
Lightweight Embeddings for Graph Collaborative Filtering
Xurong Liang

xurong.liang@uq.edu.au
The University of Queensland

Brisbane, Australia

Tong Chen
tong.chen@uq.edu.au

The University of Queensland
Brisbane, Australia

Lizhen Cui
clz@sdu.edu.cn

Shandong University
Jinan, China

Yang Wang
yangwang@hfut.edu.cn

Hefei University of Technology
Hefei, China

Meng Wang
eric.mengwang@gmail.com

Hefei University of Technology
Hefei, China

Hongzhi Yin*
h.yin1@uq.edu.au

The University of Queensland
Brisbane, Australia

ABSTRACT
Graph neural networks (GNNs) are currently one of the most per-
formant and versatile collaborative filtering methods. Meanwhile,
like in traditional collaborative filtering, owing to the use of an
embedding table to represent each user/item entity as a distinct
vector, GNN-based recommenders have inherited its long-standing
defect of parameter inefficiency. As a common practice for scalable
embeddings, parameter sharing enables the use of fewer embedding
vectors (which we term meta-embeddings), where each entity is
represented by a unique combination of meta-embeddings instead.
When assigning meta-embeddings, most existing methods are a
heuristically designed, predefined mapping from each user/item
entity’s ID to the corresponding meta-embedding indexes (e.g.,
double hashing), thus simplifying the optimization problem into
learning only the meta-embeddings. However, in the context of
GNN-based collaborative filtering, such a fixed mapping omits the
semantic correlations between entities that are evident in the user-
item interaction graph, leading to suboptimal recommendation
performance. To this end, we propose Lightweight Embeddings
for Graph Collaborative Filtering (LEGCF), a parameter-efficient
embedding framework dedicated to GNN-based recommenders.
LEGCF innovatively introduces an assignment matrix as an addi-
tional learnable component on top of meta-embeddings. To jointly
optimize these two heavily entangled components, aside from learn-
ing the meta-embeddings by minimizing the recommendation loss,
LEGCF further performs efficient assignment update by enforcing a
novel semantic similarity constraint and finding its closed-form so-
lution based on matrix pseudo-inverse. The meta-embeddings and
assignment matrix are alternately updated, where the latter is spar-
sified on the fly to ensure negligible storage overhead. Extensive
experiments on three benchmark datasets have verified LEGCF’s
smallest trade-off between size and performance, with consistent ac-
curacy gain over state-of-the-art baselines. The codebase of LEGCF
is available in https://github.com/xurong-liang/LEGCF.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’24, July 14–18, 2024, Washington, D.C.
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Xurong Liang, TongChen, LizhenCui, YangWang,MengWang, andHongzhi
Yin*. 2024. Lightweight Embeddings for Graph Collaborative Filtering. In
Proceedings of The 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’24). ACM, New York, NY, USA,
11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In e-commerce and social media applications, the success of rec-
ommender systems (RSs) in predicting preferred items for users
[48, 53, 63, 65, 66, 69] has attracted immense revenue. Classic RSs de-
ploy factorization-based methods [23, 40] or multilayer perceptrons
(MLPs) [15] for predicting user-item affinity via collaborative filter-
ing. Recent advances in graph neural networks (GNNs) [14, 50, 53]
further facilitate graph-based collaborative filtering [14, 50], which
propagates collaborative signals through connected nodes to model
user-item interactions. To date, GNN-based recommenders are ar-
guably one of the most popular variants of collaborative filtering
methods in both academia [14, 50] and industry [12, 61].

While GNN-based recommenders bring in promising perfor-
mance and versatility, they still struggle to bypass a long-standing
challenge carried over from conventional RSs – that is, the scalabil-
ity of embedding representations. In the very basic form of ID-based
recommendation where the only entities1 to represent are users and
items, each entity corresponds to an individual embedding vector
that can be looked up from the embedding table based on a unique
feature value (e.g., ID). With the sheer volume of users and items
in e-commerce sites, the embedding table inevitably introduces a
huge number of parameters that render a recommender hard to
scale. The embedding parameters are at the scope of tens of millions
in common benchmark datasets [3, 29, 54] and even thousands of
billions in industry-level applications [35]. Thus, to keep enjoying
the performance benefits of GNN-based recommenders at scale,
improving the parameter efficiency of embeddings is the key.

To alleviate the excessive parameterization in the embedding
layer of RSs, one mainstream research direction focuses on pa-
rameter sharing, in which all entity embeddings are drawn from
a parameter pool with only a fraction of the footprint of the full
embedding table. As a typical way of parameter sharing, compo-
sitional embeddings are facilitated via a set of meta-embedding

*Hongzhi Yin is the corresponding author.
1In this paper, we term both users and items as entities for convenience.

ar
X

iv
:2

40
3.

18
47

9v
2

 [
cs

.I
R

]
 2

8
M

ar
 2

02
4

https://orcid.org/0000-0002-3458-3887
https://orcid.org/0000-0003-1395-261X
https://github.com/xurong-liang/LEGCF
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SIGIR ’24, July 14–18, 2024, Washington, D.C. Xurong Liang et al.

vectors, where some hash functions are handcrafted to map each
entity to a unique set of meta-embeddings based on their feature
value (i.e., user/item IDs in common RSs) [6, 8, 52, 55, 62]. Then, an
entity embedding is composed with those meta-embeddings, e.g.,
by performing sum pooling [42]. As each entity is assigned a dis-
tinct set of meta-embeddings, their final compositional embeddings
naturally avoid collisions and can be easily used for subsequent
recommendation tasks.

Nevertheless, in these methods, it is noticed that the mapping
from entities to their corresponding meta-embeddings is solely
based on the hash functions given [26, 42], which in turn makes
all entities’ meta-embedding assignments a predefined and fixed
decision. Although this narrows the optimization target of this light-
weight embedding paradigm down to just the meta-embeddings,
such an assignment mapping unfortunately retains minimal se-
mantic association between entities since it is solely determined
by the user/item IDs that are mutually independent. That is to
say, even two dissimilar entities, e.g., a user and her disliked item,
might have two similar meta-embedding compositions where most
meta-embeddings are the same, resulting in a misleadingly high
affinity between their composed embeddings. Similarly, two highly
correlated entities can hardly preserve such correlations in their
embeddings if they diverge heavily in meta-embedding assign-
ments. In the meantime, most compositional embedding schemes
allocate a unanimous weight to all meta-embeddings [27, 29] with
no mechanisms to differentiate their contributions in an entity’s
compositional embedding, indulging the homogeneity of entity
embeddings. As a result, risks are incubated in terms of insuffi-
cient embedding expressiveness and suboptimal recommendation
performance, and they are likely to deteriorate in GNN-based col-
laborative filtering where user/item links are explicitly accounted
for message passing.

To this end, a more flexible compositional embedding scheme
that not only accounts for the semantic connections among enti-
ties, but also provides a more nuanced, weighted composition of
assigned meta-embeddings for each entity, is highly anticipated.
Ideally, this involves learning the right meta-embedding assign-
ments as a parallel goal to the optimization of meta-embeddings.
However, this also means selecting a subset of meta-embeddings
for every entity, translating into a typical combinatorial optimiza-
tion problem that is known to be NP-hard. At the same time, for
each entity embedding, any update on either its meta-embedding
assignments or the meta-embedding themselves will incur changes
in its expressiveness. Given the strong entanglement between the
two, simultaneously learning them is prone to instability during
optimization and heavily constrained recommendation efficacy.

In this paper, to achieve the desiderata of parameter-efficient
embeddings with GNN-based recommenders, we propose our work
LightweightEmbeddings forGraphCollaborative Filtering (LEGCF).
Specifically, to remedy the defects of predefined hash function
methods, we propose a more adaptive assignment scheme by in-
troducing a learnable, real-valued assignment matrix, of which
each row encodes which (selection) and how (weighting) every
meta-embedding is involved in the composition of one entity’s
embedding. To learn the assignment matrix while preserving the
semantic relationships among entities, we make use of GNNs’ abil-
ity to propagate messages between associated nodes. Specifically,

we construct an expanded message passing graph that additionally
considers the weighted connections between entities and meta-
embeddings, and frame a representation similarity constraint as
an objective function that can be elegantly and quickly solved in a
closed form via matrix pseudo-inverse. This not only transforms
the combinatorial optimization task into inferring the relevance of
different meta-embeddings to each entity, but also decouples it from
the gradient-based update of meta-embedding weights. Further-
more, in LEGCF, dynamic pruning is enabled for the assignment
matrix, such that it can be efficiently stored as a sparse matrix with
a negligible memory footprint.

We summarize our main contributions as follows:
• We point out the deficiencies of existing embedding parame-
ter sharing methods when they are applied in GNN-based
recommenders. Instead of using predefined meta-embedding
assignments, we highlight the necessity of a flexible meta-
embedding assignment mechanism that can preserve entity-
wise semantic correlations and differentiate the nuanced
contributions of each entity’s assigned meta-embeddings.
• To achieve the desiderata, we propose a novel lightweight em-
bedding framework dedicated to GNN-based recommenders,
namely LEGCF. On top of learning all meta-embeddings,
LEGCF adaptively learns weighted meta-embedding assign-
ment for each entity. A novel, closed-form solution is derived
from the similarity among graph-propagated embeddings,
so as to facilitate an alternate optimization scheme.
• We conduct extensive experiments on three benchmark datasets.
The results have demonstrated LEGCF’s advantageous ac-
curacy amid its top-tier parameter efficiency among state-
of-the-art lightweight baselines, and verified its smallest
performance compromise compared with GNN-based rec-
ommenders using a full (40× larger) embedding table.

2 RELATEDWORK
In this section, we present the background of real-valued embedding
compression in recommender systems.

2.1 Parameter Sharing
A large proportion of work achieves embedding compression by al-
lowingmultiple entities to share embeddings from ameta-embedding
pool and hashing is the most notable trick for this purpose. These
methods often utilize multiple hash functions to gather several
meta-embeddings and compose them together to form entity em-
beddings (i.e., compositional embedding) to avoid hash collision.

Compositional Embedding Methods. Zhang et al. [62] and
Shi et al. [43] adopt multiple hashing to generate composed embed-
dings for parts of the entities. Q-R trick [26, 42] deploys the quotient
and remainder codebooks to generate complementary composed
embeddings. Yan et al. [55] propose to break the binary code of
ID value into multiple small hash values, each of which yields a
meta-embedding for the entity. SCMA [8] relies on locality sensitive
hashing (LSH) to allocate segments of a single memory chunk to
entities. Embeddings generated by tensor train (TT) decomposition
methods [49, 54, 58, 59] can be treated as an alternative form of com-
positional embedding, as every entity embedding is a multiplication
product of a series of tensors. Quantization [17, 27, 28, 30, 32, 64]

Lightweight Embeddings for Graph Collaborative Filtering SIGIR ’24, July 14–18, 2024, Washington, D.C.

methods find the best fit codes from multiple codebooks and com-
pose them to form entity embeddings, which is also compositional.

Apart from compositional embedding methods, some work facili-
tates the goal of parameter sharing in other ways. DHE replaces the
hash embedding table with a deep neural network (DNN) [19]. LCE
[13] only stores the embeddings of users/items and the embeddings
of their counterparts are inferred at training time. Alternatively,
clustering can be a strategy for entity meta-embedding assignment
[6]. CEL [4] takes a different approach to split one giant cluster into
multiple small clusters based on entity similarity. Entities in each
cluster have a unified embedding.

Despite all methods mentioned above generating a memory-
efficient embedding layer, no work leverages the user-item interac-
tion graph for meta-embedding allocation. Hence, there is no direct
mapping between entity interaction and representation proxim-
ity in the latent space, potentially leading to inadequately learned
entity embeddings and hindering the downstream task.

2.2 AutoML Embedding Optimization
Another hot spot of embedding optimization studies lies in the
application of automatic machine learning (AutoML) [60, 69]. One
main direction of research is the automated dimension search
[5, 10, 18, 31, 39, 67], in which a set of hand-crafted entity em-
bedding candidate dimension sizes is supplied beforehand. The al-
gorithms can then devise a differentiable dimension search [5, 67],
or a reinforcement learning agent [18, 31, 38, 39] to determine the
embedding dimension size for each entity. Despite these methods
being effective in finding the balance between memory budget
and the recommendation performance, the low computational ef-
ficiency of NAS [36] and the huge search space for reinforcement
learning often raise concern. Pruning is another popular direction
[3, 7, 22, 25, 29, 33, 34, 37, 56, 57, 68]. Work that purely relies on
pruning to reach the memory target [7, 33, 37, 56, 57] may face the
challenge of null-value embedding vector for entities, in which all
elements lied in the embedding vector are zero, severely impacting
recommendation performance. Later work [3, 22, 25, 34] attempts
to combat the negative impact of pruning technique by combining
other embedding optimization strategies, such as AutoML dimen-
sion search or embedding hashing. However, these hybrid methods
do not overcome the inherited drawback of low computational
efficiency, making it intractable to large-scale deployment.

3 METHOD
We now present LEGCF, our proposed lightweight embedding
method for GNN-based recommenders. In Figure 1, we provide
visual aids regarding LEGCF’s key components, whose details are
introduced in this section.

3.1 Replacing Full Embedding Table with
Compositional Embeddings

We denote the sets of users and items asU and I, respectively. As
we focus on ID-based recommendation in this paper, the total num-
ber of entities is 𝑁 = |U| + |I|. The user-item interactions are en-
coded in a binarized matrix R ∈ {0, 1} |U |× |I | , indicating whether
an interaction is observed between a user-item pair. To minimize
the memory footprint of the embedding layer, the full embedding

table E ∈ R𝑁×𝑑 with embedding dimensionality 𝑑 is replaced by a
memory-efficient meta-embedding codebook E𝑚𝑒𝑡𝑎 ∈ R𝑐×𝑑 , where
and 𝑐 ≪ 𝑁 is the number of meta-embeddings, a.k.a. bucket size.
To compose an embedding for each entity, a common approach
[26, 29, 42] is to hash an entity’s index 𝑝 into 𝑡 non-overlapping
meta-embedding indexes {𝑞1, 𝑞2, ..., 𝑞𝑡 }, based on which the corre-
sponding meta-embeddings are drawn from the codebook E𝑚𝑒𝑡𝑎 .
Each entity’s embedding is then formed by merging those 𝑡 meta-
embeddings, usually via pooling or element-wise product.

In our work, we abandon the use of fixed hash functions and
instead introduce a learnable assignment matrix S ∈ R𝑁×𝑐≥0 . Es-
sentially, each row of the assignment matrix S corresponds to a
user/item entity, where the non-zero elements indicate which meta-
embeddings are selected out of the 𝑐 choices, as well as their weights
in the composition of the entity embedding. The entries in S are
updated during training, providing high flexibility in embedding
generation. With the meta-embedding codebook E𝑚𝑒𝑡𝑎 and learn-
able assignment matrix S, all entities’ compositional embeddings
Ê ∈ R𝑁×𝑑 can be computed via the following matrix multiplication:

Ê = SE𝑚𝑒𝑡𝑎 . (1)

Notably, considering the size of a dense assignment matrix, we
constrain S to be highly sparse, where corresponding details are
deferred to Section 3.3.

In GNN-based recommenders, a user-item interaction graph is
built to propagate collaborative signals among connected entities
for embedding learning [53], and a common practice [14, 50] is to
represent those connections via an adjacency matrix A ∈ R𝑁×𝑁 :

A =

[
0 R
R⊤ 0

]
, (2)

where R is the user-item interaction matrix. For each user 𝑢 ∈ U
and item 𝑖 ∈ I, we first retrieve their embeddings e𝑢 and e𝑖 from
Ê, and treat them as the inputs (i.e., layer-0 embeddings) to GNN.
In short, each GNN layer involves the propagation of embeddings
over the graph A, where the final graph-propagated embeddings
h𝑢 , h𝑖 ∈ R𝑑 are computed by applying a pooling operation to
the embeddings of each 𝑢/𝑖 obtained from each GNN layer. In our
paper, we use LightGCN [14] as the base recommender and follow
its configuration to use mean pooling over all layers’ propagated
embeddings as the final representation of each entity. As our main
innovation lies in the new compositional embedding paradigm for
GNN-based recommenders, we omit other details of LightGCN
for simplicity. For each (𝑢, 𝑖) pair, their recommendation affinity
prediction can be calculated as the dot product of their graph-
propagated embeddings:

𝑦𝑢𝑖 = h⊤𝑢 h𝑖 , (3)

which facilitates the Bayesian personalized ranking loss (BPR) [41]
for optimizing each entity’s associated meta-embeddings:

LBPR =
∑︁

(𝑢,𝑖+,𝑖−) ∈B
− ln𝜎 (𝑦𝑢𝑖+ − 𝑦𝑢𝑖−) + 𝜆 | |Θ| |2, (4)

whereB is either thewhole training set or a training batch, (𝑢, 𝑖+, 𝑖−)
is a triplet that contains sampled user 𝑢’s observed interacted item
𝑖+ and unvisited item 𝑖− , | |Θ| |2 is the 𝐿2 regularization over train-
able parameters and 𝜆 controls its weight in the loss.

SIGIR ’24, July 14–18, 2024, Washington, D.C. Xurong Liang et al.

𝒗!

𝒗"

𝒗#

𝒗$

…

…

…

…

…

0.1

0

0

0.9

0

×

×
+

𝐄%&'(𝐬# ∈ 𝐒

𝐞# ∈ 𝑬(

first-order receptive field

(a) Compositional entity embeddings

𝒗!

𝒗"

𝒗#

𝒗$

𝐡#
(&)

𝐡#
(#)

𝐡#
(")

𝐡#
(!)

𝐡#
(b) Graph propagation

Recommender

𝐿!"#
Update 𝐄!"#$

user embedding 𝐡%

item embedding 𝐡&

(c) Learning E𝑚𝑒𝑡𝑎

𝐡!

𝐬!𝐇"#$%

close

hidden space of GNN

Update 𝐒

(d) Learning S
Figure 1: Key components of LEGCF. Corresponding details can be found in Section 3.1 for (a), Section 3.2 for (b) and (c), and
Section 3.3 for (d). Note that we use e and s to denote one row of the codebook E𝑚𝑒𝑡𝑎 and assignment matrix S, respectively.

Batch Processing on Full Embedding Table Inference. Note
that while we define the forward pass for computing all entities’
embeddings as a unified matrix operation in Eq. 1, in cases where
a large user and item number 𝑁 challenges memory usage during
training, our compositional embeddings also supports batch pro-
cessing like in standard GNN-based recommenders. To do so, in
the 𝑏-th batch, we can draw 𝑛 ≪ 𝑁 rows from S, forming a 𝑛 × 𝑐
matrix S𝑏 for 𝑛 entities. As such, for the 𝑏-th batch, Eq. 1 can be
rewritten as Ê𝑏 = S𝑏E𝑚𝑒𝑡𝑎 with Ê𝑏 ∈ R𝑛×𝑐 , which is compatible
with all the subsequent computations.

3.2 Graph-Propagated Meta-Embeddings
The effectiveness of GNNs in refining entity embeddings via mes-
sage passing has been widely acknowledged [9, 53]. In LEGCF,
the compositional embedding table Ê is generated from Eq. 1 with
the meta-embedding codebook E𝑚𝑒𝑡𝑎 . As each meta-embedding
is essentially linked to a set of nodes within the user-item interac-
tion graph A, we represent such connections by incorporating the
assignment matrix S into A:

A′ =
[
A S
S⊤ 0

]
, (5)

where A′ ∈ R(𝑁+𝑐)×(𝑁+𝑐) is termed an expanded interaction graph.
Intuitively,A′ appendsmeta-embeddings as additional virtual nodes
to the user-item interaction graph, thus taking advantages of the
GNN for E𝑚𝑒𝑡𝑎 to propagate. The graph propagation of meta-
embeddings resembles the same message passing process described
in Section 3.1, where the input embeddings (i.e., when layer 𝑙 = 0) to
GNNH(0) ∈ R(𝑁+𝑐)×𝑑 is generated by stacking the compositional
embeddings Ê and the meta-embedding codebook E𝑚𝑒𝑡𝑎 :

H(0) =
[

Ê
E𝑚𝑒𝑡𝑎

]
. (6)

The propagation operation at layer 𝑙 + 1 is thus defined as:

H(𝑙+1) = (D−
1
2A′D−

1
2)H(𝑙) , (7)

where A′ is the adjacency matrix from the expanded interaction
graph, D′ ∈ R(𝑁+𝑐)×(𝑁+𝑐) is the diagonal degree matrix of A′.
D−

1
2A′D−

1
2 creates a symmetrical, degree-normalized adjacency

matrix. The final GNN embeddings can be gathered by taking the
mean of embeddings from all layers:

H =
1

𝐿 + 1

𝐿∑︁
𝑙=0

H(𝑙) , (8)

from which the graph-propagated representations of the full entity
set H𝑓 𝑢𝑙𝑙 ∈ R𝑁×𝑑 and meta-embeddings H𝑚𝑒𝑡𝑎 ∈ R𝑐×𝑑 can then
be respectively retrieved by splitting H into the following form:

H𝑓 𝑢𝑙𝑙 ← H[: 𝑁, :], H𝑚𝑒𝑡𝑎 ← H[𝑁 :, :] . (9)

Specifically, the graph-propagated meta-embeddings H𝑚𝑒𝑡𝑎 are
used for assignment matrix update as described in Section 3.3. In
general, as H𝑚𝑒𝑡𝑎 now conceals collaborative information from
semantically similar user/item neighbors, it facilitates learning a
more sensible meta-embedding assignment for each user/item. To
conduct the recommendation task, we retrieve the entities’ graph-
propagated embeddings from H𝑓 𝑢𝑙𝑙 , and then calculate the simi-
larity score between each user-item pair as defined in Eq. 3. With
a fixed assignment S in each iteration, the predicted scores of a
training batch are passed to Eq. 4 to calculate the BPR loss LBPR,
thus enabling back-propagation to update the values in the meta-
embedding codebook E𝑚𝑒𝑡𝑎 .

3.3 Learning Assignment Weights
While the meta-embedding codebook E𝑚𝑒𝑡𝑎 is being learned, the
weights in S should be updated over time as well in pursuit of a more
reasonable mapping between entities and their meta-embedding
assignments. As discussed earlier, a sensible meta-embedding as-
signment for each entity should be able to account for its own
semantic relations to other entities. That is to say, two closely cor-
related entities are expected to have their embeddings composed
by a similar set of meta-embeddings and vice versa – an intuitive
analogy to the core idea behind collaborative filtering.

In this regard, a straightforward solution is to directly update the
weights within S via gradient descent in the same back-propagation
loop with E𝑚𝑒𝑡𝑎 . However, as the recommendation loss is directly
affected by their product Ê, when simultaneously updating the
weights in both S and E𝑚𝑒𝑡𝑎 , the co-adaptation between their up-
dates can introduce difficulties in finding a stable solution [16, 24].
Also, for each entity, instead of assigning weights to all 𝑐 meta-
embeddings and thus making S a dense matrix, a more desirable
objective is to make it highly sparse, i.e., for every row of S, only a
few entries are non-zero. On the one hand, it makes less sense to
associate each entity with all meta-embeddings in a compositional
paradigm. On the other hand, if the𝑁×𝑐 assignmentmatrix is dense,
even a moderate choice of 𝑐 (e.g., 𝑐 = 100) can make the storage cost
of S comparable to the 𝑁 × 𝑑 full embedding table (e.g., 𝑑 = 128 as
a popular choice), which defeats the purpose of compressing it at
the first place. As a possible path to the discrete, weighted selection
of meta-embeddings, reinforcement learning [46] unfortunately

Lightweight Embeddings for Graph Collaborative Filtering SIGIR ’24, July 14–18, 2024, Washington, D.C.

requires a specifically crafted action sampler and reward function,
and the optimization of meta-embedding combinations from a vast
action space is hardly tractable.

To resolve the challenges, recall that S defines the mapping from
each entity to its corresponding meta-embeddings in the input layer
of the GNN, where each S[𝑝, 𝑞] ≠ 0 can be viewed as a similarity
score between the 𝑝-th entity and the 𝑞-th meta-embedding. Opti-
mally, if such similarity holds in the input layer, it should still be
preserved between the entity embeddings and meta-embeddings
after 𝐿 layers of propagation. Therefore, we describe this property
as the following semantic similarity constraint:

H𝑓 𝑢𝑙𝑙 ≈ SH𝑚𝑒𝑡𝑎, (10)

where H𝑓 𝑢𝑙𝑙 and H𝑚𝑒𝑡𝑎 are the graph-propagated embeddings as
in Section 3.2. AssumingH𝑓 𝑢𝑙𝑙 andH𝑚𝑒𝑡𝑎 are in optimal form, the
assignment matrix S which reflects the relationship betweenH𝑓 𝑢𝑙𝑙

and H𝑚𝑒𝑡𝑎 can be solved as:

S = H𝑓 𝑢𝑙𝑙H
−1
𝑚𝑒𝑡𝑎, (11)

with H−1𝑚𝑒𝑡𝑎 ∈ R𝑑×𝑐 being the inverse of H𝑚𝑒𝑡𝑎 ∈ R𝑐×𝑑 . However,
as it is impractical to assume 𝑐 = 𝑑 , E𝑚𝑒𝑡𝑎 is commonly a non-
square matrix, neither doesH𝑚𝑒𝑡𝑎 . Consequently, the direct inverse
of H𝑚𝑒𝑡𝑎 may not exist. As a wraparound, we approximate H−1𝑚𝑒𝑡𝑎

with the pseudo-inverse ofH𝑚𝑒𝑡𝑎 . We resort to the Moore-Penrose
inverse [1] and solve the pseudo-inverse ofH𝑚𝑒𝑡𝑎 through singular
value decomposition (SVD) [44] due to its computational simplicity
and accuracy [1]. To be specific, we first decompose H𝑚𝑒𝑡𝑎 into
the following form:

H𝑚𝑒𝑡𝑎 = UΣV∗, (12)
where U ∈ R𝑐×𝑐 is a unitary matrix, Σ ∈ R𝑐×𝑐 is the square matrix
that contains singular values along the diagonal, V∗ ∈ R𝑐×𝑑 is
the conjugate transpose of unitary matrix V ∈ R𝑑×𝑐 . The Moore-
Penrose pseudo-inverse of H𝑚𝑒𝑡𝑎 , denoted as H†𝑚𝑒𝑡𝑎 ∈ R𝑑×𝑐 , is
computed as:

H†𝑚𝑒𝑡𝑎 = VΣ−1U∗, (13)
where Σ−1 ∈ R𝑐×𝑐 is the inverse matrix of Σ, which can be easily
obtained by replacing the singular values along the diagonal of Σ
with their reciprocal, U∗ ∈ R𝑐×𝑐 is the conjugate transpose of U.
Once the pseudo-inverse ofH𝑚𝑒𝑡𝑎 is calculated, we can plug it back
into Eq. 11 to find the closed-form solution for S:

S = H𝑓 𝑢𝑙𝑙H
†
𝑚𝑒𝑡𝑎 = H𝑓 𝑢𝑙𝑙VΣ

−1U∗ . (14)

In this way, utilizing the constraint defined in Eq. 10, we can derive
the updated assignment matrix S via matrix pseudo-inverse. Such
a gradient-free learning strategy prevents gradient-tracking on S
along with E𝑚𝑒𝑡𝑎 , and is very efficient to compute. Moreover, it
can effectively preserve the entities’ semantic associations in their
meta-embedding assignments, as two similar rows in H𝑓 𝑢𝑙𝑙 will
lead to similar results after the multiplication in Eq. 14.

3.4 Sparsifying, Batching, and Initializing S
As a continuation of Section 3.3, we follow up with more design
details about learning the assignment matrix S.

Sparsification on Assignment Matrix. Since Eq. 14 yields a
dense, real-valued matrix, to keep S sparse, a sparsification process
is required to make its storage footprint manageable. Fortunately,

our gradient-free assignment weight update strategy allows us to
modify S in place, where we conduct sparsification to retain the
largest 𝑡 non-zero weights in each row of S so that the number of
meta-embeddings used by each entity is kept at 𝑡 at all time:

S[𝑝, 𝑞] =
{
S[𝑝, 𝑞] if 𝑞 ∈ idxtop-𝑡 (S[𝑝, :])
0 otherwise

, (15)

where idxtop-𝑡 (·) returns the indexes of the top-𝑡 entries of a given
vector (i.e., the 𝑝-th row of S in our case). Essentially, only for meta-
embeddings considered critical for an entity embedding, we retain
their relatively larger weights in S. In the worst case that every
meta-embedding in E𝑚𝑒𝑡𝑎 is selected in the sparsified S, LEGCF ex-
erts a space complexity of𝑂 (𝑡𝑁+𝑐𝑑) for its lightweight embeddings.
Considering 𝑡 ≪ 𝑐 (𝑡 ≤ 5 in our settings), 𝑂 (𝑡𝑁 + 𝑐𝑑) ≪ 𝑂 (𝑁𝑑)
compared to the space complexity of a full embedding table, imply-
ing a significant improvement in parameter efficiency.

Batch Processing on Assignment Weight Update. In a sim-
ilar vein to Eq. 1, Eq. 10 also supports batch computing, which
can be enabled if lower memory consumption during training is
desired. This is also facilitated by slicing the assignment matrix S
into batches, each of which has 𝑛 rows (𝑛 ≪ 𝑁). The operation in
Eq. 14 to update S is thus performed batch-wise:

S𝑏 = H𝑏H
†
𝑚𝑒𝑡𝑎, (16)

where 𝑏 indexes the 𝑏-th batch. This substantially lowers the in-
memory space complexity from𝑂 (𝑁𝑐 +𝑁𝑑 +𝑐𝑑) to𝑂 (𝑛𝑐 +𝑛𝑑 +𝑐𝑑),
where the computed 𝑛 dense rows of S are immediately passed into
Eq. 15 to obtain its sparse version.

Assignment Matrix Initialization. Given that similar enti-
ties are expected to own similar meta-embeddings, a good ini-
tialization of assignment matrix S can potentially contribute to
higher recommendation accuracy and a speedup in training. In S,
for each entity 𝑝 , we term its highest-weighted meta-embedding
(among the 𝑡 selected) the anchor meta-embedding indexed by 𝑞∗𝑝 ,
and it forms the base image of the entity’s embedding e𝑝 since it
takes the largest proportion in its composition. To let correlated
entities have similar base embedding images during initialization,
we propose to assign two entities 𝑝1, 𝑝2 the same anchor meta-
embedding weight if they demonstrate high affinity with each
other, i.e., S[𝑝1, 𝑞∗𝑝1] = S[𝑝1, 𝑞∗𝑝2]. Because the entities lying within
each community in fact form tightly connected subgraphs in the
original interaction graph, assigning them the same anchor meta-
embedding helps pass the same proximity onto the latent space. In
LEGCF, we take advantage of a well-established multilevel graph
partitioning algorithm, namelyMETIS [20] for partitioning the user-
item interaction graph. Although other advanced graph clustering
methods can also be considered, METIS well serves the one-off
initialization purpose due to its fast and accurate computation (no
learning involved), balanced and non-overlapping partitions (all an-
chor meta-embeddings are fairly utilized), as well as deterministic
results (ease of replication). We set the desired partition number to
𝑐 , where entities in the same subgraph share one specific anchor
meta-embedding in E𝑚𝑒𝑡𝑎 . To reflect this, on initialization of the
assignment matrix S, we perform the following for every entity 𝑝:
I. Given entity𝑝’s subgraph index 𝑐𝑝 ∈ {1, 2, ..., 𝑐}, we set S[𝑝, 𝑞∗𝑝] =
𝑤∗, where 𝑞∗𝑝 = 𝑐𝑝 and𝑤∗ is a universal hyperparameter.

SIGIR ’24, July 14–18, 2024, Washington, D.C. Xurong Liang et al.

II. We uniformly sample 𝑡 − 1 indexes from {1, 2, ..., 𝑐} \ 𝑐𝑝 with
replacement, denoted as a set Q. For every 𝑞 ∈ Q, we set the
corresponding assignment weight S[𝑝, 𝑞] = (1−𝑤

∗)
𝑡−1 .

III. For all remaining entries at 𝑞′ ∉ Q ∪ 𝑐𝑝 , we set S[𝑝, 𝑞′] = 0.

In short, each entity receives one initial anchor meta-embedding
based on the subgraph assigned, while the remaining 𝑡 − 1 meta-
embedding assignments are randomly initialized in favor of diver-
sity. The impact of𝑤∗ will be examined later as a hyperparameter.

3.5 The Overall Algorithm

Algorithm 1: The algorithm of LEGCF.
1 Randomly initialize E𝑚𝑒𝑡𝑎 ∈ R𝑐×𝑑
2 Initialize S ∈ R𝑁 ×𝑐 following Section 3.4
3 Compute A′ ∈ R(𝑁 +𝑐)×(𝑁 +𝑐) with Eq. 5

/* Pretraining */
4 while not converged do
5 Optimize L𝐵𝑃𝑅 w.r.t. Eq. 5—9
/* Assignment Update Enabled */

6 epoch_index← 0
7 while not converged do
8 Optimize L𝐵𝑃𝑅 w.r.t. Eq. 5—9

/* 𝑚 is a hyperparameter for update frequency */
9 if epoch_index mod𝑚 == 0 then
10 Perform assignment update with Eq. 14
11 Regenerate A′ following Eq. 5
12 epoch_index← epoch_index +1

As depicted by the pseudocode in Algorithm 1, our proposed
framework LEGCF consists of two stages. The first stage is the
warm-up pretraining stage, wherein we randomly initialize the
meta-embedding codebook E𝑚𝑒𝑡𝑎 , generate the assignment matrix
S using METIS graph partitioning, and precompute the extended
adjacency matrix A′ (lines 1-3). We freeze S and only perform the
downstream recommendation task to provide a stable environment
for meta-embedding codebook learning (lines 4-5). Once the learn-
ing of E𝑚𝑒𝑡𝑎 converges, we introduce the assignment matrix update
to learn entities’ assignment weights in S and further refine the
meta-embedding codebook E𝑚𝑒𝑡𝑎 by alternating between the two
procedures (lines 6-12). Note that as the meta-embedding assign-
ments are computed with the graph-propagated representations,
we only update S every𝑚 epochs to ensure the graph-propagated
representations are fairly stable by the time of updating S. Further-
more, when the assignment matrix is updated, the expanded graph
adjacency matrix A′ is also regenerated (line 11) to reflect updates
in connections between entities and meta-embeddings.

4 EXPERIMENTS
In this section, we conduct experiments to validate the effectiveness
of our work. We break down our experiments into the following
research questions (RQs):

• RQ1: How is the recommendation accuracy of our work
compared to other baselines under a tight memory budget?
• RQ2: Does METIS initialization and learnable assignment
update improve recommendation performance?
• RQ3: How sensitive is our work to hyperparameters?
• RQ4: How does using different GNN recommenders affect
our work’s accuracy?

Table 1: Statistics of datasets used in our work.
Dataset #User #Item #Interactions Density
Gowalla 29,858 40,981 1,027,370 0.084%
Yelp2020 71,135 45,063 1,782,999 0.056%

Amazon-book 52,643 91,599 2,984,108 0.062%

4.1 Experimental Settings
4.1.1 Datasets. Weuse three publicly available benchmark datasets:
Gowalla, Yelp2020 and Amazon-book, which can be found in
the official code repositories of [14] and [45]. The detailed statistics
of datasets are summarized in Table 1.

4.1.2 Base Recommender and Baselines. As described in Section 3.1,
the GNN backbone of LEGCF is implemented based on LightGCN
[14]. For evaluation fairness, we also adopt LightGCN as the base
recommender in the following baselines:
• Variable-Size MethodsMethods in this category allows the
generation of embedding layers to satisfy various memory
targets. This is accomplished by applying pruning (PEP
[33]) or changing the hash embedding structure (QR [42]).
Note that our work is also capable of generating embedding
layers of various memory usage. This is done by modifying
the number of meta-embedding buckets 𝑐 and the number
of composition embeddings assigned to each entity 𝑡 .
• One-Size Methods Methods in this category do not for-
malize the final memory target as an optimization objective.
Thus, it is impractical to ensure the final embedding structure
meets the memory budget. Baselines that belong to this cat-
egory include AutoML-based dimension search algorithms
AutoEmb [67], ESAPN [31], OptEmbed [34], CIESS [39];
DHE [19] which replaces embedding hashing with DNN
network; and NimbleTT [58, 59] which approximates the
conventional embedding table using tensor-train decompo-
sition. We omit the result of CEL [4] in this section due to
its poor performance in our empirical testing.

Apart from the above baselines, to compare the performance com-
promise of various lightweight embedding methods, we also con-
duct experiments on the non-compressed versions of LightGCN
with relatively large dimension sizes (i.e., 64 and 128), which we
term the Unified Dimensionality (UD) setting.

4.1.3 Evaluation Metrics. we select NDCG@N and Recall@N
with 𝑁 set to {10, 20} as the evaluation metrics [51].

4.1.4 Implementation Details. We follow the train/test/validation
protocol specified in [50] for dataset splitting. To generate interac-
tion samples for training, for each user-positive item interaction,
we randomly draw 5 negative items to form the training set. We set
the dimension size of embeddings 𝑑 to 128. We initialize the meta-
embeddings and recommender weights using Xavier Initialization
[11] and then deploy ADAM optimizer [21] for value learning. The
learning rate is chosen from {1e−2, 1e−3, 1e−4}. The 𝐿2 penalty fac-
tor 𝜆 is selected from {0, 5e−4, 1e−3, 5e−3, 1e−2}. We use a 3-layer
GNN for Gowalla and a 4-layer GNN for Yelp2020 and Amazon-
book. The number of compositional embeddings per entity 𝑡 is
set to 2 to reduce the memory usage of the assignment matrix.
On initialization of S, the weight of anchor embedding𝑤∗ for all
entities is searched from the range {0.5, 0.6, 0.7, 0.8, 0.9} for each

Lightweight Embeddings for Graph Collaborative Filtering SIGIR ’24, July 14–18, 2024, Washington, D.C.

dataset. When the pretrain stage is done, we update the assign-
ment matrix S once every epoch. We choose the default number
of meta-embedding buckets in the codebook 𝑐 to be 500 and re-
veal the overall performance evaluated under this setting in RQ1.
For variable-size baselines, we first calculate the total number of
parameters used by our work under the 500-bucket setting, then
we use that as the memory budget to select the correct sparsity
target/number of hashing buckets for PEP and QR respectively, so
that the parameter sizes of their embedding layers do not exceed
the nominated memory budget. For baselines incapable of control-
ling the final parameter size, we define appropriate search spaces
to avoid extreme memory footprint on the embedding layer and
meanwhile, provide flexibility for these methods to select the most
optimal setting. For each experiment setting, we select 3 random
seeds to obtain results from multiple runs. We record the average
results in this section.

4.2 Overall Performance (RQ1)
The overall performance of LEGCF with meta-embedding bucket
size 𝑐 = 500 and baseline methods are shown in Table 2. Regarding
recommendation performance, on three datasets, LEGCF achieves
the most outstanding result across all evaluation metrics compared
to all other embedding optimization baselines. This is verified as the
performance result of LEGCF exceeds the second best baseline (i.e.,
CIESS for Gowalla and Yelp2020 and AutoEmb for Amazon-book) by
a large margin. The performance boost of LEGCF is especially sig-
nificant in Amazon-book dataset, revealing LEGCF’s suitability in
big-scale data application. Comparing the parameter sizes achieved
by various embedding optimization methods, LEGCF belongs to the
tier that yields the lowest parameter sizes for all three datasets. Yet
among its variable-size competitors PEP and QR, LEGCF attains the
best performance. As for one-size methods, NimbleTT and CIESS
attain similar parameter sizes to variable-size methods but their per-
formance is not comparable to ours. Embedding layers generated
by OptEmbed, ESAPN and AutoEmb techniques have much higher
parameter sizes than ours. DHE yields the worst performance on all
datasets, indicating small dimension size hash codes do not improve
embedding uniqueness. Our experiment implies that most one-size
methods are not designed to work under a tight memory budget.

On the other hand, comparing the result of LEGCF to unified
dimensionality (UD) settings, it is observed that our work sacrifices
a tidy drop in performance but in return, the memory usage of the
embedding table is significantly reduced. Using the result evaluated
on the Gowalla dataset as an example, despite applying LEGCF
causes performance degradation of 6.5%, the parameter size of the
embedding table generated by LEGCF is 22× smaller than the full
embedding table in UD setting with dimension size = 64 and 44×
smaller than that with dimension size = 128. LEGCF demonstrates
an optimal tradeoff between memory usage and recommendation
performance, such that the resultant embedding layer can easily fit
into resource-constrained devices, yet the recommendation perfor-
mance is barely compromised.

4.3 Model Component Analysis (RQ2)
The innovative components in LEGCF include METIS assignment
matrix initialization and the assignment update process. To verify

their effectiveness in improving performance, we conduct ablation
studies on these two main components. The performance com-
parison is depicted in Table 3. We further carry out case studies
to showcase the learning of entity embeddings and assignment
weights in different training stages.

Community-based Assignment Initialization.We modify
the initialization strategy of assignmentmatrix S to randomly assign
anchor embeddings to entities. Our experiment reveals that the
settings without METIS initialization perform much worse than
those with it. This means having a meaningful assignment matrix
on initialization is the key step to train an accurate meta-embedding
codebook for high-quality entity embeddings.

Assignment Update. We eliminate the assignment update pro-
cess by evaluating the recommender immediately after the pretrain
stage converges. The drop in performance without assignment
update shows the necessity of updating S as it provides the oppor-
tunity for entities to alter the compositional weights to generate a
more meaningful and customized embedding.

Case Study on Learned Entity Embeddings. Due to the page
limit, in this part, we only discuss the case study on Gowalla dataset.
To study the relationship between entity embeddings and their
anchor embeddings, we sample 5 meta-embeddings and for each
meta-embedding, we randomly select 100 entities whose initial
anchor embedding is the chosen meta-embedding on initialization.
Then we devise T-SNE [47] dimensionality reduction technique to
visualize all selected meta-embeddings and entity embeddings in
stages of framework initialization, completion of pretrain and final
model after assignment weight update. The scatter plots can be
found in Figure 2. From the three subplots, we can observe that on
initialization, most entity embeddings are scattered around their
anchor embeddings closely. At this stage, the entity embeddings
do not contain any semantic correlations, thus the poor model ac-
curacy. When the model pretrain is completed, meta-embeddings
are learned according to the METIS assignment allocation. At this
stage, entity embeddings spread more evenly around their anchor
embeddings due to the freeze of assignment matrix. The recom-
mendation performance has been largely improved owing to the
learning of meta-embeddings. Finally, with the assignment weight
update conducted, more flexibility is given in generating entity em-
beddings. The entity representations are more diversified and the
sampled meta-embeddings are not necessarily the centroid of the
entity group labeled the same color. This is because the assignment
update process provides the ability to reselect their anchor embed-
dings, further strengthening the quality of entity embeddings.

Case Study on Learned Assignments. To study the change of
assignment weight distribution before and after the weight update
process, we sampled 20 meta-embeddings and plotted the average
assignment weight distribution graphs for the initial and final stages
of the model training in Figure 3. A huge weight shift can be spotted
after multiple pseudo-inverse-based update rounds were conducted
on the METIS initialized assignment matrix. Initially, METIS as-
signs roughly the same number of entities to each meta-embedding.
This can be verified as the average weights for all sampled meta-
embedding are similar. In the final stage, only a few outliers can
be found in the average weight charts. In contrast, all other meta-
embeddings have extremely small average weight values, meaning
during the weight update process, critical meta-embeddings can be

SIGIR ’24, July 14–18, 2024, Washington, D.C. Xurong Liang et al.

Table 2: Performance comparison between LEGCF and baselines. “#Param” indicates the total parameter size of the
embedding layer of each method. “UD - dim 128” and “UD - dim 64” are the full embedding table setting with unified di-
mensions 𝑑 = 128 and 𝑑 = 64, respectively. In each column, we use bold font to mark the best result achieved by a lightweight
embedding method.

Gowalla Yelp2020 Amazon-book
Method #Param N@10 R@10 N@20 R@20 #Param N@10 R@10 N@20 R@20 #Param N@10 R@10 N@20 R@20

UD - dim 128 9.07m 0.0901 0.1101 0.1059 0.1576 14.87m 0.0284 0.0426 0.0382 0.0721 18.46m 0.0172 0.0215 0.0230 0.0367
UD - dim 64 4.53m 0.0884 0.1088 0.1041 0.1557 7.44m 0.0274 0.0409 0.0366 0.0687 9.23m 0.0165 0.0204 0.0222 0.0353
ESAPN 0.78m 0.0268 0.0273 0.0305 0.0405 1.12m 0.0066 0.0083 0.0087 0.0141 1.44m 0.0045 0.0037 0.0051 0.0057
AutoEmb 0.92m 0.0273 0.0278 0.0319 0.0429 1.51m 0.0071 0.0089 0.0093 0.0148 1.44m 0.0048 0.0039 0.0059 0.0070
OptEmbed 1.42m 0.0375 0.0370 0.0405 0.0498 5.96m 0.0085 0.0090 0.0109 0.0159 2.11m 0.0038 0.0032 0.0050 0.0062

DHE 0.85m 0.0049 0.0051 0.0068 0.0105 1.39m 0.0020 0.0025 0.0028 0.0046 1.73m 0.0012 0.0010 0.0015 0.0019
NimbleTT 0.20m 0.0259 0.0296 0.0300 0.0431 0.28m 0.0055 0.0073 0.0071 0.0122 0.31m 0.0028 0.0031 0.0037 0.0055
CIESS 0.29m 0.0643 0.0742 0.0745 0.1080 0.47m 0.0175 0.0253 0.0234 0.0437 0.57m 0.0021 0.0030 0.0029 0.0054
PEP 0.21m 0.0638 0.0568 0.0698 0.0807 0.30m 0.0170 0.0191 0.0218 0.0326 0.29m 0.0030 0.0024 0.0037 0.0043
QR 0.21m 0.0354 0.0416 0.0412 0.0606 0.30m 0.0067 0.0092 0.0088 0.0157 0.29m 0.0040 0.0046 0.0053 0.0082

LEGCF 0.21m 0.0846 0.0979 0.0988 0.1444 0.30m 0.0214 0.0310 0.0291 0.0548 0.35m 0.0134 0.0156 0.0172 0.0259

Table 3: Performance comparison between the default set-
ting and settings with particular component modified. The
default setting is the one with assignment update and METIS
assignment initialization enabled. We use bold font to indi-
cate the best result.

Gowalla Yelp2020 Amazon-book
Assignment
Update

Init
Method N@20 R@20 N@20 R@20 N@20 R@20

on METIS 0.0988 0.1444 0.0291 0.0548 0.0172 0.0259
off METIS 0.0901 0.1254 0.0272 0.0497 0.0147 0.0227
on random 0.0788 0.1113 0.0183 0.0327 0.0109 0.0163

−1 0 1
−1

0

1

N@20: 0.0245
init

−1 0 1
−1

0

1

N@20: 0.0901
pretrain

−1 0 1
−1

0

1

N@20: 0.0988
final

331 63 474 149 440

1Figure 2: Visualization of sampled entity embeddings and
their anchor meta-embeddings. The N@20 value annotated
at the top of each plot is the NDCG@20 metric evaluated
under the nominated setting. The sampled entities are rep-
resented as dots and each cross is a meta-embedding. The
same color is used to scatter sampled entities assigned the
identical anchor embedding on initialization. Note that we
normalize the embeddings in [−1, 1] scale for visualization
consistency.

learned gradually, and more entities are assigned to these critical
ones as the anchor embedding.

4.4 Hyperparameter Analysis (RQ3)
To study the sensitiveness of our work on hyperparameters, we con-
duct hyperparameter analysis on the number of meta-embeddings
assigned to each entity 𝑡 , the assignment matrix update frequency
𝑚, the initial weight of the anchor meta-embedding𝑤∗ as well as
the bucket size of the meta-embedding codebook 𝑐 .

0 10 20

sampled meta-embedding

0.000

0.001

0.002

av
g
w
ei
gh

t

init

0 10 20

sampled meta-embedding

0.0000

0.0002

0.0004

av
g
w
ei
gh

t

final

1
Figure 3: Average assignment weights of sampled meta-
embeddings. The weights in the graphs have a small mag-
nitude because we are taking the average weights over all
users/items in the dataset.

Number of Meta-embeddings 𝑡 per Entity. The recommen-
dation performance regarding the number of compositional embed-
dings assigned to each entity 𝑡 is plotted in Figure 4a. The set of 𝑡 ′𝑠
for testing is {1, 2, 3, 4, 5}. It is spotted that when each entity is as-
signed only 1 meta-embedding, the recommendation performance
is severely impacted on all three datasets. This is because when each
entity embedding is only generated using one meta-embedding, the
meta-embedding mapping scheme is indifferent from single hash
mapping, which causes serious hash collision. This statement can
be verified as the change of 𝑡 from 1 to 2 on both datasets leads to
a great leap in performance immediately.

Assignment Matrix Update Frequency 𝑞. We alter the as-
signment matrix update frequency 𝑞 to update every epoch and
every 2, 3, 5 and 10 epochs respectively. The recommendation per-
formance regarding different update frequencies is shown in Figure
4b. It is witnessed that updating the assignment matrix once every
epoch in general provides a (nearly) optimal performance result
for all three datasets. For Yelp2020, LEGCF is insensitive to the
assignment weight update frequency 𝑞 as the change of update
frequency only causes a maximum performance difference of 2.4%.
For Amazon-book dataset, changing the value of 𝑞 may cause a
performance difference of 11.3%. Our experiments indicate that
the best assignment update frequency varies case by case. Some
datasets require frequent updates to learn the weights of composed
meta-embeddings in time, while some other datasets desire multiple

Lightweight Embeddings for Graph Collaborative Filtering SIGIR ’24, July 14–18, 2024, Washington, D.C.

0.0925

0.0950

0.0975
(a) #comp embs/entity

0.0940

0.0960

(b) update frequency

0.0960

0.0980

(c) init anchor weight

0.0900

0.1000
(d) bucket size

0.0200

0.0250

0.0300

0.0285

0.0290

0.0225

0.0250

0.0275

0.0250

0.0300

1 2 3 4 5

t

0.0125

0.0150

0.0175

1 2 3 5 10

q

0.0160

0.0170

0.
1

0.
3

0.
5

0.
7

0.
9

wka

0.0165

0.0170

10
0

50
0 1k 5k 10
k

c

0.0100

0.0150

ND
CG

@
20

Gowalla Yelp2020 Amazon-book

1

0.0917

0.0953

0.0988

0.0205

0.0255

0.0306

1 2 3 4 5
t

0.0112

0.0144

0.0175ND
CG

@
20

1
(a) Effect of 𝑡

0.0926

0.0957

0.0988

0.0285

0.0289

0.0292

1 2 3 5 10
m

0.0157

0.0167

0.0177ND
CG

@
20

1
(b) Effect of𝑚

0.0964

0.0976

0.0988

0.0233

0.0262

0.0291

0.5 0.6 0.7 0.8 0.9
w∗

0.0161

0.0166

0.0172ND
CG

@
20

1
(c) Effect of 𝑤∗

0.0817

0.0914

0.1011

0.0232

0.0279

0.0327

100 500 1k 5k 10k
c

0.0098

0.0135

0.0172ND
CG

@
20

1
(d) Effect of 𝑐

Figure 4: The performance of LEGCF on w.r.t. various hyperparameter settings.

Table 4: Performance comparison between various GNN base
recommenders. The best performance under each setting is
indicated with bold font.

Gowalla Yelp2020 Amazon-book
Setting N@20 R@20 N@20 R@20 N@20 R@20

LightGCN - LEGCF 0.0988 0.1444 0.0291 0.0548 0.0172 0.0259
LightGCN - UD 0.0584 0.0863 0.0169 0.0321 0.0074 0.0110
NGCF - LEGCF 0.0797 0.1092 0.0328 0.0602 0.0130 0.0204
NGCF - UD 0.0547 0.0810 0.0115 0.0230 0.0062 0.0096
LR-GCCF - LEGCF 0.0716 0.1052 0.0157 0.0272 0.0126 0.0192
LR-GCCF - UD 0.0001 0.0002 0.0002 0.0005 0.0006 0.0010

meta-embedding learning epochs between two assignment update
processes to learn expressive meta-embeddings.

InitialWeight of the AnchorMeta-embedding𝑤∗. The chart
showing the relationship between model performance and the ini-
tial weight of anchor meta-embedding is depicted in Figure 4c. The
set of𝑤∗ values for testing is {0.5; 0.6; 0.7; 0.8; 0.9}. It is observed
that for Gowalla dataset, the best result is computed using the
initial anchor weight of 0.5. As the value of 𝑤∗ increases, a 2.4%
drop in performance is caused. The performance of Yelp2020 and
Amazon-book w.r.t. the value of 𝑤∗ follows the same trend, that
𝑤∗ = 0.6 yield satisfactory results, but further increasing 𝑤∗ will
first cause the decrease in performance, and then the performance
is gradually improved again when𝑤∗ rises to 0.8 and 0.9.

Meta-embedding Bucket Size 𝑐 . We draw the meta-codebook
buckets 𝑐 from the set {100; 500; 1, 000; 5, 000; 10, 000} for analysis.
The graphs in this section are shown in Figure 4d. It is witnessed
that for all three datasets, LEGCF attains the best performance under
the small bucket size 𝑐 settings. For Gowalla and Yelp2020, the best
bucket size is 100 and for Amazon-book, the best bucket size is 500.
As the bucket size increases to more than 1, 000, its performance
becomes less competitive. This phenomenon is especially obvious
on the largest dataset Amazon-book, as the increase in bucket size
leads to a rapid drop in performance. Our results indicate that
LEGCF is designed to work under tight memory budget.

4.5 Framework Generalizability (RQ4)
We examine the generalizability of our framework in adopting var-
ious GNN-based recommenders. To do this, apart from LightGCN,
we select two other popular GNN base recommenders, namely, the
NGCF [50] and the LR-GCCF [2] to conduct performance testing.
We apply appropriate dimension aggregation techniques to feed

their propagated embeddings to our assignment update process.
We keep all other settings identical to LightGCN for consistency. In
addition, we also implement the same GNN recommender settings
on unified dimension (UD) embedding tables of similar parameter
sizes for comparison. We report the performance in Table 4.

From the table, it is noted that LEGCF works well on all three
GNN recommenders. LightGCN is the strongest base recommender
for Gowalla and Amazon-book datasets. For Yelp2020 dataset, NGCF
performs slightly better than LightGCN. Contrasting LEGCF’s strong
ability in devising GNN to reinforce embedding quality under the
memory-restrained scenario, UD settings are severely affected by
the choice of the GNN recommenders on all three datasets. This
is verified when comparing the performance between LEGCF and
unified dimension settings under a tight memory budget. It is discov-
ered that with the help of our method, the three base recommenders
boost the performance substantially. Meanwhile, for unified dimen-
sion settings, the recommendation performance is heavily affected
by the number of usable parameters. One extreme case is when the
LR-GCCF is utilized to train unified dimension embedding tables
for the three datasets, the performance is completely obsolete.

5 CONCLUSION
In this paper, we propose a novel graph-based compositional em-
bedding framework LEGCF to resolve the challenges of fixed hash
mapping and unanimous weight allocation to all composed meta-
embeddings by introducing a compact meta-embedding codebook
and a learnable assignment matrix. In LEGCF, we compute GNN
propagated compositonal embeddings for entities. We propose an
efficient assignment update strategy to reflect the meta-embedding
usage for composition in time. Both innovative designs significantly
improve the quality of composed entity embeddings and boost the
recommendation performance. Our comprehensive experiment in-
dicates LEGCF’s superiority in performance over other embedding
optimization work under memory-restrained scenarios.

ACKNOWLEDGMENTS
This work is partially supported by the Australian Research Council
under the streams of Future Fellowship (Grant No. FT210100624),
Discovery Early Career Researcher Award (Grant No. DE230101033),
andDiscovery Project (Grants No. DP240101108, andNo. DP240101814).

SIGIR ’24, July 14–18, 2024, Washington, D.C. Xurong Liang et al.

REFERENCES
[1] Adi Ben-Israel and Thomas NE Greville. 2003. Generalized inverses: theory and

applications. Vol. 15. Springer Science & Business Media.
[2] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting

graph based collaborative filtering: A linear residual graph convolutional network
approach. In AAAI.

[3] Tong Chen, Hongzhi Yin, Yujia Zheng, Zi Huang, Yang Wang, and Meng Wang.
2021. Learning elastic embeddings for customizing on-device recommenders. In
SIGKDD.

[4] Yizhou Chen, Guangda Huzhang, Anxiang Zeng, Qingtao Yu, Hui Sun, Heng-Yi
Li, Jingyi Li, Yabo Ni, Han Yu, and Zhiming Zhou. 2023. Clustered Embedding
Learning for Recommender Systems. In WWW.

[5] Weiyu Cheng, Yanyan Shen, and Linpeng Huang. 2020. Differentiable neural
input search for recommender systems. arXiv preprint arXiv:2006.04466 (2020).

[6] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.
Google news personalization: scalable online collaborative filtering. In WWW.

[7] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and Guang
Lin. 2021. Deeplight: Deep lightweight feature interactions for accelerating ctr
predictions in ad serving. In WSDM.

[8] Aditya Desai, Yanzhou Pan, Kuangyuan Sun, Li Chou, and Anshumali Shrivastava.
2021. Semantically constrained memory allocation (scma) for embedding in
efficient recommendation systems. arXiv preprint arXiv:2103.06124 (2021).

[9] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan
Quan, Jianxin Chang, Depeng Jin, Xiangnan He, et al. 2023. A survey of graph
neural networks for recommender systems: Challenges, methods, and directions.
ReSys 1, 1 (2023).

[10] Antonio A Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James
Zou. 2021. Mixed dimension embeddings with application to memory-efficient
recommendation systems. In ISIT.

[11] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS.

[12] Saket Gurukar, Nikil Pancha, Andrew Zhai, Eric Kim, Samson Hu, Srinivasan
Parthasarathy, Charles Rosenberg, and Jure Leskovec. 2022. MultiBiSage: A
Web-Scale Recommendation System Using Multiple Bipartite Graphs at Pinterest.
VLDB 16, 4 (2022).

[13] Mengyue Hang, Tobias Schnabel, Longqi Yang, and Jennifer Neville. 2022. Light-
weight compositional embeddings for incremental streaming recommendation.
arXiv preprint arXiv:2202.02427 (2022).

[14] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR.

[15] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In WWW.

[16] Geoffrey E Hinton et al. 2012. Improving neural networks by preventing co-
adaptation of feature detectors. (2012).

[17] Gangwei Jiang, Hao Wang, Jin Chen, Haoyu Wang, Defu Lian, and Enhong Chen.
2021. xLightFM: Extremely memory-efficient factorization machine. In SIGIR.

[18] Manas R. Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay K. Adams,
Pranav Khaitan, Jiahui Liu, and Quoc V. Le. 2020. Neural Input Search for Large
Scale Recommendation Models. In SIGKDD.

[19] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting
Chen, Lichan Hong, and Ed H. Chi. 2021. Learning to Embed Categorical Features
without Embedding Tables for Recommendation. In SIGKDD.

[20] George Karypis and Vipin Kumar. 1997. METIS: A software package for parti-
tioning unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. (1997).

[21] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[22] Shuming Kong, Weiyu Cheng, Yanyan Shen, and Linpeng Huang. 2022. AutoSrh:
An Embedding Dimensionality Search Framework for Tabular Data Prediction.
TKDE (2022).

[23] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Tech-
niques for Recommender Systems. Computer 42, 8 (2009).

[24] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. 2016. FractalNet:
Ultra-Deep Neural Networks without Residuals. In ICLR.

[25] Pan Li, Maofei Que, and Alexander Tuzhilin. 2023. Dual Contrastive Learning for
Efficient Static Feature Representation in Sequential Recommendations. TKDE
(2023).

[26] Yang Li, Tong Chen, Peng-Fei Zhang, and Hongzhi Yin. 2021. Lightweight self-
attentive sequential recommendation. In CIKM.

[27] Defu Lian, Haoyu Wang, Zheng Liu, Jianxun Lian, Enhong Chen, and Xing Xie.
2020. LightRec: AMemory and Search-Efficient Recommender System. InWWW.

[28] Defu Lian, Xing Xie, Enhong Chen, and Hui Xiong. 2020. Product quantized
collaborative filtering. TKDE 33, 9 (2020).

[29] Xurong Liang, Tong Chen, Quoc Viet Hung Nguyen, Jianxin Li, and Hongzhi Yin.
2023. Learning Compact Compositional Embeddings via Regularized Pruning
for Recommendation. In ICDM.

[30] Chong Liu, Defu Lian, Min Nie, and Xia Hu. 2020. Online optimized product
quantization. In ICDM.

[31] Haochen Liu, Xiangyu Zhao, Chong Wang, Xiaobing Liu, and Jiliang Tang. 2020.
Automated Embedding Size Search in Deep Recommender Systems. In SIGIR.

[32] Qi Liu, Jin Zhang, Defu Lian, Yong Ge, Jianhui Ma, and Enhong Chen. 2021.
Online additive quantization. In KDD.

[33] Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. 2021. Learnable
Embedding Sizes for Recommender Systems. ICLR (2021).

[34] Fuyuan Lyu, Xing Tang, Hong Zhu, Huifeng Guo, Yingxue Zhang, Ruiming
Tang, and Xue Liu. 2022. OptEmbed: Learning Optimal Embedding Table for
Click-through Rate Prediction. In CIKM.

[35] DheevatsaMudigere et al. 2022. Software-hardware co-design for fast and scalable
training of deep learning recommendation models. In Proceedings of the 49th
Annual International Symposium on Computer Architecture. 993–1011.

[36] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient
neural architecture search via parameters sharing. In ICML.

[37] Liang Qu, Yonghong Ye, Ningzhi Tang, Lixin Zhang, Yuhui Shi, and Hongzhi
Yin. 2022. Single-shot embedding dimension search in recommender system. In
SIGIR.

[38] Yunke Qu, Tong Chen, Quoc Viet Hung Nguyen, andHongzhi Yin. 2024. Budgeted
embedding table for recommender systems. In WSDM.

[39] Yunke Qu, Tong Chen, Xiangyu Zhao, Lizhen Cui, Kai Zheng, and Hongzhi Yin.
2023. Continuous Input Embedding Size Search For Recommender Systems. In
SIGIR.

[40] Steffen Rendle. 2010. Factorization Machines. In ICDM.
[41] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. (2009), 10.
[42] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang.

2020. Compositional Embeddings Using Complementary Partitions for Memory-
Efficient Recommendation Systems. SIGKDD (2020).

[43] Shaoyun Shi, Weizhi Ma, Min Zhang, Yongfeng Zhang, Xinxing Yu, Houzhi Shan,
Yiqun Liu, and Shaoping Ma. 2020. Beyond user embedding matrix: Learning to
hash for modeling large-scale users in recommendation. In SIGIR.

[44] Gilbert W Stewart. 1993. On the early history of the singular value decomposition.
SIAM review 35, 4 (1993).

[45] Jianing Sun, Zhaoyue Cheng, Saba Zuberi, Felipe Pérez, and Maksims Volkovs.
2021. Hgcf: Hyperbolic graph convolution networks for collaborative filtering.
In WWW.

[46] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction.

[47] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research (2008).

[48] Hao Wang, Yanmei Fu, Qinyong Wang, Hongzhi Yin, Changying Du, and Hui
Xiong. 2017. A location-sentiment-aware recommender system for both home-
town and out-of-town users. In KDD.

[49] Qinyong Wang, Hongzhi Yin, Tong Chen, Zi Huang, Hao Wang, Yanchang Zhao,
and Nguyen Quoc Viet Hung. 2020. Next Point-of-Interest Recommendation on
Resource-Constrained Mobile Devices. In WWW.

[50] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In SIGIR.

[51] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. 2013.
A theoretical analysis of NDCG ranking measures. In COLT.

[52] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh
Attenberg. 2009. Feature hashing for large scale multitask learning. In ICML.

[53] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2023. Graph Neural
Networks in Recommender Systems: A Survey. Comput. Surveys (2023).

[54] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Guandong Xu, and Quoc
Viet Hung Nguyen. 2022. On-Device Next-Item Recommendation with Self-
Supervised Knowledge Distillation. In SIGIR.

[55] Bencheng Yan, Pengjie Wang, Jinquan Liu, Wei Lin, Kuang-Chih Lee, Jian Xu, and
Bo Zheng. 2021. Binary code based hash embedding for web-scale applications.
In CIKM.

[56] Bencheng Yan, Pengjie Wang, Kai Zhang, Wei Lin, Kuang-Chih Lee, Jian Xu, and
Bo Zheng. 2021. Learning effective and efficient embedding via an adaptively-
masked twins-based layer. In ICKM.

[57] Yao Yao, Bin Liu, Haoxun He, Dakui Sheng, Ke Wang, Li Xiao, and Huanhuan
Cao. 2022. i-Razor: A Neural Input Razor for Feature Selection and Dimension
Search in Large-Scale Recommender Systems. arXiv preprint arXiv:2204.00281
(2022).

[58] Chunxing Yin, Bilge Acun, Carole-Jean Wu, and Xing Liu. 2021. Tt-rec: Tensor
train compression for deep learning recommendation models. Proceedings of
Machine Learning and Systems 3 (2021).

[59] Chunxing Yin, Da Zheng, Israt Nisa, Christos Faloutsos, George Karypis, and
Richard Vuduc. 2022. Nimble GNN Embedding with Tensor-Train Decomposition.
In SIGKDD.

[60] Hongzhi Yin, Liang Qu, Tong Chen, Wei Yuan, Ruiqi Zheng, Jing Long, Xin
Xia, Yuhui Shi, and Chengqi Zhang. 2024. On-Device Recommender Systems: A
Comprehensive Survey. arXiv preprint arXiv:2401.11441 (2024).

Lightweight Embeddings for Graph Collaborative Filtering SIGIR ’24, July 14–18, 2024, Washington, D.C.

[61] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In SIGKDD.

[62] Caojin Zhang, Yicun Liu, Yuanpu Xie, Sofia Ira Ktena, Alykhan Tejani, Akshay
Gupta, Pranay Kumar Myana, Deepak Dilipkumar, Suvadip Paul, Ikuhiro Ihara,
Prasang Upadhyaya, Ferenc Huszar, and Wenzhe Shi. 2020. Model Size Reduction
Using Frequency Based Double Hashing for Recommender Systems. In RecSys.

[63] Junwei Zhang, Min Gao, Junliang Yu, Lei Guo, Jundong Li, and Hongzhi Yin. 2021.
Double-scale self-supervised hypergraph learning for group recommendation. In
CIKM.

[64] Jin Zhang, Qi Liu, Defu Lian, Zheng Liu, Le Wu, and Enhong Chen. 2022.
Anisotropic additive quantization for fast inner product search. In AAAI.

[65] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2020. Deep Learning based
Recommender System: A Survey and New Perspectives. Comput. Surveys 52

(2020).
[66] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,

Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

[67] Xiangyu Zhao, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, Chong Wang,
Ming Chen, Xudong Zheng, Xiaobing Liu, and Xiwang Yang. 2021. Autoemb:
Automated embedding dimensionality search in streaming recommendations.
(2021).

[68] Ruiqi Zheng, Liang Qu, Tong Chen, Kai Zheng, Yuhui Shi, and Hongzhi Yin.
2024. Personalized Elastic Embedding Learning for On-Device Recommendation.
TKDE (2024).

[69] Ruiqi Zheng, Liang Qu, Bin Cui, Yuhui Shi, and Hongzhi Yin. 2023. AutoML for
Deep Recommender Systems: A Survey. TOIS (2023).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Parameter Sharing
	2.2 AutoML Embedding Optimization

	3 Method
	3.1 Replacing Full Embedding Table with Compositional Embeddings
	3.2 Graph-Propagated Meta-Embeddings
	3.3 Learning Assignment Weights
	3.4 Sparsifying, Batching, and Initializing S
	3.5 The Overall Algorithm

	4 Experiments
	4.1 Experimental Settings
	4.2 Overall Performance (RQ1)
	4.3 Model Component Analysis (RQ2)
	4.4 Hyperparameter Analysis (RQ3)
	4.5 Framework Generalizability (RQ4)

	5 Conclusion
	References

