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Abstract. In this paper, we explore various equivalences of Ekeland’s vari-

ational principle within the framework of group-invariant mappings. We in-
troduce and analyze several key theorems, including the Drop theorem, the

Petal theorem, Caristi-Kirk fixed-point theorem, and Takahashi’s theorem, all

of them within this context. Moreover, we extend the classical Drop theorem
and Petal theorem to a more generalized setting. We also demonstrate the

practical significance of these findings through numerous applications to di-
verse areas of mathematics. In particular, in the context of partial differential

equations, we explore their implications on the solution of the Plateau prob-

lem, and in control theory. We also extend the classical Pontyargin maximum
principle.
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1. Introduction

Since the publication of the Ekeland’s variational principle, [6], this result has
proved to be one of the most powerful tools in analysis due to its wide-range of
applications to functional analysis, fixed point theory, and partial differential equa-
tions, among others. Recently, the theory of group invariant mappings has gained a
lot of strength inside the field of functional analysis, in its most general way, see for
instance [5] and [1]. In 2024 we proved a group invariant version of the Ekeland’s
variational principle, see [9], and studied several applications of this result.
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The purpose of this paper is to deepen the study of the Ekeland’s variational
principle by giving some equivalences of this result, such as the Drop theorem,
the Petal theorem, the Caristi-Kirk fixed point theorem, and the Takahasi’s the-
orem, all of them in their group invariant version. Furthermore, in our study of
the Drop and the Petal theorem, by using group invariant techniques, we obtain
generalizations of the classical ones. In this latter results, instead of searching for a
group invariant point, we search for group invariant sets on the solution, and what’s
more surprisingly about them, they may not be equivalent to the group invariant
Ekeland’s variational principle.

As we mentioned earlier, one of the main applications of Ekeland’s variational
principle is to solve problems in partial differential equations (PDE). Continuing
in this line, we will present here some new applications of these results, such as
solving symmetric PDEs.

We will begin this manuscript by presenting all the notation and definitions
we will require throughout the paper, as well as some useful results that will be
used later on. Then, we will move to the core of the paper, where we study the
equivalences of the group invariant Ekeland’s variational principle. In particular
we present the group invariant version of the Drop theorem, the Petal theorem, the
Caristi-Kirk fixed point theorem, and the Takahasi’s theorem. To conclude we will
present applications in the fields of geometric analysis and PDEs.

2. Preliminaries

Let us begin by establishing some notation. We will denote a metric space by
(M,d), a normed space by (X, ∥·∥), and the space of linear and continuous mappings
from X to X by L(X). Hereinafter, G ⊆ L(X) is reserved to denote a topological
group of invertible bounded linear isometries with the relative topology of L(X).
Also, g is reserved to denote an element of the group G.

To start, let us present the three notions of G-invariance. Let X, Y be two
normed spaces and let G be a topological group. We say that:

(1) A point x ∈ X is G-invariant, or invariant under the action of G if g(x) = x
for all g ∈ G.

(2) A set K ⊂ X is G-invariant if for every g ∈ G, g(K) = K.
(3) A mapping f : X → Y is G-invariant if for every x ∈ X and every g ∈ G

we have that

f(g(x)) = f(x).

In particular, a metric d : X ×X → [0,+∞[ is G-invariant if

d(g(x), g(y)) = d(x, y) ∀x, y ∈ X.

Note that, if the distance is translation invariant, this is equivalent to assume
that d(x, 0) = d(g(x), 0) for all x ∈ X and all g ∈ G.

We will always assume that the distance of the metric spaces is G-invariant.
As usual, we will denote by XG, BX , SX the set of all group invariant points of

X, the open unit ball of X, and the unit sphere of X respectively. We will always
assume that the norm of the space X, ∥ · ∥, is G-invariant.

A fundamental definition of this paper is that of G-symmetrization point. Let
us recall here what we understand by G-symmetric point. Let X be a Banach
space and G be a compact topological group acting on X. If x ∈ X we define the
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symmetrization point of x with respect to G, or the G-symmetrization point, as

x =

∫
G

g(x)dµ(g),

where µ is the Haar measure and the integral is the Bochner integral.
In [9, Theorem 12] we saw that Ekeland’s G-invariant version only holds for

convex functions with respect to the group G. Recall that if X is a Banach space
and G be a compact topological group acting on X, a function φ : X → R is convex
with respect to G given that

φ

(∫
G

g(x)dµ(g)

)
≤
∫
G

φ(g(x))dµ(g) ∀x ∈ X.

And we say that φ is linear with respect to G given that

φ

(∫
G

g(x)dµ(g)

)
=

∫
G

φ(g(x))dµ(g) ∀x ∈ X.

Then, a metric d : X ×X → [0,+∞[ is convex with respect to G if

d(x, y) ≤
∫
G

d(g(x), g(y))dµ(g).

Remark 1. Observe that the definition of a metric d being convex with respect to
the group is quite natural. Observe that, if d were to be invariant by translations,
then this is equivalent to the fact that the norm associated with the metric d is
convex with respect to G, which is always true. Indeed,

d(x− y, 0) = d(x, y) ≤
∫
G

d(g(x), g(y))dµ(g) =

∫
G

d(g(x− y), 0)dµ(g),

hence

∥x− y∥ = d(x− y, 0) ≤
∫
G

∥g(x− y)∥dµ(g) = ∥x− y∥.

In section 3 we are going to work with the petal of two points, and the drop of a
set. Let us present here these two objects, and study some interesting G-invariant
properties related to them. Let (M,d) be a metric space, a, b ∈ M and γ > 0, the
petal of a and b is defined as

Pγ(a, b) = {x ∈M | γd(a, x) + d(b, x) ≤ d(a, b)} .

Let (X, ∥ · ∥) be a normed vector space, a ∈ X and B ⊂ X be a convex subset. The
drop of a and B is defined as

D(a,B) = {a+ t(b− a) | t ∈ [0, 1], b ∈ B} .

Let us observe the following properties of the drop and the petal when we consider
a group G. The proof of these results is a direct consequence of the G-invariance
of the distance, but we include them here for the sake of completeness.

Proposition 2. Let (M,d) be a metric space and G ⊆ L(M) be a topological group
of isometries acting on M . Let γ > 0, then

g(Pγ(a, b)) = Pγ(g(a), g(b)) ∀ a, b ∈M, and ∀ g ∈ G.
3



Proof. Let x ∈ Pγ(a, b). Observe that

d(g(a), g(b)) ≥ γd(g(a), g(x)) + d(g(x), g(b)) ∀ g ∈ G.

Since G is compact, and d is G-invariant, this is equivalent to

d(g−1(g(a)), g−1(g(b))) ≥ γd(g−1(g(a)), g−1(g(x))) + d(g−1(g(x)), g−1(g(b))).

But observe that this is the same as

d(a, b) ≥ γd(a, x) + d(x, b),

so g(x) ∈ Pγ(g(a), g(b)). This shows that g(Pγ(a, b)) ⊆ Pγ(g(a), g(b)).
Take now x ∈ Pγ(g(a), g(b)), we want to see that g−1(x) ∈ Pγ(a, b). Notice that

d(a, b) ≥ γd(a, g−1(x)) + d(b, g−1(x)),

if, and only if,

d(g(a), g(b)) ≥ γd(g(a), g(g−1(x))) + d(g(b), g(g−1(x))),

by the G-invariance of d. But this last inequality reads as follows:

d(g(a), g(b)) ≥ γd(g(a), x) + d(g(b), x).

This shows the other inclusion and concludes the proof. □

Proposition 3. Let (X, ∥ · ∥) be a normed vector space, G ⊆ L(X) be a topological
group of isometries acting on X, a ∈ X and B ⊂ X be a convex subset. Then:

g(D(a,B)) = D(g(a), g(B)).

Proof. Let x ∈ D(x0, B) = conv(x0, B). Then, for some b ∈ B, and t > 0:

x = tx0 + (1− t)b.

Now, by the linearity of g we know that

g(x) = tg(x0) + (1− t)g(b) ∈ conv(g(x0), g(B)) = D(g(x0), g(B)).

This shows that g(D(a,B)) ⊆ D(g(a), g(B)).
Now take x ∈ D(g(x0), g(B)) = conv(g(x0), g(B)), then for some z ∈ g(B), and

for t > 0 it is clear that
x = tg(x0) + (1− t)z.

Since z ∈ g(B), there exists b ∈ B such that z = g(b). Then, by linearity of g,

x = g(tx0 + (1− t)b) ∈ g(conv(x0, B)) = g(D(x0, B)).

This concludes the proof. □

The following G-invariant properties answer some of the natural questions that
rise in our scenario of G-invariant mappings. The proof of this results is straight-
forward.

Property 4. Let (M,d) be a metric space and G ⊆ L(M) be a topological group
of isometries acting on M . Then, a, b ∈ M are G-invariant if and only if Pγ(a, b)
is G-invariant for every γ > 0.

Proposition 5. Let (X, ∥·∥) be a metric space, G ⊆ L(X) be a topological group of
isometries acting on X, and A,B ⊆ X be two G-invariant subsets. Then conv(A,B)
is G-invariant.

As a consequence of this result, we obtain the following.
4



Corollary 6. Let (X, ∥ ·∥) be a normed space and G ⊆ L(X) be a topological group
of isometries acting on X. Assume that x0 ∈ X, B ⊂ X is a convex subset, and
that both are G-invariant. Then D(x0, B) is G-invariant.

We are going to show now that the previous conditions are indeed required.
Through the following examples we will be working with the group G = {Id, σ} ⊆
R2, where σ : R2 → R2 is defined as σ(x, y) = (y, x).

Example 7. In R2 take b = (0, 0), which is clearly G-invariant, and a = (2, 0),
which is not G-invariant. Then, the petal Pγ(a, b) is not G-invariant. Also, take
B = B((0, 3), 1) the open ball centered at (0, 3) with radius 1, which is clearly not
G-invariant. Then, the drop D(b, B) is not G-invariant.

However if we consider a non G-invariant point a, we cannot say anything about
the drop.

Example 8. In R2 suppose x = (0, 1) which is not G-invariant, and take B =
B((0, 0), 2) the ball centered at (0, 0) with radius 2, which is clearly G-invariant,
by G-invariance of the norm. Then D(x0, B) = B = B((0, 0), 2) which is G-
invariant as before. Now, suppose x = (5, 0) which is not G-invariant, and take B =
B((0, 0), 2) the ball centered at (0, 0) with radius 2, which is clearly G-invariant.
Since g(x0) = (0, 5), we can see that x0 ∈ D(x0, B), but x0 /∈ D(g(x0), B). So,
D(x0, B) is not G-invariant.

Through the paper, we will need to perform some operations on group invariant
sets. These operations are compatible with the G-invariance of the sets. We would
like to conclude this section, by recalling some of these results. The proofs of these
results are straightforward.

Property 9. Let (M,d) be a metric space and G ⊆ L(M) be a topological group
of isometries acting on M . If A,B ⊆ M are two G-invariant subsets, then A ∩ B
is again G-invariant and (A ∩B)G = AG ∩BG.

Property 10. Let X be a Banach space and G ⊆ L(X) be a topological group of
isometries acting on X. If A,B ⊆ X are two G-invariant subsets, then A\B is
again G-invariant and (A\B)G = AG\BG.

3. Equivalence of the Drop theorem, Petal theorem, and Ekeland’s
variational principle

The purpose of this section is to present a proof of the equivalence of the group
invariant version of the Drop theorem (Theorem 13), the Petal theorem (Theo-
rem 12), and the Ekeland’s variational principle (Theorem 11). To prove these
equivalences, we are going to use the following version of the Ekeland’s variational
principle, based on [9, Theorem 12].

Observe that [9, Theorem 12] is only stated for normed spaces, but a slight
revision of the proof shows us the following metric version of the Theorem.

Theorem 11. Let (M,d) be a complete metric space and G ⊆ L(M) be a compact
topological group of isometries acting on M . Suppose d is G-invariant, and let
f : M → R ∪ {+∞} be a mapping that is lower semiconinuous, bounded below,
proper, G-invariant and convex with respect to G. Then for all γ > 0 and every
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G-invariant point x0 ∈M , there exists a G-invariant point a ∈M such that

f(a) < f(x) + γd(x, a) ∀x ∈M, x ̸= a,(1)

f(a) ≤ f(x0)− γd(a, x0).(2)

Proof. Consider the subspace S = {x ∈M | f(x) + γd(x, x0) ≤ f(x0)}, which is
closed, and in [9, Theorem 12] take f|S which satisfies all the conditions of the
Theorem. Then, we know that there exists a G-invariant point a ∈ S such that

f(a) < f(x) + γd(a, x) ∀ a ̸= x ∈M.

But, since a ∈ S we have that

f(a) ≤ f(x0)− γd(a, x0).

□

To continue, let us present the G-invariant version of the Petal theorem and
Drop theorem.

Theorem 12 (G-invariant Petal theorem). Let (M,d) be a metric space, G ⊆ L(M)
be a compact topological group of isometries acting on M , and C ⊂ M a complete
G-invariant subset. Assume that d is G-invariant and convex with respect to G.
Let x0 ∈ CG, b ∈ (M\C)G, r ≤ d(b, C) and s = d(b, x0). Then, for all γ > 0, there
exists a G-invariant point a ∈ C ∩ Pγ(x0, b) such that C ∩ Pγ(a, b) = {a}.

Theorem 13 (G-invariant Drop theorem). Let (X, ∥ · ∥) be a normed space, G ⊆
L(X) be a compact topological group of isometries acting on X, and C ⊂ X a

complete G-invariant subset. Assume that x0 ∈ CG, and B = B(b, r), where b ∈ XG

and r < d(b, C). Then there exists a G-invariant point a ∈ C ∩D(x0, B) such that
C ∩D(a,B) = {a}.

Let us now present the main goal of this manuscript, that is, to show that the
previous three theorems are equivalent.

Theorem 11 ⇒ Theorem 12. Define the function

f : M → R
x 7→ d(x, b),

which is continuous, bounded below by r and G-invariant. Note that since d is
convex with respect to G, so is f .

Applying now Ekeland’s variational principle we know that there exists a ∈ SG

such that

f(a) < f(x) + γd(a, x) ∀x ∈M, x ̸= a(3)

f(a) < f(x0)− γd(a, x0).(4)

By (3) we know that for every x ∈M\ {a} we have that x /∈ Pγ(a, b), this meaning
that

M ∩ Pγ(a, b) = {a} .
This concludes the proof. Observe also, that by (4),

d(a, b) < d(x0, b)− γd(x0, a),

hence

γd(x0, a) < −d(a, b) + d(x0, b) = s− d(a, b).
6



By hypothesis we know that r < d(b,M) < d(b, a), thus

d(x0, a) <
s− r

γ
.

□

Theorem 12 ⇒ Theorem 13. Let B = B(b, r), and consider X = C ∩ D(x0;B)
which is a complete and G-invariant subspace. Define d = d(b, C) and γ = d−r

d+r .

By the Petal’s theorem there exists a G-invariant point, say a, such that {a} =
X ∩ Pγ(a, b).

Observe now that, since t = d(a, b) ≥ d > r, it is clear that

d− r

d+ r
≤ t− r

t+ r
,

so D(a,B) ⊆ Pγ(a, b) for t > r. Moreover, since a ∈ D(x0, B), then D(a,B) ⊆
D(x0, B). Therefore

D(a,B) ∩ C ⊆ D(a,B) ∩ (D(x0, B) ∩ C) ⊆ Pγ(a, b) ∩X = {a} .

□

Remark 14. Note that to prove the last implication, it is not required the condition
of d being convex with respect to G.

In order to prove the last implication we will use the following lemma, whose
proof can be found in [11, Lemma 2.3].

Lemma 15. Let X be a normed vector space, B = B((0, h), r) ⊆ X×R with radius
r ∈]0, h[ and the norm ∥(x, r)∥ = max(∥x∥, r). Then, the cone K = R+B generated
by B is given by

K =
{
(x, t) ∈ X × R | t ≥ r−1(h− r)∥x∥

}
.

Now we can move to the proof of the last implication.

Theorem 13 ⇒ Theorem 11. We start replacing d by d′ = min(δ, d) where δ =
1
γ (f(x0)− inf f(M) + 1). Observe that the two conditions of Ekeland’s variational

principle will still hold if we consider the distance d′ instead of the distance d. Let
F be the normed vector space of the continuous functions inM with the supremum
norm. Then, (M,d) can be isometrically embedded in F via the mapping

(M,d) → F
x 7→ dx(y) = d(x, y),

and M ⊆ F is complete. Define E = F ×R with the norm ∥(x, t)∥ = max (∥x∥, |t|).
Without loss of generality we may assume that x0 = 0 and f(x0) = 0. If this were

not the case, we could achieve this by translating via the mapping x 7→ f(x)−f(x0).
We define now ψ = −f which is G-invariant, and observe that ψ(x0) = f(x0) = 0.
Take m = sup {ψ(x) | x ∈M}, r > m

γ , h = γr + r > m + r, and define finally

B = B((0, h), r) = B(0, r) × [h − r, h + r] and K = R+B. For given (x, t) ∈ B we
have that

t ≥ h− r > m,
7



therefore (x, t) /∈ C = Hipo(ψ) = {(x, t) ∈M × R | t ≤ ψ(x)}. Observe also that
(0, 0) ∈ Hipo(ψ). Hence, by Theorem 13, there exists a G-invariant point (a, α) ∈
C ∩D((0, 0), B) such that

{(a, α)} = C ∩D((a, α), B).

Notice that

D((0, 0), B) = {(0, 0) + t((0, 0) + b) | t ∈ [0, 1], b ∈ B} =

= {tb | t ∈ [0, 1], b ∈ B} = [0, 1] ·B = [0, 1] ·B((0, h), r).

Since (a, α) ∈ D((0, 0), B), in particular a ∈ B(0, r) and (a, h) ∈ B ⊆ D((0, 0), B).
Then, by convexity

(a, t) = β(a, α) + (1− β)(a, h) for β ∈ [0, 1],

thus (a, t) ∈ D((0, 0), B). Observe now that it can not happen that α < ψ(a),
otherwise (a, α) ∈ B and (a, α) ∈ int(C), a contradiction. Therefore, α = ψ(a).

Applying now Lemma 15 we know that

K = R+B =
{
(x, t) ∈ F × R | t ≥ r−1(h− r)∥x∥

}
.

Since (a, α) ∈ B and α = ψ(a):

ψ(a) ≥ r−1(h− r)∥a∥ = γ∥a∥ = γd(a, x0),

from where we deduce (2), taking into account that ψ = −f and f(x0) = 0, i.e.,

f(a) ≤ f(x0)− γd(a, x0).

Let now (x, t) ∈ (a, α) + K, where x ∈ M\ {a} and t ≤ m. It is clear that
t− α ≥ γ∥x− a∥ > 0, so we can write

(x− a, t− α) = s(z, h− r − α)

where z = s−1(x− a), s = t−α
h−r−α . Observe that, since

t− α ≤ m− α < γr − α = h− α− r,

h− r − α ≥ h− r −m > 0,

it is clear that s ∈]0, 1[. Moreover, K is a convex cone, so

(a+ z, h− r) = (a, α) + (z, h− r − α) ∈ K,

thus (a+ z, h− r) ∈ K ∩ (E × {h− r}) ⊆ B, and by convexity of D((a, α), B) we
have that

(x, t) = (a, α) + s((a+ z, h− r)− (a, α)) ∈ D((a, α), B).

In particular (x, t) /∈ C. Since for all x ∈M , ψ(x) ≤ m, then (x, ψ(x)) /∈ (a, α)+K,
therefore

ψ(x)− ψ(a) < γ∥x− a∥.
Thus

f(a) < f(x) + γ∥x− a∥.
□

We would like now to focus on a different version of group invariant Drop theorem
and Petal’s theorem, where instead of looking for group invariant points in the
solution, we search for group invariant sets. Let us give a previous definition.

8



Definition 16. Let (M,d) be a metric space and G be a compact topological group
of isometries acting on M . For a point x ∈ E we define

sG(x) := inf{d(x, g(x)) | g ∈ G and g(x) ̸= x}.

The following result is a slight modification of the Petal theorem that allows us
to extend the classical Petal theorem to what we call the flower theorem.

Proposition 17. Let (M,d) be a metric space, G ⊆ L(M) be a compact topological
group of isometries acting on M , and C ⊂M a complete G-invariant subset of M .
Let x0 ∈ CG, b ∈M\C. Then, for every γ > 0, there exists a ∈ C ∩ Pγ(x0, b) such
that

C ∩ Pγ(g(a), g(b)) = {g(a)} for every g ∈ G.

Furthermore, for every g, g′ ∈ G with d(g(b), g′(b)) > 2d(b, C) we have that

Pγ(g(a), g(b)) ∩ Pγ(g
′(a), g′(b)) = ∅.

SS

x0x0

aa

g(b)

b

g(a)

Figure 1. Flower theorem statement.

We can also obtain an analogous generalization for the Drop theorem.

Proposition 18. Let (E, ∥ · ∥) be a normed space, G ⊆ L(E) be a compact topolog-
ical group of isometries acting on E, and C ⊂ E be a complete G-invariant subset
of E. Let x0 ∈ CG, b ∈ E\C. Then, there exists a ∈ C ∩D(x0, b) such that

C ∩D(g(a), g(b)) = {g(a)} for every g ∈ G.

Furthermore, for every g, g′ ∈ G with d(g(b), g′(b)) > 2d(b, C) we have that

D(g(a), g(b)) ∩D(g′(a), g′(b)) = ∅

for every g, g′ ∈ G with g(b) ̸= g′(b).
9
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Figure 2. Generalized Drop theorem statement.

4. Caristi-Kirk, Ekeland and Takahasi’s theorem

In this section we want to show the equivalence between the Ekeland’s variational
principle, the Caristi-Kirk fixed point theorem, and the Takahasi’s theorem, all of
them in the group invariant setting. Let’s first do some assumptions.

Let (M,d) be a complete metric space and G ⊆ L(M) be a compact topological
group of isometries acting on M , so that d is G-invariant. Let f : M × M →
R ∪ {+∞} be a function which is lower semicontinuous, G-invariant and convex
with respect to G in the second coordinate that also satisfies

f(x, x) = 0 ∀x ∈M,(5)

f(x, y) ≤ f(x, z) + f(z, y) ∀x, y, z ∈M.(6)

Assume that there exists x0 ∈MG such that

(7) inf
x∈M

f(x0, x) > −∞,

and define the set

(8) S0 = {x ∈M | f(x0, x) + d(x0, x) ≤ 0} .
Note that by the G-invariance of f , d and x0, the set S0 is also G-invariant.

The assumptions on f and the existence of x0 will hold through this section.
In order to show the previously mentioned equivalences we will use the following

auxiliary result.

Theorem 19. Let U ⊆M be G-invariant satisfying that

(9) ∀ y ∈ S0\U, ∃x ∈MG such that x ̸= y and f(y, x) + d(y, x) ≤ 0.

Then, there exists x̂ ∈ (S0 ∩ U)G.

Proof. Let us construct recursively a sequence of G-invariant points xn ∈M . Con-
sider the initial point x0 as the one given in assumption (7), so

inf
x∈M

f(x0, x) > −∞.

Given xn define the set

Sn = {x ∈M | f(xn, x) + d(xn, x) ≤ 0} ,
10



and the number

γn = inf
x∈Sn

f(xn, x).

Notice that for n = 0, the set S0 is the one given in equation (8).
Clearly the set Sn is G-invariant since xn is G-invariant, d is G-invariant and f

is G-invariant with respect to the second coordinate. Also by assumption (5) it is
clear that Sn ̸= ∅, since xn ∈ Sn, and γn ≤ 0.

For n ≥ 1, suppose xn−1 is known and G-invariant, and γn−1 > −∞. Set a
G-invariant point xn ∈ Sn−1 such that

(10) f(xn−1, xn) ≤ γn−1 +
1

n
.

Under this assumptions we are going to show that Sn ⊆ Sn−1. Let x ∈ Sn, by
assumption (5) and the fact that xn ∈ Sn and xn ∈ Sn−1 it is clear that

f(xn−1, x) + d(xn−1, x) ≤ f(xn−1, xn) + d(xn−1, xn) + f(xn, x) + d(xn, x) ≤ 0,

so, indeed x ∈ Sn−1. Applying now (5) and (10) we see that Sn ⊆ Sn−1, and,

γn = inf
x∈Sn

f(xn, x) ≥ inf
x∈Sn

(f(xn−1, x)− f(xn−1, xn))

≥ inf
x∈Sn−1

(f(xn−1, x)− f(xn−1, xn))

= γn−1 − f(xn−1, xn) ≥ − 1

n
.

Then, if x ∈ Sn

d(xn, x) ≤ −f(xn, x) ≤ −γn ≤ 1

n
.

Thus, diam(Sn) → 0. Moreover for every k ≥ n it is clear that xk ∈ Sk ⊆ Sn. In
particular,

d(xk, xn) ≤
1

n
.

Hence {xn} is a Cauchy sequence of group invariant points. Therefore, since MG is
closed, there exists a group invariant point, say x̂, which is the limit of the sequence.
Since diam(Sn) → 0, it is clear that

+∞⋂
n=0

Sn = {x̂} .

We claim that x̂ ∈ U . By contradiction, if x̂ /∈ U , we know by hypothesis that
there exists x ∈M such that x ̸= x̂ and

f(x̂, x) + d(x̂, x) ≤ 0.

Also, since x̂ ∈
⋂+∞

n=0 Sn

f(xn, x̂) + d(xn, x̂) ≤ 0 ∀n ≥ 0.

Now, applying (5), we obtain

f(xn, x) + d(xn, x) ≤ 0 ∀n ≥ 0,

this meaning that x ∈
⋂+∞

n=0 Sn. But this would be a contradiction with the fact

that
⋂+∞

n=0 Sn = {x̂}. So x̂ ∈ U . □
11



To conclude this section we present the group invariant equivalences of Theorem
19, that are the group invariant generalizations of Ekeland’s theorem, Takahashi’s
theorem, and Caristi-Kirk fixed point theorem respectively.

Theorem 20. Let (M,d) be a complete metric space and G ⊆ L(M) be a com-
pact topological group of isometries acting on M . Then, the following results are
equivalent:

(i) Let U ⊆M be G-invariant satisfying that

∀ y ∈ S0\U, ∃x ∈MG with x ̸= y and f(y, x) + d(y, x) ≤ 0.

Then, there exists x̂ ∈ (S0 ∩ U)G.
(ii) There exists x̂ ∈ S0 such that x̂ is G-invariant, and f(x̂, x) + d(x̂, x) > 0 for

all x ∈M , x ̸= x̂.
(iii) Suppose ∀ y ∈ S0 with infx∈M f(y, x) < 0, there exists

x ∈MG with x ̸= y and f(y, x) + d(y, x) ≤ 0.

Then, there exists x̂ ∈ (S0)G such that f(x̂, x) ≥ 0 for all x ∈MG.
(iv) Let T : M → M be a multivalued mapping such that for every y ∈ S0 there

exists

x ∈ (T (y))G with f(y, x) + d(y, x) ≤ 0.

Then, there exists x̂ ∈ (S0)G such that x̂ ∈ T (x̂).

Proof. (ii) ⇒ (i)
We know that there exists some G-invariant point x̂ ∈ S0 such that

f(x̂, x) + d(x̂, x) > 0 ∀x ̸= x̂.

In particular x̂ ∈ U , hence x̂ ∈ S0 ∩ U .
(i) ⇒ (ii)
Take y ∈M and define

Γ(y) = {x ∈M | x ̸= y, f(y, x) + d(y, x) ≤ 0} .
Define now U = {y ∈M | Γ(y) = ∅}. Then, if y /∈ U , by definition, there exists
some x such that x ∈ Γ(y). Applying now (i) there exists some G-invariant point
x̂ ∈ S0 ∩ U . So Γ(x̂) = ∅, therefore

f(x̂, x) + d(x̂, x) > 0 ∀x ̸= x̂.

(iii) ⇒ (i)
We proceed by contradiction. Assume that y /∈ U for every y ∈ S0. Then, by

hypothesis, there exists some x ∈MG such that x ̸= y and

f(y, x) + d(y, x) ≤ 0.

From this we can deduce that inf {f(y, x) | x ∈M} < 0. Therefore, applying (iii),
there exists some G-invariant point x̂ ∈ S0 such that f(x̂, x) ≥ 0 for every x ∈MG.
This implies that

f(x̂, x) + d(x̂, x) ≥ 0 ∀ x̂ ̸= x ∈MG.

Thus a contradiction.
(i) ⇒ (iii)
Define

U =

{
y ∈ X | inf

x∈M
f(y, x) ≥ 0

}
.

12



Then the hypothesis of (i) follows from the hypothesis of (iii). Since (i) holds,
there exists some G-invariant point x̂ ∈ S0 ∩ U . And since x̂ ∈ U , by definition,

inf
x∈M

f(x̂, x) ≥ 0.

In particular f(x̂, x) ≥ 0 for every x ∈MG.
(iv) ⇒ (i)
Define the multivalued map T : M →M as follows

T (y) = {x ∈MG | x ̸= y} .
Proceed by contradiction. Suppose y /∈ U for every y ∈ S0. Then, the hypothesis
of (iv) follows from (i). Then, there exists some G-invariant point x̂ ∈ S0. But this
is a contradiction with the definition of T .

(i) ⇒ (iv)
Define

U = {y ∈M | y ∈ T (y) and is G− invariant} .
By the hypothesis of (iv) we obtain the hypothesis of (i). And since (i) holds, we
obtain a G-invariant point x̂ ∈ S0 ∩ U . In particular x̂ ∈ U , and by definition
x̂ ∈ T (x̂). □

5. Applications of the Ekeland variational principle

5.1. Drop and generalized Drop theorem. We are going to present a geomet-
rical application of the Drop theorem dealing with the notion of the contingent cone
to a subset C of a Banach space X. Recall that the contingent cone to C in a ∈ C
is

KC(a) = lim sup
t→0+

t−1(C − a).

So, v ∈ KC(a) if, and only if, lim inft→0+ t
−1d(a+ tv, C) = 0.

Theorem 21. Let X be a normed space and G ⊆ L(X) be a compact topological
group of isometries acting on X. Assume that C ⊆ X is a complete G-invariant
subset. Let x0 ∈ C and y ∈ X be G-invariant and such that the segment [x0, y] is
not contained in C. Then, for each ρ > 0, there exists a G-invariant point a ∈ C
such that

∥x0 − a∥ ≤ ∥x0 − y∥+ ρ, and y /∈ a+KC(a).

Proof. Without loss of generality we may assume that x0 = 0. Let λ ≥ 1 such
that y = λz with z ∈ (E\C)G. Let r ∈]0, ρ] with r < d(z, C) and define B =
B(z, r). Then, by Theorem 13, we know that there exists a G-invariant point
a ∈ C ∩D(x0, B) such that {a} = C ∩D(a,B).

Let us write now a = α(z+b) with α ∈ [0, 1[ and ∥b∥ ≤ r, and define t = λ−1
λ−α . It

is clear that t ∈ [0, 1[. Define now w = ta+(1− t)y. Since t, α ∈ [0, 1[ and ∥b∥ ≤ r,
we obtain that

∥w − z∥ = ∥tαb+ (tα+ (1− t)λ− 1)z∥ = tα∥b∥ < r.

Hence w ∈ B and

(y − a) = (1− t)−1(w − a) ∈ R+(B\ {a}) ⊆ E\KC(a),

as (a+]0, 1[(B − a)) ∩ C = ∅. Finally
∥x0 − a∥ ≤ diam(x0, B) ≤ ∥x0 − z∥+ r ≤ ∥x0 − y∥+ ρ.

□
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Remark 22. Observe that the condition on y being G-invariant cannot be removed
within this proof, since we define the point z so that y = λz, and we use in this
proof that z is G-invariant. If y were not G-invariant, then the only G-invariant
point containing the line y = λz would be the constant zero.

We can proceed similarly but, applying now Theorem 18 to obtain the following
result.

Theorem 23. Let X be a normed space and G ⊆ L(X) be a compact topological
group of isometries acting on X. Assume that C ⊆ X is a complete G-invariant
subset. Let x0 ∈ C be G-invariant, and choose y ∈ X such that the segment [x0, y]
is not contained in C. Then, for each ρ > 0 and for each g ∈ G, there exists
g(a) ∈ C such that

∥x0 − g(a)∥ ≤ ∥x0 − g(y)∥+ ρ, and g(y) /∈ g(a) +KC(g(a)).

Moreover, if sG > 2d(z, C), where z is such that z ∈ (E\C)G and y = λz, then for
every g, g′ ∈ G, we have that

g(a) +KC(g(a)) ∩ g′(a) +KC(g
′(a)) = ∅.

5.2. Partial differential equations. Finally, we want to give some applications of
the group invariant Ekeland’s variational principle to the area of partial differential
equations. Let us start fixing some notation. During this section Ω ⊆ Rn is going
to be an open-bounded subset of Rn with regular boundary. As usual, W 1,1(Ω)
will be the Sobolev space of L1(Ω), functions whose first weak derivatives are also

in L1(Ω), and W 1,1
0 (Ω) will be the subset of functions of W 1,1(Ω) that vanish on

the boundary of Ω. Also W−1,q(Ω) will be the dual set of W 1,p
0 (Ω) for 1 ≤ p ≤ ∞,

where q denotes the conjugate exponent of p, i.e, 1
p + 1

q = 1.

If v ∈W 1,1(Ω), we will denote its weak derivative with respect to xi by
∂v
∂xi

, and
∇v is going to denote the gradient in the weak sense. If we do not say otherwise,
all the derivatives that appear in this section should be understood in the sense of
distributions.

Remark 24. Observe that if a function, say f , is differentiable, then the weak
derivative and the directional derivative coincide. This is the reason why we denote
the weak derivative in the same way as the partial derivative.

We will endow W 1,p(Ω) with the norm:

∥u∥1,p = ∥u∥p + ∥∇u∥p .
In all the applications we are going to study during this section, the group G will
be a group of permutations on Rn.

5.2.1. Plateau problem. Let us present a result that will be useful in Theorem 26,
and whose proof can be found in [9, Corollary 15]

Lemma 25. Let X be a Banach space and G ⊆ L(X) be a compact topological
group of isometries acting on X. Let f : X → R∪{+∞} be a lower semicontinuous
function, Gâteaux differentiable, bounded below, G-invariant, convex with respect
to G, and so that there exists constants k, c > 0 with

(11) f(x) ≥ k∥x∥+ c ∀x ∈ X.

Then, the range of δf(x) is dense in kBG, where BG is the closed unit ball in X∗
G.
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The first result of this section guarantees that the perturbed Plateau problem,
when perturbing by a G-invariant function, has a unique G-invariant solution.

Theorem 26. Suppose Ω, and v0 ∈W 1,1
0 (Ω) are G-invariant. Then, there exists in

W−1,∞(Ω) a neighbourhood of the origin, and a dense subset T in this neighbour-
hood, such that, for every G-invariant T ∈ T , the perturbed minimal hypersurface
equation

T = −
n∑

i=1

∂

∂xi

∇v
(1 + |∇v|2) 1

2

,

v − v0 ∈W 1,1
0 (Ω),

and the perturbed Plateau’s problem

inf

(∫
Ω

1 + |∇v|2dx
) 1

2

− ⟨T, v⟩,

v − v0 ∈W 1,1
0 (Ω),

both have a unique G-invariant solution.

Proof. Define by

F (v) =

(∫
Ω

1 + |∇v +∇v0|2dx
) 1

2

,

which is the function to be minimized on W 1,1
0 (Ω). It is known that this function

is convex, continuous, and Gâteaux differentiable, with derivative

F ′(v) = −
n∑

i=1

∂

∂xi

∇v −∇v0
(1 + |∇v +∇v0|2)

1
2

∈W−1,∞(Ω).

Observe that, since F is convex, in particular, is convex with respect to G.
Now we want to check that F is G-invariant. Observe that, since v0 is G-

invariant, so is ∇v0. Therefore,

F (g(v)) =

(∫
Ω

1 + |∇g ◦ v(x) +∇g ◦ v0(x)|2dx
) 1

2

=

(∫
Ω

1 + |∇v(g(x)) +∇v0(g(x))|2dx
) 1

2

=

(∫
Ω

1 + |∇v(x) +∇v0(x)|2dx
) 1

2

= F (v),

since Ω is G-invariant.
Finally, we want to see that F satisfies equation (11) so we can apply Lemma

25. Observe that∫
Ω

|∇v|dx−
∫
Ω

|∇v0|dx ≤
∫
Ω

|∇v +∇v0|dx = ∥∇v +∇v0∥1 ≤ ∥∇v +∇v0∥2 =

=

(∫
Ω

|∇v +∇v0|2dx
) 1

2

≤
(∫

Ω

1 + |∇v +∇v0|2dx
) 1

2

,
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where we have used the triangle inequality and Hölder’s inequality respectively.
But now, by Poincaré’s inequality, see [2, Corollary 9.19] we know that there exists
a constant C > 0 such that

∥u∥1 ≤ C∥∇u∥1 ∀u ∈W 1,1
0 (Ω).

In particular

∥∇u∥1 ≥ 1

C + 1
∥u∥1,1 ∀u ∈W 1,1

0 (Ω).

Therefore

F (v) =

(∫
Ω

1 + |∇v +∇v0|2dx
) 1

2

≥ 1

C + 1
∥v∥1,1 −K,

where the constant K = ∥∇v0∥1. Applying now Lemma 25 we deduce that there
exists a dense subset T such that ∀T ∈ T , F ′(v) = T has some solution v ∈
W 1,1

0 (Ω). Finally, define for any T ∈W 1,1(Ω)

FT (v) = F (v)− ⟨T, v⟩.

Then, for any T ∈ T there exists vT ∈ W 1,1
0 (Ω) such that F ′

T (vT ) = 0. But since

FT is strictly convex, then vT is the unique minimum of FT in W 1,1
0 (Ω). □

5.2.2. General patial differential equations. Let us start recalling the G-invariant
version of the Palais-Smale minimizing sequences that can be found in [9, Corollary
14], and will be very useful for the proof of Theorem 28

Lemma 27. Let X be a Banach space and G ⊆ L(X) be a compact topological group
of isometries acting on X. Let φ : X → R be Gâteaux differentiable, bounded below,
G-invariant and convex with respect to the group. Then, there exists a sequence
{xn}+∞

n=1 ⊆ X such that

(1) xn is G-invariant for all n ∈ N,
(2) φ(xn) → inf {φ(x) | x ∈ X} ,
(3) ∥δφ(xn)∥ → 0.

Using this lemma, we can obtain the following application.

Theorem 28. Let Ω ⊆ Rn be a G-invariant subset, and let p ∈]1,+∞[. Suppose
f : Ω× Rn → R is a borelian function such that

(i) f(x, ξ) ≥ 0.
(ii) ξ 7→ f(x, ξ) is a C1 function.
(iii) For given constants a, b ≥ 0, f satisfies a growth condition: |f ′ξ(x, ξ)| ≤ a +

b|ξ|p−1 for all ξ ∈ Rn.

Suppose also that there exists a G-invariant function v0 ∈ W 1,p
0 (Ω) such that∫

Ω
f(x,∇v0(x))dx < +∞. Then, for all ϵ > 0 there exists a G-invariant func-

tion uϵ ∈W 1,p(Ω) such that

(1)

∥∥∥∥∥
n∑

i=1

∂

∂xi

∂f

∂ξi
(·,∇uϵ(·))

∥∥∥∥∥
−1,q

≤ ϵ.

(2)

∫
Ω

n∑
i=1

∣∣∣∣∂uϵ∂xi

∣∣∣∣p dx = α.
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Proof. Define the function

H(u) =
1

p

∫
Ω

n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx− α ∀u ∈W 1,p

0 (Ω).

It is known that this function is a C1 function on W 1,p
0 (Ω), finite everywhere, with

derivative

H ′(u) = −
n∑

i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
,

see [6, Lemma 4.2]. Observe now that H is G-invariant, since

H(g∗(u)) =
1

p

∫
Ω

n∑
i=1

∣∣∣∣∂g∗(u)∂xi
(x)

∣∣∣∣p dx− α

=
1

p

∫
Ω

n∑
i=1

∣∣∣∣ ∂u∂xi (g(x))
∣∣∣∣p dx− α

=
1

p

∫
Ω

n∑
i=1

∣∣∣∣ ∂u∂xi (x)
∣∣∣∣p dx− α = H(u),

for all u ∈ W 1,p
0 (Ω), and every g ∈ G. Now, it only remains to check that H is

convex with respect to G. For given u ∈W 1,p
0 (Ω), observe that

H(u) =
1

p

∫
Ω

n∑
i=1

∣∣∣∣ ∂u∂xi (x)
∣∣∣∣p dx− α =

1

p

∫
Ω

n∑
i=1

∣∣∣∣∣∣
∑
g∈G

1

|G|
∂g∗(u)

∂xi
(x)

∣∣∣∣∣∣
p

dx− α.

Applying now the following inequality

|a+ b|p ≤ (|a|+ |b|)p for p ≥ 1,

it follows that

1

p

∫
Ω

n∑
i=1

∣∣∣∣∣∣
∑
g∈G

1

|G|
∂g∗(u)

∂xi
(x)

∣∣∣∣∣∣
p

dx− α ≤ 1

p

∫
Ω

n∑
i=1

∣∣∣∣∣∣
∑
g∈G

1

|G|

∣∣∣∣∂g∗(u)∂xi
(x)

∣∣∣∣
∣∣∣∣∣∣
p

dx− α

≤ 1

p

∫
Ω

n∑
i=1

∑
g∈G

1

|G|

∣∣∣∣∂g∗(u)∂xi
(x)

∣∣∣∣p dx− α

=
∑
g∈G

1

|G|
1

p

∫
Ω

n∑
i=1

∣∣∣∣∂g∗(u)∂xi
(x)

∣∣∣∣p dx− α

=
∑
g∈G

1

|G|
H(g∗(u)) = H(u),

where we have used in the second inequality that the power function xp is convex
on R+ and Jensen’s inequality.

So we have shown that the inequality H(u) ≤ H(u) holds, therefore H is convex
with respect to the group. Applying now Lemma 27, there exists a sequence of
G-invariant points {un} ⊆W 1,p

0 (Ω) such that

(12) H(un) → inf
{
H(v) | u ∈W 1,p

0 (Ω)
}
,

(13) ∥∂H(un)∥ → 0.
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From (13) one deduces directly (1). Observe that if we assume that H is bounded
below by 0, then, from (12) we obtain (2). □

5.2.3. Control theory. Let K be a G-invariant compact metrizable convex set, and
consider the differential equation

(14)

{
dx
dt (t) = f(t, x(t), u(t)),

x(0) = x0,

where x0 ∈ Rn and f : [0, T ] × Rn ×K → Rn, for fixed T ∈ R. Assume that the
following properties are satisfied:

(i) f is continuous, G-invariant on the 3rd coordinate, and convex with respect
to the group on the 3rd coordinate.

(ii) ∂f
∂xi

is well defined and is continuous for all 1 ≤ i ≤ n.

(iii) There exists a C > 0 such that ⟨x, f(t, x, u)⟩ ≤ C(1 + |x|2).
We have the following result.

Theorem 29. Suppose f satisfies the previous assumptions, and let h : Rn → R be
a differentiable function. Then, for all ϵ > 0, there exists a G-invariant measurable
control v, whose trajectory is y, such that{

h(y(T )) ≤ inf h(x(T )) + ϵ,
⟨f(t, y(t), v(t)), p(t)⟩ ≤ minu∈K⟨f(t, y(t), u(t)), p(t)⟩+ ϵ,

where p is the solution of the differential system{
dpi

dt (t) = −
∑n

i=1
∂fj
∂xi

(t, y(t), v(t))pj(t) ∀1 ≤ i ≤ n,

p(T ) = h′(y(T )).

Proof. Devine V as the set of all G-invariant measurable controls w : [0, T ] → K,
that is, all measurable controls w : [0, T ] → K such that g

(
w([0, T ])

)
= w([0, T ]).

Consider the following metric on V ,

d(w1, w2) = meas {t ∈ [0, T ] | w1(t) ̸= w2(t)} .

Then, V is a complete metric space, see [7, Lemma 10]. Now, consider the function

F : V → R
u 7→ h(x(T )),

where x is the solution of the differential equation (14). It is well-known that F is
continuous and bounded below, see [6, Lemma 7.3]. Let’s see that F is G-invariant.
Observe that we can express x as follows:

x(t) = x0 +

∫ t

0

f(t, x(t), u(t))dt.

Hence, it is clear that x has some dependence on u, to highlight it, we are going to
denote it by xu. Therefore, by G-invariance of f , we have that

F (g∗(u)) = h(xg∗(u)(t)) = h

(
x0 +

∫ t

0

f(t, x(t), g(u(t)))dt

)
=

= h

(
x0 +

∫ t

0

f(t, x(t), u(t))dt

)
= h(xu(t)) = F (u).
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Finally, we have to show that F is convex with respect to G. Again by convexity
of f with respect to G, and using the convexity of K, it is clear that

F

 1

|G|
∑
g∈G

g∗(u)

 = h
(
x 1

|G|
∑

g∈G g∗(u)(t)
)

= h

x0 + ∫ t

0

f

t, x(t), 1

|G|
∑
g∈G

g(u(t))

 dt


≤ h

x0 + 1

|G|
∑
g∈G

∫ t

0

f (t, x(t), g(u(t))) dt


= h

(
x0 +

∫ t

0

f(t, x(t), u(t))dt

)
= h(xu(t)) = F (u).

Applying Ekeland’s variational principle, we know that there exists a G-invariant
point v ∈ V such that

F (v) ≤ inf
V
F + ϵ,

F (u) ≥ F (v)− ϵd(u, v) ∀u ∈ V.

From the first inequality it is clear that

g(v(T )) ≤
∫
g(x(T )) + ϵ.

Taking now t0 > 0 and k0 ∈ K, define uτ ∈ V for τ ≥ 0 as

uτ (t) = k0 if t ∈ [0, T ]∩]t0 − τ, t0[,

uτ (t) = v(t) if t /∈ [0, T ]∩]t0 − τ, t0[.

Clearly, if τ is sufficiently small, d(uτ , v) = τ . Let us denote by xτ the associated
trajectory to uτ , then u0 = v and x0 = y, then taking uτ in the second inequality
of Ekeland, we obtain that

g(xτ (T ))− g(y(T )) ≥ −ϵτ ∀ τ ≥ 0.

Hence,

dg

dτ
(xτ (T ))|τ=0

≥ −ϵ.

But it is known, see [7, Theorem 9], that

dg

dτ
(xτ (T ))|τ=0

= ⟨f(t0, y(t0), k0)− f(t0, y(t0), v(t0)), p(t0)⟩.

Thus

⟨f(t0, y(t0), k0)− f(t0, y(t0), v(t0)), p(t0)⟩ ≥ −ϵ,

which is the desired, since k0 is any G-invariant point of K and t0 is almost every
point of [0, T ]. □
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