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Abstract: Rarefied gas dynamics is usually described by the Boltzmann
equation. Unfortunately, the expense of evaluating this operator can be very
prohibitive. This made it worthwhile to look for approximations that convey
essentially an equivalent amount of physical information. One widely known
approximative collision operator is the Bathnagar-Gross-Krook (BGK) opera-
tor. However, recently, the Foker-Planck approximation has become increas-
ingly popular. Nevertheless, the modeling of gas mixtures in the context of the
kinetic Fokker-Planck equation has so far only been addressed in a very few
papers. In this paper, we propose a general multi-species Fokker-Planck model.
We prove consistency of our model: conservation properties, positivity of all
temperatures, H-Theorem and the shape of equilibrium as Maxwell distribu-
tions with the same mean velocity and temperature. Moreover, we derive the
usual macroscopic equations.

1 Introduction

Rarefied gas dynamics for gas mixtures consisting of N species is usually de-
scribed by the Boltzmann equation with binary interactions as in [12], chapter
6.2

∂tfi + v · ∇xfi = Qii(fi, fi) +

N
∑

j=1,j 6=i

Qij(fi, fj)

Here, fi(x, v, t) > 0, i = 1, ...N is the distribution function of species i where
x ∈ R

d and v ∈ R
d are the phase space variables in dimension d ≥ 1 and

t ≥ 0 the time. The collision operator on the right-hand side consists of a term
Qii describing the interactions of particles of the species with itself and a sum
of collision operators Qij , i 6= j describing the interactions of particles of the
species i with particles of species j. Unfortunately, the expense of evaluating
the Boltzmann operator can be prohibitive. Therefore one looks for approxima-
tions that convey essentially an equivalent amount of physical information. The
most widely known of such an approximation is the Bhatnagar-Gross-Krook

1

http://arxiv.org/abs/2403.18478v1


(BGK) model [3]. The purpose of the BGK relaxation operator is to provide an
approximation of the Boltzmann collision operator that is more computationally
tractable, but still maintains important structural properties. In particular, it
has the same collision invariants as the Boltzmann operator (which lead to con-
servation of the number of particles, momentum, and energy) and it satisfies an
H-Theorem. In the multi-species case, these requirements are not as straight-
forward to satisfy, but it can be done. There are many BGK models for gas
mixtures proposed in the literature [23, 30, 18, 16, 34, 25, 20, 11, 1], many of
which satisfy these basic requirements and, in addition, are able to match some
prescribed relaxation rates and/or transport coefficients that come from more
complicated physics models or from experiment. Many of these approaches have
been extended to accommodate ellipsoid statistical (ES-BGK) models, poly-
atomic molecules, chemical reactions, velocity dependent collision frequencies
or quantum gases; see for example [9, 10, 26, 36, 19, 27, 28, 4, 5, 29, 24]. Many
of them have the following structural similarity. Just like the Boltzmann equa-
tion for gas mixtures contains a sum of collision terms on the right-hand side,
they also have a sum of BGK-type interaction terms in the relaxation operator.

QBGK
i (f1, ...fN) = ν11n1(M1 − f1) +

N
∑

i=1,i6=j

νijni(Mij − fi) (1)

Here, Mi and Mij denote locally Maxwell distribution functions of the form

Mi(x, v, t) =
ni

√

2π Ti

mi

3 exp(−
|v − ui|

2

2 Ti

mi

), i = 1, .., N (2)

Mij(x, v, t) =
nij

√

2π
Tij

mj

d
exp(−

|v − uij |
2

2
Tij

mi

), i 6= j, i, j = 1, ...N (3)

where νijni denote the collision frequencies of species i with species j. The
parameters νij are assumed to be positive and only depend on x and t. The
parameters ni, nij , ui, uij , Ti, Tij are determined such that we have the following
conservation properties: conservation of mass, momentum and energy of the
individual species in interaction with the species itself:

1.
∫

QBGK
ii (fi, fi)dv = 0 for i = 1, ..., N,

2.
∫

mivQ
BGK
ii (fi, fi)dv = 0 for i = 1, ..., N

3.
∫

mi|v|
2QBGK

ii (fi, fi)dv = 0 for i = 1, ..., N.

Conservation of total mass, momentum and energy

1.
∫

QBGK
ij (fi, fj)dv = 0 for i, j = 1, 2,

2.
∫

(m1vQ
BGK
12 (f1, f2) +m2vQ

BGK
21 (f2, f1))dv = 0,

3.
∫

(m1|v|
2QBGK

12 (f1, f2) +m2|v|
2QBGK

21 (f2, f1))dv = 0.
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For this, we relate the distribution functions to macroscopic quantities by mean-
values of fi

∫

fi(v)





1
v

mi|v − ui|
2



 dv =:





ni

niui

3niTi



 , (4)

where ni is the number density, ui the mean velocity and Ti the temperature
which is related to the pressure pi by pi = niTi. Note that in this paper we shall
write Ti instead of kBTi, where kB is Boltzmann’s constant. A general BGK
model for gas mixtures which contains most of the BGK models for gas mixtures
in the literature is provided in [25]. We will introduce this model briefly in the
following. If we assume

n12 = n1 and n21 = n2 (5)

in (3), we have conservation of the number of particles, see Theorem 2.1 in [25].
If we further assume that u12 is a linear combination of u1 and u2

u12 = δu1 + (1− δ)u2, δ ∈ R, (6)

then we have conservation of total momentum provided that

u21 = u2 −
m1

m2
ε(1− δ)(u2 − u1), (7)

see Theorem 2.2 in [25]. If we further assume that T12 is of the following form

T12 = αT1 + (1− α)T2 + γ|u1 − u2|
2, 0 ≤ α ≤ 1, γ ≥ 0, (8)

then we have conservation of total energy provided that

T21 =

[

1

d
εm1(1 − δ)

(

m1

m2
ε(δ − 1) + δ + 1

)

− εγ

]

|u1 − u2|
2

+ε(1− α)T1 + (1− ε(1− α))T2,

(9)

see Theorem 2.3 in [25]. In order to ensure the positivity of all temperatures,
the parameters δ and γ are restricted to

0 ≤ γ ≤
m1

d
(1 − δ)

[

(1 +
m1

m2
ε)δ + 1−

m1

m2
ε

]

, (10)

and

m1

m2

ε− 1

1 + m1

m2

ε
≤ δ ≤ 1, (11)

see Theorem 2.5 in [25].
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Moreover, it can be shown that this model satisfies an H-Theorem, see The-
orem 2.4 in [25], meaning that we have the following inequality

∑

i=1,..N

∫

QBGK
ij (fi, fj) log fidv ≤ 0

with equality if and only if fi, fj are Maxwell distributions with the same mean
velocity and temperature.

In the following, we will briefly motivate the meaning and possible choices
of the free parameters α, δ, γ, for more details see [32]. One possibility is that
one can choose the parameters such that one can generate special cases in the
literature [23, 30, 2, 16, 34, 13, 18, 11, 20]. For instance if one chooses ε = 1,

δ = m1

m1+m2

, α =
m2

1
+m2

2

(m1+m2)2
and γ = m1m2

(m1+m2)2
m2

d , one obtains the model by

Hamel in [30]. In [19] also such relaxation parameters are used to fix in the
continuum limit Fick‘s law for diffusion velocities and Newton’s law for viscous
stress in the relevant set of Navier-Stokes equations.

Another possibility is to choose the parameters in a way such that the macro-
scopic exchange terms of momentum and energy can be matched in a certain way
for example that they coincide with the ones for the Boltzmann equation. For
this, we first present the macroscopic equations with exchange terms of the BGK

model (1). If we multiply the BGK model for gas mixtures by 1,mjv,mj
|v|2

2 and
integrate with respect to v, we obtain the following macroscopic conservation
laws

∂tn1 +∇x · (n1u1) = 0,

∂tn2 +∇x · (n2u2) = 0,

∂t(m1n1u1) +∇x ·

∫

m1v ⊗ vf1(v)dv +∇x · (m1n1u1 ⊗ u1) = fm1,2
,

∂t(m2n2u2) +∇x · P2 +∇x · (m2n2u2 ⊗ u2) = fm2,1
,

∂t

(

m1

2
n1|u1|

2 +
3

2
n1T1

)

+∇x ·

∫

m1|v|
2vf1(v)dv = FE1,2

,

∂t

(

m2

2
n2|u2|

2 +
3

2
n2T2

)

+∇x ·

∫

m2|v|
2vf2(v)dv = FE2,1

,

with exchange terms fmi,j
and FEi,j

given by

fm1,2
= −fm2,1

= m1ν12n1n2(1− δ)(u2 − u1),

Fm1,2
= −Fm2,1

=

[

ν12
1

2
n1n2m1(δ − 1)(u1 + u2 + δ(u1 − u2)) +

1

2
ν12n1n2γ(u1 − u2)

]

· (u1 − u2)

+
3

2
εν21n1n2(1− α)(T2 − T1).
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Here, one can observe a physical meaning of α and δ. We see that α and
δ show up in the exchange terms of momentum and energy as parameters in
front of the relaxation of u1 towards u2 and T1 towards T2. So they determine,
together with the collision frequencies, the speed of relaxation of the mean
velocities and the temperatures to a common value.

Here now, as it is done in section 4.1 in [20] or section 4 in [32] and compare
the relaxation rates in the space-homogeneous case to the relaxation rates for
the space-homogeneous Boltzmann equation. In [20], they find values for νkj
such that either the relaxation rate for the mean velocities or the relaxation
for the temperatures coincides with the corresponding rate of the Boltzmann
equation. But using the free parameters α, δ and γ one is able to match both
of the relaxation rates at the same time.

Another approximate model is offered by a Fokker-Planck collision term

QFP
i (f1, ...fN ) = ciidiv(∇v(

Ti

mi
fi) + (v − ui)fi) +

N
∑

j=1

cij div(∇v(
Tij

mi
fi) + (v − uij)fi)

(12)

The quantity cij is a friction constant, see [37] for a motivation of the one species
case. Concerning the literature on multi-species Fokker Planck models, there
are less results than in the BGK case, but the interest in multi-species Fokker-
Planck models has been increased more and more recently. Models for gas
mixtures can be found in [15, 7, 17, 21] for different choices of uij , Tij . We will
discuss this later in section 2.3. The diffusion limit of a kinetic Fokker-Planck
system for charged particles towards the Nernst-Planck equations was proved
in [38]. Furthermore, in [15, 22], the limit of vanishing electron-ion mass ratios
for non-homogeneous kinetic Fokker-Planck systems was investigated. In [7],
the authors provide the first existence analysis of a multi-species Fokker-Planck
system of the shape above. The works [17, 21] provide an extended Fokker-
Planck model for hard-spheres gas mixtures with to be able to also capture
correct diffusion coefficients, mixture viscosity and heat conductivity coefficients
in the hydrodynamic regime of the Navier-Stokes equations.

The aim of this paper is to present a general multi-species Fokker-Planck
model with collision terms of the shape (12) with free parameters α, δ, γ similar
as this is done in [25] for the multi-species BGK model. More concrete, we want
to characterize for which choice of the parameters uij , Tij the conservation prop-
erties are satisfied, all temperatures are positive and we have an H-Theorem.
The models [15, 7, 17, 21] can be shown to be a special case of this model pre-
sented here. This provides the possibility to create different exchange terms of
momentum and energy in the macroscopic equations.

The outline of this paper is as follows: in section 2 we present the model
for two species and prove conservation properties of this model in section 2.1,
positivity of all temperatures in 2.2 and an H-Theorem in section 2.4. In section
2.3 we derive macroscopic equations and discuss several special cases in the
literature [15, 7, 17, 21].

5



2 General multi-species Fokker-Planck model

In this section, we present a general multi-species Fokker-Planck model and
consider for which choice of uij , Tij , we have conservation properties, an en-
tropy inequality, the expected shape in equilibrium (Maxwell distribution with
common mean velocity and temperature) and positivity of all temperatures.
For simplicity, we present this model for two-species, but everything can be
extended to a general number of N species, since we made the assumption of
only considering binary interactions. So in the rest of the paper, we consider
the following system of Fokker-Planck equations

∂tf1 + v · ∇xf1 = c11n1 div(∇v(
T1

m1

f1) + (v − u1)f1) + c12n2div(∇v(
T12

m1

f1) + (v − u12)f1)

∂tf1 + v · ∇xf1 = c22n2 div(∇v(
T2

m2

f2) + (v − u2)f2) + c21n1div(∇v(
T21

m2

f2) + (v − u21)f2)

To be flexible in choosing the relation ship between the constants c12, c21, we
now assume the relationship

c12 = ε c21, ε ≤ 1 and ε
m1

m2
≤ 1 (13)

Note, that the assumption on ε covers the two common cases in the literature
for ε which are ε = m2

m1

and ε = 1 if the notation of 1 and 2 is chosen in a
suitable way.

2.1 Conservation properties

This section shows how the macroscopic quantities uij , Tij in the interspecies
Maxwell distributions have to be chosen in order to ensure the macroscopic
conservation properties. We note that the mass is automatically conserved.

Theorem 1 (Conservation of total momentum). Assume the condition (13) for
the collision frequencies and that u12 is a linear combination of u1 and u2

u12 = δu1 + (1− δ)u2, δ ∈ R. (14)

Then we have conservation of total momentum

∫

m1v[Q
FP
11 (f1, f1)+QFP

12 (f1, f2)]dv+

∫

m2v[Q
FP
22 (f2, f2)+QFP

21 (f2, f1)]dv = 0,

provided that

u21 = u2 − (1− δ)ε
m1

m2
(u2 − u1). (15)
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Proof. The flux of momentum of species 1 is given by

fm1,2
: = m1c11n1

∫

v div(∇v(
T1

m1
f1) + (v − u1)f1)dv

+ c12m1n2

∫

v div(∇v(
T12

m1
f1) + (v − u12)f1)dv

= −m1c12n2

∫

(∇v(
T12

m1
f1) + (v − u12)f1)dv

= m1c12n1n2(u12 − u1) = m1c12n1n2(1− δ)(u2 − u1).

(16)

The flux of momentum of species 2 is given by

fm2,1
= m2c21n2n1(u21 − u2). (17)

In order to get conservation of momentum we therefore need

m1c12n1n2(1− δ)(u2 − u1) +m2c21n1n2(u21 − u2) = 0,

which holds provided u21 satisfies (15)

Remark 1. If we write δ̃ = 1 − m1

m2

ε(1 − δ) we obtain a similar structure for

u21 as for u12

u21 = δ̃u2 + (1− δ̃)u1.

Theorem 2 (Conservation of total energy). Assume conditions (14) and (15)
and assume that T12 is of the following form

T12 = αT1 + (1− α)T2 + γ|u1 − u2|
2, 0 ≤ α ≤ 1, γ ≥ 0. (18)

Then we have conservation of total energy

∫

m1

2
|v|2(QFP

11 (f1, f1)+QFP
12 (f1, f2))dv+

∫

m2

2
|v|2(QFP

22 (f2, f2)+QFP
21 (f2, f1))dv = 0,

provided that

T21 =

[

1

d
εm1(1− δ)− εγ

]

|u1 − u2|
2 + ε(1− α)T1 + (1− ε(1− α))T2. (19)
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Proof. Using the energy flux of species 1

FE1,2
:= c11n1

∫

m1

2
|v|2 div(∇v(

T1

m1
f1) + (v − u1))f1dv

+ c12n2

∫

m1

2
|v|2 div(∇v(

T12

m1
f1) + (v − u12))f1dv

= −c12n2m1

∫

v · (∇v(
T21

m1
f1) + (v − u12))f1dv

= c12n2m1d

∫

T12

m1
f1dv − c12n2m1

∫

v · (v − u12)f1dv

= c12n2dn1T12 − c12n2m1(dn1
T1

m1
+ n1|u1|

2 − n1u1 · u12)

= c12n2dn1T12 − c12n2n1(dT1 +m1u1 · (u1 − u12))

= c12n1n2d(T12 − T1)− c12m1n1n2u1 · (u1 − u12)

= c12n1n2(1− α)(T2 − T1)− c12m1n2n1((1 − δ)u1 · (u1 − u2) + γ|u1 − u2|
2)

where we used (14) and (18). Analogously the energy flux of species 2 towards
1 is

FE2,1
= c21m2n1n2(u2 · (u21 − u2)) + d c21n1n2(T21 − T2)

= c21m2n1n2(1− δ)
m1

m2
ε(u2 · (u1 − u2)) + d c21n1n2(T21 − T2)

Here, we substituted u21 with (15). Adding these two terms, we see that the
total energy is conserved provided that T21 is given by (19).

Remark 2. We have 0 ≤ 1 − ε(1 − α) ≤ 1 and 0 ≤ ε(1 − α) ≤ 1, so that in

(19) the two terms with the temperatures are also a convex combination of T1

and T2.

2.2 Positivity of the temperatures

Theorem 3. Assume that f1(x, v, t), f2(x, v, t) > 0. Then all temperatures T1,

T2, T12 given by (18) and T21 given by (19) are positive provided that

0 ≤ γ ≤
m1

d
(1 − δ) (20)

Proof. T1 and T2 are positive as integrals of positive functions. T12 is positive
because by construction it is a convex combination of T1 and T2. For T21 we
consider the coefficients in front of |u1−u2|

2, T1 and T2. The term in front of T1

is positive by definition. The positivity of the term in front of T2 is equivalent
to the condition α ≥ 1 − 1

ε , which is satisfied since ε ≤ 1, the positivity of the
term in front of |u1 − u2|

2 is equivalent to the condition (20).

Remark 3. According to the definition of γ, γ is a non-negative number, so the

right-hand side of the inequality in (20) must be non-negative. This condition

8



is equivalent to

δ ≤ 1. (21)

2.3 Macroscopic equations and exchange terms of momen-

tum and energy

In this section, we deal with macroscopic equations, exchange terms of momen-
tum and energy, and special cases in the literature. With a specific choice of
the parameters we can generate special cases in the literature [15, 7, 17]. For
instance, in [15] the mean mixture velocities and temperatures are chosen to be

u12 = u21 =
u1 + u2

2
; T12 = T21 =

m2T1 +m1T2

m1 +m2
+

m1m2

m1 +m2

1

2d
|u1 − u2|

2

so we can generate this model by choosing

α =
m2

m1 +m2
, δ =

1

2
, γ =

1

2d

m1m2

m1 +m2

With the choice of

α =
c12n2

c12n2 + c21n1
, δ =

c12m1n1

c12m1n1 + c12m2n2
, γ =

c12m1n1c21m2n2

d(c12n1 + c21n2)(c21n1n1 + c12m2n2)

we can generate u12, u21, T12, T21 as in [7] given by

u12 = u21 =
c21m1n1u1 + c12m2n2u2

c12m2n2 + c21m1n1
,

T12 = T21 =
c21n1T1 + c12n2T2

c12n2 + c21n1
+

c12m1n1c21m2n2

d(c12n1 + c21n2)(c21n1n1 + c12m2n2)
|u1 − u2|

2

Another possibility for example is to choose as mixture velocity the velocity of
the other species as it is done for example in [17] with δ = 0 to have

u12 = u2, u21 = u1.

Another way to see the influence of the parameters is in the macroscopic
exchange terms of momentum and energy. For this, we first present the macro-
scopic equations with exchange terms of the Fokker-Planck model (12). If we

multiply the Fokker-Planck model for gas mixtures by 1,mjv,mj
|v|2

2 and inte-

9



grate with respect to v, we obtain the following macroscopic conservation laws

∂tn1 +∇x · (n1u1) = 0,

∂tn2 +∇x · (n2u2) = 0,

∂t(m1n1u1) +∇x ·

∫

m1v ⊗ vf1(v)dv = fm1,2
,

∂t(m2n2u2) +∇x ·

∫

m2v ⊗ vf2(v)dv = fm2,1
,

∂t

(

m1

2
n1|u1|

2 +
3

2
n1T1

)

+∇x ·

∫

m1|v|
2vf1(v)dv = FE1,2

,

∂t

(

m2

2
n2|u2|

2 +
3

2
n2T2

)

+∇x ·

∫

m2|v|
2vf2(v)dv = FE2,1

,

with exchange terms fmi,j
and FEi,j

given by

fm1,2
= −fm2,1

= m1c12n1n2(1 − δ)(u2 − u1),

FE1,2
= −FE2,1

= c12n1n2m1(1− δ)u1 · (u2 − u1) + γ
d

m1
|u1 − u2|

2

+ dc12n1n2(1− α)(T2 − T1).

(22)

2.4 H-theorem for mixtures

In this section we will prove an H-Theorem for the model (12). For this, we
make the following additional assumptions on the free parameters. We make
the stronger assumptions of (18), (20), (21).

ε

1 + ε
≤ α ≤ 1,

ε

1 + ε
≤ δ ≤ 1, (1− δ)2

m1

d
≤ γ ≤ (1− δ)

m1

d

ε

1 + ε
(23)

Moreover, in order to simplify the notation we define the following quantities

γ1 := (1− δ)2
m1

d
; γ2 := (1 − δ)2

m2

d
ε2(

m1

m2
)2, γ̃ :=

m1

d
ε(1− δ)− εγ (24)

and the temperatures

T̄12 = αT1 + (1− α)T2; T̄21 = ε(1− α)T1 + (1− ε(1− α))T2 (25)

We start with some lemmas which we will need later for the proof of the H-
Theorem.
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Lemma 4. Let M12,M21 the two Maxwell distributions given by (3). Then we

have

T12

m1
c12n2

∫

M2
12

f1

(

∇vf1M12 −∇vM12f1

M2
12

)2

dv

+
T21

m2
c21n1

∫

M2
21

f2

(

∇vf2M21 −∇vM21f2

M2
21

)2

dv

=
T12

m1
c12n2

∫

|∇vf1|
2

f1
dv +

T21

m2
c21n1

∫

|∇vf2|
2

f2
dv

+ c12n2n1d
T1 +

m1

d (1 − δ)2|u1 − u2|
2

T12
+ c21n2n1d

T2 +
m2

d ε2(m1

m2

)2(1− δ)2|u1 − u2|
2

T21

− 2(1 + ε)c21n1n2d

Proof. We can compute

T12

m1

c12n2

∫

M2

12

f1

(

∇vf1M12 −∇vM12f1
M2

12

)

2

dv +
T21

m2

c21n1

∫

M2

21

f2

(

∇vf2M21 −∇vM21f2
M2

21

)

2

dv

=
T12

m1

c12n2

∫

|∇vf1|
2

f1
dv +

T21

m2

c21n1

∫

|∇vf2|
2

f2
dv

+ c12n2

∫

|v − u12|
2

T12/m1

f1dv + c21n1

∫

|v − u21|
2

T21/m1

f2dv

+ 2c12n2

∫

∇vf1 · (v − u12)dv + 2c21n1

∫

∇vf2 · (v − u21)dv

=
T12

m1

c12n2

∫

|∇vf1|
2

f1
dv +

T21

m2

c21n1

∫

|∇vf2|
2

f2
dv

+ c12n2n1d
T1 +

m1

d
|u1 − u12|

2

T12

+ c21n2n1d
T2 +

m2

d
ε2(m1

m2

)2(1− δ)2|u2 − u21|
2

T21

− 2(1 + ε)c21n1n2d

=
T12

m1

c12n2

∫

|∇vf1|
2

f1
dv +

T21

m2

c21n1

∫

|∇vf2|
2

f2
dv

+ c12n2n1d
T1 +

m1

d
(1− δ)2|u1 − u2|

2

T12

++c21n2n1d
T2 +

m2

d
ε2(m1

m2

)2(1− δ)2|u1 − u2|
2

T21

− 2(1 + ε)c21n1n2d

Here, we used ∇vM12 = − v−u12

T12/m1

M12 and the relationship (14) and (15) for
u12, u21.

Lemma 5. We assume the estimate for α in (23). Then we have

εT1T̄21 + T̄12T2 ≤ (1 + ε)T̄12T̄21 (26)

11



Proof. If we insert the expressions for T̄12, T̄21 given by (25) we get that (26) is
equivalent to

(1− α)ε(α − (1− α)ε)(T1 − T2)
2 ≥ 0

This is true if 1 ≥ α ≥ ε
1+ε which we assumed in (23).

Lemma 6. We assume (23). Then we have

εγ1γ̃ + γγ2 ≤ (1 + ε)γγ̃

Proof. If we insert the expressions for γ1, γ2, γ̃ given by (24), we obtain

−((1 + ε)γ(−εγ + (1− δ)ε
m1

d
)) + (1 − δ)2ε

m1

d
(−εγ + (1− δ)ε

m1

d
)

+(1− δ)2γε2
m1

d

m1

m2
≤ 0

This inequality is true if we can prove separately

εγ(−εγ + (1− δ)ε
m1

d
) ≥ (1− δ)2ε

m1

d
(−εγ + (1− δ)ε

m1

d
)

εγ2 − (1 − δ)ε
m1

d
γ + (1− δ)2ε2γ

m1

d

m1

m2
≤ 0

(27)

We start with the first inequality. The factor −εγ+(1− δ)εm1

d is non-negative,
since this is the condition ensuring positivity of the temperatures (21). There-
fore, we get that γ has to satisfy

γ ≥ (1− δ)2
m1

d

as assumed in (23). This is possible and no restriction to the upper bound
ensuring the positivity (21), since we assumed 0 ≤ δ ≤ 1.
Now, for the second inequality in (27), we divide by εγ to get

γ − (1− δ)
m1

d
+ (1− δ)2ε

m1

d

m1

m2
≤ 0

which is satisfied if

γ ≥ (1− δ)
m1

d
((1− δ)ε

m1

m2
− 1)

This is satisfied due to the estimate on γ in (23) and assumption (13).

Lemma 7. We assume (23). Then, we have

εT1γ̃|u1 − u2|
2 + εγ1|u1 − u2|

2T̄21 + T̄12γ2|u1 − u2|
2 + γ|u1 − u2|

2T2

≤ (1 + ε)T̄12γ̃|u1 − u2|
2 + (1 + ε)γ|u1 − u2|

2T̄21

12



Proof. We insert the expressions for T̄12, T̄21 given by (25) and get

εT1γ̃|u1 − u2|
2 + εγ1|u1 − u2|

2(ε(1− α)T1 + (1 − ε(1− α))T2)

+ (αT1 + (1 − α)T2)γ2|u1 − u2|
2 + γ|u1 − u2|

2T2

≤ (1 + ε)(αT1 + (1− α)T2)γ̃|u1 − u2|
2

+ (1 + ε)γ|u1 − u2|
2(ε(1− α)T1 + (1− ε(1− α))T2)

We compare the coefficients in front of T1 and T2 and obtain the inequalities

εγ̃ + εγ1ε(1− α) + αγ2 ≤ (1 + ε)αγ̃ + (1 + ε)γε(1− α)

εγ1(1− ε(1− α)) + (1− α)γ2 + γ ≤ (1 + ε)(1− α)γ̃ + (1 + ε)(1− ε(1− α))γ

We start with the first inequality. According to the definition of γ1, γ2 given by
(24) and the lower bound on γ given by (21) and assumption (13), we have

γ1 ≤ γ and γ2 ≤ γ

Additionally, we observe that

γ̃ = ε(1− δ)
m1

d
− εγ ≥ γ

since we assumed the stricter upper bound on γ in (23). The stricter upper
bound on γ is not a contradiction to the lower bound since we assumed δ ≥
ε

1+ε in(23). All in all, this leads to

εγ1ε(1− α) + αγ2 ≤ (ε2(1 − α) + α)γ = (ε2(1− α) + ε(1− α))γ + (α− ε(1− α))γ

≤ (ε2(1− α) + ε(1− α))γ + (α− ε(1− α))γ̃

which corresponds to the first inequality. The last inequality is possible since
we assumed α ≥ ε

1+ε in (23) and therefore the coefficient α − ε(1 − α) is non-
negative. In a similar way, one can prove the second inequality.

Theorem 8 (H-theorem for mixture). Assume f1, f2 > 0. Assume the relation-

ship between the collision frequencies (13) , the conditions for the interspecies

Maxwellians (5) , (14), (15), (18) and (19) with α, δ 6= 1, the positivity of the

temperatures (20) and the assumptions on the parameters (23), then

∫

(ln f1) Q
FP
11 (f1, f1) + (ln f1) Q

FP
12 (f1, f2)dv

+

∫

(ln f2) Q
FP
22 (f2, f2) + (ln f2) Q

FP
21 (f2, f1)dv ≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal velocity

and temperature.

13



Proof. The fact that
∫

ln fkQ(fk, fk)dv ≤ 0, k = 1, 2 is shown in proofs of the
H-theorem of the single Fokker-Planck-model, for example in [33]. In both cases
we have equality if and only if f1 = M1 and f2 = M2.

Let us define

I : =

∫

QFP
12 (f1, f2) ln f1dv +

∫

QFP
21 (f2, f1) ln f2dv

=

∫

c12n1 div(∇v(
T12

m1
f1) + (v − u12)f1) ln f1dv

+

∫

c21n2div(∇v(
T21

m2
f2) + (v − u21)f2) ln f2dv

Integration by parts leads to

I = −

∫

c12n1(∇v(
T12

m1
f1) + (v − u12)f1)

∇vf1

f1
dv

−

∫

c21n2(∇v(
T21

m2
f2) + (v − u21)f2)

∇vf2

f2
dv

=

∫

c12n1
T12

m1
f1|

∇vf1

f1
|2 −

∫

c21n2
T21

m2
f2|

∇vf2

f2
|2dv

−

∫

c12n2(v − u12) · ∇vf1dv −

∫

c21n1(v − u21) · ∇vf2dv

= −

∫

c12n2
T12

m1
f1|

∇vf1

f1
|2dv −

∫

c21n2
T21

m2
f2|

∇vf2

f2
|2dv + c12n2n1d+ c21n1n2d

By using the relationship (13), we obtain

I := −

∫

c12n2
T12

m1
f1|

∇vf1

f1
|2)dv −

∫

c21n2
T21

m2
f2|

∇vf2

f2
|2)dv + c21n2n1d(1 + ε)

By using lemma 4, we can write this as

I = −
T12

m1
c12n2

∫

M2
12

f1

(

∇vf1M12 −∇vM12f1

M2
12

)2

dv

−
T21

m2
c21n1

∫

M2
21

f2

(

∇vf2M21 −∇vM21f2

M2
21

)2

dv

+ c12n2n1d
T1 +

m1

d (1 − δ)2|u1 − u2|
2

T12
+ c21n2n1d

T2 +
m2

d ε2(m1

m2

)2(1− δ)2|u1 − u2|
2

T21

− (1 + ε)c21n1n2d

(28)

The first two terms are non-positive, so we get the claimed inequality if we can

14



prove

c12n2n1d
(

T1 +
m1

d
(1− δ)2|u1 − u2|

2
)

T21

+ c21n1n2dT12

(

T2 +
m2

d
(1− δ)2ε2(

m1

m2
)2|u1 − u2|

2

)

≤ (1 + ε)c21n1n2dT12T21

which is by using relationship (13) equivalent to

ε
(

T1 +
m1

d
(1 − δ)2|u1 − u2|

2
)

T21 + T12

(

T2 +
m2

d
(1− δ)2ε2(

m1

m2
)2|u1 − u2|

2

)

≤ (1 + ε)T12T21

With the notation introduced in (24) and (26), we can write this as

γ1 =
m1

d
(1− δ)2, γ2 =

m2

d
(1− δ)2ε2(

m1

m2
)2

and

T12 =: T̄12 + γ|u1 − u2|
2, T21 =: T̄21 + γ̃|u1 − u2|

2

Then we get

ε(T1 + γ1|u1 − u2|
2)(T̄21 + γ̃|u1 − u2|

2) + (T̄12 + γ|u1 − u2|
2)(T2 + γ2|u1 − u2|

2)

≤ (1 + ε)(T̄12 + γ|u1 − u2|
2)(T̄21 + γ̃|u1 − u2|

2)

This is equivalent to

εT1T̄21 + εT1γ̃|u1 − u2|
2 + εγ1|u1 − u2|

2T̄21 + εγ1γ̃|u1 − u2|
4 + T̄12T2

+T̄12γ2|u1 − u2|
2 + γ|u1 − u2|

2T2 + γγ2|u1 − u2|
4

≤ (1 + ε)(T̄12T̄21 + T̄12γ̃|u1 − u2|
2 + γ|u1 − u2|

2T̄21 + γγ̃|u1 − u2|
4

This is true if we have separately

εT1T̄21 + T̄12T2 ≤ (1 + ε)T̄12T̄21 (29)

(εγ1γ̃ + γγ2)|u1 − u2|
4 ≤ (1 + ε)γγ̃|u1 − u2|

4 (30)

εT1γ̃|u1 − u2|
2 + εγ1|u1 − u2|

2T̄21 + T̄12γ2|u1 − u2|
2 + γ|u1 − u2|

2T2

≤ (1 + ε)T̄12γ̃|u1 − u2|
2 + (1 + ε)γ|u1 − u2|

2T̄21

(31)
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These three inequalities are satisfied according to lemmas 5, 6, 7. Then the last
four terms in (28) can be estimated by zero from above. So we obtain

I ≤ −
T12

m1
c12n2

∫

M2
12

f1

(

∇vf1M12 −∇vM12f1

M2
12

)2

dv

−
T21

m2
c21n1

∫

M2
21

f2

(

∇vf2M21 −∇vM21f2

M2
21

)2

dv

= −
T12

m1
c12n2

∫

f1

∣

∣

∣

∣

M12

f1
∇v

(

f1

M12

)∣

∣

∣

∣

2

dv −
T21

m2
c21n1

∫

f2

∣

∣

∣

∣

M21

f2
∇v

(

f2

M21

)∣

∣

∣

∣

2

dv

= −
T12

m1
c12n2

∫

f1

∣

∣

∣

∣

∇v ln
f1

M12

∣

∣

∣

∣

2

dv −
T21

m2
c21n1

∫

f2

∣

∣

∣

∣

∇v ln
f2

M21

∣

∣

∣

∣

2

dv ≤ 0

with equality if and only if f1 = M12 and f2 = M21. This means the equality
is characterized by two Maxwell distributions. In addition, if we compute the
mean velocities of these expressions, we get in case of equality u1 = u12 =
δu1+(1−δ)u2 which leads to u1 = u2. Similar, for the temperatures, we obtain
T1 = T2.

Define the total entropyH(f1, f2) =
∫

(f1 ln f1+f2 ln f2)dv. We can compute

∂tH(f1, f2) +∇x ·

∫

(f1 ln f1 + f2 ln f2)vdv = S(f1, f2),

by multiplying the Fokker-Planck equation for the species 1 by ln f1, the Fokker-
Planck equation for the species 2 by ln f2 and integrating the sum with respect
to v.

Corollary 8.1 (Entropy inequality for mixtures). Assume f1, f2 > 0. Assume

a fast enough decay of f1, f2 to zero for v → ∞. Assume relationship (13), the
conditions (5) , (14), (15), (18) and (19) with α, δ 6= 1, the positivity of the

temperatures (20) and the assumptions on the free parameters (23), then we

have the following entropy inequality

∂t

(∫

f1 ln f1dv +

∫

f2 ln f2dv

)

+∇x ·

(∫

vf1 ln f1dv +

∫

vf2 ln f2dv

)

≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal bulk

velocity and temperature. Moreover at equilibrium the interspecies Maxwellians

M12 and M21 satisfy u12 = u2 = u1 = u21 and T12 = T2 = T1 = T21.

We now explicitly specify the global equilibrium.

Theorem 9 (Equilibrium). Assume f1, f2 > 0. Assume relationship (13) , the
conditions (5), (14), (15), (18) and (19)and the positivity of the temperatures

(20). Then QFP
11 (f1, f1) +QFP

12 (f1, f2) = 0 and QFP
22 (f2, f2) +QFP

21 (f2, f1) = 0,
if and only if f1 and f2 are Maxwell distributions with equal mean velocity and

temperature.

Proof. If QFP
11 (f1, f1) + QFP

12 (f1, f2) = 0 and QFP
22 (f2, f2) + QFP

21 (f2, f1) = 0 ,
then ln f1 Q

FP
11 (f1, f1)+ln f1 Q

FP
12 (f1, f2)+ln f2 Q

FP
22 (f2, f2)+ln f2 Q

FP
21 (f2, f1) =

0 and so we have equality in the H-theorem
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