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Abstract. We present a pedagogical review of the periodically driven non-
Hermitian systems, particularly on the rich interplay between the non-Hermitian
skin effect and the topology. We start by reviewing the non-Bloch band theory of
the static non-Hermitian systems and discuss the establishment of its generalized
bulk-boundary correspondence. Ultimately, we focus on the non-Bloch band
theory of two typical periodically driven non-Hermitian systems: harmonically
driven non-Hermitian system and periodically quenched non-Hermitian system.
The non-Bloch topological invariants were defined on the generalized Brillouin
zone and the real space wave functions to characterize the Floquet non-Hermtian
topological phases. Then, the generalized bulk-boundary correspondence was
established for the two typical periodically driven non-Hermitian systems.
Additionally, we review novel phenomena in the higher-dimensional periodically
driven non-Hermitian systems, including Floquet non-Hermitian higher-order
topological phases and Floquet hybrid skin-topological modes. The experimental
realizations and recent advances have also been surveyed. Finally, we end with
a summarization and hope this pedagogical review can motivate further research
on Floquet non-Hermtian topological physics.
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1. Introduction

In recent decades, the topological materials, which
possess gapped bulk states and robust gapless edge
states, have attracted a great deal of theoretical as
well as experimental interest [1–17]. These topological
phases are beyond Landau’s symmetry-breaking theory
and cannot be accurately characterized by local order
parameters. The essential principle of the topological
phases is the bulk-boundary correspondence (BBC):
the emergence of robust edge states is the result of the
topologically nontrivial bulk [18–25].

The Hamiltonian of a closed quantum system
possesses the property of Hermiticity, which guarantees
the probability conservation and reality of eigenvalues.
However, the time evolution of open systems should
be generated by the non-Hermitian Hamiltonians
rather than the Hermitian ones [26–28]. Many
phenomena, from open quantum systems to classical
wave events, can be well described by non-Hermitian
Hamiltonians [29–54]. Especially, the interplay
between the non-Hermiticity and the topology has
aroused wide attentions in many fields of physics [55–
73]. The eigenstates of a non-Hermitian system
under the OBC are localized at the boundaries,
known as the non-Hermitian skin effect (NHSE) [74–
81]. Due to the NHSE, the topological edge
states can not be characterized by a topological
invariant defined by the bulk Bloch states, which
indicates the breakdown of Bloch BBC [82–86].
To explain these novel phenomena and establish a
generalized BBC in non-Hermitian systems, the non-
Bloch band theory [74, 87–90] was developed, in
which the Brillouin zone(BZ) was generalized into
the generalized Brillouin zone(GBZ). Based on the
GBZ, the non-Bloch topological invariants can be
defined to characterize the topological edge states
and establish the topological classification of non-
Hermitian systems [91, 92].

Moreover, periodic driving provides a promising
platform for generating highly adjustable topological
phenomena, even the creation of entirely novel topo-
logical states that do not have static equivalents [93–
122]. For example, the boundaries of the systems can
exhibit robust topological edge modes, although the
bands are topologically trivial. Owing to the period-
icity in time, the systems have the robust topological
zero modes and the π modes, which do not have a
static analog [123, 124]. Therefore, the combination

of periodic driving and non-Hermiticity will lead to
many interesting phenomena without static or Hermi-
tian counter, which have attracted a lot of research
interest recently [125–169].

In this article, we review the generalized BBC
in periodically driven non-Hermitian systems peda-
gogically. In section 2, we take a brief review of
the non-Bloch band theory and the generalized BBC
in the static non-Hermitian Su-Schrieffer-Heeger(SSH)
model [74, 80, 83, 170]. Based on the GBZ, the non-
Bloch topological invariants can be defined to char-
acterize the topological edge states in non-Hermitian
systems with the NHSE. We also introduce the non-
Hermitian topological invariants in real space, a pow-
erful tool for characterizing the topological edge states
of some systems that are challenging to determine the
GBZ. In section 3.1-3.3, after reviewing the Floquet
theorem, we introduce the generalized BBC in two
typical periodically driven non-Hermitian SSH models:
harmonically driven non-Hermitian SSH model and pe-
riodically quenched non-Hermitian SSH model [148,
149]. The topological For the harmonically driven
non-Hermitian SSH model, the topological zero modes
and π modes can be characterized by the non-Bloch
winding numbers (NBWNs), which are defined by non-
Bloch periodized evolution operators (NBPEOs) based
on the GBZ [148]. For the periodically quenched
non-Hermitian SSH model, the non-Hermitian wind-
ing numbers in real space are defined to characterize
the topological edge states [149]. Therefore, the gen-
eralized BBC was established for the two typical peri-
odically driven non-Hermitian systems, since the non-
Bloch topological invariants and open-bulk topologi-
cal invariants were defined to characterize the Floquet
topological edge states accurately. In section 3.4, we
take a brief review of the novel phenomena of topolog-
ical states and NHSE in the higher-dimensional peri-
odically driven non-Hermitian systems, especially de-
scribing the Floquet skin-topological effect and Flo-
quet non-Hermitian second-order topological insula-
tors. In section 3.5, we take a concise overview of the
experimental realizations and advancements of non-
Hermitian as well as periodically driven systems, es-
pecially on photonics, acoustic and topological electric
circuits. Finally, we summarize the content of the ar-
ticle and make an outlook on some topics worth dis-
cussing in section 4.
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2. Non-Bloch band theory

2.1. Non-Hermitian skin effect

As a beginning, let’s briefly recall the band theory
in Hermitian systems. The eigenstates of a system
with the space-translation symmetry are Bloch states
which take the form of plane waves modulated by
Bloch functions ψn(r) = eikrun,k(r). Here k represents
the momentum in BZ and n denotes the band index.
u(r) = u(r + a) is a period function whose period
is the lattice constant a. The eigenvalues of these
Bloch states are labeled as En(k) which forms the band
structure as momentum k. The Hamiltonian under
the PBC and the OBC differs by a boundary term δH
connecting the boundaries at both ends which causes
scattering between different eigenstates. The elements
of scattering matrix ⟨n, k|δH|n′, k′⟩ ∼ |δH|/L, where
|δH| is the strength of the scattering matrix and L
is the length of the system, will tends to zero in
thermodynamic limits. Since the size of the actual
system is often large, the boundary term can be
regarded as a perturbation, which leads to the validity
of the Bloch theory under the OBC.

However, non-Hermitian systems under the OBC
exhibit novel phenomena that do not have Hermitian
counterparts, such as the energy collapse and the
NHSE. These are beyond the framework of the Bloch
band theory, necessitating the establishment of the
non-Bloch band theory. In particular, a minimum
model for illustrating the non-Bloch band theory is the
non-Hermitian SSH model [74, 171]. A sketch of this
model is shown in figure 1 whose Hamiltonian in real
space can be written as

HOBC =

L∑
i=1

(tL1 c
†
i,Aci,B + tR1 c

†
i,Bci,A)

+
L−1∑
i=1

(tL2 c
†
i,Bci+1,A + tR2 c

†
i+1,Aci,B)

+

L−1∑
i=1

(tL3 c
†
i,Aci+1,B + tR3 c

†
i+1,Bci,A), (1)

where i is the position index, c† (c) is the creation
(annihilation) operator, tL1 , t

L
2 , t

L
3 and tR1 , t

R
2 , t

R
3 are

the left and right hopping, respectively. For simplicity,
only the nearest neighbor hopping is considered, i.e.,
tL3 = tR3 = 0. The intracell and intercell hopping
amplitudes are taken as tL1 = t1 + γ, tR1 = t1 − γ
(t1 > γ) and tL2 = tR2 = t2, respectively. The nonzero
γ (γ ̸= 0) breaks the Hermiticity of Hamiltonian. The
Bloch Hamiltonian takes the formula:

H(k) = nxσx + (ny + iγ)σy, (2)

with nx = t1 + (t2 + t3) cos k, ny = (t2 − t3) sin k.
The Bloch Hamiltonian has a chiral symmetry with
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Figure 1. (a) A Sketch of the non-Hermitian SSH model.
(b) The energy spectrum of the system under the OBC (black
dots) and the PBC (gray dots), respectively. (c) Distribution of
eigenstates |ψn|2 = |ψn,A|2 + |ψn,B |2 under the OBC. Here n
denotes the index of unit cells. The zero modes are marked in
red. (d) The energy spectrum of an open chain with varied t1.
Parameters are L = 40, t2 = 1, γ = 2/3, and t1 = 1 in (a)-(c).
Reprinted with permission from [74], Copyright (Year) by the
American Physical Society.

σzH(k)σz = −H(k), which ensures eigenvalues appear
in (E,−E) pairs: E±(k) = ±

√
n2x + (ny + iγ)2.

Figure 1(b) depicts the energy spectra of the
system under the OBC (black dots) and the PBC
(gray dots), respectively. The OBC energies are
dramatically different from the PBC energies and have
collapsed. As shown in figure 1(c), the eigenstates
of the system under the OBC exhibit localization at
the end of the open chain, which is referred to as
the NHSE. Notably, the energies of a non-Hermitian
Hamiltonian can also have pure real energies [75]. In
non-Hermitian systems without NHSE, where gain and
loss introduced the non-Hermiticity, the energies can
be pure real when the strength of gain and loss is
below a threshold [26, 29]. The system possesses
parity-time (PT) symmetry [35, 172]. The real-to-
complex transition is indicated by the PT symmetry
breaking, which is connected to the exceptional points
where the eigenvalues and eigenstates coalesce [173–
175]. As shown in figure 1(b) and (c), a non-Hermitian
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system under OBC can have PT symmetry in the
presence of NHSE, whereas under PBC it cannot. This
phenomenon is induced by NHSE [176, 177] and is
referred to as the non-Bloch PT symmetry [178, 179].

Due to the NHSE, the Bloch band theory fails
to describe the non-Hermitian system. The energies
of a non-Hermitian system under the OBC cannot be
described by a Bloch Hamiltonian, and the eigenstates
are no longer the linear superpositions of Bloch waves.
The Bloch Hamiltonian reveals that the energy gap
closes at the exceptional points (nx, ny) = (±γ, 0),
requiring t1 = t2 ± γ (k = π) or t1 = −t2 ± γ (k = 0).
Figure 1(d) depicts the energy spectra vary with t1
under the PBC (gray lines) and the OBC (black lines),
respectively. The gap-closing points of energy spectra
under the OBC are inconsistent with those under the
PBC, indicating the failure of the Bloch BBC.

The method of similarity transformation [74] can
help us understand the difference between the non-
Hermitian SSH model under the OBC and the PBC
intuitively. The eigenvalue equation of the real-
space Hamiltonian is : HOBC|ψ⟩ = E|ψ⟩ where the
eigenvector takes the form of |ψ⟩ = (|ψ1,A⟩, |ψ1,B⟩,
|ψ2,A⟩, |ψ2,B⟩, · · · , |ψL,A⟩, |ψL,B⟩). This eigenvalue
equation is equivalent to H̄OBC|ψ̄⟩ = E|ψ̄⟩ by applying
a similarity transformation:

H̄OBC = S−1HOBCS, |ψ̄⟩ = S−1|ψ⟩, (3)

with S = diag{1, r, r, r2, · · · , rL−1, rL−1, rL} and
r =

√
|(t1 − γ)/(t1 + γ)|. Therefore, H̄OBC becomes

a Hermitian SSH model whose Hamiltonian takes the
form:

H̄(k) = (t̄1 + t̄2 cos k)σx + t̄2 sin kσy, (4)

where t̄1 =
√

(t1 − γ)(t1 + γ) and t̄2 = t2 are the
intracell and intercell hopping amplitudes, respectively.

The similarity transformation maps the non-
Hermitian Hamiltonian HOBC into a Hermitian one
H̄OBC without changing the eigenvalues. Then, the
energy spectrum of H̄OBC (or HOBC) can be captured
by H̄(k) in thermodynamic limits. The gap-closing
points of H̄(k) are t̄1 = t̄2, i.e.,

t1 = ±
√
t22 + γ2, (5)

which are consistent with the transition points of
HOBC. In principle, a topological invariant based on
H̄(k) can be defined to characterize the topological
edge states. Therefore, the generalized BBC was
established in the above non-Hermitian system which
exhibits the NHSE.

The eigenstates of the non-Hermitian SSH model
denoted as |ψ⟩ = S|ψ̄⟩, exhibit localization at
the boundaries due to the inclusion of a similarity

transformation (S), which introduces an exponentially
decaying modifier for unit cells ranging from n = 1 to
n = L. Note that the similarity transformation does
not apply to the non-Hermitian Hamiltonian under the
PBC HPBC. Considering the system in equation (2),
the real-space Hamiltonian isHPBC = HOBC+δH with
δH = t2c

†
L,Bc1,A + t2c

†
1,AcL,B . Through the similarity

transformation, it can be deduced that S−1HPBCS =
S−1HOBCS + S−1δHS, in which the boundary term
S−1δHS = r−Lt2c

†
L,Bc1,A + rLt2c

†
1,AcL,B increases

exponentially with the size of the system. Thus,
δH cannot be regarded as a perturbation, indicating
the sensitivity of the non-Hermitian system to the
boundaries. This is also the reason why HPBC and
HOBC have drastically distinct energy spectra.

2.2. Generalized Brillouin zone and non-Bloch
topological invariants

The similarity transformation reveals the significant
influence of the boundary conditions on non-Hermitian
systems and explains the phenomena of the energy
collapse and the NHSE intuitively. However, it is
not general for all one-dimensional (1D) non-Hermitian
systems, e.g., it is inapplicable for the model in
equation (1) when tL1 ̸= tR1 , t3 ̸= 0. The general
theory is the non-Bloch band theory [74]. For a more
intuitive display, the case of t3 = 0 is taken first in a
more generalizable way. Then theory can be applied to
t3 ̸= 0. From the eigenvalue equation of the real-space
Hamiltonian, it can be derived that

t2ψn−1,B + (t1 + γ)ψn,B = Eψn,A,

(t1 − γ)ψn,A + t2ψn+1,A = Eψn,B . (6)

Inspired by the similarity transformation, |ψ⟩ can be
proposed with |ψ⟩ =

∑
j |ϕ(j)⟩. Each |ϕ(j)⟩ has

the exponential form (temporarily ignoring j index):
(ϕn,A, ϕn,B) = βn(ϕA, ϕB), which satisfies

[(t1 + γ) + t2β
−1]ϕB = EϕA,

[(t1 − γ) + t2β]ϕA = EϕB . (7)

Then, the following formula can be obtained:

[(t1 − γ) + t2β][(t1 + γ) + t2β
−1] = E2. (8)

This equation has two roots:

β1,2(E) =
−B ±

√
B2 − 4t22 (t

2
1 − γ2)

2t2 (t1 + γ)
, (9)

with B = t21 + t22 − γ2 − E2. These two roots satisfy

β1β2 =
t1 − γ

t1 + γ
(10)
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Restoring the j index, ϕ
(j)
A and ϕ

(j)
B satisfy

ϕ
(j)
A =

E

t1 − γ + t2βj
ϕ
(j)
B ,

ϕ
(j)
B =

E

t1 + γ + t2β
−1
j

ϕ
(j)
A , (11)

which are equivalent due to equation (8).
The two roots of the characteristic equation imply

that the system has two separate exponential wave
functions. The wave functions in real-space can be
written as a linear superposition of these two wave
functions:(

ψn,A

ψn,B

)
= βn

1

(
ϕ
(1)
A

ϕ
(1)
B

)
+ βn

2

(
ϕ
(2)
A

ϕ
(2)
B

)
, (12)

which should satisfy the boundary conditions

(t1 + γ)ψ1,B − Eψ1,A = 0,

(t1 − γ)ψL,A − EψL,B = 0. (13)

In connection with equation (11), the condition for the
system to have a non-zero solution is

βL+1
1 (t1 − γ + t2β2) = βL+1

2 (t1 − γ + t2β1). (14)

In thermodynamic limit(L → ∞), equation (14) leads
to |β1| = |β2| for the bulk eigenstates as the solution
of |β1| ≠ |β2| does not conform to physical facts.
Combining with equation (10), we have

|β1(E)| = |β2(E)| = r ≡

√∣∣∣∣ t1 − γ

t1 + γ

∣∣∣∣. (15)

In the similarity transformation, the same r is
employed. All the solutions of β satisfied equation (15)
form the GBZ. According to equation (15), we take
β = reik (k ∈ [0, 2π]) in equation (6) to obtain the
energy spectra:

E2(β) =t21 + t22 − γ2 + t2

√
|t21 − γ2|

· [sgn(t1 + γ)eik + sgn(t1 − γ)e−ik]. (16)

The energies satisfying this equation will coincide with
the OBC energy spectra. The spectra are real when
|t1| > |γ|, which indicates the non-Bloch PT symmetry
of the system. The gap-closing points correspond to
the topological phase transition and can be determined
by equation (16).

More generally, we consider an arbitrary 1D non-
Hermitian tight-binding model [74, 83, 88], whose
Hamiltonian can be represented as:

H =

L∑
i,j=1

∑
a,b

ti−jc
†
i,acj,b, (17)

0

2

-3 -2 -1 0 1 2 3

0

1

(a)

-1.0 1.0

-1.0

(b) 1.0

Figure 2. The case of t3 ̸= 0. (a) Energy spectra with
varied t1 of an open chain and the corresponding NBWNs. The
transition points correspond to t1 ≈ ±1.56. (b) The GBZ (Cβ)
of t1 = 1.1. Parameters are t2 = 1, γ = 2/3, t3 = 1/5. Reprinted
with permission from [74], Copyright (Year) by the American
Physical Society.

where i, j are the position indices and a, b denote the
intracell degrees of freedom. The hopping amplitude
ti−j depends on the spatial distance i − j. The
Hermiticity is broken by the nonreciprocal hopping
with ti−j ̸= tj−i. The Bloch Hamiltonian can be
written as:

H(k) =
∑
n

tne
ink. (18)

The non-Bloch Hamiltonian can be obtained by
replacing the Bloch factor eik with the non-Bloch factor
β = eik

′
= reik (k ∈ R) with complex-valued wave

vectors k′ = k + i ln r. The values of β satisfy the
characteristic equation:

det[E −H(β)] = 0, (19)

which is a 2Mth-order polynomial with det[E −
H(β)] = a−Mβ

−M + · · · + aMβ
M . All the solutions

can be sorted as |β1(E)| ≤ |β2(E)| ≤ · · · ≤ |β2M |. The
values of β form the GBZ with the continuous band
condition:

|βM | = |βM+1|. (20)

All the βM and βM+1 form closed curves, which can
be denoted as Cβ [74, 88].

Based on the GBZ, energy spectra of bulk
under the OBC can be described by the non-Bloch
Hamiltonian. In addition, topological invariants can
be defined in terms of GBZ to characterize the
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topological edge states. The non-Bloch Hamiltonian
of equation (2) is

H(β) = (t1 − γ + βt2)σ− + (t1 + γ + β−1t2)σ+, (21)

where σ± = (σx ± iσy)/2. The right and left
eigenvectors of the non-Bloch Hamiltonian H(β) are
defined by

H(β)|uR⟩ = E(β)|uR⟩, H†(β)|uL⟩ = E∗(β)|uL⟩.
(22)

The chiral symmetry guarantees that |ũR(L)⟩ ≡
σz|uR(L)⟩ is also the right(left) eigenvector of the non-
Bloch Hamiltonian, with the corresponding eigenvalues
of −E (−E∗). The right and left eigenvectors satisfy
the biorthogonal condition: ⟨uL|uR⟩ = ⟨ũL|ũR⟩ =
1, ⟨uL|ũR⟩ = ⟨ũL|uR⟩ = 0. The projector onto the filled
non-Bloch states is defined as P (β) = |ũR(β)⟩⟨ũL(β)|.
The Q matrix for the Hamiltonian is given by the
following expression:

Q(β) = 1− 2P (β),

= |uR(β)⟩⟨uL(β)| − |ũR(β)⟩⟨ũL(β)|, (23)

with Q2(β) = 1. Q(β) is a off-diagonal matrix, which

can be represented as Q =

(
q

q−1

)
, due to the chiral

symmetry σzQσz = −Q. Then, the NBWNs can be
precisely defined as:

W =
1

4πi

∫
Cβ

Tr [σzQ(β)dQ(β)] ,

=
i

2π

∫
Cβ

q−1dq. (24)

In order to offer a more general illustration, a
nonzero t3 case is introduced [74], whose numerical
results are shown in figure 2. In this case, GBZ
is not a circle which is shown in figure 2(b). This
implies that the bulk eigenstates with different energies
exhibit distinct |β|. The energy spectra and the
corresponding NBWNs are depicted in figure 2(a), in
which 2W correctly predicts the quantity of topological
zero modes.

It’s worth noting that equation (24) can be
extended to multi-band systems. Every set of bands,

denoted by l, has a corresponding C
(l)
β curve. The Q

matrix in equation (23) is then represented by Q(l),
each of which determines a winding number W (l).
The total winding number, which can be served as a
topological invariant, is given by the sum of individual
winding numbers: W =

∑
lW

(l).

2.3. Non-Hermitian topological invariants in real
space

The non-Hermitian topological invariants can also
be formulated directly in real space [180], offering

-3 -2 -1 0 1 2 3

0

1

2

3

(a)4

real space

GBZ

-3 -2 -1 0 321

0

W

1

t1

(b)

Figure 3. (a) The modulus of energy spectrum for a open
chain(L=80) varies with t1. Other parameters are t2 = 1,
t3 = 0.2, γ = 0.1. (b) The red solid dots depict the open-
bulk winding number computed in real space with the length
of an open chain L = 100. The boundary is cutted at l = 15.
The black hollow dots denote the NBWNs based on the GBZ.
Reprinted with permission from [180], Copyright (Year) by the
American Physical Society.

a straightforward and comprehensive method to
determine non-Hermitian topology. For the non-
Hermitian SSH model with tL1 = tR1 = t1, t

L
2 =

tR2 = t2, t
L
3 = t3 + γ, tR3 = t3 − γ, The real-space

Hamiltonian satisfies S−1HS = −H with Sxs,ys′ =
δxy(σz)s,s′ . Here, x, y represent the index of the
unit cell, and s, s′ = A,B denotes the degree in
sublattice. The right and left eigenvectors of the real-
space Hamiltonian are defined as H|nR⟩ = En|nR⟩
and H†|nL⟩ = E∗

n|nL⟩. Due to the chiral symmetry,
the energies appear in pairs (E,−E), which lead the
eigenvectors defined above correspond to right and
left eigenvectors |ñR⟩, |ñL⟩ for −E and −E∗. These
eigenvectors are biorthogonal: ⟨mL|nR⟩ = ⟨m̃L|ñR⟩ =
δmn, ⟨mL|ñR⟩ = ⟨m̃L|nR⟩ = 0.

From the biorthogonal left and right eigenvectors,
the Q matrix was defined via

Q =
∑
n

(|nR⟩⟨nL| − |ñR⟩⟨ñL|) , (25)

where
∑

n represents the summation of all eigenstates
within the continuous spectrum of the bulk, excluding
the topological edge modes. The open-bulk winding
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number [180] is given by

W ′ =
1

2L′ Tr
′(SQ[Q,X]), (26)

where X is the coordinate operator defined as
Xxs,ys′ = xδxyδss′ , and Tr′ denotes the trace across
the middle interval of length L′. The overall length of
the chain is given by L = L′ +2l, in which the interval
of boundaries (1 ≤ x ≤ l and l+L′+1 ≤ x ≤ L) are not
included in the trace. The only considered case is the
long open chain whose ideal situation is L→ ∞. More
specifically, equation (26) for the current model reads

W ′ = 1
2L′

∑L−l
x=l+1

∑
s=A,B(SQ[Q,X])xs,xs, where l is

large enouth to make sure only the information of bulk
remains. The numerical results of energy spectrum and
OPWN under OBC are shown in figure 3(a) and figure
3(b), respectively. The non-zero open-bulk winding
number implies the presence of topological modes,
revealing the generalized BBC in the non-Hermitian
system.

Equation (26) specifically pertains to the topolog-
ical edge modes exclusively when |nR⟩ and |nL⟩ are
derived from the OBC, which is significantly different
from the Hermitian scenarios where the boundary con-
dition is unimportant. If the PBC is used instead, the
correlation is often lost in the presence of the NHSE.
The bulk winding number in equation (26) is referred
to as an open-bulk topological invariant to stress this
special non-Hermitian property.

The Fourier transformation connects the BZ
and real space for the common Hermitian bands,
making it possible to convert Brillouin-zone topological
invariants into real-space topological invariants. In
non-Hermitian systems under the OBC, real space is
dual to the GBZ, which indicates that the real-space
topological invariant is dual to the GBZ formulation
[as depicted in figure 3(b)].

The duality between the open-bulk winding
number and the GBZ formula is not an accident. A
generalized “Fourier transformation” can be created
from the Q(x) matrix [180]:

Q̃(β) =
∑
x

Q(x)β−x, (27)

which established a connection between Q̃(β) and the
Q(β). Indeed, the series Q̃(β) converges within a
specific region of the complex β plane. The curve of
GBZ Cβ can be transformed into a curve C̃β in this
region without encountering any singularities of Q(β),
such as the zero or divergence. The following relation
was confirmed in reference [180]:

Q(β)|β∈C̃β
= Q̃(β)|C̃β

, (28)

from which it can be obtained that Q(β)|C̃β
=∑

xQ(x)β−x. Combined with the NBWNs [180], it

can be deduced that

W =−
∑
x,y

∫
C̃β

dβ

4πi
Tr[σzQ(x)β−xyQ(y)β−y−1]

=
1

2

∑
x

Tr[σzQ(x)xQ(−x)], (29)

in which
∫
C̃β
β−x−y−1dβ = 2πiδy,−x has been used.

Here, xQ(−x) = [Q,X]y,y+x is not reliant on y in the
bulk. Hence, the NBWN [equation (24)] and open-bulk
winding number [equation (26)] can be equivalent by
the relation

W =W ′. (30)

3. Periodically driven non-Hermitian systems

3.1. Floquet theorey

Before introducing the periodically driven non-
Hermitian system, let us take a brief recall of the
Floquet theory [181–185], which is the basic theory to
study the periodically driven systems. A periodically
driven system can be described through a time-periodic
Hamiltonian denoted as H(t) = H(t + T ), where T
represents the time period. The evolution of this
system can be expanded in a complete and orthonormal
basis |ψn(t)⟩ called Floquet states, which are defined
by H|ψ⟩ = E|ψ⟩ with |ψn(t+ T )⟩ = e−iϵnT |ψn(t)⟩.

Bloch’s theorem deals with systems that have
periodic spatially periodic structures, while Floquet’s
theorem is for systems that are periodic in time.
Similar to Bloch states which can be decomposed into
the product of plane waves and periodic functions,
Floquet states can be decomposed as:

|ψn(t)⟩ = e−iϵnt|Φn(t)⟩, (31)

where |Φn(t+T )⟩ = |Φn(t)⟩ is a periodic function called
Floquet modes with the same driving period as the
system. Thus the time evolution equation became:

(ϵn + i
d

dt
)|Φ(t)⟩ = H(t)|Φ(t)⟩. (32)

Since the Hamiltonian H(t) and Floquet modes are
both periodic with period T . Apply the Fourier
transition to |ϕn⟩ and H(t) in frequency domain to
obtain

|Φn(t)⟩ =
∑
m

eimωt|ϕ(m)
n ⟩,

H(t) =
∑
m

eimωtHm. (33)

Here |ϕ(m)
n ⟩ = 1

T

∫ T

0
dte−imωt|ϕn(t)⟩ and Hm =

1
T

∫ T

0
dte−imωtH(t). It should be noted that the

Fourier coefficients are not normalized and lack a
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straightforward orthogonality relation. Therefore, in
frequency domain, the Schrödinger equation yields:

(ϵ+mω)|ϕ(m)
n ⟩ =

∑
m′

Hm−m′ |ϕ(m
′)

n ⟩. (34)

The quasienergy spectrum can be obtained by

extending the Hilbert space with bases |φn⟩ = |ϕ(m)
n ⟩⊗

|m⟩ where m is called the Fourier index. Then
equation (34) can be expressed as an eigenvalue
equation in Fourier harmonic space: Hφn = ϵnφn,
where H is the Floquet Hamiltonian whose matrix
elements are:

⟨φm′

n′ |H|φm
n ⟩ = ⟨ψn′ |Hm′−m|ψn⟩−δn,n′δm,m′mω. (35)

For more detailed, the matrix form of H and |φn⟩
take the following formula:

H =


. . . H−1 H−2

H1 H0 −mω H−1 H−2

H2 H1 H0 − (m+ 1)ω H−1

H2 H1
. . .

 ,

|φn⟩ =
(
· · · |ϕ(m)

n ⟩ |ϕ(m+1)
n ⟩ · · ·

)T
. (36)

Note that the Floquet matrix has a block structure
where the size of each block is the same as the system.
The number of blocks labeled by Floquet numbers is
infinite. The time-periodic component of the Floquet
state wave function, denoted as |Φ(t)⟩, is derived by
multiplying with a rectangular matrix of oscillatory
phase factors, P(ωt) = (· · · e−imωte−i(m+1)ωt · · · ):

|Φn(t)⟩ = P(ωt)φn =
∑
m

e−imωt|φ(m)
n ⟩. (37)

From equation (31) and equation (33), the Floquet
states can be expressed as:

|ψn⟩ = e−iϵnt
∑
m

e−imωt|ϕ(m)
n ⟩

= e−i(ϵn+m′+ω)t
∑
m

e−i(m−m′)ωt|ϕ(m)
n ⟩

= e−iϵ̃nt
∑
m

e−imωt|ϕ̃(m)
n ⟩, (38)

in which ϵ̃n = ϵn + m′ω and |ϕ̃(m)
n ⟩ = |ϕ(m+m′)

n ⟩.
Therefore, by introducing integer multiples of ω
in the pair of exponentials in this expression, the
quasienergies can be shifted. This implies that all
unique solutions to the Schrödinger equation, known as
Floquet states, can be categorized using quasienergies
that fall within a specific range called the ”Floquet-
Brillouin zone” [185]. The width of this zone is ω,
meaning that the quasienergies range from ϵmin to

A AB B

Figure 4. The sketch of a harmonically driven non-Hermitian
SSH model.

ϵmin + ω. Consequently, the Floquet Hamiltonian’s
spectrum will exhibit a periodic structure, comprising
an infinite number of copies of the system’s Floquet
spectrum within the Floquet-Brillouin zone.

The time-evolution operator is

U(k, t) = T exp

[
−i
∫ t

0

dt′H(k, t′)

]
, (39)

in which T represents time-ordering. Floquet states
are stationary states of the stroboscopic evolution
operator (or named Floquet operator)

U(T ) = T exp

[
−i
∫ T

0

dt′H(t′)

]
. (40)

The Floquet operator propagates the system forward
in time through one complete period of the drive.
From the Floquet operator, the Floquet effective
Hamiltonian can be defined as

Heff =
i

T
lnU. (41)

3.2. Harmonically driven non-Hermitian SSH model

In a static non-Hermitian system with the NHSE,
the BBC based on the Bloch band theory should
be extended to the generalized BBC based on the
non-Bloch band theory in which the GBZ takes an
essential place. The NHSE can emerge in a periodically
driven non-Hermitian system, in which the topological
invariants based on BZ cannot accurately characterize
the edge states. Then, the non-Hermitian topological
invariants should be defined on the GBZ instead of
the BZ to establish the generalized BBC for the
periodically driven non-Hermitian systems. Here
we review the non-Bloch band theory in the 1D
harmonically driven non-Hermitian SSH model.

3.2.1. Model The 1D harmonically driven non-
Hermitian SSH model can be constructed by introduc-
ing periodic driving to the intracell hopping [148]. For
simplicity, only the nearest neighbor hopping is consid-
ered and the nonreciprocity and harmonically periodic
driving are introduced into intracell hopping. A sketch
of this model is depicted in figure 4, and its Hamilto-
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nian in real space is

H =
∑
n

[t1 + γ + λ cos(ωt)]c†nAcnB

+ [t1 − γ + λ cos(ωt)]c†nBcnA

+ t2c
†
nBcn+1A + t2c

†
n+1AcnB . (42)

Here, λ represents the strength of periodic driving
and γ represents the strength of non-Hermiticity. The
Bloch Hamiltonian has the following formula:

H(k, t) = [nx + λ cos(ωt)]σx + (ny + iγ)σy,

nx = t1 + t2 cos(k), ny = t2 sin(k). (43)

where σx,y represent Pauli matrices. The Bloch
Hamiltonian exhibits periodicity in time H(k, t) =
H(k, t+ T ) with time period T = 2π/ω. Additionally,
it possesses a chiral symmetry given by σzH(k, t)σz =
−H(k,−t), which guarantees that quasienergies occur
in pairs of (E,−E). The Floquet state of band n
evolves according to the Schrödinger equation:

i∂t|ψn,R(k, t)⟩ = H(k, t)|ψn,R(k, t)⟩. (44)

The Floquet states can be derived using Fourier
transformation and Floquet theorem and take the form
of

|ψn,R(k, t)⟩ = e−iεn(k)t
∑
m

eimωt|ψ(m)
n,R(k)⟩, (45)

in which εn represents the quasienergy and |ψ(m)
n,R(k)⟩

denotes a corresponding right eigenvector. The
formulation of the Schrödinger equation in the
frequency domain is∑

m′

Hm,m′(k)|ψ(m′)
n,R (k)⟩ = εn(k)|ψ(m)

n,R(k)⟩. (46)

Here Hm,m′(k) = mωδm,m′I + Hm−m′(k) and

Hm(k) = 1
T

∫ T

0
dtH(k, t)exp(−imωt) are the Floquet

Hamiltonian. More explicitly, the Floquet Hamiltonian
takes the following form

H =


...

H0 + ω H1 0
H−1 H0 H1

0 H−1 H0 − ω
...

 , (47)

in which H0 = nxσx + [ny + iγ]σy and H±1 =
λσx/2. The quasienergies, which are the eigenvalues
of this Floquet Hamiltonian, are coupled in the form
of (E,−E) due to the presence of chiral symmetry
C−1HC = −H [148].

3.2.2. Non-Hermitian skin effect Due to the
infinite rank of the Floquet Hamiltonian H(k), a
truncation should be made to obtain the quasienergies.
Figures 5(a)–(d) display the quasienergy spectra for
four distinct phases based on the Floquet Hamiltonian
under OBC (marked in red) and PBC (marked in
black), respectively. Periodic driving can cause an
unusual gap to emerge at the quasienergy ϵ = π,
allowing for the stability of topological π modes.
Therefore, two distinct types of topological edge
modes can occur in the two gaps with ϵ = 0, π.
The quasienergy spectra exhibit significant distinction
between the periodically driven systems under OBC
and PBC, indicating the emergence of the NHSE in
the periodically driven non-Hermitian SSH under the
OBC. The wave functions of bulk states and the
topological edge states correspond to figures 5(a)–(d)
under the OBC are depicted in figure 5(e)–(h), in
which the black, red, and blue line denotes the bulk
states, zero modes, and π modes, respectively. As
shown in figures 5(a) and (e), only the topological
zero modes emerge at the left end of the open chain.
The topological phase only has the π modes are shown
in figures 5(c) and (g). The phases have both the
topological zero modes and π modes are shown in
figures 5(b) (f) and figures 5(d) (h). The bulk states are
localized at the left end of the open chain and exhibit
the NHSE in figure 5(e)–(g). When changing the sign
of t1, the bulk states will accumulate at opposite ends
of the open chain as shown in figure 5(h). As previously
stated, the Bloch theory is no longer applicable in the
non-Hermitian systems with the NHSE, and the Bloch
BBC is broken down. The Bloch band theory needs to
be generalized into the non-Bloch band theory, which
is founded on the concept of GBZ.

3.2.3. Non-Bloch winding numbers The non-Bloch
band theory is essential for the accurate description
of the non-Hermitian systems, where the GBZ plays
a significant role. To establish the GBZ, the Bloch
Floquet Hamiltonian H(k) should be rewrited by
eik → β = reik, k ∈ R as non-Bloch Floquet
Hamiltonian H(β), which has the chiral symmetry
with σzH(β, t)σz = −H(β,−t). Here, β represents
the solutions of the characteristic equation det[H(β)−
E] = 0, which is a polynomial equation of β with
an even degree. The quasienergies are restricted to
a single period, especially ϵ ∈ [−π, π], due to 2π
modules of the quasienergy ϵ. The solutions of β,
whose total number is 2N , can be sorted as |β1| ≤
|β2| ≤ ... ≤ |β2N |. Only the two solutions satisfied the
continuum band condition |βN | = |βN+1| belongs to
the GBZ [74, 88, 148]. The GBZ can be captured by
βN and βN+1 in the complex plane (Cβ), as shown
in figures 6(a)–(d) for four phases in figure 5 with
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Figure 5. Energy spectra and the profile of eigenstates for the non-Hermitian SSH model with harmonic driving. (a)–(d): The
quasienergy spectra of the four distinct topological phases are shown under two different boundary conditions: PBC in black and
OBC in red. (e)–(h) The density distributions of the bulk states (black solided), zero modes (red solided), and π modes (blue dotted)
of the four distinct phases in (a)–(d), respectively. n represents the unit cell’s index. Parameters are t2 = 1, γ=0.2, λ = 0.5 ω = 3,
(a)(e) t1 = 0.3, (b)(f) t1 = 0.75, (c)(f) t1 = 1.3, and (d)(h) t1 = −0.75. Reprinted with permission from [148], Copyright (Year) by
the American Physical Society.

Figure 6. The GBZ of the four different topological
phases in figures 5(a)–(d) [148], obtained by the non-Bloch
effective Hamiltonian (dotted curves) and non-Bloch Floquet
Hamiltonian (solid curvess), respectively. The BZ is denoted
by a dashed unit circle.

t1 = 0.3, 0.75, 1.3 and −0.75, respectively. The
distinction between the GBZ and the BZ leads to the
quasienergies’ collapse and the NHSE. In figures 6(a)–
(c), the GBZ is smaller than BZ which results in the
localization of bulk eigenstates at the left end of the
open chain. The GBZ is larger than BZ in figure 6(d),
which causes the bulk eigenstates to be localized at the
right end of the open chain.

The non-Bloch time-evolution operator can be
derived from the non-Bloch Hamiltonian H(β, t) with
the formula of

U(β, t) = T exp

[
−i
∫ t

0

dt′H(β, t′)

]
, (48)

in which T represents time-ordering. It exhibits the
symmetry with σzU(β, t)σz = U−1(β, t) = U(β,−t)
and obeys the equation as following:

i∂tU(β, t) = H(β, t)U(β, t). (49)

When the eigenenergies of the above non-Bloch
Floquet operator has a gap at e−iϵ, a well-defined
non-Bloch effective Hamiltonian at the gap takes the
following formula:

Hϵ
eff(β) =

i

T
ln−ϵU(β, T ), (50)

where ϵ denotes the branch cut. Here, we choose
lnϵ e

iϕ = iϕ defined at the interval ϵ − 2π <
ϕ < ϵ. The effective Hamiltonians can be written
in the terms of left and right eigenvectors with
Hϵ

eff(β) = i
T

∑
n ln−ϵ (λn(β)) |ψn,R(β)⟩⟨ψn,L(β)|. The
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chiral symmetry is broken:

σzH
ϵ
eff(β)σz

=
i

T
σz [ln−ϵ U(β, T )]σz,

=
i

T
ln−ϵ [σzU(β, T )σz] ,

=
i

T
ln−ϵ U

−1(β, T ),

=
i

T

∑
n

ln−ϵ

(
λ−1
n

)
|ψn,R(β)⟩⟨ψn,L(β)|,

=− i

T

∑
n

[ln−ϵ(λn) + 2πi] |ψn,R(β)⟩⟨ψn,L(β)|,

=− i

T

∑
n

ln−ϵ(λn)|ψn,R(β)⟩⟨ψn,L(β)|+ ω,

=−H−ϵ
eff (β) + ω. (51)

During each period, the effective Hamiltonians
solely reflect the stroboscopic dynamics with respect to
quasienergies ϵ while losing the important informations
of the time evolution. As a result, the topological
invariants should be based on the NBPEOs, which is
given as:

Uϵ(β, t) = U(β, t)eiH
ϵ
eff (β)t. (52)

The NBPEOs are periodic in time with Uϵ(β, t+ T ) =
Uϵ(β, t) and have the symmetry:

σzUϵ(β, t)σz,

=σzU(β, t)σ2
ze

itHϵ
eff (β)σz,

=U(β,−t)eitσzH
ϵ
eff (β)σz ,

=U(β,−t)e−itH−ϵ
eff (β)+iωt,

=U−ϵ(β,−t)eiωt. (53)

Then, the NBPEOs exhibit chiral symmetry during a
half-period, with quasienergies ϵ = 0 and π:

σzU0/π

(
β,
T

2

)
σz = ∓U0/π

(
β,
T

2

)
. (54)

Due to the chiral symmetry, the NBPEO during a half-
period is off-diagonal at ϵ = 0 and diagonal at ϵ = 0:

U0

(
β,
T

2

)
=

(
0 U+

0 (β)
U−
0 (β) 0

)
, (55)

Uπ

(
β,
T

2

)
=

(
U+
π (β) 0
0 U−

π (β)

)
. (56)

By the Yao-Wang formula [54, 74], NBWNs can be
defined for harmonically driven non-Hermitian SSH
model [148] based on the GBZ as:

Wϵ=0,π =
i

2π

∫
Cβ

Tr
[(
U+
ϵ (β)

)−1
dU+

ϵ (β)
]
. (57)
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Figure 7. The NBWNs W0/π with varied GBZ size Nβ for
t1 = −0.75(solid lines) and t1 = 1.3(dotted lines) [148]. W0 and
Wπ are marked with red and blue, respectively.

Figure 8. (a)–(d) The R′
+(β) and R′

−(β) loops along the GBZs
of figures 6(a)–(d) on the complex plane, respectively. Reprinted
with permission from [148], Copyright (Year) by the American
Physical Society.

Here, W0 and Wπ characterize the topological zero
modes and π modes, respectively.

As an illustration, the numerical results of
NBWNs for zero modes and π modes are shown
in figure 7, in which the values of NBWNs will
rapidly converge to an integer as the size of the
GBZ increases. NBWNs are equal to ±1 when
the topological zero modes and π modes appear,
otherwise it is zero. Therefore, the generalized BBC
is established by defining the NBWNs (W0/π) to
characterize the topologically nontrivial zero modes
and π modes.
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3.2.4. Non-Bloch band invariants Based on the
Floquet operator, the NBWNs can be defined to
predict the emergence of the Floquet topological edge
states. Meanwhile, the topology of the Floquet bands
can be defined intuitively by the non-Bloch effective
Hamiltonian in terms of the above Floquet operators:

Heff(β) =
i

T
lnU(β, T ),

= H0(β) +
[H0(β), H1]

ω
− [H0(β), H−1]

ω

+
[H1, H−1]

ω
. (58)

For the case of high-frequency (ω larger than
the bandwidth of H0(β)), the Floquet bands have
no overlap in the Floquet Brillouin zone. Then,
the periodic driving does not affect the effective
Hamiltonian with: Heff(β) = H0(β). The GBZ
is a circle Cβ = reiθ with θ ∈ [0, 2π) and r =√

|(t1 − γ)/(t1 + γ)|.
For the case of low-frequency (ω smaller than

the bandwidth), a single resonance can be generated
by the driving between the two non-Bloch bands of
H0(β). Thus, a non-Bloch effective Hamiltonian at
low-frequency case is derived with a rotated Floquet
operator

U(β, T ) = T exp

[
−i
∫ T

0

dt HR(β, t)

]
, (59)

where HR(β, t) is the rotated Hamiltonian obtained
by applying a rotation Ô(β, t) into the Hamiltonian
H(β, t). The rotation operator is

Ô(β, t) = exp [−in̂(β) · σωt/2] , (60)

with n̂(β) = n(β)/n(β) and n(β) =
√
n2x(β) + n2y(β).

Then, the effective Hamiltonian can be derived as
follows:

Heff(β) =

(
0 R′

+(β)
R′

−(β) 0

)
, (61)

with

R′
±(β) =

[
1− ω

2nβ
∓ λ[R+(β)−R−(β)]

4n2β

]
R±(β), (62)

and R±(β) = t1 ± γ + t2β
∓. The GBZ of the effective

Hamiltonian can be determined by the solution of the
characteristic equation det[Heff(β)−E] = 0. The GBZ
Cβ determined from effective Hamiltonians, shown in
figures 6(a)–(d) with dotted curves, is consistent with
the GBZs (solided curves) determined by the above
Floquet Hamiltonian. The generalzied ”Q matrix” is

off-diagonal:

Q(β) =

(
0 q
q−1 0

)
,

=
1√

R′
+(β)R

′
−(β)

[R′
+(β)σ+ +R′

−(β)σ−], (63)

which leads to q = R′
+(β)/

√
R′

+(β)R
′
−(β). The non-

Bloch band invariant can be expressed by Yao-Wang
formula as

W =
i

2π

∫
Cβ

dq q−1(β),

=
1

4π

[
argR′

−(β)− argR′
+(β)

]
Cβ
. (64)

This indicates that the band invariant can be
calculated by the changes in the phases of the R′

+(β)
and R′

−(β) in the effective Hamiltonian as β traverses
the counterclockwise path Cβ in GBZ. The loops of
R′

+(β) are shown in red curves and the loops of R′
−(β)

are shown in blue curves in figures 8(a)–(d), along the
GBZ of figures 6 (a)–(d).

The non-Bloch band invariants for figures 8(a)–
(d) are 1, 0,−1, and 2, respectively. As shown in
figure 8(b), the original point is not surrounded by
both of the R′

+(β) and R′
−(β) on the complex plane,

implying the trivial topology of the Floquet bands.
But, the phase possesses robust zero modes and π
modes and exhibits nontrivial topology with non-zero
NBWNs (W0 = Wπ = 1). Therefore, the band
invariant solely highlights the topology of the Floquet
bands and does not adequately describe the robust
topological zero modes and π modes. The phenomenon
occurs due to the loss of time evolution information
within each period by the Floquet operator. As
illustrated in figure 8(d), both of the two loops undergo
rotations around the origin point, while their directions
are opposite. This shows that the band invariant
is 2 while the NBWNs are nontrivial with W0 =
1 and Wπ = −1, indicating that NBWNs possess
greater fundamental significance compared to the band
invariant. Indeed, NBWNs and the band invariant
are related, and this can be demonstrated as W0 −
Wπ = W. We can define a difference by the effective
Hamiltonians at the two gaps:

Hπ
eff(β)−H0

eff(β),

=iln−πU(β, T )/T − iln0U(β, T )/T,

=i
∑
n

[ln−π (λn)− ln0 (λn)] |ψn,R(β)⟩⟨ψn,L(β)|/T,

=i
∑

0<ϵn<π

[−iϵn − 2πi+ iϵn] |ψn,R(β)⟩⟨ψn,L(β)|/T,

=2π
∑

0<ϵn<π

|ψn,R(β)⟩⟨ψn,L(β)|/T,

=ωP0,π(β). (65)
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Figure 9. (a) Quasienergy spectrum as functions of t1 for the
harmonically driven non-Hermitian SSH model under the OBC.
(b)The corresponding NBWNs for edge states with quasienergies
ϵ = 0 (red dashed line) and ϵ = π (blue dashed line). Reprinted
with permission from [148], Copyright (Year) by the American
Physical Society.

The NBPEOs at half period is:

U−1
π (β, T/2)U0 (β, T/2) ,

=e−iHπ
eff (β)T/2U(β,−T/2)U(β, T/2)eiH

0
eff (β)T/2,

=e−iπP0,π ,

=1− 2P0,π,

=Q(β). (66)

From the property of the NBWNs, the relationship
can be demonstrated as follows:

W
[
U−1
π (β, T/2)U0 (β, T/2)

]
,

=W [U0 (β, T/2)]−W [Uπ (β, T/2)] ,

=W0 −Wπ = W. (67)

3.2.5. Topological phase transition The NBWNs of
the harmonically driven non-Hermitian SSH model are
defined to predict the Floquet topological edge modes.
The NBWNs provide a powerful tool to investigate
the topological phase transitions. Figure 9(a) shows
dimensionless quasienergies ϵ = εT of Floquet
Hamiltonian varies with t1, in which two different types
of Floquet edge states can be observed: zero modes and
π modes, marked by red and blue colors, respectively.
The corresponding NBWNs W0 and Wπ are shown in
figure 9(b) with red and blue dashed lines, respectively.

The phase doundaries can be determined by the
effective Hamiltonian. In the scenario of week driving,
the expression of R′

± is able to be simplified as follows:

R′
±(β) ≃

[
1− ω

2nβ

]
R±(β). (68)

0 1 2 3
0

1

2 (1,1)

(0,0)
(0,1)

(0,0)

T

t1

(1,0)

Figure 10. The phase diagram of the Floquet non-
Hermitian SSH model in equation (42). The dashed curves
are calculated by the non-Bloch band theory. The solid curves
are numerical results of the Floquet Hamiltonian under OBC.
Other parameters are t2 = 1, γ = 0.2 and λ = 0.5. The non-
Bloch topological invariants cannot be well defined with gapless
quasienergies, which are denoted by the shaded region in the
diagram. There exist four different topological phases in the
diagram, denoted by the different NBWNs (W0/π). Reprinted
with permission from [148], Copyright (Year) by the American
Physical Society.

Then, the GBZ can be determined and written as

Cβ = reiθ, (69)

with r =

√∣∣∣ t1−γ
t1+γ

∣∣∣ and θ ∈ [0, 2π). The gap-closing

equations can be derived directly: ω = 2nβ and
R+(β)R−(β) = 0.

Therefore, the boundaries of the topological
phases can be expressed in a format as follows:

t1 = ±
√
t22 + γ2,

ω = 2

∣∣∣∣t2 ±√|t21 − γ2|
∣∣∣∣ . (70)

As shown in figure 10, in which only the side
t1 > 0 have been taken, the black dotted curves
are the theoretical boundaries derived through the
non-Bloch band theory, and the blue solid curves are
the numerical boundaries obtained by calculating the
quasienergies through Floquet Hamiltonian, and the
two are in good agreement. There are four different
topological phases exist in the phase diagram, which
are (i) the topological regions where only zero mode
exists (1, 0), (ii) the topological region where both zero
mode and π mode exist (1, 1), (iii) the topological
region where only πmode exists (0, 1), and (iv) the
topological trivial region where neither zero mode nor
π mode exists (0, 0).

Notably, there exists a gapless area, i.e., the gray
part in figure 10, in the phase diagram. In this
area, NBWNs can not be well defined. To elucidate
the gapless phases, the quasienergies on the GBZs
of the phases are displayed in figure 11. The GBZ
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Figure 11. The quasienergies on GBZs of the gapless phases.
Parameters are ω = 3, λ = 0.5, γ = 0.2, t2 = 1, with
(a) t1 = 2.02 and (b) t1 = 2.2. Reprinted with permission
from [148], Copyright (Year) by the American Physical Society.

Figure 12. A sketch of the periodically quenched non-
Hermitian SSH model. The value of intracell hopping amplitude
is denoted by µ. During the two distinct halves of the
driving period, the intercell hopping amplitudes are denoted
as (J1 ± λ)/2 and ±(λ ± J2)/2, respectively. The lightning
arrows represent quenches that are implemented during the
middle and end of each driving phase. Subsequently, the lattice
transitions from one array. Reprinted with permission from
[149], Copyright (Year) by the American Physical Society.

(Cβ) contains two exceptional points with E(βc1) =
E(βc2) = 0 and βc1 = β∗

c2 . During the topological
transition, the two EPs will merge into a single point.

3.3. Periodically quenched non-Hermitian SSH model

Another important type of periodically driven systems
are the periodically quenched systems [103, 137, 140,
149, 160, 161]. For these systems, the topological
invariants can be defined in real space (dubbed as open-
bulk topological invariants) for the periodically driven
non-Hermitian systems. In the reference [149], an
open-boundary winding number in real space has been
defined for a periodically quenched non-Hermitian SSH
model to characterize the topological edge modes.
Then, the generalized BBC was established for the
periodically quenched non-Hermitian system.

3.3.1. Model Considering a non-Hermitian SSH
model with a time-periodic quencher [149] sketched

in figure 12, the Bloch Hamiltonian can be written as
following:

H(k, t) =

{
(J1 cos k + iλ sin k + µ)σx, t ∈ [0, T2 ),
(J2 sin k + iλ cos k)σy, t ∈ [T2 , T ),

(71)
with momentum k ∈ [−π, π), driving period T , and
Pauli matrices σx,y,z. µ is the intracell hopping
amplitude. J1 and J2 denote the strengths of intercell
hopping. The Hermiticity of the system is broken by
nonreciprocal hoppings with nonzero λ. T = 2 is
taken for simplicity. Then, the Floquet operator for
the system of equation (71) can be written as:

U(k) = exp(−ihyσy) exp(−ihxσx), (72)

with hy = J2 sin k + iλ cos k and hx = J1 cos k +
iλ sin k + µ. The effective Hamiltonian can be
defined to establish the topological characterization
in the momentum space. By the same procedure of
establishing topological characterization of periodically
driven systems [186–188], two symmetric time intervals
should be introduced, where U(k) hold the form of

U1(k) = e−i
hx(k)

2 σxe−ihy(k)σye−i
hx(k)

2 σx = e−iH1(k),

U2(k) = e−i
hy(k)

2 σye−ihx(k)σxe−i
hy(k)

2 σy = e−iH2(k).
(73)

U1,2(k) can be obtained by applying a similarity
transformation to U(k). It ensures that they share
an identical Floquet quasienergy spectrum, which is
capable of being acquired through the solution of the
eigenvalue equation Hα(k)|ψ±

α (k)⟩ = ±E(k)|ψ±
α (k)⟩

for α = 1, 2. The effective Hamiltonians can be derived
by the Floquet operator and can be expressed as

Hα(k) = hαx(k)σx + hαy(k)σy, α = 1, 2, (74)

where hαx(k) and hαy(k) are given by:

h1x(k) =
E(k) sin[hx(k)] cos[hy(k)]

sin[E(k)]
,

h1y(k) =
E(k) sin[hy(k)]

sin[E(k)]
,

h2x(k) =
E(k) sin[hx(k)]

sin[E(k)]
,

h2y(k) =
E(k) sin[hy(k)] cos[hx(k)]

sin[E(k)]
, (75)

with E(k) = arccos{cos[hx(k)] cos[hy(k)]}. Hα(k)
have the chiral symmetry σzHα(k)σz = −Hα(k), the
time-reversal symmetry σ0H

∗
α(k)σ0 = Hα(−k) and

the particle-hole symmetry σzH
∗
α(k)σz = −Hα(−k),

where σ0 is the 2 × 2 identity matrix. The chiral
symmetry guarantees that the eigenenergies of Hα(k)
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Figure 13. Profile of eigenstates of bulk [(a)(c)]and edge[(b)(d)]
for the periodically quenched non-Hermitian SSH model in
equation (71). n is the index of the unit cell. The number of unit
cells is 200. Parameters are J2 = 0.5π, µ = 0.4π, λ = 0.25 and
J1 = π for (a)(b), J1 = 2π for (c)(d). Reprinted with permission
from [149], Copyright (Year) by the American Physical Society.

arise in (E,−E) pairs. Thus, the winding numbers wα

can be defined by the Bloch effective Hamiltonian [149]:

wα =

∫ π

−π

dk

2π
∂kϕα(k), α = 1, 2, (76)

where ϕα(k) = arctan[hαy(k)/hαx(k)] is the winding
angle. The bulk topological properties of the non-
Hermitian Floquet system can be characterized by the
two winding numbers defined by [149]:

w0 =
w1 + w2

2
, wπ =

w1 − w2

2
, (77)

which correspond to the topological zero modes and π
modes, respectively.

3.3.2. Real-space topological invariants The probabil-
ity distributions of the bulk states are shown in fig-
ure 13 (a) and (c), which show that the bulk states are
localized at the ends of the chain. Figure 13 (b) and
(d) illustrate the corresponding distributions of topo-
logical edge modes, indicating the presence of one pair
(or two pairs) of Floquet edge modes at the eigenener-
gies of zero and π. For the systems with the NHSE, it is
useful to extend the open-bulk winding numbers from
static non-Hermitian systems to periodically driven
non-Hermitian systems [83].

As introduced in section 2.3, the key procedure
for obtaining the open-bulk winding numbers is to
obtain the Q matrix. Different from the static
non-Hermitian systems, the Hamiltonians of the
periodically driven non-Hermitian systems contain the

information of time. Therefore, the Q matrix is
defined on right (left) Floquet eigenvectors |ψ±

αn⟩
(⟨ψ̃±

αn|) of Floquet operator in real space Uα which
is the real-space representation of Uα(k). The left
and right Floquet eigenvectors are defined by the
eigenvalue equations Uα|ψ±

αn⟩ = e−i(±En)|ψ±
αn⟩ and

⟨ψ̃±
αn|Uα = ⟨ψ̃±

αn|e−i(±En), respectively, where ±En are
the eigenenergies. Then, the Q matrix can be defined
as:

Qα =
∑
n

(|ψ+
αn⟩⟨ψ̃+

αn| − |ψ−
αn⟩⟨ψ̃−

αn|). (78)

With a well-defined Qα, the open-bulk winding
numbers for periodically driven systems [149] can be
defined as

Wα =
1

LB
TrB(CQα[Qα,N ]). (79)

Here, C = IN×N ⊗ σz is the operator of the chiral
symmetry , IN×N is an N ×N identity matrix and N
denotes the total number of unit cells. LB and TrB have
the same physical meanings as the static open-bulk
winding numbers. It means that the trace TrB is taken
over the bulk area, which contains LB lattice sites after
the system has been divided into a bulk region and two
edge regions along the left and right boundaries. In the
periodically quenched non-Hermitian SSH model, there
exist two different types of topological states, i.e., zero
modes and π modes, which need two different types of
open-bulk winding numbers W0,Wπ [149] defined as:

W0 =
W1 +W2

2
, Wπ =

W1 −W2

2
. (80)

Here, W0 and Wπ are the open-bulk winding numbers,
which can characterize the topological zero modes and
π modes, respectively. Then the generalized BBC
for periodic quenched non-Hermitian SSH model is
established with the relation (n0, nπ) = 2(|W0|, |Wπ|),
in which n0 (nπ) is the number of the topological zero
(π) modes.

Figure 14 depicts the comparison of the eigenen-
ergies around the two gaps (∆0,∆π) and the winding
numbers of the periodically quenched non-Hermitian
SSH model under the OBC and the PBC. The
gap functions were defined to clearly reveal the
gaps as ∆0 = |E|/π for zero gap and ∆π =√
(|π − ReE|)2 + (ImE)2/π for π gap. The gap of

the spectra closes with ∆0 = 0 (∆π = 0) at zero
gap (π gap), where there can exist a phase transition.
Figure 14 shows (∆0,∆π) varies with hopping ampli-
tude J1 of a periodically quenched non-Hermitian SSH
model with L = 400 sites under both the PBC and the
OBC. The PBC and the OBC energy spectra are dis-
tinct at the gap closing points. For example, the spec-
trum under the OBC indicates a phase transition at
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W
W

Figure 14. The gap functions ∆0 (gray/blue solid curves)
and ∆π (red/green dotted curves) versus J1 for the model in
equation 71 under OBC/PBC. The open-bulk winding numbers
W0 and Wπ are labled by circles and crosses curves. The
PBC winding numbers w0 and wπ are labeled by diamonds and
pentagrams curves. For clarity, only the twenty smallest gap
functions (∆0,∆π) are shown. The numbers of the topological
zero modes and π modes are denoted by (n0, nπ). Other
parameters are µ = 0.4π, J2 = 0.5π and λ = 0.25. Reprinted
with permission from [149], Copyright (Year) by the American
Physical Society.

J1 = 0.4π, followed by the emergence of a pair of topo-
logical zero edge modes, while the PBC energy spec-
trum implies two sequential transitions at J1 < 0.4π
and J1 > 0.4π. The significant disparity in the Flo-
quet spectrum between systems under the PBC and
OBC implies the existence of NHSE and the failure of
the Bloch BBC.

The open-bulk winding numbers (W0/π), which
can be calculated from equations (79)-(80), are shown
in figure 14. The values of W0/π are integers for
Floquet non-Hermitian topologically nontrivial phases.
These values suffer quantized jumps at a topological
phase transition with gap closing under the OBC. W0

and Wπ accurately precisely quantify the amount of
zero modes and π modes, establishing the generalized
BBC of the periodically driven non-Hermitian systems
despite the presence of the NHSE.

3.4. Higher-dimensional Floquet non-Hermitian
systems

Higher-dimensional non-Hermitian systems offer di-
verse systems for the realization of the rich novel non-
Hermitian phenomena, topological states, and their
mutual hybridization. The NHSE not only can act
on the bulk states but also influence the topological
edge states. The interaction between topological edge
modes and NHSE in two/three- dimensional systems
can lead to the accumulation of topological edge modes
at lower-dimensional boundaries. This phenomenon is

referred to as the hybrid skin-topological effect [189–
195]. An intriguing aspect of the skin-topological ef-
fect is that the NHSE can act only on the topologi-
cal edge mode, while the bulk states remain extend-
ing. Apart from the NHSE, the higher-order topologi-
cal phases [62, 193, 195–199] also enable the emergence
of topological edge states in lower dimensions: A nth-
order topological insulator or superconductor with d
spatial dimension can have (d-n)-dimensional topolog-
ical gapless states. The NHSE in a higher-dimensional
non-Hermitian system can also depend on the system’s
geometry under OBC, the phenomenon of which is re-
ferred to as the geometry-dependent NHSE [200, 201].

Very recently, the general non-Bloch band theory
in higher-dimensional non-Hermitian systems was
established [170, 202]. With the help of the non-Bloch
band theory, the generalized BBC can be established
for a higher-dimensional system with the NHSE.
Periodic driving provides intriguing possibilities for
enriching novel phenomena in higher-dimensional
systems with high tunability. The interplay between
the periodic driving and the topology in higher-
dimensional non-Hermitian systems has been only
partially revealed, and further extensive research is still
awaited. Here we present the photonic Floquet skin-
topological effect [166] and the Floquet second-order
topological insulator as illustrations.

3.4.1. Floquet hybrid skin-topological effect Recently,
the Floquet skin-topological effect was realized by
Yang’s group in a two-dimensional (2D) photonic Flo-
quet non-Hermitian topological insulator [166]. Ini-
tially, a 1D optical array was constructed, compris-
ing helical waveguides that incorporate two sublattices,
namely A and B, with significant loss in sublattice
B. The lD optical array is experimentally realized by
the method of femtosecond laser writing. The optical
loss in sublattice B occurs due to the intentional pe-
riodic insertion of breaks into the waveguides. The
Floquet NHSE, resulting from periodic driving and
loss, can be detected in the 1D optical array. This
observation serves as a fundamental basis for further
investigation into the interaction between the NHSE
and photonic topological edge states. The 2D pho-
tonic Floquet non-Hermitain topological insulator is
constructed by stacking this 1D Floquet optical array.
The quasienergy spectrum of the 2D photonic NHFTI
with nontrivial Chern topology under OBC in both di-
rections is shown in figure 15(a), in which the energies
of bulk and chiral edge states are denoted by gray and
black dots, respectively. The corresponding distribu-
tion of chiral edge modes is depicted in figure 15(b).
The accumulation of these edge modes occurs at a cor-
ner of the lattice as a result of the hybridization of
NHSE and topology. This phenomenon was referred
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Figure 15. (a) Quasienergy spectrum of the system under OBC in both directions. The black dots denoted the skin-topological
modes. (b) The distribution of the skin-topological modes. (c) Experimental observation of the Floquet skin-topological effect. The
output light is distributed at the end facet of the sample after a 10 cm long propagation by moving the input tilted Gaussian beam
along the outer perimeter. Reproduced from [166]. CC BY 4.0..

to as the Floquet skin-topological effect. The exper-
imental observation was predicated on a honeycomb
lattice composed of helical waveguides. A Gaussian
beam, indicated by the white ellipse dashed curves, is
emitted into the outer boundary of the sample to stim-
ulate the topological edge modes, which was shown in
figure 15(c). As the injected beam traversed the outer
perimeter (IV→III→II), the light propagated along the
edge without experiencing backscattering, even in the
presence of a sharp corner. In the case where the
beam is moved along II→I, the injected light travels
along the upper edge and remains confined at corner
I without entering the bulk. Through the topologi-
cal phase transition, the topological switch of Floquet
skin-topological effect can be observed [166].

3.4.2. Floquet non-Hermitian second-order topo-
logical insulatorHere we introduce a 2D Flo-
quet non-Hermitian second-order topological insula-
tor (FNHSOTI), in which the Bloch BBC is broken
down [156]. A sketch of this model is depicted in fig-
ure 16(a), and the Bloch Hamiltonian takes the form
of

H2D(kx, ky, t)

= [v + λ(t) cos kx]τxσ0 − [λ(t) sin kx + iγ]τyσz+

[v + λ(t) cos ky]τyσy + [λ(t) sin ky + iγ]τyσx. (81)

Here τi and σi are Pauli matrix, and v ± γ denotes
the strength of nonreciprocal intracell hopping. The
strength of intercell hopping amplitude is periodically

quenched with the following form

λ(t) =

{
λ1 = q1f, t ∈ [mT,mT + T1) ,
λ2 = q2f, t ∈ [mT + T1, (m+ 1)T ) .

(82)

The generalized BBC of the periodically driven
non-Hermitian systems can be constructed by the
non-Bloch band theory based on the GBZ. The non-
Bloch Hamiltonian H2D(k̃x, k̃y, t) can be obtained by
replacing Bloch factors eikx/y by the non-Bloch factors

eik̃x/y where k̃x/y = kx/y−i log(rx/y) (kx/y and rx/y are

real). Here rx/y =
√

(v − r)/(v + r) can be obtained
through the method of similarity transform [74, 156].
Based on the Floquet theorem, the Floquet operator
takes the form of

UT (k̃x, k̃y) = e−iH2(k̃x,k̃y)T2e−iH1(k̃x,k̃y)T1 , (83)

where H1(k̃x, k̃y) = H2D(k̃x, k̃y, t)|λ(t)=q1f and

H2(k̃x, k̃y) = H2D(k̃x, k̃y, t)|λ(t)=q2f . The effective
Hamiltonian can be derived from the Floquet opera-
tor via Heff(k̃x, k̃y) = i logUT (k̃x, k̃y)/T and satisfies

the mirror-rotation symmetry MxyHeff(k̃x, k̃y)M
−1
xy =

Heff(k̃y, k̃x) with Mxy = [(τ0 − τz)σx − (τ0 + τz)σz]/2.
The quasienergy spectrum of the system is shown in
figure 16(b), in which four topological zero modes and
four topological π modes can emerge in the two types
of gaps. The probability distributions of topological
zero modes and π modes are depicted in the inset of
figure 16(b), respectively. Topological zero modes and
π modes are sharply localized at the corners of the sys-
tem.

Although the instantaneous Hamiltonian satis-
fied chiral symmetry C with CH(k̃x, k̃y, t)C−1 =
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Figure 16. (a)The sketch of Floquet non-Hermitian second-order topological insulator.The red and black arrows denote the intracell
hopping. The green lines represent the intercell hopping.(b) The quasienergy spectrum of a 20×20 square lattice under OBC in both
directions. The insets depict the probability distributions of topological zero modes (the upper inset) and π modes (the lower inset),
respectively. Parameters in (b) are set as T1 = T2 = 2.2f−1 v = 0.8f , γ = 0.4f , q1 = 1, and q2 = 0. (c) The quasienergy spectrum
with varied T1 of the FNHSOTI under OBC (marked in blue) and PBC (marked in gray), respectively. (d) The quadruple moment
varied with T1. (e) The blue and red lines denote the winding numbers at two gaps varied with T1 based on GBZ, respectively.
The gray line represents the BZ solution. Phase diagram based on the winding numbers W1 and W2. Parameters in (c)–(e) are
T2 = 0.3f−1, v = 1.2f , γ = 0.2f , N = 30, and q1 = −q2 = 1.5f . Reprinted with permission from [156], Copyright (Year) by the
American Physical Society.

−H(k̃x, k̃y, t), the effective Hamiltonian Heff does not
have the chiral symmetry because of

[H1(k̃x, k̃y), H2(k̃x, k̃y)] ̸= 0. (84)

The chiral symmetry can be restored by con-
verting UT (k̃x, k̃y) into U1(k̃x, k̃y) and U2(k̃x, k̃y)

through the similarity transformation Gj(k̃x, k̃y) =

exp[i(−1)jHj(k̃x, k̃y)Tj/2], j = 1, 2. The correspond-

ing effective Hamiltonians are given by Heff,j(k̃x, k̃y) =

i logUj(k̃x, k̃y)/T . Due to the mirror-rotation sym-
metry, the topological properties of FNHSOTIs can
be characterized by the winding numbers Wj based
on the effective Hamiltonian along the high-symmetric
line Heff,j(k̃, k̃) through

Wj =
1

2πi

∫
Cβ

dk̃
d

dk̃
log detHeff,j(k̃, k̃), j = 1, 2.

(85)
The winding numbers correspond to topological zero
modes and π modes can be constructed through [156]

W0 = 2|W1 +W2|, Wπ = 2|W1 −W2|. (86)

The quadrupole moment, which is widely used in
characterizing static second-order topological insula-
tors, should be extended by the biothogonal basis in
a non-Hermitian system. For a non-Hermitian system

whose Hamiltonian is H, the left and right eigenvec-
tor are given by H

∣∣ψR
n

〉
= En

∣∣ψR
n

〉
and H†

∣∣ψL
n

〉
=

E∗
n

∣∣ψL
n

〉
. The quadrupole moment for a non-Hermitian

square lattice under OBC in both directions [156] can
be defined as

P =

 Im ln detU
2π

−
∑

n,i;m,j

Xn,i;m,j

2LxLy

 mod 1. (87)

Here the elements of U hold the form of Uαβ ≡
⟨ψL

α|ei2πX/(LxLy)|ψR
β ⟩ and Xn,i;m,j = nxnyδnmδij

denotes the coordinate, in which i = 1, · · · , 4 represent
the sublattices and Lx/y are the length of system in
x/y directions.

In the FNHSOTI described by equation 81, the
quadrupolar moment and the winding numbers have
the following relation [156]:

P =
1

2
(|W0|+ |Wπ|) mod 2. (88)

The numerical results of the quasienergy spectrum
of varied T1 are shown in figure 16(c). The
corresponding quadruple moment (cyan line) and the
winding numbers based on GBZ (blue and red lines)
and BZ (gray lines) are shown in figures 16(d) and
(e), respectively. When comparing the quadruple
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moment to the winding numbers based on GBZ, it
is evident that the latter is more fundamental. An
example that demonstrates this is the scenario when
T1f = 2. In this case, the quadruple moment (P )
is topologically trivial, while winding numbers based
on GBZ (W0/π) are nonzero and accurately predict
the topological edge modes. The winding numbers
based on the BZ fail to predict the emergence of
the topological modes in FNHSOTI, indicating the
breaking down of conventional BBC based on Bloch
theory. The winding numbers based on GBZ provided
an accurate prediction of the topological zero modes
and π modes and established the generalized BBC for
the FNHSOTIs.

3.5. Experimental realizations

The intriguing non-Hermitian or Floquet phenomena
have been extensively studied in several physical plat-
forms, including photonics/optics [54, 155, 157, 203–
205], acoustic [158, 206–208], electric circuits [209–
212], cold atoms [213], mechanical metamaterials [214,
215], and nitrogen-vacancy centers [216–218]. In this
section, we provide a concise overview of the experi-
mental realizations and progress in non-Hermitian and
periodically driven systems, particularly in the fields of
photonics/optics, acoustics, and electric circuits.

3.5.1. Photonics or optics The experimental inves-
tigation of non-Hermitian systems employing optics
is one of the key areas of interest in non-Hermitian
physics. Initially, Xue’s group experimentally ob-
served the NHSE and confirmed the generalized BBC
in discrete-time non-unitary quantum-walk dynamics
of single photons [54]. A typical method to introduce
non-Hermiticity in optical systems is gain and loss.
In coupled-resonator optical waveguides [219], gain
and loss are usually achieved by pump-controlled or
gate-controlled optical absorption [204]. In photonic
crystals [220], the loss is generated by materials hav-
ing a complex permittivity or complex refractive in-
dex [221], and gain is introduced through two-wave
mixing employing the material’s photorefractive non-
linearity [203].

Besides, many studies focus on the application of
non-Hermitian optical systems, which can be realized
based on the interaction between nonlinear optics and
non-Hermitian systems. For instance, the transition
between PT symmetry and non-PT symmetry regimes
and the maneuvering of topological zero modes
can be realized by adjusting the nonlinearity [222].
Adjustment of nonlinear optics also enables high-speed
manipulation of multiple topological phases [223].
Based on the NHSE, a light funnel has been developed,
which is an optical device that has an appealing impact

on light field research [205] and can be evaluated with
two fiber loops [224].

The Floquet photonic crystals can also be achieved
by means of spiral dielectric columns [94]. The
combination of periodical driving and non-Hermiticity
in optical systems can lead to a variety of fascinating
phenomena. In periodically curved waveguide arrays,
the introduction of gain and loss can reopen the
gap of the quasienergy bands and induce Floquet
π modes [155]. An investigation was conducted
on Floquet dissipative quasicrystals using photonic
quantum walks in coupled fiber loops and has revealed
an intriguing occurrence of topological triple phase
transition [157]. As mentioned before, the optical
Floquet skin-topological effect was observed by Yang’s
group [166].

3.5.2. Acoustics In acoustics, the non-reciprocity
can be realized by introducing directional amplifiers
between resonators [206, 207]. Applying the non-
reciprocity to the coupling, the NHSE has been ob-
served [206]. Non-reciprocity can also be realized
in coupled resonator acoustic waveguides [208]. In
particular, the larger and smaller ring-shaped waveg-
uides serve as site whisper-gallery acoustic resonators
and couplers between site resonators, respectively.
Such waveguides support clockwise and anti-clockwise
acoustic whispering-gallery modes at the same time.
By adding biased loss in the coupled resonators along
a direction, one of the modes experiences loss while
the other does not when they travel along this direc-
tion, and thus the anisotropic coupling is realized. By
designing a 2D acoustic higher-order topological insu-
lator composed of coupled resonator acoustic waveg-
uides, the spin-polarized higher-order non-Hermitian
skin effect has been observed [208].

Floquet topological insulators can be realized in
acoustic systems through distinct methods. Through
the temporal modulation, a method to realize
the Floquet topological insulator is proposed in
a hexagonal-lattice acoustic crystal constructed by
coupled acoustic trimers [225]. Each trimer can
be perceived as a resonant acoustic metamolecule
consisting of three acoustic chambers interconnected
by cylindrical waveguides. The cavity resonance is
operated below the first dipolar cavity resonance, and
thus the trimer is equivalent to a L-C resonating
loop. An effective spin, which breaks the time-reversal
symmetry, can be carried to the trimer by modulating
the acoustic capacitance of each cavity in time.
Another method is to map the temporal modulation to
wave evolution in space dimension, through which the
acoustic Thouless pumping [226], the acoustic analog of
Chern insulators [227], acoustic π/2 modes [228], and
acoustic Floquet higher-order topology [229] have been
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experimentally realized. The third type is proposed to
realize an optical analog of the quantum spin Hall effect
by employing a 2D coupled resonator waveguide [94].
The lattice is specifically designed to be periodic,
without requiring an external drive to realize temporal
modulation, and is called the anomalous Floquet
topological insulator. Similar structures have been
adopted to realize anomalous Floquet topological
insulators [230]. Recently, non-Hermitian topology
has also been introduced to Floquet physics. By
designing a lattice of coupled ring resonators with
uniform loss, an anomalous non-Hermitian skin effect
has been demonstrated [158]. The non-Hermitian skin
modes arise from the nonreciprocal coupling induced
by an additional ring resonator in each unit cell.
Furthermore, due to the strong coupling provided by
the coupled ring resonators, the designed lattice is a
periodically driven system, which largely broadens the
working bandwidth of the non-Hermitian skin modes.

3.5.3. Electric circuits Electric circuits are one of the
most fascinating topics in topological physics research
these days, as they provide a classical platform for
simulating tight-binding models. In electric circuits,
resistance is regarded as a non-Hermitian element that
contributes to dissipation, whereas passive components
like capacitors and inductors function as Hermitian
elements [210]. Adding resistance to the lattice
model can be thought of as adding a bidirectional
complex transition between the lattice points [199].
By constructing the negative resistance module, the
gain can be introduced to the electric circuits [231].
Based on the negative resistances, the PT symmetry
transition can be simulated in electric circuits [232,
233]. The simulation of non-Hermitian topological
states caused solely through gain and loss has also
been realized by many researchers. For example,
by varying positive and negative resistance, different
topological phases can be observed on a 1D non-
Hermitian model [211]. Electric circuits can also be
used as operational amplifiers to simulate the non-
Hermitian tight-binding model with non-reciprocal
hopping. The most widely used of them is the negative
impedance converter with current inversions (INIC),
which can produce equal and opposite currents.
INICs were employed in electric circuits to break the
time-reversal symmetry [209]. The NHSE and the
failure of conventional BBC were identified when they
applied INICs to the non-Hermitian SSH model [90].
Voltage followers are used to realize non-reciprocal
hopping, and paralleling the voltage follower with the
passive element is a comparatively reliable method
for unidirectional hopping models. Zhang’s group
demonstrated experimentally the existence of non-
Hermitian peeling effect in a non-reciprocal coupled

SSH model using a voltage follower [212]. So far,
a variety of non-Hermitian phenomena have been
observed on electric circuits, such as the evolution
of non-Bloch waves [234], higher-order non-Hermitian
skin effects [235, 236], and many-body non-Hermitian
skin effects [237].

The electric circuits provide a platform to
investigate the periodically driven non-Hermitian
systems. For example, the periodically quenched
systems can be realized by adding switches in electric
circuits [130, 238]. Through this technique, conversion
can be achieved in a single cycle with or without energy
exchange. Kottos’s group have realized a periodically
driven PT-symmetric system [135, 239], which consists
of a combination of two coupled LC resonators with
balanced gain and loss. The capacitance coupling of
the two resonators is driven by a network of varactor
diode. The PT symmetry phase can be modulated
by the amplitude and frequency of the driving [135].
Therefore, electric circuits provide a tunable classical
platform for non-Hermitian topological phenomena.

4. Conclusion and outlook

In this review, we have provided an overview of the
generalized BBC in periodically driven non-Hermitian
systems by taking the periodically driven non-
Hermitian SSH model as a paradigm. Specifically, two
typical periodically driven non-Hermitian systems have
been introduced, i.e., the harmonically driven non-
Hermitian SSH model and the periodically quenched
non-Hermitian SSH model. In a harmonically driven
non-Hermitian SSH model with the NHSE, the
NBWNs based on the GBZ have been established to
characterize the two distinct types of topological edge
modes. In addition, the non-Bloch band invariants
based on the non-Bloch effective Hamiltonian have
been developed as a comparison. The non-Bloch band
theory, in which the GBZ plays an essential role,
provides a useful tool to investigate the topological
states of the periodically driven non-Hermitain system.
In some non-Hermitan systems, it is difficult to obtain
the GBZ, in which case the open-bulk topological
invariants can be defined in real space to predict
the topological edge states. A periodically quenched
non-Hermitian SSH model with the NHSE has been
introduced to studying the open-bulk winding numbers
as the topological characterization. We also have
viewed the topological properties of higher-dimensional
non-Hermitian systems with periodic driving by a
focus on introducing the Floquet hybrid NHSE
and the Floquet second-order topological insulators.
Additionally, we have surveyed the experimental
realizations in optics, acoustics, and electric circuits.

In the near future, there will be further develop-
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ments in the periodically driven non-Hermitian sys-
tems, since many issues still require more theoretical
and experimental efforts. For instance, the topological
properties of the periodically driven non-Hermitian su-
perconductors with particle-hole symmetry. The non-
Hermitian topological superconductors have exhibited
many interesting phenomena. The NHSE corresponds
to the Z2 skin effect, and the phase transition oc-
curs at the Bloch points [240]. The interplay between
the periodic driving and the particle-hole symmetry
may display rich interesting phenomena and this re-
mains to be investigated so far. The periodic driv-
ing will enrich the topological properties of the Ma-
jorana corner modes and the topological edge states
in non-Hermitian higher-order superconductors. Fur-
thermore, the energy spectrum forming the Wannier-
Stark ladder will induce the Wannier-Stark localization
of the eigenstates [241]. The periodic driving can in-
duce the Wannier-Stark localization along the Floquet
direction in the Hermitian [183] and non-Hermitian
systems [242]. The competition between the non-
Hermitian skin effect and Wannier-Stark localization
in non-Hermitian systems has generated many interest-
ing phenomena [242–244]. The interplay between the
non-Hermitian skin effect and the Wannier-Stark local-
ization can enrich the generalized bulk-boundary cor-
respondence for the periodically driven non-Hermitian
topological phases and seems to be a promising future
avenue. We hope this pedagogical article will motivate
further research on the Floquet non-Hermitian topo-
logical physics.
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Matlab code for calculating the GBZ of periodically driven SSH model

% The code i s cheked with Malab 2021b
c l e a r ; c l c
syms B
L=40;% s i z e o f the hami l tonian
t1 =0.75;
gamma=0.2;% st r ength o f non−Hermi t i c i ty
t2 =1.0 ; t3=0;
lambda=0.5;% st r ength o f p e r i o d i c d r i v i ng
w=3; % angular f requency
T=2∗pi /w;
f loquet number=3;

Energy midband = floquetHammltonian ( t1 , t2 , t3 , gamma, lambda ,w,L , f loquet number ) ;
% quas i energy in OBC over one per iod
Cbeta = GBZ( t1 , t2 , t3 , gamma, lambda ,w, Energy midband ,B) ;
f i g u r e ( )
subplot ( 2 , 1 , 1 )
s c a t t e r ( r e a l ( Energy midband ) , imag ( Energy midband ) , ’ . ’ ) ;
t i t l e ( gca , ’ Energy spectrum ’ ) ;
x l ab e l ( ’Re(\ ep s i l o n ) ’ ) ; y l ab e l ( ’ Im(\ ep s i l o n ) ’ ) ;
subplot ( 2 , 1 , 2 )
s c a t t e r ( r e a l ( Cbeta ) , imag (Cbeta ) , ’ . ’ )
t i t l e ( gca , ’GBZ’ ) ;
x l ab e l ( ’Re(\ beta ) ’ ) ; y l ab e l ( ’ Im(\ beta ) ’ ) ;

f unc t i on Energy midband=floquetHammltonian ( t1 , t2 , t3 , gamma, lambda ,w,L , f loquet number )
NX=L ;NY=1;NXY=NX∗NY;
de l t a =0.01;
hami l tonian (2∗ f loquet number ∗NXY,2∗ f loquet number ∗NXY)=ze ro s ;
f o r i i =0: f loquet number−2

f o r ix =1:NX
i=ix+i i ∗2∗NXY;
hami l tonian (2∗NXY+i ,NXY+i )=0.5d0∗ lambda ;
hami l tonian (3∗NXY+i , i )=0.5d0∗ lambda ;
hami l tonian ( i , 3∗NXY+i )=0.5d0∗ lambda ;
hami l tonian (NXY+i ,2∗NXY+i )=0.5d0∗ lambda ;

end
end
f o r i i =0: f loquet number−1

f o r ix =1:NX
i=ix+i i ∗2∗NXY;
hami l tonian ( i , i )=w∗ ( ( f loquet number −1)∗0.5d0− i i ) ;
hami l tonian (NXY+i ,NXY+i )=w∗ ( ( f loquet number −1)∗0.5d0− i i ) ;
hami l tonian ( i ,NXY+i )=t1+gamma;
hami l tonian (NXY+i , i )=t1−gamma;

end
f o r ix =1:NX−1

i=ix+i i ∗2∗NXY;
hami l tonian (NXY+i , i+1)=complex ( t2 , 0 . 0 d0 ) ;
hami l tonian ( i ,NXY+i+1)=complex ( t3 , 0 . 0 d0 ) ;

end
f o r ix =2:NX

i=ix+i i ∗2∗NXY;
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hami l tonian (NXY+i , i−1)=complex ( t3 , 0 . 0 d0 ) ;
hami l tonian ( i ,NXY+i−1)=complex ( t2 , 0 . 0 d0 ) ;

end
end

E(1 , : )= e i g ( hami ltonian ) ;
kk=0;
f o r k=1: s i z e (E, 2 )

i f r e a l (E(1 , k))<w/2+de l t a&&r e a l (E(1 , k))>−w/2−de l t a
kk=kk+1;
Energy midband (1 , kk)=E(1 , k ) ;

e l s e i f f loquet number==1
kk=kk+1;
Energy midband (1 , kk)=E(1 , k ) ;

end
end
end

% compute the GBZ
func t i on Cbeta=GBZ( t1 , t2 , t3 , gamay , lambdax ,w, Energy midband ,B)
syms B
RZ=t2 ∗Bˆ(−1)+t1+gamay+t3 ∗B;
RF=t2 ∗B+t1−gamay+t3 ∗Bˆ(−1);

pa r f o r k=1: s i z e ( Energy midband , 2 )
FB=det ( [w−Energy midband (1 , k ) RZ 0 0 .5∗ lambdax 0 0 ; %det [H( beta)−E]

RF w−Energy midband (1 , k ) 0 .5∗ lambdax 0 0 0 ;
0 0 .5∗ lambdax −Energy midband (1 , k ) RZ 0 0 .5∗ lambdax ;
0 .5∗ lambdax 0 RF −Energy midband (1 , k ) 0 .5∗ lambdax 0 ;
0 0 0 0 .5∗ lambdax −w−Energy midband (1 , k ) RZ;

0 0 0 .5∗ lambdax 0 RF −w−Energy midband (1 , k ) ] ) ;
Bb=so l v e (FB==0,B) ;
E b e t a a l l ( : , k)=double (Bb ) ;

end
mm=0;
f o r k=1: s i z e ( E be ta a l l , 2 )

kkk=0;
f o r kk=1: s i z e ( E be ta a l l , 1 )

kkk=kkk+1;
E beta ( kkk , k)=E be t a a l l ( kk , k ) ;

end
E beta abs=abs ( E beta ( : , k ) ) ; E be ta so r t=so r t ( E beta abs ) ;
index Beta M=f i x ( l ength ( E be ta so r t ) / 2 ) ;
f o r kkk=1: s i z e ( E beta , 1 ) %s e l e c t beta by |Beta M |= |Beta M+1|

i f abs ( E be ta so r t ( index Beta M)−E beta so r t ( index Beta M+1)) <0 .05 . . .
&& abs ( abs ( E beta ( kkk , k))−E beta so r t ( index Beta M ))<0.05
mm=mm+1;
Cbeta (1 ,mm)=E beta ( kkk , k ) ;

end
end

end
%so r t by the ang le o f Cbeta from −pi to p i
angle Cbeta=ze ro s ;
f o r kk=1: s i z e (Cbeta , 2 )
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angle Cbeta (kk ,1)= ang le ( Cbeta (1 , kk ) ) ;
end
f o r i i=s i z e (Cbeta ,2)−1:−1:1

f o r j j =1: i i
i f angle Cbeta ( j j ,1)> angle Cbeta ( j j +1 ,1)

temp angle=angle Cbeta ( j j , 1 ) ;
angle Cbeta ( j j ,1)= angle Cbeta ( j j +1 ,1) ;
angle Cbeta ( j j +1,1)= temp angle ;
temp Cbeta=Cbeta (1 , j j ) ;
Cbeta (1 , j j )=Cbeta (1 , j j +1);
Cbeta (1 , j j +1)=temp Cbeta ;

end
end

end
end
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