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Abstract

Stable computational algorithms for the approximate solution of the Cauchy problem for nonstationary
problems are based on implicit time approximations. Computational costs for boundary value problems for
systems of coupled multidimensional equations can be reduced by additive decomposition of the problem
operator(s) and composition of the approximate solution using particular explicit-implicit time approxima-
tions. Such a technique is currently applied in conditions where the decomposition step is uncomplicated. A
general approach is proposed to construct decomposition-composition algorithms for evolution equations in
finite-dimensional Hilbert spaces. It is based on two main variants of the decomposition of the unit operator
in the corresponding spaces at the decomposition stage and the application of additive operator-difference
schemes at the composition stage. The general results are illustrated on the boundary value problem for a
second-order parabolic equation by constructing standard splitting schemes on spatial variables and region-
additive schemes (domain decomposition schemes).

Keywords: First-order evolutionary equation, Additive splitting operator, Splitting scheme, Stability of
difference schemes
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1. Introduction

Mathematical modeling is based on numerical solutions of boundary value problems for systems of mul-
tidimensional partial equations. Computational algorithms are usually based on finite-element and finite-
volume approximations over the space [1, 2]. Implicit time approximations are often used when numerically
solving nonstationary boundary value problems for partial derivative equations. Such approximations pro-
vide unconditional stability of the solution concerning the initial data and the right-hand side [3, 4]. Explicit
schemes, which are simpler to find an approximate solution on a new level in time, have tight constraints
on the grid spacing in time [5, 6]. We want to construct schemes that are as stable as implicit schemes and
as easy to implement computationally as explicit schemes.

When inhomogeneous time approximations are used, the problem operator is split into two operator
summands with the allocation of a computationally acceptable summand, which is taken from the upper
level in time and the other summand — from the lower level. Such IMEX methods are widely used in
computational practice[7, 8]. For example, in [9], explicit- implicit two- and three-level operator-difference
schemes are constructed for the first-order evolution equation for both the standard splitting of the primary
operator of the problem and the splitting of the operator at the time derivative of the solution.

Splitting schemes [10, 11] are based on the known additive representation of the problem operator.
In this case, the transition to a new level in time is carried out by solving evolutionary problems for
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individual operator summands. In many nonstationary problems, computationally acceptable subproblems
make sense when constructed on the principle of solution decomposition when more straightforward problems
are formulated for separate components of the solution. Such new solution splitting schemes are constructed
in [12, 13] for the approximate solution of the Cauchy problem in finite-dimensional Hilbert space for
evolution equations of first and second order.

We can consider splitting schemes for approximate solutions of nonstationary problems as a compu-
tational technology for the decomposition (analysis) of the situation and composition (synthesis) of the
solution. At the stage of decomposition, an additive representation of the problem’s operator(s) into more
straightforward operators is performed, and at the stage of composition — an approximate solution of
the problem is constructed from the solutions of the issues for individual operator summands on the ba-
sis of special time approximations. Various classes of two- and three-level additive operator-difference
schemes (splitting schemes) [11] under a given additive splitting of the problem operator have been con-
structed. Explicit-implicit approximations are most easily constructed for two-component splitting. We use
component-wise splitting schemes (sum approximation schemes), regularized additive schemes, and vector
splitting schemes for general multi-component splitting.

In computational practice, most attention is paid to splitting schemes on spatial variables or physical
processes when decomposing the problem operator(s) is not difficult. We develop a more general approach
to construct an additive decomposition of the problem operators in the approximate solution of the Cauchy
problem for evolution equations in Hilbert finite-dimensional spaces. The key idea is related to using
an additive representation of the unit operator in appropriate spaces. In the composition stage, additive
operator-difference schemes are used. From these positions, we can consider, in particular, the previously
proposed region-additive schemes (domain decomposition schemes) [14, 15] for nonstationary problems,
which is based on the partitioning of the unit for the domain.

The paper is organized as follows. Section 2 describes the problem of constructing splitting schemes
for approximate solutions of nonstationary issues based on the decomposition and composition techniques.
We consider the Cauchy problem in a finite-dimensional Hilbert space for a first-order evolution equation
with a self-adjoint operator. The model boundary value problem for a parabolic equation in a rectangle
under finite-difference approximation is considered in Section 3. The decomposition is provided by splitting
by spatial variables (directional variable schemes) and based on the computational grid decomposition
(region-additive schemes). The decomposition operators are constructed in Section 4 section. The first
approach (decompositions in one space) is based on the additive representation of the unit operator in the
corresponding space as a sum of self-adjoint operators. When investigating the stability of the composition
schemes, the operators of the corresponding evolution equations are symmetrized. In Section 5, we formulate
a second approach to the decomposition stage when working on a set of spaces. The decomposition operators
are represented in factorized form, which allows us to construct an additive splitting not only for problem
operator but also for the solution itself. Section 6 is devoted to briefly discussing the decomposition-
composition technique for other problems. In particular, the problems for second-order evolution equations
and systems of first-order equations are considered. The results are summarized in Section 7.

2. Problem statement

Additive operator schemes (splitting schemes) are considered in the general computational technology
of decomposition-composition. In the example of the Cauchy problem for the first-order evolution equation,
the problem of constructing an additive splitting of the problem operator is formulated. Splitting schemes
for the two-dimensional parabolic equation using a uniform rectangular grid over the space are given as a
benchmark.

2.1. Cauchy problem

Let us consider the Cauchy problem for the first-order evolution equation:

du

dt
+Au = f(t), 0 < t ≤ T, (2.1)
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u(0) = u0. (2.2)

We are looking for a solution u(t) of the equation (2.1) for 0 < t ≤ T from a finite-dimensional Hilbert space
H under a given initial condition (2.2). The constant (independent of t) operator A in (2.1) is self-adjoint
and positive:

A = A∗ > 0. (2.3)

In H the scalar product for u, v ∈ H is (u, v) and the norm is ∥u∥ = (u, u)1/2. For a self-adjoint and
positive operator D, we define a Hilbert space HD with scalar product and norm (u, v)D = (Du, v), ∥u∥D =

(u, v)
1/2
D . For the solution of the problem (2.1)–(2.3), the simplest a priori estimates are as follows

∥u(t)∥2D ≤ ∥u0∥2D +
1

2

∫ t

0

∥f(s)∥2DA−1 ds, 0 < t ≤ T, (2.4)

in HD when, for example, D = A, I,A−1. Such estimates of the stability of the solution on the initial data
and the right-hand side should be inherited by using some time approximations.

We introduce a uniform, for simplicity, time grid with step τ and let yn = y(tn), tn = nτ , n =
0, 1, . . . , N, Nτ = T . To numerically solve the problem (2.1), (2.2), we will use a two-level scheme with
weights (σ = const):

yn+1 − yn

τ
+A(σyn+1 + (1− σ)yn) = fn+σ, n = 0, 1, . . . , N − 1, (2.5)

y0 = u0, (2.6)

when using the notation

tn+σ = σtn+1 + (1− σ)tn, fn+σ = σfn+1 + (1− σ)fn.

The difference scheme (2.5), (2.6) approximates the problem (2.1), (2.2) with second order τ at σ = 0.5
(symmetric scheme) and with first order — at σ ̸= 0.5.

When formulating stability conditions for two- and three-level schemes, we refer to general stability
results for operator-difference schemes [5, 6].

Theorem 1. The scheme with weight (2.5), (2.6) is unconditionally stable at σ ≥ 1/2 in HD, D = A, I,A−1.
For the solution, the estimate

∥yn+1∥2D ≤ ∥u0∥2D +
1

2

n∑
k=0

τ∥fk+σ∥2DA−1 , n = 0, 1, . . . , N − 1, (2.7)

is holds.

Proof. We write (2.5) as

(I + τG)
yn+1 − yn

τ
+A

yn+1 + yn

2
= fn+σ, n = 0, 1, . . . , N − 1, (2.8)

with the operator

G =
(
σ − 1

2

)
A.

At σ ≥ 1/2 we have G = G∗ ≥ 0. By multiplying (2.8) scalarly in H by 2DA−1(yn+1 − yn), we get

2τ
∥∥∥yn+1 − yn

τ

∥∥∥2
DA−1

+ 2
(
DA−1G(yn+1 − yn), yn+1 − yn

)
+ ∥yn+1∥2D

= ∥yn∥2D + 2τ
(
DA−1fn+σ,

yn+1 − yn

τ

)
.
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Considering (
DA−1G(yn+1 − yn, yn+1 − yn

)
≥ 0,(

DA−1fn+σ,
yn+1 − yn

τ

)
≤

∥∥∥yn+1 − yn

τ

∥∥∥2
DA−1

+
1

4
∥fn+σ∥2DA−1 ,

we obtain the inequality

∥yn+1∥2D ≤ ∥yn∥2D +
1

2
τ∥fn+σ∥2DA−1 .

From this follows the provable estimate (2.7).

To find the solution on the new time level, we solve the problem

(I + στA)yn+1 = ψn, ψn =
(
I − (1− σ)τA

)
yn+1 + τfn+σ, n = 0, 1, . . . , N − 1.

Several variants of iterative methods can be considered for this purpose. The main feature of unsteady
problems is that we have an excellent initial approximation yn for the unknown solution yn+1. This properties
often limits the number of iterations.

2.2. Decomposition-composition technique

The general methodological technique of studying systems based on analysis and synthesis is used to
reduce the computational effort in finding an approximate solution at a new time level. Simpler private
subproblems are selected (analysis), the study of which allows for obtaining solutions to the problem’s
general problem (synthesis). Such computational technology of analysis (decomposition) and synthesis
(composition) in solving unsteady problems is realized by using splitting schemes. Let us consider the
critical elements of this approach in the example of the Cauchy problem (2.1), (2.2).

The difficulties in solving the problem are related to the complexity of the operator A. We use the
additive representation of the operator A as a sum of simpler operators at the decomposition stage. Let us
assume that in our problem (2.1)–(2.3) takes place

A =

p∑
α=1

Aα, Aα = A∗
α ≥ 0, α = 1, 2, . . . , p. (2.9)

According to the decomposition (2.9), the solution of the auxiliary problems for the equations

duα
dt

+Aαuα = fα(t) (2.10)

with separate operator summands A∗
α ≥ 0, α = 1, 2, . . . , p is a simpler problem than the solution of (2.1),

(2.2) with operator A.
At the composition stage, the approximate solution of the initial problem u(t) is constructed (synthesized)

from the solutions of auxiliary problems with operators A∗
α ≥ 0, α = 1, 2, . . . , p, which are determined

from equations (2.10). For this purpose, we construct additive operator-difference schemes [5, 11] when
decomposing (2.9).

The current state of research and practical use of the decomposition-composition technique is character-
ized by a relatively deep elaboration of the composition stage. Different splitting schemes for the additive
representation (2.9) of the problem operator have been proposed, and unconditionally stable operator-
difference schemes have been obtained. Less attention has been paid to the problem of decomposition.
This is mainly because additive splitting itself is often natural and unproblematic in the considered prob-
lems. This paper aims to formulate general approaches for more straightforward problems in decomposing
a nonstationary problem.
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3. Model problem

We illustrate the possibilities of constructing splitting schemes on the example of a problem for a second-
order parabolic equation in a rectangle. Standard difference approximations on a uniform rectangular grid
are used for discretization over space. The decomposition is provided by splitting the operator over the
spatial variables. The second case is associated with the decomposition of the domain into subdomains.
Various additive operator-difference schemes are used in the composition.

3.1. Differential Problem

We consider a model boundary value problem for a second-order parabolic equation in a rectangle

Ω = {x | x = (x1, x2), 0 < xα < lα, α = 1, 2}.

The unknown function w(x, t) satisfies the equation

∂w

∂t
−

2∑
α=1

∂

∂xα

(
k(x)

∂w

∂xα

)
= φ(x, t), x ∈ Ω, 0 < t ≤ T, (3.1)

in which k(x) ≥ κ > 0, x ∈ Ω. Let us supplement equation (3.1) with homogeneous Dirichlet boundary
conditions

w(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T. (3.2)

The initial condition is also set
w(x, 0) = w0(x), x ∈ Ω. (3.3)

The nonstationary diffusion problem (3.1), (3.3) is considered on the set of functions w(x, t) satisfying
the boundary conditions (3.2). Then instead of (3.1), (3.2) we can use the differential-operator equation

dw

dt
+Au = φ(t), 0 < t ≤ T. (3.4)

We consider the Cauchy problem for the evolution equation (3.4):

w(0) = w0. (3.5)

For the elliptic operator, we have

Aw = −
2∑

α=1

∂

∂xα

(
k(x)

∂w

∂xα

)
.

On the set of sufficiently smooth functions (3.2), define a Hilbert space H = L2(Ω) with scalar product
and norm

(w, v) =

∫
Ω

w(x)v(x)dx, ∥w∥ = (w,w)1/2.

In H, the operator A is self-adjoint and positively defined:

A = A∗ ≥ κδI, δ = δ(Ω) > 0, (3.6)

where I is the unit operator in H.
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.

Figure 1: Grid: • — internal nodes, ◦ — boundary nodes

.

3.2. Approximation over space

The approximate solution is given at the nodes of a uniform rectangular grid in Ω:

ω̄ = {x | x = (x1, x2), xα = iαhα, iα = 0, 1, ..., Nα, Nαhα = lα}.

and let ω be the set of internal nodes (ω̄ = ω∪∂ω) (see Figure 1). For the grid functions u(x) = 0, x ∈ ∂ω,
we define a Hilbert space H = L2(ω) with scalar product and norm

(u, v) =
∑
x∈ω

u(x)v(x)h1h2, ∥u∥ = (u, u)1/2.

Considering the coefficient k(x) in the domain of Ω smooth enough, we take the grid elliptic operator as

Au = − 1

h21
k(x1 + 0.5h1, x2)(u(x1 + h1, x2)− u(x1, x2))

+
1

h21
k(x1 − 0.5h1, x2)(u(x1, x2)− u(x1 − h1, x2))

− 1

h22
k(x1, x2 + 0.5h2)(u(x1, x2 + h2)− u(x1, x2))

+
1

h22
k(x1, x2 − 0.5h2)(u(x1, x2)− u(x1, x2 − h2)).

(3.7)

In H, the operator A is self-adjoint and positively defined [5]:

A = A∗ ≥ κ(δ1 + δ2)I, δα =
4

h2α
sin2

πhα
2lα

, α = 1, 2. (3.8)

After space approximation from (3.4), (3.5) we arrive at the Cauchy problem (2.1), (2.2) when u0(x) =
w0(x), x ∈ ω. The involved nodal values in equation (2.1) when using the approximation (3.7), (3.8) are
labeled with lines in Fig.1 on the right.

3.3. Decomposition

The classical variant of splitting schemes is related to splitting the operator by spatial variables. In
the case of the problem (3.4)–(3.8) we have a two-component (p = 2) additive representation (2.9) of the
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operator A at

A1u = − 1

h21
k(x1 + 0.5h1, x2)(u(x1 + h1, x2)− u(x1, x2))

+
1

h21
k(x1 − 0.5h1, x2)(u(x1, x2)− u(x1 − h1, x2)),

A2u = − 1

h22
k(x1, x2 + 0.5h2)(u(x1, x2 + h2)− u(x1, x2))

+
1

h22
k(x1, x2 − 0.5h2)(u(x1, x2)− u(x1, x2 − h2)).

The involved grid nodes for the operators A1 and A2 are shown in Fig.2.

Figure 2: Calculated nodes for A1 (left) and for A2 (right).

We also note a class of noniterative domain decomposition methods for approximate solution of multi-
dimensional initial boundary value problems [6]. In the approximate solution of the problem (3.1)–(3.3) we
will use the domain decomposition

Ω =

p⋃
α=1

Ωα, Ω = Ωα ∪ ∂Ωα, α = 1, 2, ..., p, (3.9)

with overlapping subdomains (Ωαβ ≡ Ωα ∩Ωβ ̸= ∅) or without overlapping subdomains (Ωαβ = ∅). Based
on (3.9), we construct the corresponding additive representation of the problem operator

A =

p∑
α=1

Aα. (3.10)

The operator Aα is associated with the solution of some problem in the subdomain Ωα, α = 1, 2, ..., p.
We will construct the operators Aα, α = 1, 2, ..., p using the unit partitioning for the computational

domain. In the decomposition (3.9), we associate a function ηα(x) with a separate subdomain Ωα (α =
1, 2, ..., p) such that

ηα(x) =

{
> 0, x ∈ Ωα,
0, x /∈ Ωα,

α = 1, 2, ..., p, (3.11)

provided that
p∑

α=1

ηα(x) = 1, x ∈ Ω. (3.12)
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For the problem at hand (3.1)–(3.3), we can use [6, 16] the following constructions:

Aα = ηα A, (3.13)

Aα = A ηα, α = 1, 2, ..., p. (3.14)

We do the same to obtain an additive representation of the discrete operator A. We associate the domain
decomposition (3.9) with distinct subsets of grid nodes ωα, α = 1, 2, ..., p:

ω =
p
∪

α=1
ωα, ωα = {x | x ∈ ω, x ∈ Ωα}, α = 1, 2, ..., p.

We compare the partitioning of the unit domain (3.11), (3.12) to the partitioning for the set of internal
nodes of ω:

p∑
α=1

χα = 1, χα(x) ≥ 0, x ∈ ω, α = 1, 2, ..., p. (3.15)

In the simplest case, χα(x) = ηα(x), x ∈ ω. Fig.3 illustrates the separation of grid parts for the case of
non-intersecting two subdomains.

Figure 3: Grid when the region is partitioned into rectangles (left) and when skeletonized (right): ω1 — blue nodes, ω2 — red
nodes.

Similar to (3.13), (3.14), we define the decomposition operators as

Aα = χαA, (3.16)

Aα = Aχα, α = 1, 2, ..., p. (3.17)

By (3.15), when (3.16), (3.17) is split, there is an additive representation for the problem operator

A =

p∑
α=1

Aα. (3.18)

The condition of non-negativity and self-adjointness of the operators Aα, α = 1, 2, ..., p (see (2.9)) is provided
by the symmetrization procedure [6]. In our model problem (3.1)–(3.3), neighboring nodes from other subsets
of the grid are involved to compute the values of Aαu at nodes x ∈ ωα, α = 1, 2, ..., p.
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3.4. Composition

In the composition stage, the approximate solution is constructed from solutions of auxiliary problems
with separate operator summands (2.10) in an additive representation (3.18). We consider the Cauchy
problem for Eq.

du

dt
+

p∑
α=1

Aαy = f(t) (3.19)

under the chosen additive representation of the right-hand side:

f(t) =

p∑
α=1

fα(t).

Various additive operator-difference schemes [11] are used to numerically solve the problem (2.2), (3.19). Let
us note the main classes of splitting schemes and formulate conditions for their unconditional stability. In
addition to the decomposition (2.9), we can consider the more general case with non-self-conjugate operator
summands:

A =

p∑
α=1

Aα, Aα ≥ 0, α = 1, 2, . . . , p. (3.20)

Let us separately emphasize the case of two-component decomposition (p = 2). For the problems (2.2),
(3.19), (3.20) we can use factorized schemes [5]

(I + στA1)(I + στA2)
yn+1 − yn

τ
+ (A1 +A2)y

n = fn+σ, n = 0, 1, . . . , N − 1. (3.21)

When the weight parameter σ = 0.5, we have the operator analog of the classical Peaceman–Rachford
scheme [17], and when σ = 1 — the Douglas–Rachford scheme [18]. The factorized schemes (2.6), (3.20),
(3.21) are unconditionally stable in HD with D = (I + στA∗

2)(I + στA2) for σ ≥ 0.5. For the approximate
solution, we have the estimate

∥∥(I + στA2)y
n+1

∥∥ ≤
∥∥(I + στA2)u

0
∥∥+

n∑
k=0

τ
∥∥fn+σ

∥∥.
When σ = 0.5, the factorized scheme (2.6), (3.21) has a second order accuracy of τ , and when σ ̸= 0.5 — a
first order accuracy.

For general multicomponent decomposition (p > 1 in (3.18)), we can consider the schemes of component-
wise splitting [19, 20]. The transition to a new level in time (solution composition) in the problem (2.2),
(3.19) is provided by sequential solution of auxiliary problems

yn+α/p − yn+(α−1)/p

τ
+Aα(σy

n+α/p + (1− σ)yn+(α−1)/p)

= fn+σ
α , α = 1, 2, . . . , p, n = 0, 1, . . . , N − 1.

(3.22)

The stability of the scheme (2.6), (3.20), (3.22) holds in H under the usual weight constraints σ ≥ 0.5, α =
1, 2, . . . , p. The study of convergence of the approximate solution at integer steps is based on the concept
of sum approximation [21]. The component-wise splitting scheme (2.6), (3.22) has first-order τ accuracy.
When we choose σ = 0.5, α = 1, 2, . . . , p and organize the calculations according to the Fryazinov-Strang
regulation [22, 23]

A1 → A2 → · · · → Ap → Ap → · · · → A1,

we can count on the second order of accuracy.
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Let us highlight a variant of construction of additive difference schemes of component-wise splitting, in
which independent solutions of simple problems and parallel organization of computations are allowed. In
additive-averaged schemes [11, 24], the transition to a new time level is carried out as follows:

yn+1
α − yn

pτ
+Aα(σy

n+1
α + (1− σ)yn) = fn+σ

α ,

α = 1, 2, ..., p, n = 0, 1, . . . , N − 1,

yn+1 =
1

p

p∑
α=1

yn+1
α .

(3.23)

The composition of the solution at the new time level is provided by averaging the solutions of the auxiliary
problems. The stability conditions for the additive-averaging schemes (2.6), (3.20), (3.23) are the same as
for the conventional component-wise splitting schemes (2.6), (3.20), (3.22): stability in H takes place at
σ ≥ 0.5.

A more convenient construction of time approximations in multicomponent decomposition is realized by
applying regularized additive schemes [11, 25]. It is based on multiplicative regularization of the explicit
scheme, where the approximate solution is determined from Eq.

yn+1 − yn

τ
+

p∑
α=1

(I + στAα)
−1Aαy

n = fn+σ. (3.24)

The stability constraints on the time step in the explicit scheme are related to the norm of the problem
operator. The multiplicative regularization used aims to reduce this norm appropriately. In the regularized
additive scheme, no intermediate problems or auxiliary functions are introduced, and the original equation
is approximated directly. Sufficient conditions for unconditional stability of the scheme (2.6), (3.20), (3.24)
in H are σ ≥ 0.5p.

When constructing vector additive schemes [26, 27] instead of the scalar equation (3.19), we solve the
Cauchy problem for a system of identical equations:

duα
dt

+

p∑
β=1

Aβuβ = f(t), t > 0, (3.25)

uα(0) = u0, α = 1, 2, . . . , p. (3.26)

In this case, uα(t) = u(t), α = 1, 2, . . . , p and therefore any component of the vector u = {u1, u2, . . . , up}
can be taken as the solution to the original problem (2.2), (3.19). We construct various variants of two- and
three-level vector composition schemes [11] for the approximate solution of the problem (3.25), (3.26). An
example is the scheme

(I + στAα)
yn+1
α − ynα

τ
+

p∑
β=1

Aβy
n
β = φn, α = 1, 2, . . . , p,

which is stable at σ ≥ 0.5p.

4. Decomposition in one space

A sequence of more straightforward problems is constructed based on the decomposition of the problem
operator. We apply a general approach based on an additive representation of the unit operator. We highlight
various general constructions of such decomposition and note the possibilities of constructing composition
schemes.
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4.1. Additive decomposition of the unit operator

We construct time approximations for the approximate solution of the Cauchy problem (2.1)–(2.3) based
on the decomposition of the operator A : H → H in the form (3.18). The operator summands Aα, α =
1, 2, . . . , p are obtained based on the general approach, without being directly connected to a particular form
of the operator A.

The unit (identity) operator I in H can be represented as

I =

p∑
α=1

Rα, Rα = R∗
α ≥ 0, α = 1, 2, . . . , p. (4.1)

Depending on the applications, the operators Rα : H → H, α = 1, 2, . . . , p can be associated with different
variants of restriction operators. In particular, we can mention the classical projection operators. When
applying a unit domain decomposition for the computational grid (3.15), we have

Rαu = χα(x)u, x ∈ ω, α = 1, 2, . . . , p.

Starting from the decomposition of the unit operator (4.1) we can proceed to the decomposition (3.18)
of the operator A in two main ways:

A −→
p∑

α=1

RαA, Aα = RαA, (4.2)

A −→
p∑

α=1

ARα, Aα = ARα, α = 1, 2, . . . , p. (4.3)

We noted similar constructions (see (3.16), (3.17)) when considering domain decomposition schemes for the
numerical solution of the model parabolic problem.

4.2. The first variant of decomposition

Let us consider the use of decompositions (4.2) and (4.3) on the example of the Cauchy problem (2.1)–
(2.3). If we use the variant (4.2), we obtain the equation

du

dt
+

p∑
α=1

RαAu = f(t), 0 < t ≤ T. (4.4)

Direct use of the results of the theory of additive operator-difference schemes for the problem (2.2), (2.3),
(4.4) is not possible because the operators RαA, α = 1, 2, . . . , p are not non-negative. The transformation
of the problem by symmetrization of [6, 28] is salvageable.

Let’s multiply the equation by A1/2 and get the equation

dũ

dt
+

p∑
α=1

Ãαũ = f̃(t), (4.5)

in which ũ = A1/2u, f̃ = A1/2f and

Ãα = A1/2RαA
1/2, Ãα = Ã∗

α ≥ 0, α = 1, 2, . . . , p.

The initial condition (2.2) takes the form of

ũ(0) = ũ0, ũ0 = A1/2u0. (4.6)
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Multiplying equation (4.5) scalarly in H by ũ, we get

1

2

d

dt
∥ũ(t)∥2 +

p∑
α=1

(
Ãαũ, ũ

)
=

(
f̃(t), ũ

)
. (4.7)

Given (4.1) and the notation introduced, we have

∥ũ(t)∥2 = ∥u(t)∥2A,
p∑

α=1

(
Ãαũ, ũ

)
= ∥Au∥2,

(
f̃(t), ũ

)
= (Au, f).

Inequality
d

dt
∥u(t)∥2A ≤ 1

2
∥f(t)∥|2

follows from from (4.7). We obtain an a priori estimate (2.4) for D = A.
For the problem (4.5), (4.6), we can use different time approximations. We will not load the text of the

paper with technical details that are not principal. When discussing the problems of composition schemes,
we will consider the homogeneous equation (2.1) (right-hand side f(t) = 0). For example, when applying
the regularized additive scheme (see (3.24)) to approximate the solution of the problem (2.2), (4.2) we use
the scheme

yn+1 − yn

τ
+

p∑
α=1

(I + στRαA)
−1RαAy

n = 0. (4.8)

Theorem 2. The scheme (2.6), (4.8) is unconditionally stable at σ ≥ p/2 in HA. For the approximate
solution there is an estimation of stability on initial data

∥yn+1∥A ≤ ∥u0∥A, n = 0, 1, . . . , N − 1. (4.9)

Proof. We write the equation (4.8) as a system of equations

yn+1
α − yn

pτ
+ (I + στRαA)

−1RαAy
n = 0, α = 1, 2, . . . , p, (4.10)

when the solution is additively represented at the new level:

yn+1 =
1

p

p∑
α=1

yn+1
α . (4.11)

The organization of the computation of (4.10), (4.11) can be directly related to the use of additive-averaged
splitting schemes (see (3.23)). From (4.10) with σ ≥ p/2 we obtain(

I +
(
σ − p

2

)
τRαA

)yn+1
α − yn

pτ
+RαA

yn+1
α + yn

2
= 0

for α = 1, 2, . . . , p. Multiplying by A1/2, we arrive at Eq.

ỹn+1
α − ỹn

pτ
+
(
I +

(
σ − p

2

)
τÃα

)−1

Ãα
ỹn+1
α + ỹn

2
= 0,

in which ỹn+1
α = A1/2yn+1

α , ỹn = A1/2yn. Multiplying scalarly in H by pτ(ỹn+1
α + ỹn) and considering the

non-negativity and symmetry of the operators Ãα, we obtain

∥ỹn+1
α ∥ ≤ ∥ỹn∥, α = 1, 2, . . . , p.

Given the representation (4.11) for the solution at the new time level, we arrive at the provable estimate
(4.9).
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4.3. Second decomposition variant

Using the decomposition variant (4.3) we have the equation

du

dt
+

p∑
α=1

ARαu = f(t), 0 < t ≤ T. (4.12)

To symmetrize it, we multiply the equation by A−1/2 and obtain equation (4.5), in which now ũ =

A−1/2u, f̃ = A−1/2f . The initial condition (2.2) in the new notations is written in the form of

ũ(0) = ũ0, ũ0 = A−1/2u0. (4.13)

For the solution, there is an estimate (2.4) for D = A−1.
We can carry out composition schemes for approximate solutions of the problem (2.2), (4.1) based on

the transition to the problem (4.5), (4.13) with symmetrized operators Ãα, α = 1, 2, . . . , p. We discussed
a similar approach when considering the first decomposition (4.2). Let us note another possibility of con-
structing composition schemes, which is related to considering an auxiliary problem for a system of evolution
equations. Here, we follow the work [15], in which two- and three-level domain decomposition schemes are
constructed.

Multiplying equation (4.12) by Rα, α = 1, 2, . . . , p, we get

Rα
du

dt
+Rα

p∑
β=1

ARβu = fα(t), 0 < t ≤ T, α = 1, 2, . . . , p, (4.14)

where now
fα(t) = Rαf(t), α = 1, 2, . . . , p.

Let’s define auxiliary functions uα, α = 1, 2, . . . , p to be determined from Eqs.

Rα
duα
dt

+Rα

p∑
β=1

ARβuβ = Rαf(t), 0 < t ≤ T, α = 1, 2, . . . , p. (4.15)

Given (4.15), each function uα, α = 1, 2, . . . , p is mapped to u. Let us supplement the system of equations
(4.15) with initial conditions

uα(0) = u0, α = 1, 2, . . . , p. (4.16)

Let’s define

u(t) =

p∑
α=1

Rαuα(t), 0 < t ≤ T. (4.17)

Adding the equations (4.15), we obtain

p∑
α=1

Rα
duα
dt

+

p∑
α=1

RαA

p∑
β=1

Rβuβ =

p∑
α=1

Rαf(t).

It follows that if uα(t), α = 1, 2, . . . , p is a solution to the Cauchy problem (4.15), (4.16), then u(t), defined
according to (4.16), is a solution of the problem (2.1), (2.2). Thus, we can construct an approximate solution
at a new time level in the form (4.17) based on explicit-implicit approximations for the system of equations
(4.15).

Suppose, for example, that for (4.15), (4.16) with fα(t) = 0, α = 1, 2, . . . , p a two-level scheme is used

Rα
yn+1
α − ynα

τ
+ σRαARα(y

n+1
α − ynα) +Rα

p∑
β=1

ARβy
n
β = 0, n = 0, 1, . . . , N − 1, (4.18)

y0α = u0, α = 1, 2, . . . , p. (4.19)
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Theorem 3. When σ ≥ p/2 for the scheme (4.18), (4.19) there is an a priori estimate (4.9) given by

yn+1 =

p∑
α=1

Rαy
n+1
α , n = 0, 1, . . . , N − 1. (4.20)

Proof. Let us write (4.18) in the form

(
Rα + στRαARα

)yn+1
α − ynα

τ
− τ

2
Rα

p∑
β=1

ARβ

yn+1
β − ynβ

τ
+Rα

p∑
β=1

ARβ

yn+1
β + ynβ

2
= 0. (4.21)

Let’s multiply the individual equations scalarly in H by

vα = 2(yn+1
α − ynα)

and add them up. Taking into account (4.20), for the last summand in (4.21) we obtain

( p∑
α=1

Rα(y
n+1
α − ynα), ARα

p∑
β=1

(yn+1
β + ynβ )

)
=

(
(yn+1 − yn), A(yn+1 + yn)

)
= ∥yn+1∥2A − ∥yn∥2A.

Taking into account the introduced notations for other summands in (4.21) we have

2

τ

p∑
α=1

(
Rαvα, vα) ≥ 0,

2σ

p∑
α=1

(Rαvα, ARαvα) = 2σ

p∑
α=1

(wα, wα),

p∑
α=1

(
Rαvα,

p∑
β=1

ARβvββ
)
=

p∑
α=1

(
wα,

p∑
β=1

wβ

)
≤ p

p∑
α=1

(wα, wα),

where wα = A1/2Rαvα, α = 1, 2, . . . , p. With the noted constraints on σ, we obtain the inequality

∥yn+1∥2A ≤ ∥yn∥2A,

which gives the provable estimate (4.9).

Explicit-implicit time approximations are similarly considered when instead of (4.18), one uses

Rα
yn+1
α − yn

τ
+ σRαARα(y

n+1
α − yn) +Rα

p∑
β=1

ARβy
n = 0, n = 0, 1, . . . , N − 1, (4.22)

with the composition of the approximate solution according to (4.20) at each level in time. The resulting
scheme (2.6), (4.20), (4.22) can be related to special variants of the additive-averaging scheme.

4.4. Other spaces

We constructed composition schemes for the problem (2.1), (2.2) based on the additive representation
(4.1) of the unit operator in space H. One can be guided to work in a different space by attracting additional
information about the equation. In particular, this approach allows us to consider classical splitting schemes
on spatial variables for the approximate solution of the model problem (3.1)–(3.3).

Consider the equation (2.1) in which the operator A ≥ 0 is factorized:

A = D∗D, (4.23)
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and D : H → H. Now the decomposition for the unit operator I in H is used:

I =

p∑
α=1

Rα, Rα = R∗
α ≥ 0, α = 1, 2, . . . , p. (4.24)

Given (4.22), (4.23), we get the equation

du

dt
+

p∑
α=1

D∗RαDu = f(t), 0 < t ≤ T. (4.25)

In the case of (4.25), we have a decomposition of the problem operator

A =

p∑
α=1

Aα ≥ 0, Aα = D∗RαD = A∗
α ≥ 0, α = 1, 2, . . . , p.

As such, there are no problems constructing composition schemes based on different classes of additive
operator schemes [11]. Stability (a priori estimates of the type (2.7)) for the approximate solution takes
place in H.

Let us illustrate the decomposition (4.23), (4.24) on the example of the problem (3.1)–(3.3), when the
operator D is associated with the gradient operator and the operator D∗ — with the divergence operator.
Let us define the Hilbert space H of vector grid functions v = {v1(x), v2(x)}, x ∈ ω, in which

(v,w) = (v1, w1) + (v2, w2), ∥v∥ = (v,v)1/2.

For the grid operator A, defined according to (3.7), for D we obtain

Du = {D1u,D2u}, D1u =
1

h1
k1/2(x1 + 0.5h1, x2)

(
u(x1 + h1, x2)− u(x1, x2)

)
,

D2u =
1

h2
k1/2(x1, x2 + 0.5h2)

(
u(x1, x2 + h2)− u(x1, x2)

)
.

The splitting schemes on spatial variables correspond to the assignment

R1v =

(
v1(x) 0
0 0

)
, R2v =

(
0 0
0 v2(x)

)
, x ∈ ω.

When constructing domain decomposition schemes, we take the additive representation (4.24) to be

Rαv =

(
χα(x)v1(x) 0

0 χα(x)v2(x)

)
, α = 1, 2, . . . , p, x ∈ ω.

Here, we used the partitioning of the set of internal grid nodes (3.15).

5. Decompositions for a set of spaces

The computational technique of decomposition and composition can be realized by defining operators
Rα, α = 1, 2, . . . , p in various spaces. In our study, we are based on the work of [14], in which such
approximate solution constructions are realized as domain decomposition schemes.
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5.1. Additive representation of the unit operator

In addition to the space H, our consideration includes a set of finite-dimensional Hilbert spaces Hα, α =
1, 2, . . . , p. For a particular space, we define the linear operators (the restriction operators) Gα:

Gα : H → Hα, G∗α : Hα→ H, α = 1, 2, . . . , p.

These operators define the decomposition of the unit operator in H by the rule

I =

p∑
α=1

G∗
αGα. (5.1)

This construction was previously used in the works of [13, 29]. When decomposing the computational grid
according to (3.15) we have (see [14])

Gαu = χ1/2
α (x)u, x ∈ ω, α = 1, 2, . . . , p.

The decomposition (5.1) corresponds to the use of (4.1) at

Rα = G∗
αGα, α = 1, 2, . . . , p.

Given (5.1), we can directly obtain an additive representation for the solution u ∈ H via the auxiliary
solutions uα ∈ Hα, α = 1, 2, . . . , p:

u =

p∑
α=1

G∗
αGαu =

p∑
α=1

G∗
αuα, uα = Gαu, α = 1, 2, . . . , p. (5.2)

Thus, from the decomposition of the unit operator (5.1), the composition of the solution (5.2) immediately
follows.

5.2. Problem for solution components

When solving (2.1)–(2.3), the decomposition of (5.1) gives Eq.

du

dt
+

p∑
β=1

AG∗
βGβ u = f(t), 0 < t ≤ T.

Given (5.2), we obtain

du

dt
+

p∑
β=1

AG∗
β uβ = f(t), 0 < t ≤ T. (5.3)

Let’s multiply (5.3) by Gα, α = 1, 2, . . . , p, which gives a system of equations

duα
dt

+

p∑
β=1

GαAG
∗
β uβ = Gαf(t), α = 1, 2, . . . , p, 0 < t ≤ T, (5.4)

for the individual components of the solution uα ∈ Hα, α = 1, 2, . . . , p. Considering (2.2), we augment this
system of evolution equations with initial conditions

uα(0) = u0α, u0α = Gαu
0, α = 1, 2, . . . , p. (5.5)

For u ∈ H, we have a representation

u =

p∑
α=1

G∗
αuα. (5.6)

16



Theorem 4. Let uα(t) ∈ Hα, α = 1, 2, . . . , p be the solution of the problem (5.4), (5.5). Then u(t) defined
according to (5.6) is a solution to the Cauchy problem (2.1), (2.2).

Proof. Under condition (5.6), equations (5.4) are written as

duα
dt

+GαAu = Gαf(t), α = 1, 2, . . . , p.

Multiplying the individual equation by G∗
α and adding them together, given (5.1) and (5.6), we get the

equation (2.1). Similarly, from (5.5) follows (2.2).

5.3. Time approximation

Various explicit-implicit schemes can be used to approximate the solution of the problem (5.4)–(5.6).
Here is a typical result. For the Cauchy problem (5.4), (5.5) with f(t) = 0 we will use a two-level scheme

yn+1
α − ynα

τ
+ σGαAG

∗
α(y

n+1
α − ynα) +Gα

p∑
β=1

AG∗
βy

n
β = 0, n = 0, 1, . . . , N − 1, (5.7)

y0α = u0α, α = 1, 2, . . . , p. (5.8)

Similarly to Theorem 3, the following statement is proved.

Theorem 5. When σ ≥ p/2 for the scheme (5.7), (5.8) there is an a priori estimate (4.9) on the composition
of the solution

yn+1 =

p∑
α=1

G∗
αy

n+1
α , n = 0, 1, . . . , N − 1. (5.9)

Proof. Let’s rewrite (5.7) in the form of(
I + στGαAG

∗
α

)yn+1
α − ynα

τ
− τ

2
Gα

p∑
β=1

AG∗
β

yn+1
β − ynβ

τ
+Gα

p∑
β=1

AG∗
β

yn+1
β + ynβ

2
= 0. (5.10)

Let’s multiply the individual equations scalarly in H by

vα = 2(yn+1
α − ynα)

and add them up. For the individual summands in (5.10), this gives

2σ

p∑
α=1

(G∗
αvα, AG

∗
αvα) = 2σ

p∑
α=1

(wα, wα),

p∑
α=1

(
G∗

αvα,

p∑
β=1

AG∗
βvβ

)
=

p∑
α=1

(
wα,

p∑
β=1

wβ

)
≤ p

p∑
α=1

(wα, wα),

( p∑
α=1

G∗
α(y

n+1
α − ynα), AG

∗
α

p∑
β=1

(yn+1
β + ynβ )

)
=

(
(yn+1 − yn), A(yn+1 + yn)

)
= ∥yn+1∥2A − ∥yn∥2A.

where wα = A1/2G∗
αvα, α = 1, 2, . . . , p. When σ ≥ p/2, we obtain the estimate (4.9).

Some other possibilities for constructing two- and three-level composition schemes can be found in [14].
In particular, let us note the three-level scheme

yn+1
α − yn−1

α

2τ
+ σGαAG

∗
α(y

n+1
α − 2ynα + yn−1

α ) +Gα

p∑
β=1

AG∗
βy

n
β = 0, n = 0, 1, . . . , N − 1,

with determination of the approximate solution according to (5.9), which has a second-order approximation
on τ and is stable at σ ≥ p/4.
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6. Other problems

We have considered the Cauchy problem (2.1)–(2.3) for a first-order evolutionary with a self-adjoint pos-
itive operator. We mention the possibilities of using the proposed decomposition and composition technique
to solve other nonstationary problems.

6.1. Problems with non-self-adjoint operators

Let us assume that in Eq. (2.1)

A = B + C, B =
1

2
(A+A∗) ≥ 0, C = −C∗ =

1

2
(A−A∗),

so that A ≥ 0. For the self-adjoint part of the operator A, we can use the decomposition

B =

p∑
α=1

Bα, Bα = B∗
α ≥ 0, α = 1, 2, . . . , p,

based on the variant decomposition of the unit operator (4.24). The problem of decomposition of the
skew-symmetric part of the operator A deserves special attention.

When using the additive representation of the unit operator (4.1), the following is true

C =
1

2

p∑
α=1

(
RαC + CRα

)
.

By this we have the decomposition

C =

p∑
α=1

Cα, Cα = −C∗
α =

1

2

(
RαC + CRα

)
, α = 1, 2, . . . , p.

We have constructed (see, e.g., [30, 31]) domain decomposition schemes for unsteady convection-diffusion
problems along such a path. For some operator summands, we use one class of decomposition (decomposition
of the unit operator in one space), and for other operator summands — another class of decomposition
(decomposition of the unit operator in another space).

The composition schemes are more easily constructed when working with a set of spaces. When the
unit operator is decomposed in the form (5.1), the basic system of equations is (5.4), in which the critical
property of non-negativity of the non-self-adjoint operator A is inherited by the individual operators Aα, α =
1, 2, . . . , p:

A =

p∑
α=1

Aα ≥ 0, Aα = GαAG
∗
α ≥ 0, α = 1, 2, . . . , p.

When investigating the time approximation of the corresponding composition schemes, we should focus on
obtaining stability estimates in H.

6.2. Evolutionary equations of second order

It is fundamentally possible to construct decomposition-composition schemes for second-order evolution-
ary equations. We will find an approximate solution to the Cauchy problem

d2u

dt2
+Au = f(t), 0 < t ≤ T, (6.1)

u(0) = u0,
du

dt
(0) = v0, (6.2)

under the assumptions (2.3).
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The decomposition of the problem (6.1), (6.2) follows the same scheme as for the first-order evolution
equations. For example, for the additive representation of the unit operator according to (4.1), the decom-
position in (4.2) gives Eq.

d2u

dt2
+

p∑
α=1

RαAu = f(t), 0 < t ≤ T, (6.3)

which is symmetrized in the usual way.
In composing the solution, we apply the results of the theory of additive operator-difference schemes

[11] and construct various explicit-implicit three-level time approximations. For example, similar to (4.8), a
regularized scheme can be used for Eq. (6.3)

yn+1 − 2yn + yn−1

τ2
+

p∑
α=1

(I + στ2RαA)
−1RαAy

n = fn.

It is unconditionally stable at σ ≥ p/4.

6.3. Systems of equations

An important promising direction in the theory and practice of the computational technology of de-
composition and composition is its application in the approximate solution of nonstationary problems for
systems of evolutionary equations. For such problems, we construct computational algorithms when the
transition to a new level in time is carried out by solving more straightforward issues for the individual
quantities required. As a model problem, we consider the Cauchy problem for a system of two equations.

We find uα(t) ∈ H, α = 1, 2 from the equations.

du1
dt

+A11u1 +A12u2 = f1(t),

du1
dt

+A21u1 +A22u2 = f2(t), 0 < t ≤ T,

(6.4)

with constant operators Aαβ : H → H, α, β = 1, 2 and the initial conditions

u1(0) = u01, u2(0) = u02. (6.5)

Difficulties in the numerical solution of this problem may be because the system of equations is coupled due
to operators A12, A21.

Let us introduce the vector of sought quantities u = {u1, u2}, for the initial data and the right-hand side
we put u0 = {u01, u02}, f = {f1, f2}, respectively. Let us write the system of equations (6.4) in the form of

du

dt
+Au = f , 0 < t ≤ T. (6.6)

For the operator matrix A we have

A =

(
A11 A12

A21 A22

)
. (6.7)

Equation (6.6) is supplemented by the initial condition

u(0) = u0. (6.8)

We will consider the problem (6.6)–(6.8) on the direct sum of spaces H = H ⊕H. For u,v ∈ H, the
scalar product and norm are

(u,v) =

2∑
α=1

(uα, vα), ∥u∥ = (u,u)1/2.
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Let Aαα = A∗
αα, α = 1, 2 and A21 = A∗

12 in H and so A = A∗ in H. Similarly (2.3), we will assume that
the operator A is positive. If A−1

22 exists, this property requires the operator inequalities

A22 > 0, A11 > A12A
−1
22 A

∗
12.

We will use the decomposition of the unit operator I into H in the form (see (4.1))

I = R1 +R2, Rα = R∗
α ≥ 0, α = 1, 2,

in which

R1 =

(
I 0
0 0

)
, R2 =

(
0 0
0 I

)
.

In the decomposition variant (4.2), we get the equation

du

dt
+A1u+A2u = f , 0 < t ≤ T, (6.9)

in which

A1 =

(
A11 A12

0 0

)
, A2 =

(
0 0
A21 A22

)
.

A variant decomposition (4.2) yields

A1 =

(
A11 0
A21 0

)
, A2 =

(
0 A12

0 A22

)
. (6.10)

We have a split of the operator matrix A either by rows or by columns.
When applying explicit-implicit approximations for equation (6.9), we obtain separate problems for the

solution components uα(t) ∈ H, α = 1, 2 at a new level in time. For example, using a purely implicit
component-wise splitting scheme (see (3.22) at σ = 1) gives at f(t) = 0

yn+1/2 − yn

τ
+A1y

n+1/2 = 0,

yn+1 − yn+1/2

τ
+A2y

n+1 = 0.

In the case of decomposition (6.10), we obtain

y
n+1/2
1 − yn1

τ
+A11y

n+1/2
1 = 0,

y
n+1/2
2 − y

n+1/2
2

τ
+A21y

n+1/2
1 = 0,

yn+1
1 − y

n+1/2
1

τ
+A12y

n+1
2 = 0,

yn+1
2 − y

n+1/2
2

τ
+A22y

n+1
2 = 0.

The calculations are performed in the following sequence: y
n+1/2
1 , y

n+1/2
2 , yn+1

2 , yn+1
1 . We solve problems

only with diagonal elements A11, A22 of the operator matrix A.

7. Conclusions

(1) Based on the practice and theory of construction and research of additive operator schemes (splitting
schemes), this paper formulates a computational technique of decomposition and composition for approx-
imate solution of Cauchy problems for evolution equations, which are considered in a finite-dimensional
Hilbert space. The problem operator is a sum of more straightforward operators in the decomposition
stage. At the composition stage, an approximate solution to the problem is constructed based on the
solution of auxiliary problems using various explicit-implicit time approximations.
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(2) The primary attention is paid to separating more straightforward auxiliary problems. In the first variant,
decomposition is provided by using the decomposition of the unit operator as a sum of self-adjoint non-
negative operators. In the second decomposition variant, the individual operator summands in the unit
operator decomposition are associated with different spaces.

(3) Composition of the approximate solution is provided by applying different variants of additive operator-
difference schemes. For the auxiliary problems we obtain at the decomposition stage, splitting schemes of
different classes are constructed. The study focuses on obtaining stability estimates of the approximate
solution in the corresponding space.

(4) The main elements of the decomposition-composition technique are illustrated on the Cauchy problem
for the first-order evolution equation with a self-adjoint positive operator. After applying the standard
finite-difference approximation over space for the second-order parabolic equation in a rectangle, the
differential-difference system of equations is a test problem. The decomposition is related to the splitting
over spatial variables and the decomposition of the computational grid.

(5) The possibilities of application of the decomposition-composition technique to other problems are briefly
mentioned: problems with non-self-adjoint operators and problems for second-order evolutionary equa-
tions. We currently associate the most interesting new applications of the developed general approach
with systems of equations. The main problems are illustrated in the Cauchy problem for a system of
two coupled evolution equations of first order.
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