10−6

10−4

∼ k−5/3

DNS

NLBM

Smagorinsky

100 101

k

10−8

10−6

10−4

E(k)

∼ k−5/3

100 101

k

10−8

10−6

10−4

∼ k−5/3

τ = 0.5048

τ = 0.5024

(a)

(c) (d)

(b)

FIG. S3: Energy spectrum for simulations of HIT with different parameters to evaluate the capability of NLBM to
generalize outside of the training dataset. Blue curves represent DNS results, red for NLBM and green for the

Smagorinsky SGS. In panel a) we present results increasing or decreasing the magnitude of the forcing term, giving
respectively Re ≈ 1.2× 104 and Re ≈ 1.2× 103 (vs Re ≈ 6× 103 used at training time). In panel b) we show results
using a non-homogeneous forcing term. In panel c) we show the effect of forcing with a higher wave number. In panel
d) we show the effect of increasing and decreasing the relaxation time parameter (hence the kinematic viscosity).

In what follows we consider

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 −1 0 0 0 0 1 −1 −1 −1 −1 0 0 0 0 1 1 1 1
0 4 0 0 0 0 −4 −1 −1 −1 −1 0 0 0 0 1 1 1 1
0 0 −1 0 0 1 0 −1 0 0 1 −1 −1 1 1 −1 0 0 1
0 0 4 0 0 −4 0 −1 0 0 1 −1 −1 1 1 −1 0 0 1
0 0 0 −1 1 0 0 0 −1 1 0 −1 1 −1 1 0 −1 1 0
0 0 0 4 −4 0 0 0 −1 1 0 −1 1 −1 1 0 −1 1 0
0 2 −1 −1 −1 −1 2 1 1 1 1 −2 −2 −2 −2 1 1 1 1
0 −4 2 2 2 2 −4 1 1 1 1 −2 −2 −2 −2 1 1 1 1
0 0 1 −1 −1 1 0 1 −1 −1 1 0 0 0 0 1 −1 −1 1
0 0 −2 2 2 −2 0 1 −1 −1 1 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 1 0 0 −1 −1 −1 1 1 1 0 0 −1
0 0 0 0 0 0 0 0 −1 1 0 1 −1 1 −1 0 −1 1 0



, (S21)
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FIG. S4: Scatterplots of mneq versus mdiff (see text for their definition) from NLBM data for the components
corresponding to the component pxy of the shear stress tensor in (a) and to the kinetic energy e in (b). The data
shown here comes from a model trained using a coarse graining factor cg = 4. In both panels, the red dotted line
correspond to the value used for the BGK model at training time τ ′ = 0.5008 (rescaled with respect to cg as per

Eq. S13). A clear linear dependence can be observed for case pxy, which allows to define an effective relaxation time
τeff ≈ 0.5023, slightly larger than τ ′, hence leading to a larger effective value of the kinetic viscosity. In panel b) we

see instead strong non-linear effects which does not allow for fitting a value of the bulk viscosity.

which maps to the following macroscopic moments:

m =
(
ρ, e, ϵ, jx, qx, jy, qy, jz, qz, pxx, πxx, pww, πww, pxy, pyz, pxz, mx, my, mz

)
, (S22)

where:

• ρ, jx, jy and jz are the mass and the components of momentum along x, y, z.

• e is the kinetic energy;

• ϵ is the kinetic energy squared;

• qx, qy and qz are the heat fluxes along x, y, z.

• pxx, pww, pxy, pyz and pxz are the components of the symmetric traceless viscous stress tensor;

• πxx, πww, mx, my and mz correspond to higher order moments, with no obvious physical interpretation (in the
LBM jargon they go under the name of ghost modes).

In turn, the macroscopic moments are associated to the following relaxation parameters:

S = diag
(
0, τe, τϵ, 0, τq, 0, τq, 0, τq, τν , τπ, τν , τπ, τν , τν , τν , τm, τm, τm

)
, (S23)

where the relaxation times associated to conserved quantities have been set to zero.
Likewise for the BGK, also in MRT [S14] it is possible to establish a connection between the relaxation time

parameters and the macroscopic tranport coefficients. For example, the kinematic kinematic viscosity ν and bulk
viscosity ζ of the model are given by:

ν = c2s

(
τν −

1

2

)
; ζ =

5− 9c2s
9

(
τe −

1

2

)
, (S24)
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FIG. S5: Probability distribution function (PDF) of the fitted value of the Smagorinsky constant C2 from NLBM
data, for coarse graining factor cg = 4. In panel a) data fitted considering the pxy component of the shear stress
tensor, in b) using pyz and in c) using pxx. The inset highlights that the average value, marked with vertical bars,
comparing the results of NLBM (red) against the value used in the Smagorinsky SGS model in green (C2 = 0.2).

While for NLBM an asymptotic analysis for defining the transport coefficients is not viable from an analytic point
of view, it is still possible to numerically evaluate how the ANN relaxes the different moments m. To this aim we
multiply the LHS and the RHS of Eq. S20 by M :

M
(
fpost − fpre − f ext

)︸ ︷︷ ︸
mdiff

= SM (f eq − fpre)︸ ︷︷ ︸
mneq

, (S25)

and define mdiff and mneq, two column vectors defined in the moment space similarly to m.
From numerical data, we can plot the different components of mdiff vs mneq. In Fig. S4 we report and example of

this analysis, for the case cg = 4, where the individual components are centered with respect to their average value.
We remark that in a MRT collision operator we would observe a linear dependence, with a slope of the regression
line 1/τi depending on the choice of the relaxation parameters in S. For NLBM we observe, to good approximation,
a linear relationship for the moments related to the shear stress tensor pij . In Fig. S4(a) we provide an example for
the component pxy. From a linear fit we can obtain an effective value for the relaxation time τeff . At variance with
Eq. S23, we observe two different relaxation times, one for the components pxx and pww (τeff ≈ 0.5125), and a second
one for pxy, pyz and pxz, (τeff ≈ 0.5023). Both values are larger than the corresponding value of the relaxation time
rescaled as for Eq. S13, τ = 0.5008, thus implying a larger effective shear viscosity.

For all the other moments we generally observe a non linear dependence. In Fig. S4(b) we show an example for the
kinetic energy coefficient which relates to the bulk viscosity. It is common practice in literature to adjust the bulk
viscosity to enhance the stability of numerical methods, and recently an ANN-based approach has been reported also
for LBM [S15].

To further test the importance of non-linearities introduced by the ANN we have tested a MRT collision operator
in which the matrix S has been obtained performing a linear fit of τeff for all the different moments independently
(hence discarding the non-linear contributions):

S = diag
(
0, τ1, τ2, 0, τ3, 0, τ4, 0, τ5, τ6, τ7, τ8, τ9, τ10, τ11, τ12, τ13, τ14, τ15,

)
(S26)

with

τ1 = 0.1554, τ2 = 0.0947, τ3 = 0.5220, τ4 = 0.6921, τ5 = 0.5614,

τ6 = 0.5122, τ7 = 0.5564, τ8 = 0.5121, τ9 = 0.5483, τ10 = 0.5020,

τ11 = 0.5028, τ12 = 0.5023, τ13 = 0.4597, τ14 = 0.4910, τ15 = 0.4872

With this choice of S numerical simulations became unstable after just few iterations, similarly to the BGK case.
We leave as a future work further investigation on the role of the heat flux and of the ghost modes. We focus
here instead on the effective viscosity, which can be computed from the shear stress tensor akin to the Smagorinsky
turbulence model. From the linear fit of the components of the shear stress tensor it is possible to compute νeff , which
in combination with Eq. S7 allows to define what would be the equivalent of the Smagorinsky constant for NLBM. In
Fig. S5 we report the PDF of the fitted value of the Smagorinsky constant from NLBM data, with in panel (a) and
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(b) the results for pxy and pyz respectively, and in (c) for pxx. The average values are comparable with Smagorinsky
for cases (a) and (b), about a factor two smaller than the one used in simulations with the Smagorinsky SGS model
(C2 = 0.2), with the largest discrepancies observed for case (c). For all cases, the presence of a tail with negative
values highlights the fact that in NLBM it is possible to capture the inverse transfer of energy from small to large
scales.
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