
Chapter 1
Algorithmic Details behind the Predator Shape
Analyser Based on Symbolic Memory Graphs

Kamil Dudka1,2, Petr Muller1,2, Petr Peringer1, Veronika Šoková1, Tomáš Vojnar1

Abstract This chapter, which is an extended and revised version of the conference
paper [19], concentrates on a detailed description of the algorithms behind the Preda-
tor shape analyser based on abstract interpretation and symbolic memory graphs.
Predator is particularly suited for formal analysis and verification of sequential non-
recursive C code that uses low-level pointer operations to manipulate various kinds
of linked lists of unbounded size as well as various other kinds of pointer structures
of bounded size. The tool supports practically relevant forms of pointer arithmetic,
block operations, address alignment, or memory reinterpretation. We present the
overall architecture of the tool, along with selected implementation details of the
tool as well as its extension into so-called Predator Hunting Party, which utilises
multiple concurrently-running Predator analysers with various restrictions on their
behaviour. Results of experiments with Predator within the SV-COMP competition
as well as on our own benchmarks are provided.

1.1 Introduction
Dealing with pointers and dynamic linked data structures belongs among the most
challenging tasks of formal analysis and verification of software due to a need
to cope with infinite sets of reachable program configurations having the form
of complex graphs. This task becomes even more complicated when considering
low-level memory operations such as pointer arithmetic, safe usage of pointers
with invalid targets, block operations with memory, reinterpretation of the memory
contents, or address alignment.

In this chapter, we present a fully-automated approach to formal verification of
list manipulating programs that is behind the Predator shape analyser and that is
designed to cope with all of the above mentioned low-level memory operations.
The approach is based on representing sets of heap graphs using the so-called
symbolic memory graphs (SMGs). This representation is to some degree inspired by
works on separation logic with higher-order list predicates [2], but it is graph-based

Brno University of Technology, Faculty of Information Technology, Czech Republic · Red Hat
Czech, Brno, Czech Republic

1

ar
X

iv
:2

40
3.

18
49

1v
1

 [
cs

.S
E

]
 2

7
M

ar
 2

02
4

2 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

and uses a much more fine-grained memory model. In particular, SMGs and the
algorithms designed to make them applicable in a fully-automated shape analysis
based on abstract interpretation allow one to deal with byte-precise offsets of fields of
objects, offsets of pointer targets, as well as object sizes. As our experiments show,
Predator can successfully handle many programs on which other state-of-the-art
fully-automated approaches fail (by not terminating or by producing false positives
or even false negatives).

Symbolic Memory Graphs

Going into slightly more detail, SMGs are directed graphs with two kinds of nodes:
objects and values. Objects represent allocated memory and are further divided into
regions representing individual memory areas and list segments encoding linked
sequences of 𝑛 or more regions uninterrupted by external pointers (for some 𝑛 ≥ 0).
Values represent addresses and other data stored inside objects. Objects and values
are linked by two kinds of edges: has-value edges from objects to values and points-to
edges from value nodes representing addresses to objects. For efficiency reasons, we
represent equal values by a single value node. We explicitly track sizes of objects,
byte-precise offsets at which values are stored in them, and we allow pointers to
point to objects with an arbitrary offset, i.e., a pointer can point inside as well as
outside an object, not just at its beginning as in many current analyses.

SMGs allow us to handle possibly cyclic, nested (with an arbitrary depth), and/or
shared singly- as well as doubly-linked lists (for brevity, below, we concentrate on
doubly-linked lists only). Our analysis can fully automatically recognise linking fields
of the lists as well as the way they are possibly hierarchically nested. Moreover, the
analysis can easily handle lists in the form common in system software (in particular,
the Linux kernel), where list nodes are linked through their middle, pointer arithmetic
is used to get to the beginning of the nodes, pointers iterating through such lists can
sometimes safely point to unallocated memory, the forward links are pointers to
structures while the backward ones are pointers to pointers to structures, etc.

To reduce the number of SMGs generated for each basic block of the analysed
program, we use a join operator working over SMGs. Our join operator is based
on simultaneously traversing two SMGs while trying to merge the encountered
pairs of objects and values according to a set of rules carefully tuned through
many experiments to balance precision and efficiency (see Section 1.3.2 for details).
Moreover, we use the join operator as the core of our abstraction, which is based on
merging neighbouring objects (together with their sub-heaps) into list segments. This
approach leads to a rather easy to understand and—according to our experiments—
quite efficient abstraction algorithm. In the abstraction algorithm, the join is not
applied to two distinct SMGs, but a single one, starting not from pairs of program
variables, but the nodes to be merged. Further, we use our join operator as a basis for
checking entailment on SMGs too (by observing which kind of pairs of objects and
values are merged when joining two SMGs). In order to handle lists whose nodes
optionally refer to some regions or sub-lists (which can make some program analyses
diverge and/or produce false alarms [37]), our join and abstraction support so-called
0/1 abstract objects, i.e., objects that may but need not be present.

1 Algorithmic Details behind the Predator Shape Analyser 3

Since on the low level, the same memory contents can be interpreted in different
ways (e.g., via unions or type-casting), we incorporate into our analysis the so-called
read, write, and join reinterpretation. In particular, we formulate general conditions
on the reinterpretation operators that are needed for soundness of our analysis,
and then instantiate these operators for the quite frequent case of dealing with
blocks of nullified memory. Due to this, we can, e.g., efficiently handle initialization
of structures with tens or hundreds of fields commonly allocated and nullified in
practice through a single call of calloc, at the same time avoiding false alarms
stemming from that some field was not explicitly nullified. Moreover, we provide a
support for block operations like memmove or memcpy. Further, we extend the basic
notion of SMGs to support pointers having the form of not just a single address, but
an interval of addresses. This is needed, e.g., to cope with address alignment or with
list nodes that are equal up to their incoming pointers arriving with different offsets
(as common, e.g., in memory allocators).

The Predator Analyser

The approach sketched above has been implemented in the Predator analyser [18].
Predator automatically proves absence of various memory safety errors, such as in-
valid dereferences, invalid free operations, or memory leaks. Moreover, Predator can
also provide the user with the derived shape invariants. Since SMGs provide a rather
detailed memory model, Predator produces fewer false alarms than other tools, and
on the other hand, it can discover bugs that may be undetected by other state-of-
the-art tools (as illustrated by our experimental results). In particular, Predator can
discover out-of-bound dereferences (including buffer overflows on the stack, i.e., the
so-called stack smashing, which can alter the execution flow and cause serious se-
curity vulnarabilities) as well as nasty bugs resulting from dealing with overlapping
blocks of memory in operations like memcpy.

The Predator analyser is a basic building block of the so-called Predator Hunting
Party (PredatorHP). In PredatorHP, the Predator analyser is called a verifier due to
its sound over-approximation of program semantics. It is allowed to claim programs
correct, but it is not allowed to warn about bugs since it can produce false alarms
due to the over-approximation it uses. For detecting errors, PredatorHP contains
several Predator hunters which use SMG-based algorithms but with no abstraction
on pointer structures. The different hunters differ in their search strategy (depth-first
or breadth-first) and the limits imposed on their search. They can warn about errors
(not producing any false alarms unless caused by abstraction of non-pointer data)
but cannot prove programs correct. The only exception is the case when the given
program has a finite state space and that is entirely explored. As our experiments
show, PredatorHP can indeed avoid many false alarms and it also reduces the wall-
clock time of the analysis (while usually increasing the CPU time).

Predator has been successfully validated on a number of case studies, including
various operations on lists commonly used in the Linux kernel as well as code taken
directly from selected low-level critical applications (without any changes up to
adding a test environment). In particular, we present results of our experiments with
the memory allocator from the Netscape portable runtime (NSPR), used, e.g., in

4 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

Firefox, and the lvm2 logical volume manager. All of the case studies are available
within the distribution of Predator. As we show on the experimental results that we
obtained, many of our case studies go beyond what other currently-existing fully-
automated program analysis and verification tools can handle. We further present
an experimental evaluation of Predator and PredatorHP on the benchmarks of the
International Software Verification Competition 2019 (SV-COMP’19) where we
concentrate mainly on the effects of using PredatorHP and also on some recent
extensions of Predator.

Outline of the Chapter

The rest of the chapter is organised as follows. First, in Section 1.2.1, we extend
the basic intuition on SMGs provided above by a somewhat more detailed but still
intuitive explanation. Section 1.2.2 provides a further illustration of SMGs through
two examples of SMGs representing data structures used in practice. Then, we
provide formal definitions of SMGs and related notions in Section 1.2.3.

Subsequently, Section 1.3 describes principles of the operations on SMGs that
are needed for implementing a shape analyser on top of SMGs. The principles
presented in Section 1.3 should suffice for getting a decent understanding of all
the operations. However, for those more interested, Appendices 1.8–1.11 provide a
detailed description of all the operations in the form of pseudo-code.

At this point, let us stress once more that the main computation loop of Predator
is that of abstract interpretation. It uses sets of symbolic program configurations
based on SMGs, i.e., a disjunctive extension of the basic abstract domain, to ab-
stractly record sets of program configurations reachable at program locations. SMG
abstraction is used to implement widening, and SMG join and entailment (based
itself on the SMG join) are used to reduce the number of SMGs tracked at particular
program locations. Due to this very standard approach being employed, we do not
provide a further detailed explanation of the basic computation loop itself. However,
in Section 1.3.6, we provide a rather complete illustration of the entire computation
loop on an example program.

Section 1.4 provides various extensions of the basic notion of SMGs. Section 1.5
discusses the architecture of Predator along with its various implementation de-
tails. Moreover, Section 1.5 also introduces PredatorHP. Section 1.6 provides our
experimental results. In Section 1.7, we discuss related works.

Finally, Appendix 1.12 contains a brief tutorial on running and configuring Preda-
tor and PredatorHP.

1.2 Symbolic Memory Graphs

In this section, we introduce the notion of symbolic memory graphs (SMGs) that are
intended—together with a mapping from global (static) and local (stack) variables
to their nodes—to encode (possibly infinite) sets of configurations of programs with
pointers and unbounded dynamic linked lists. We start by an informal description of
SMGs, followed by their formalisation. For an illustration of the notions discussed
below, we refer the reader to Fig. 1.1, which shows how SMGs represent cyclic

1 Algorithmic Details behind the Predator Shape Analyser 5

...

2+ DLS

hfo,lst

hfo,fst0,ptr0,reg

pfo,ptr

size(ptr),ptr

nfo,ptr

Fig. 1.1: A cyclic Linux-style DLL (top) and its SMG (bottom), with some SMG
attributes left out for readability. For the meaning of the acronyms (e.g., hfo stands
for the head-field offset) see Section 1.2.3.

Linux-style DLLs. The head node of such lists has no data part (while all other
nodes include the head structure as well as custom data), and its next/prev pointers
point inside list nodes, not at their beginning.

1.2.1 The Intuition behind SMGs

An SMG consists of two kinds of nodes: objects and values (in Fig. 1.1, they are
represented by boxes and circles, respectively). Objects are further divided to regions
and (doubly-linked) list segments (DLSs)1. A region represents a contiguous area
of memory allocated either statically, on the stack, or on the heap. Each consistent
SMG contains a special region called the null object, denoted #, which represents the
target of NULL. DLSs arise from abstracting sequences of doubly-linked regions that
are not interrupted by any external pointer. For example, in the lower part of Fig. 1.1,
the left box is a region corresponding to the list head from the upper part of the
figure whereas the right box is a DLS summarizing the sequence of custom record
objects from the upper part. Values are then used to represent addresses and other
data stored in objects. All values are abstract in that we only distinguish whether they
represent equal or possibly different concrete values. The only exception is the value
0 that is used to represent sequences of zero bytes of any length, which includes
the zeros of all numerical types, the address of the null object, as well as nullified
blocks of any size. Zero values are supported since they play a rather crucial role in
C programs. In the future, a better distinction of values could be added.

SMGs have two kinds of edges: namely, has-value edges leading from objects to
values and points-to edges leading from addresses to objects (cf. Fig. 1.1). Intuitively,
the edges express that objects have values and addresses point to objects (non-address
values have no outgoing edge). Has-value edges are labelled by the offset and type of
the field in which a particular value is stored within an object. Note that we allow the
fields to overlap. This is used to represent different interpretations that a program

1 Our tool Predator supports singly-linked list segments too. Such segments can be viewed as
a restriction of DLSs, and we omit them from the description in order to simplify it.

6 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

can assign to a given memory area and that we do not want the analyser to recompute
again and again. Points-to edges are labelled by an offset and a target specifier. The
offset is used to express that the address from which the edge leads may, in fact, point
before, inside, or behind an object. The target specifier is only meaningful for list
segments to distinguish whether a given edge represents the address (or addresses)
of the first, last, or each concrete region abstracted by the segment. The last option is
used to encode links going to list nodes from the structures nested below them (e.g.,
in a DLL of DLLs, each node of the top-level list may be pointed from its nested
list).

A key advantage of representing values (including addresses) as a separate kind of
nodes is that a single value node is then used to represent values which are guaranteed
to be equal in all concrete memory configurations encoded by a given SMG. Hence,
distinguishing between equal values and possibly different values reduces to a simple
identity check, not requiring a use of any prover. Thanks to identifying fields of
objects by offsets (instead of using names of struct/union members), comparing
their addresses for equality simplifies to checking identity of the address nodes.
For example, (x == &x->next) holds iff next is the first member of the structure
pointed by x, in which case both x and &x->next are guaranteed to be represented
by a single address node in SMGs. Finally, the distinction of has-value and points-
to edges saves some space since the information present on points-to edges would
otherwise have to be copied multiple times for a single target.

Objects and values in SMGs are labelled by several attributes. First, each object
is labelled by its kind, allowing one to distinguish regions and DLSs. Next, each
object is labelled by its size, i.e., the amount of memory allocated for storing it. For
DLSs, the size gives the size of their nodes. All objects and values have the so-called
nesting level which is an integer specifying at which level of hierarchically-nested
structures the object or value appears (level 0 being the top level). All objects are
further labelled by their validity in order to allow for safe pointer arithmetic over freed
regions (which are marked invalid but kept as long as there is some pointer to them).

Next, each DLS is labelled by the minimum length of the sequence of regions
represented by it.2 In particular, the notation “2+” used in Fig. 1.1 means that the
minimum length of the list segment is 2. Further, each DLS is associated with
the offsets of the “next” and “prev” fields through which the concrete regions
represented by the segment are linked forward and backward3. Each DLS is also
associated with the so-called head offset at which a sub-structure called a list head
is stored in each list node (cf. Fig. 1.1). The usage of list heads is common in system
software. They are predefined structures, typically containing the next/prev fields
used to link list nodes. When a new list is defined, its node structure contains the
list head as a nested structure, its nodes are linked by pointers pointing not at their
beginning but inside of them (in particular, to the list head), and pointer arithmetic
is used to get to the beginning of the actual list nodes.

Global and stack program variables are represented by regions in a similar way
as heap objects and can thus be manipulated in a similar way (including their

2 Later, in Section 1.4, special list segments of length 0 or 1 are mentioned too.
3 The names “next” and “prev” (i.e., previous) are used within our definition of list segments only.
The concrete names of these fields in the programs being analysed are irrelevant.

1 Algorithmic Details behind the Predator Shape Analyser 7

manipulation via pointers, checking for out-of-bounds accesses leading to stack
smashing, etc.). Regions representing program variables are tagged by their names
and hence distinguishable whenever needed (e.g., when checking for invalid frees of
stack/global memory, etc.).

1.2.2 Further Illustration of the Notion of SMGs

We now provide two more illustrative examples of how SMGs represent various data
structures common in practice.

The upper part of Fig. 1.2 shows a Linux-style cyclic DLL of cyclic DLLs. All
nodes of all nested DLLs point to a shared memory region. The lower part of the
figure shows an SMG representing this structure. Note that the top-level DLS as well
as the shared region are on level 0 whereas the nested DLSs are on level 1.

The upper part of Fig. 1.3 shows another variant of Linux-style DLLs which
is optimised for use in hash tables. The lower part of the figure shows an SMG
representing this kind of lists. For lists used in hash tables, the size of list headers
determines the amount of memory allocated by an empty hash table. That is why the
lists presented in Fig. 1.3 have headers reduced to the size of a single field for the
price of having forward and backward links of different types. In particular, forward
links are pointers to structures whereas backward links are pointers to pointers to
structures. This asymmetry may cause problems to analysers that use a selector-based
description of list segments, but it is not a problem for us since our representation is
purely offset-based.4

1.2.3 Formal Definition of Symbolic Memory Graphs

Let B be the set of Booleans, T a set of types, size(𝑡) the size of instances of a type
𝑡 ∈ T, ptr ∈ T a unique pointer type5, K = {reg, dls} the set of kinds of objects
(distinguishing regions and DLSs), and S = {fst, lst, all, reg} the set of points-to
target specifiers.

Symbolic Memory Graphs

A symbolic memory graph is a tuple 𝐺 = (𝑂,𝑉,Λ, 𝐻, 𝑃) where:

• 𝑂 is a finite set of objects including the special null object #.
• 𝑉 is a finite set of values such that 𝑂 ∩𝑉 = ∅ and 0 ∈ 𝑉 .
• Λ is a tuple of the following labelling functions:

4 A need to use a special kind of list segments would arise in SMGs if the head and next offsets
were different, but that is unlikely to happen in this special case since it would prevent the list head
from having the size of a single pointer only.
5 We assume size(ptr) to be a constant, which implies that separate verification runs are needed
for verifying a program for target architectures using different address sizes.

8 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

...

hfo nfo pfolist_head

next
prev

next
prev

next'

prev'

next
prev

next'

prev'

next'

prev'

next'

prev'

next'

prev'

hfo1

hfo2

2+ DLS hfo,lst

 hfo,fst 0,ptr 0,reg

 pfo,ptr

size(ptr),ptr

nfo,ptr

1+ DLS

 0,reg

 hfo2,fst

 hfo2,lst

of2,ptr

 pfo2,ptr

 nfo2,ptr

hfo1,all

level=1

 pfo1,ptr nfo1,ptr

level=0

level=0

Fig. 1.2: A cyclic Linux-style DLL of DLLs with a shared data element (top) and its
SMG (bottom).

...

hfo nfo pfo

hlist_head

custom_record

first next
pprev

next
pprev

hlist_node hlist_node

2+ DLS
 hfo,fst 0,ptr 0,reg

 pfo,ptr

 nfo,ptr
0

Fig. 1.3: A Linux-style list used in hash tables (top) and its SMG (bottom).

1 Algorithmic Details behind the Predator Shape Analyser 9

r1 r2

ap an

hfo(d),reghfo(d),reg
nfo(d),ptr

pfo(d),ptr

of,regof,reg

nfo(d),ptrpfo(d),ptr

r'1 r'2

af al

a1 a2

1+ DLS

level(r')=1

of,all

hfo(d),fst hfo(d),lst

r'

af al

d

an

nfo(d),ptr

ap

pfo(d),ptr

ad
level(ad)=1

(a) (b)

Fig. 1.4: (a) An SMG and (b) its possible concretisation for the case when the DLS 𝑑

represents exactly two regions (showing key attributes only).

– The kind of objects kind : 𝑂 → K where kind(#) = reg, i.e., # is formally
considered a region. We let 𝑅 = {𝑟 ∈ 𝑂 | kind(𝑟) = reg} be the set of
regions and 𝐷 = {𝑑 ∈ 𝑂 | kind(𝑑) = dls} be the set of DLSs of 𝐺.

– The nesting level of objects and values level : 𝑂 ∪𝑉 → N.
– The size of objects size : 𝑂 → N.
– The minimum length of DLSs 𝑙𝑒𝑛 : 𝐷 → N.
– The validity of objects valid : 𝑂 → B.
– The head, next, and prev field offsets of DLSs hfo, nfo, pfo : 𝐷 → N.

• 𝐻 is a partial edge function 𝑂 × N × T ⇀ 𝑉 which defines has-value edges
𝑜

𝑜𝑓 ,𝑡−−−→𝑣 where 𝑜 ∈ 𝑂, 𝑣 ∈ 𝑉 , 𝑜𝑓 ∈ N, and 𝑡 ∈ T. We call (𝑜𝑓 , 𝑡) a field of the
object 𝑜 that stores the value 𝑣 of the type 𝑡 at the offset 𝑜𝑓 .

• 𝑃 is a partial injective edge function 𝑉 ⇀ Z × S × 𝑂 which defines points-to
edges 𝑣

𝑜𝑓 ,tg−−−−→𝑜 where 𝑣 ∈ 𝑉 , 𝑜 ∈ 𝑂, 𝑜𝑓 ∈ Z, and tg ∈ S such that tg = reg

iff 𝑜 ∈ 𝑅. Here, 𝑜𝑓 is an offset wrt the base address of 𝑜.6 If 𝑜 is a DLS, tg
says whether the edge encodes pointers to the first, last, or all concrete regions
represented by 𝑜.

We define the first node of a list segment such that the next field of the node points
inside the list segment (and the last node such that the prev field of the node points
inside the list segment). As already mentioned, the all target specifier is used in
hierarchically-nested list structures where each nested data structure points back to
the node of the parent list below which it is nested. Fig. 1.4 illustrates how the target
specifier affects the semantics of points-to edges (and the corresponding addresses):
The DLS 𝑑 is concretized to the two regions 𝑟1 and 𝑟2, and the nested abstract region
𝑟 ′ to the two concrete regions 𝑟 ′1 and 𝑟 ′2. Note that if 𝑟 ′ was not nested, i.e., if it had
𝑙𝑒𝑣𝑒𝑙 (𝑟 ′) = 0, it would concretise into a single region pointed by both 𝑟1 and 𝑟2.

Consistent Symbolic Memory Graphs

In the following, we assume working with so-called consistent SMGs only.7 In
particular, we call an SMG 𝐺 = (𝑂,𝑉,Λ, 𝐻, 𝑃) consistent iff the following holds:

6 Note that the offset can even be negative, which happens, e.g., when traversing a Linux list.
7 All the later presented algorithms will be such that they produce a consistent SMG when they are
applied on a consistent SMG (or SMGs). Therefore, since our analysis will start from a consistent
SMG, there is no need to check the consistency on the fly.

10 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

• Basic consistency of objects. The null object is invalid, has size and level 0, and
its address is 0, i.e., valid(#) = false, size(#) = level(#) = 0, and 0 0,reg−−−−→#. All
DLSs are valid, i.e., ∀𝑑 ∈ 𝐷 : valid(𝑑). Invalid regions have no outgoing edges.

• Field consistency. Fields do not exceed boundaries of objects, i.e., ∀𝑜 ∈ 𝑂

∀𝑜𝑓 ∈ N ∀𝑡 ∈ T : 𝐻 (𝑜, 𝑜𝑓 , 𝑡) ≠ ⊥ ⇒ 𝑜𝑓 + size(𝑡) ≤ size(𝑜).
• DLS consistency. Each DLS 𝑑 ∈ 𝐷 has a next pointer and a prev pointer, i.e., there

are addresses 𝑎𝑛, 𝑎𝑝 ∈ 𝐴 s.t.𝐻 (𝑑, nfo(𝑑), ptr) = 𝑎𝑛 and𝐻 (𝑑, pfo(𝑑), ptr) = 𝑎𝑝

(cf. Fig. 1.4). The next pointer is always stored in memory before the prev pointer,
i.e., the next and prev offsets are s.t. ∀𝑑 ∈ 𝐷 : nfo(𝑑) < pfo(𝑑). Points-to edges
encoding links to the first and last node of a DLS 𝑑 are always pointing to these
nodes with the appropriate head offset, i.e., ∀𝑎 ∈ 𝐴 : tg(𝑃(𝑎)) ∈ {fst, lst} ⇒
𝑜𝑓 (𝑃(𝑎)) = hfo(𝑑) where 𝑑 = 𝑜(𝑃(𝑎)).8 Finally, in a consistent SMG there is
no cyclic path containing 0+DLSs (and their addresses) only since its semantics
would include an address not referring to any object.

• Nesting consistency. Each nested object 𝑜 ∈ 𝑂 of level 𝑙 = level(𝑜) > 0 has
precisely one parent DLS, denoted parent(𝑜), that is of level 𝑙 − 1 and there
is a path from parent(𝑜) to 𝑜 whose inner nodes are of level 𝑙 and higher
(i.e., more nested) only—e.g., in Fig. 1.4, 𝑑 is the parent of 𝑟 ′. Addresses
with fst, lst, and reg targets are always of the same level as the object
they refer to (as is the case for 𝑎 𝑓 , 𝑎𝑙 , 𝑎1, 𝑎2 in Fig. 1.4), i.e., ∀𝑎 ∈ 𝐴 :
tg(𝑃(𝑎)) ∈ {fst, lst, reg} ⇒ level(𝑎) = level(𝑜(𝑃(𝑎))). On the other hand,
addresses with the all target go up one level in the nesting hierarchy, i.e.,
∀𝑎 ∈ 𝐴 : tg(𝑃(𝑎)) = all⇒ level(𝑎) = level(𝑜(𝑃(𝑎))) + 1 (cf. 𝑎𝑑 in Fig. 1.4).
Finally, edges representing back-pointers to all nodes of a list segment can only
lead from objects (transitively) nested below that segment (e.g., in Fig. 1.4, such
an edge leads from the region 𝑟 ′ back to the DLS 𝑑, but it cannot lead from
any other regions). Formally, for any 𝑜, 𝑜′ ∈ 𝑂, 𝑎 ∈ 𝐻 (𝑜), 𝑜(𝑃(𝑎)) = 𝑜′, and
level(𝑜) > level(𝑜′), tg(𝑃(𝑎)) = all iff 𝑜′ = parent𝑘 (𝑜) for some 𝑘 ≥ 1.

Let 𝐺 = (𝑂,𝑉,Λ, 𝐻, 𝑃) be an SMG with a set of regions 𝑅 and a set of DLSs 𝐷.
We denote a DLS 𝑑 ∈ 𝐷 of minimum length 𝑛, for which len(𝑑) = 𝑛, as an 𝑛+ DLS.
We use ⊥ to denote cases where 𝐻 or 𝑃 is not defined. For any 𝑣 ∈ 𝑉 for which
𝑃(𝑣) ≠ ⊥, we denote by 𝑜𝑓 (𝑃(𝑣)), tg(𝑃(𝑣)), and 𝑜(𝑃(𝑣)) the particular offset, target
specifier, and object of the triple 𝑃(𝑣), respectively. Further, for 𝑜 ∈ 𝑂, we let 𝐻 (𝑜) =
{𝐻 (𝑜, 𝑜𝑓 , 𝑡) | 𝑜𝑓 ∈ N, 𝑡 ∈ T, 𝐻 (𝑜, 𝑜𝑓 , 𝑡) ≠ ⊥}. We let 𝐴 = {𝑣 ∈ 𝑉 | 𝑃(𝑣) ≠ ⊥}
be the set of all addresses used in 𝐺. Next, a path in 𝐺 is a sequence (of length
one or more) of values and objects such that there is an edge between every two
neighbouring nodes of the path. An object or value 𝑥2 ∈ 𝑂 ∪𝑉 is reachable from an
object or value 𝑥1 ∈ 𝑂 ∪𝑉 iff there is a path from 𝑥1 to 𝑥2.

Symbolic Program Configurations

Let GVar be a finite set of global variables, SVar a countable set of stack variables
such that GVar ∩ SVar = ∅, and let Var = GVar ∪ SVar. A symbolic program

8 The last two requirements are not necessary, but they significantly simplify the below presented
algorithms (e.g., the DLS materialisation given in Section 1.2.4).

1 Algorithmic Details behind the Predator Shape Analyser 11

configuration (SPC) is a pair 𝐶 = (𝐺, 𝜈) where 𝐺 is an SMG with a set of regions
𝑅, and 𝜈 : Var → 𝑅 is a finite injective map such that ∀𝑥 ∈ Var : level(𝜈(𝑥)) =
0 ∧ valid(𝜈(𝑥)). Note that 𝜈 evaluates to the regions in which values of variables are
stored, not directly the values themselves. We call each object 𝑜 such that 𝜈(𝑥) = 𝑜

for some 𝑥 ∈ GVar a static object, and each object 𝑜 such that 𝜈(𝑥) = 𝑜 for some
𝑥 ∈ SVar a stack object. All other objects are called heap objects. An SPC is called
garbage-free iff all its heap objects are reachable from static or stack objects.

Special Kinds of SMGs and SPCs

We define the empty SMG to consist solely of the null object, its address 0, and
the points-to edge between them. The empty SPC then consists of the empty SMG
and the empty variable mapping. An SMG 𝐺′ = (𝑂′, 𝑉 ′,Λ′, 𝐻′, 𝑃′) is a sub-SMG
of an SMG 𝐺 = (𝑂,𝑉,Λ, 𝐻, 𝑃) iff (1) 𝑂′ ⊆ 𝑂, (2) 𝑉 ′ ⊆ 𝑉 , and (3) 𝐻′, 𝑃′, and
Λ′ are restrictions of 𝐻, 𝑃, and Λ to 𝑂′ and 𝑉 ′, respectively. The sub-SMG of 𝐺
rooted at an object or value 𝑥 ∈ 𝑂 ∪ 𝑉 , denoted 𝐺𝑥 , is the smallest sub-SMG of
𝐺 that includes 𝑥 and all objects and values reachable from 𝑥. Given 𝐹 ⊆ N, the
𝐹-restricted sub-SMG of 𝐺 rooted at an object 𝑜 ∈ 𝑂 is the smallest sub-SMG of 𝐺
that includes 𝑜 and all objects and values reachable from 𝑜 apart from the addresses
𝐴𝐹 = {𝐻 (𝑜, 𝑜𝑓 , ptr) | 𝑜𝑓 ∈ 𝐹} and nodes that are reachable from 𝑜 through 𝐴𝐹

only. Finally, the sub-SMG of 𝐺 nested below 𝑑 ∈ 𝐷, denoted 𝐺𝑑 , is the smallest
sub-SMG of 𝐺 including 𝑑 and all objects and values of level higher than level(𝑑)
that are reachable from 𝑑 via paths that, apart from 𝑑, consist exclusively of objects
and values of a level higher than level(𝑑).

1.2.4 The Semantics of SMGs

We define the semantics of SMGs in two steps, namely, by first defining it in terms
of the so-called memory graphs whose semantics is subsequently defined in terms of
concrete memory images. In particular, a memory graph (MG) is defined exactly as an
SMG up to that it is not allowed to contain any list segments. An SMG then represents
the class of MGs that can be obtained (up to isomorphism) by applying the following
two transformations any number of times: (1) materialisation of fresh regions from
DLSs (i.e., intuitively, “pulling out” concrete regions from the beginning or end of
segments) and (2) removal of 0+ DLSs (which may have become 0+ due to the
preceding materialisation). Moreover, note that the operations of materialisation and
removal are used not only to define the semantics, but they will later be used within
symbolic execution of C statements over SMGs (and hence as a part of the actual
SMG-based analysis) too.

Materialisation and Removal of DLSs

Let 𝐺 = (𝑂,𝑉,Λ, 𝐻, 𝑃) be an SMG with the sets of regions 𝑅, DLSs 𝐷, and
addresses 𝐴. Let 𝑑 ∈ 𝐷 be a DLS of level 0. Further, let 𝑎𝑛, 𝑎𝑝 ∈ 𝐴 be the next and
prev addresses of 𝑑, i.e., 𝐻 (𝑑, pfo(𝑑), ptr) = 𝑎𝑝 and 𝐻 (𝑑, nfo(𝑑), ptr) = 𝑎𝑛. The

12 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

DLS DLS

level>0

Gd

af an

ap

level>0

Gd

level�0

G'r

r

d d

(a) (b)

an

ap

ad
af

0+DLS

level>0

Gd

an

ap

d

(c) (d)

Fig. 1.5: Materialisation of a DLS: (a) input, (b) output (region 𝑟 got materialised
from DLS 𝑑). Removal of a DLS: (c) input, (d) output. Sub-SMGs 𝐺𝑑 and 𝐺′𝑟 are
highlighted without their roots.

DLS 𝑑 can be materialised as follows—for an illustration of the operation, see the
upper part of Fig. 1.5:

1. Materialisation of the first region and its nested sub-SMG. 𝐺 is extended by
a fresh copy 𝐺′𝑟 of the sub-SMG 𝐺𝑑 nested below 𝑑. In 𝐺′𝑟 , 𝑑 is replaced by
a fresh region 𝑟 such that size(𝑟) = size(𝑑), level(𝑟) = 0, and valid(𝑟) = true.
The nesting level of each object and value in 𝐺′𝑟 (apart from 𝑟) is decreased
by one.

2. Interconnection of the materialised region and the rest of the segment. Let
𝑎 𝑓 ∈ 𝐴 be the address pointing to the beginning of 𝑑, i.e., such that
𝑃(𝑎 𝑓) = (hfo(𝑑), fst, 𝑑). If 𝑎 𝑓 does not exist in 𝐺, it is added. Next,
𝐴 is extended by a fresh address 𝑎𝑑 that will point to the beginning of
the remaining part of 𝑑 after the concretisation (while 𝑎 𝑓 will be the ad-
dress of 𝑟). Finally, 𝐻 and 𝑃 are changed s.t. 𝑃(𝑎 𝑓) = (hfo(𝑑), reg, 𝑟),
𝐻 (𝑟, pfo(𝑑), ptr) = 𝑎𝑝 , 𝐻 (𝑟, nfo(𝑑), ptr) = 𝑎𝑑 , 𝑃(𝑎𝑑) = (hfo(𝑑), fst, 𝑑),
and 𝐻 (𝑑, pfo(𝑑), ptr) = 𝑎 𝑓 .

3. Interconnection of the materialised sub-heap and non-nested objects. For any
object 𝑜 of𝐺𝑑 , let 𝑜′ be the corresponding copy of 𝑜 in𝐺′𝑟 (for 𝑜 = 𝑑, let 𝑜′ = 𝑟).
For each field (𝑜𝑓 , 𝑡) ∈ (N×T) of each object 𝑜 in 𝐺𝑑 whose value is of level 0,
i.e., level(𝐻 (𝑜, 𝑜𝑓 , 𝑡)) = 0, the corresponding field of 𝑜′ in 𝐺′𝑟 is set to the same
value, i.e., the set of edges is extended such that 𝐻 (𝑜′, 𝑜𝑓 , 𝑡) = 𝐻 (𝑜, 𝑜𝑓 , 𝑡).

4. Adjusting the minimum length of the rest of the segment. If len(𝑑) > 0, len(𝑑)
is decreased by one.

Next, let 𝑑 ∈ 𝐷 be a DLS as above with the additional requirement of len(𝑑) = 0
with the addresses 𝑎𝑛, 𝑎𝑝 , 𝑎 𝑓 , and 𝑎𝑙 defined as in the case of materialisation. The
DLS 𝑑 can be removed as follows—for an illustration, see the lower part of Fig. 1.5:
(1) Each has-value edge 𝑜 𝑜𝑓 ,𝑡−−−→𝑎 𝑓 is replaced by the edge 𝑜 𝑜𝑓 ,𝑡−−−→𝑎𝑛. (2) Each has-value

1 Algorithmic Details behind the Predator Shape Analyser 13

edge 𝑜
𝑜𝑓 ,𝑡−−−→𝑎𝑙 is replaced by the edge 𝑜

𝑜𝑓 ,𝑡−−−→𝑎𝑝 . (3) The subgraph 𝐺𝑑 is removed
together with the addresses 𝑎 𝑓 , 𝑎𝑙 , and the edges adjacent with the removed objects
and values.

Given an SMG 𝐺 = (𝑂,𝑉,Λ, 𝐻, 𝑃) with a set of DLSs 𝐷, we denote by MG(𝐺)
the class of all MGs that can be obtained (up to isomorphism) by materializing each
DLS 𝑑 ∈ 𝐷 at least len(𝑑) times and by subsequently removing all DLSs.

! !

Concrete Memory Images

The semantics of an MG 𝐺 = (𝑅,𝑉,Λ, 𝐻, 𝑃) is the set MI(𝐺) of memory images
𝜇 : N→ {0, . . . , 255} mapping concrete addresses to bytes such that there exists a
function 𝜋 : 𝑅 → N, called a region placement, for which the following holds:

1. Only the null object is placed at address zero, i.e., ∀𝑟 ∈ 𝑅 : 𝜋(𝑟) = 0⇔ 𝑟 = #.
2. No two valid regions overlap, i.e., ∀𝑟1, 𝑟2 ∈ 𝑅 : valid(𝑟1) ∧valid(𝑟2) ⇒ ⟨𝜋(𝑟1),

𝜋(𝑟1) + size(𝑟1)) ∩ ⟨𝜋(𝑟2), 𝜋(𝑟2) + size(𝑟2)) = ∅.
3. Pointer fields are filled with the concrete addresses of the regions they refer to.

Formally, for each pair of has-value and points-to edges 𝑟1
𝑜𝑓1 ,ptr−−−−−−→𝑎

𝑜𝑓2 ,reg−−−−−−→𝑟2
in 𝐻 and 𝑃, resp., addr(bseq(𝜇, 𝜋(𝑟1) + 𝑜𝑓1, size(ptr))) = 𝜋(𝑟2) + 𝑜𝑓2 where
bseq(𝜇, 𝑝, size) is the sequence of bytes 𝜇(𝑝)𝜇(𝑝 + 1)...𝜇(𝑝 + size − 1) for any
𝑝, size > 0, and addr(𝜎) is the concrete address encoded by the byte sequence𝜎.

4. Fields having the same values are filled with the same concrete values (up to
nullified blocks that can differ in their length), i.e., for every two has-value edges
𝑟1

𝑜𝑓1 ,𝑡1−−−−→𝑣 and 𝑟2
𝑜𝑓2 ,𝑡2−−−−→𝑣 in 𝐻, where 𝑣 ≠ 0, bseq(𝜇, 𝜋(𝑟1) + 𝑜𝑓1, size(𝑡1)) =

bseq(𝜇, 𝜋(𝑟2) + 𝑜𝑓2, size(𝑡2)).
5. Finally, nullified fields are filled with zeros, i.e., for each has-value edge 𝑟 𝑜𝑓 ,𝑡−−−→0

in 𝐻, 𝜇(𝜋(𝑟) + 𝑜𝑓 + 𝑖) = 0 for all 0 ≤ 𝑖 < size(𝑡).

For an SMG 𝐺, we let MI(𝐺) = ⋃
𝐺′∈MG(𝐺) MI(𝐺′). Note that it may happen

that no concrete values satisfying the needed constraints exist. In such a case, the
semantics of an (S)MG is empty. Note also that we restrict ourselves to a flat address
space, which is, however, sufficient for most practical cases. Finally, note that, for
simplicity, we assume that each sequence of bytes of length size(𝑡) corresponds to
some instance of the type 𝑡, which can be an indeterminate value in the worst case.

1.3 Operations on SMGs

In this section, we propose algorithms for all operations on SMGs that are needed for
their application in program verification. In particular, we discuss data reinterpreta-
tion (which is used for reading and writing from/to SMGs), join of SMGs (which
we use for entailment checking and as a part of the abstraction too), abstraction,
inequality checking, and symbolic execution of C programs. More details can be
found in Sections 1.8–1.11.

Below, we denote by 𝐼 (𝑜𝑓 , 𝑡) the right-open integer interval ⟨𝑜𝑓 , 𝑜𝑓 + size(𝑡)),
and, for a has-value edge 𝑒 : 𝑜 𝑜𝑓 ,𝑡−−−→𝑣, we use 𝐼 (𝑒) as the abbreviation of 𝐼 (𝑜𝑓 , 𝑡).

14 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

1.3.1 Data Reinterpretation

SMGs allow fields of a single object to overlap and to even have the same offset
and size, in which case they are distinguishable by their types only. In line with this
feature of SMGs, we introduce the so-called read reinterpretation that can create
multiple views (interpretations) of a single memory area without actually changing
the semantics. On the other hand, if we write to a field that overlaps with other fields,
we need to reflect the change of the memory image in the overlapping fields, for
which the so-called write reinterpretation is used. These two operations form the
basis of all operations reading and writing memory represented by SMGs. Apart
from them, we also use join reinterpretation which is applied when joining two
SMGs to preserve as much information shared by the SMGs as possible even when
this information is not explicitly represented in the same way in both the input SMGs.

Defining reinterpretation for all possible data types (and all of their possible
values) is hard (cf. [36]) and beyond the scope of this work. Instead of that, we
define minimal requirements that must be met by the reinterpretation operators so
that our verification approach is sound. This allows different concrete instantiations
of these operators to be used in the future. Currently, we instantiate the operators for
the particular case of dealing with nullified blocks of memory, which is essential for
handling low-level pointer manipulating programs that commonly use functions like
calloc() or memset() to obtain large blocks of nullified memory.9

Read Reinterpretation

A read reinterpretation operator takes as input an SMG 𝐺 with a set of objects 𝑂, an
object 𝑜 ∈ 𝑂, and a field (𝑜𝑓 , 𝑡) to be read from 𝑜 such that 𝑜𝑓 + size(𝑡) ≤ size(𝑜).
The result is a pair (𝐺′, 𝑣) where 𝐺′ is an SMG with a set of has-value edges 𝐻′

such that (1) 𝐻′ (𝑜, 𝑜𝑓 , 𝑡) = 𝑣 ≠ ⊥ and (2) MI(𝐺) = MI(𝐺′). The operator thus
preserves the semantics of the SMG 𝐺 but ensures that it contains a has-value edge
for the field being read. This edge can lead to a value already present in 𝐺 but also
to a new value derived by the operator from the edges and values existing in 𝐺.
In the extreme case, a fresh, completely unconstrained value node can be added,
representing an unknown value, which can, however, become constrained by further
program execution. In other words, read reinterpretation installs a new view on some
part of the object 𝑜 without modifying the semantics of the SMG in any way.

For the particular case of dealing with nullified memory, we use the following
concrete read reinterpretation (cf. Section 1.8.1). If 𝐺 contains an edge 𝑜

𝑜𝑓 ,𝑡−−−→𝑣,
(𝐺, 𝑣) is returned. Otherwise, if each byte of the field (𝑜𝑓 , 𝑡) is nullified by some
edge 𝑜

𝑜𝑓 ′ ,𝑡 ′−−−−→0 present in 𝐺, (𝐺′, 0) is returned where 𝐺′ is obtained from 𝐺 by
adding the edge 𝑜

𝑜𝑓 ,𝑡−−−→0. Otherwise, (𝐺′, 𝑣) is returned with 𝐺′ obtained from 𝐺 by
adding an edge 𝑜 𝑜𝑓 ,𝑡−−−→𝑣 leading to a fresh value 𝑣 (representing an unknown value). It
is easy to see that this is the most precise read reinterpretation that is possible—from

9 Apart from the nullified blocks, our implementation also supports tracking of uninitialized blocks
of memory and certain manipulations of null-terminated strings (cf. Section 1.5.2).

1 Algorithmic Details behind the Predator Shape Analyser 15

the point of view of reading nullified memory—with the current support of types
and values in SMGs.

Write Reinterpretation

The write reinterpretation operator takes as input an SMG 𝐺 with a set of objects
𝑂, an object 𝑜 ∈ 𝑂, a field (𝑜𝑓 , 𝑡) within 𝑜, i.e., such that 𝑜𝑓 + size(𝑡) ≤ size(𝑜),
and a value 𝑣 that is to be written into the field (𝑜𝑓 , 𝑡) of the object 𝑜. The result
is an SMG 𝐺′ with a set of has-value edges 𝐻′ such that (1) 𝐻′ (𝑜, 𝑜𝑓 , 𝑡) = 𝑣 and
(2) MI(𝐺) ⊆ MI(𝐺′′) where𝐺′′ is the SMG𝐺′ without the edge 𝑒 : 𝑜 𝑜𝑓 ,𝑡−−−→𝑣. In other
words, the operator makes sure that the resulting SMG contains the edge 𝑒 that was
to be written while the semantics of 𝐺′ without 𝑒 over-approximates the semantics
of 𝐺. Indeed, one cannot require equality here since the new edge may collide with
some other edges, which may have to be dropped in the worst case.

For the case of dealing with nullified memory, we propose the following write
reinterpretation (cf. Section 1.8.2, which includes an illustration too). If 𝐺 contains
the edge 𝑒 : 𝑜 𝑜𝑓 ,𝑡−−−→𝑣, 𝐺 is returned. Otherwise, all has-value edges leading from 𝑜

to a non-zero value whose fields overlap with (𝑜𝑓 , 𝑡) are removed. Subsequently,
if 𝑣 = 0, the edge 𝑒 is added, and the obtained SMG is returned. Otherwise, all
remaining has-value edges leading from 𝑜 to 0 that define fields overlapping with
(𝑜𝑓 , 𝑡) are split and/or shortened such that they do not overlap with (𝑜𝑓 , 𝑡), the
edge 𝑒 is added, and the resulting SMG is returned. Again, it is easy to see that
this operator is the most precise write reinterpretation from the point of view of
preserving information about nullified memory that is possible with the current
support of types and values in SMGs.

1.3.2 Join of SMGs

Join of SMGs is a binary operation that takes two SMGs 𝐺1, 𝐺2 and returns an
SMG 𝐺 that is their common generalisation, i.e., MI(𝐺1) ⊆ MI(𝐺) ⊇ MI(𝐺2), and
that satisfies the following further requirements intended to minimize the involved
information loss: If both input SMGs are semantically equal, i.e., MI(𝐺1) = MI(𝐺2),
denoted 𝐺1 ≃ 𝐺2, we require the resulting SMG to be semantically equal to both
the input ones, i.e., MI(𝐺1) = MI(𝐺) = MI(𝐺2). If MI(𝐺1) ⊃ MI(𝐺2), denoted
𝐺1 ⊐ 𝐺2, we require that MI(𝐺) = MI(𝐺1). Symmetrically, if MI(𝐺1) ⊂ MI(𝐺2),
denoted 𝐺1 ⊏ 𝐺2, we require that MI(𝐺) = MI(𝐺2). Finally, if the input SMGs are
semantically incomparable, i.e., MI(𝐺1) ⊉ MI(𝐺2) ∧ MI(𝐺1) ⊈ MI(𝐺2), denoted
𝐺1 Z 𝐺2, no further requirements are put on the result of the join (besides the
inclusion stated above, which is required for the soundness of our analysis). In order
to distinguish which of these cases happens when joining two SMGs, we tag the result
of our join operator by the so-called join status with the domain J = {≃, ⊐, ⊏, Z}
referring to the corresponding relations above. Moreover, we allow the join operation
to fail if the incurred information loss becomes too big. Below, we give an informal
description of our join operator, for a full description see Section 1.9.

The basic idea of our join algorithm, illustrated in Fig. 1.6, is the following. The
algorithm simultaneously traverses a given pair of source SMGs and tries to join each

16 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

Fig. 1.6 An illustration of
the basic principle of the
join algorithm. In the figure,
a simplified notation for
describing SMGs is used,
from which value nodes have
been left out. The pair of
input SMGs is at the top.
The gray arrows show the
pairs of objects joined by
the algorithm during the
simultaneous traversal of the
input SMGs. The resulting
SMG is at the bottom.

pair of nodes (i.e., objects or values) encountered at the same time into a single node
in the destination SMG. A single node of one SMG is not allowed to be joined with
multiple nodes of the other SMG. This preserves the distinction between different
objects as well as between at least possibly different values.10

The rules according to which it is decided whether a pair of objects simultaneously
encountered in the input SMGs can be joined are the following. First, they must have
the same size, validity, and in case of DLSs, the same head, prev, and next offsets. It
is possible to join DLSs of different lengths. It is also possible to to join DLSs with
regions that may be approximated as 1+ DLSs for that purpose. The result is a DLS
whose length is the minimum of the lengths of the joined DLSs (hence, e.g., joining
a region with a 2+ DLS gives a 1+ DLS). The levels of the joined objects must
also be the same up to the following case. When joining a sub-SMG nested below

10 Two separately allocated objects are always different, values are only possibly different. Not to
restrict the semantics, different objects or (possibly) different values cannot be changed into equal
objects or values. Equal values could be changed into possibly different ones, but we currently do
not allow this either since this would complicate the algorithm, and we did not see any need for that
in our case studies.

1 Algorithmic Details behind the Predator Shape Analyser 17

a DLS with the corresponding sub-SMG rooted at a region (restricted by ignoring
the next and prev links), objects corresponding to each other appear on different
levels: E.g., objects nested right below a DLS of level 0 are on level 1, whereas the
corresponding objects directly referenced by a region of level 0 are on level 0 (since
for regions, nested and shared sub-SMGs are not distinguished). This difference can,
of course, increase when descending deeper in a hierarchically-nested data structure
since the difference is essentially given by the different numbers of DLSs passed on
the different sides of the join. This difference is tracked by the join algorithm, and
only the objects whose levels differ in the appropriate way are allowed to be joined.

When two objects are being joined, a join reinterpretation operator is used to
ensure that they share the same set of fields and hence have the same number and
labels of outgoing edges (which is always possible albeit sometimes for the price
of introducing has-value edges leading to unknown values). A formalization of join
reinterpretation is available in Section 1.9.1, including a concrete join reinterpreta-
tion operator designed to preserve maximum information on nullified blocks in both
of the objects being joined. The join reinterpretation allows the fields of the joined
objects to be processed in pairs of the same size and type. As for joining values,
we do not allow joining addresses with unknown values.11 Moreover, the zero value
cannot be joined with a non-zero value. Further, addresses can be joined only if the
points-to edges leading from them are labelled by the same offset, and when they
lead to DLSs, they must have the same target specifier. On the other hand, apart from
the already above expressed requirement of not joining a single value in one SMG
with several values in the other SMG, no further requirements are put on joining
non-address values, which is possible since we currently track their equalities only.

To increase chances for successfully joining two SMGs, the basic algorithm from
above is extended as follows. When a pair of objects cannot be joined and at least
one of them is a DLS (call it 𝑑 and the other object 𝑜), the algorithm proceeds as
though 𝑜 was preceded by a 0+ DLS 𝑑′ that is up to its length isomorphic with 𝑑

(including the not yet visited part of the appropriate sub-SMG nested below 𝑑). Said
differently, the algorithm virtually inserts 𝑑′ before 𝑜, joins 𝑑 and 𝑑′ into a single 0+
DLS, and then continues by trying to join 𝑜 and the successor of 𝑑. This extension is
possible since the semantics of a 0+ DLS includes the empty list, which can be safely
assumed to appear anywhere, compensating a missing object in one of the SMGs.

Note, however, that the virtual insertion of a 0+ DLS implies a need to relax
some of the requirements from above. For instance, one needs to allow a join of
two different addresses from one SMG with one address in the other (the prev and
next addresses of 𝑑 get both joined with the address preceding 𝑜). Moreover, the
possibility to insert 0+ DLSs introduces some non-determinism into the algorithm
since when attempting to join a pair of incompatible DLSs, a 0+ DLS can be inserted
into either of the two input DLSs, and we choose one of them. The choice may be
wrong, but for performance reasons, we never backtrack. Moreover, we use the 0+
DLS insertion only when a join of two objects fails locally (i.e., without looking at

11 Allowing a join of an address and an unknown value could lead to a need to drop a part of the
allocated heap in one of the SMGs (in case it was not accessible through some other address too),
which we consider to be a too big loss of information.

18 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

the successors of the objects being joined). When a pair of objects can be locally
joined, but then the join fails on their successors, one could consider backtracking
and trying to insert a 0+ DLS, which we again do not do for performance reasons
(and we did not see a need for that in our cases studies so far).

The described join algorithm is used in two scenarios: (1) When joining garba-
ge-free SPCs to reduce the number of SPCs obtained from different paths through
the program, in which case the traversal starts from pairs of identical program
variables. (2) As a part of the abstraction algorithm for merging a pair of neighbouring
objects (together with the non-shared parts of the sub-SMGs rooted at them) of a
doubly-linked list into a single DLS, in which case the algorithm is started from the
neighbouring objects to be merged. In the join algorithm, the join status is computed
on-the-fly. Initially, the status is set to ≃. Next, whenever performing a step that
implies a particular relation between 𝐺1 and 𝐺2 (e.g., joining a 0+ DLS from 𝐺1
with a 1+ DLS from 𝐺2 implies that 𝐺1 ⊐ 𝐺2, assuming that the remaining parts of
𝐺1 and 𝐺2 are semantically equal), we appropriately update the join status.

1.3.3 Abstraction

Our abstraction is based on merging uninterrupted sequences of neighbouring ob-
jects, together with the {nfo, pfo}-restricted sub-SMGs rooted at them, into a single
DLS. This is done by repeatedly applying a slight extension of the join algorithm
on the {nfo, pfo}-restricted sub-SMGs rooted at the neighbouring objects. The se-
quences to be merged are identified by so-called candidate DLS entries that consist
of an object 𝑜𝑐 and next, prev, and head offsets such that 𝑜𝑐 has a neighbouring
object with which it can be merged into a DLS that is linked through the given off-
sets. The abstraction is driven by the cost to be paid in terms of the loss of precision
caused by merging certain objects and the sub-SMGs rooted at them. In particular,
we distinguish joining of equal, entailed, or incomparable sub-SMGs. The higher the
loss of precision is, the longer sequence of mergeable objects is required to enable a
merge of the sequence.

In the extended join algorithm used in the abstraction (cf. Section 1.9.8), the two
simultaneous searches are started from two neighbouring objects 𝑜1 and 𝑜2 of the
same SMG 𝐺 that are the roots of the {nfo𝑐, pfo𝑐}-restricted sub-SMGs 𝐺1, 𝐺2 to
be merged. The extended join algorithm constructs the sub-SMG 𝐺1,2 that is to
be nested below the DLS resulting from the join of 𝑜1 and 𝑜2. The extended join
algorithm also returns the sets 𝑂1, 𝑉1 and 𝑂2, 𝑉2 of the objects and values of 𝐺1
and 𝐺2, respectively, whose join gives rise to 𝐺1,2. Unlike when joining two distinct
SMGs, the two simultaneous searches can get to a single node at the same time.
Clearly, such a node is shared by 𝐺1 and 𝐺2, and it is therefore not included into the
sub-SMG 𝐺1,2 to be nested below the join of 𝑜1 and 𝑜2.

Below, we explain in more detail the particular steps of the abstraction. For the
explanation, we fix an SPC 𝐶 = (𝐺, 𝜈) where 𝐺 = (𝑂,𝑉,Λ, 𝐻, 𝑃) is an SMG with
the sets of regions 𝑅, DLSs 𝐷, and addresses 𝐴.

1 Algorithmic Details behind the Predator Shape Analyser 19

1+ DLS

o1

(a)

2+ DLS

o2

rs

Fig. 1.7: The elementary merge operation: (a) input (b) output.

Candidate DLS Entries

A quadruple (𝑜𝑐, hfo𝑐, nfo𝑐, pfo𝑐) where 𝑜𝑐 ∈ 𝑂 and hfo𝑐, nfo𝑐, pfo𝑐 ∈ N such
that nfo𝑐 < pfo𝑐 is considered a candidate DLS entry iff the following holds:
(1) 𝑜𝑐 is a valid heap object. (2) 𝑜𝑐 has a neighbouring object 𝑜 ∈ 𝑂 with
which it is doubly-linked through the chosen offsets, i.e., there are 𝑎1, 𝑎2 ∈ 𝐴

such that 𝐻 (𝑜𝑐, nfo𝑐, ptr) = 𝑎1, 𝑃(𝑎1) = (hfo𝑐, tg1, 𝑜) for tg1 ∈ {fst, reg},
𝐻 (𝑜, pfo𝑐, ptr) = 𝑎2, and 𝑃(𝑎2) = (hfo𝑐, tg2, 𝑜𝑐) for tg2 ∈ {lst, reg}.

Longest Mergeable Sequences

The longest mergeable sequence of objects given by a candidate DLS entry
(𝑜𝑐, hfo𝑐, nfo𝑐, pfo𝑐) is the longest sequence of distinct valid heap objects whose
first object is 𝑜𝑐, all objects in the sequence are of level 0, all DLSs that appear in
the sequence have hfo𝑐, nfo𝑐, pfo𝑐 as their head, next, prev offsets, and the following
holds for any two neighbouring objects 𝑜1 and 𝑜2 in the sequence (for a formal
description, cf. Section 1.10): (1) The objects 𝑜1 and 𝑜2 are doubly-linked through
their nfo𝑐 and pfo𝑐 fields. (2) The objects 𝑜1 and 𝑜2 are a part of a sequence of objects
that is not pointed from outside of the detected list structure. (3) The {nfo𝑐, pfo𝑐}-
restricted sub-SMGs 𝐺1 and 𝐺2 of 𝐺 rooted at 𝑜1 and 𝑜2 can be joined using the
extended join algorithm into the sub-SMG 𝐺1,2 to be nested below the join of 𝑜1
and 𝑜2. Let 𝑂1, 𝑉1 and 𝑂2, 𝑉2 be the sets of non-shared objects and values of 𝐺1
and 𝐺2, respectively, whose join gives rise to 𝐺1,2. (4) The non-shared objects and
values of 𝐺1 and 𝐺2 (other than 𝑜1 and 𝑜2 themselves) are reachable via 𝑜1 or 𝑜2,
respectively, only. Moreover, the sets 𝑂1 and 𝑂2 contain heap objects only.

Merging Sequences of Objects into DLSs

Sequences of objects are merged into a single DLS incrementally, i.e., starting with
the first two objects of the sequence, then merging the resulting new DLS with the
third object in the sequence, and so on. Each of the elementary merge operations is
performed as follows (see Fig. 1.7 for an illustration).

Assume that 𝐺 is the SMG of the current SPC (i.e., the initial SPC or the SPC
obtained from the last merge) with the set of points-to edges 𝑃 and the set of addresses
𝐴. Further, assume that 𝑜1 is either the first object in the sequence to be merged or
the DLS obtained from the previous elementary merge, 𝑜2 is the next object of the

20 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

sequence to be processed, and hfo𝑐, nfo𝑐, pfo𝑐 are the offsets from the candidate DLS
entry defining the sequence to be merged. First, we merge 𝑜1 and 𝑜2 into a DLS
𝑑 using hfo𝑐, nfo𝑐, and pfo𝑐 as its defining offsets, which is a part of our extended
join operator (cf. Section 1.9.8). The sub-SMG nested below 𝑑 is created using the
extended join algorithm too. Next, the DLS-linking pointers arriving to 𝑜1 and 𝑜2 are
redirected to 𝑑. In particular, if there is 𝑎 𝑓 ∈ 𝐴 such that 𝑃(𝑎 𝑓) = (𝑜1, hfo𝑐, tg) for
some tg ∈ {fst, reg}, then 𝑃 is changed such that 𝑃(𝑎 𝑓) = (𝑑, hfo𝑐, fst). Similarly,
if there is 𝑎𝑙 ∈ 𝐴 such that 𝑃(𝑎𝑙) = (𝑜2, hfo𝑐, tg) for some tg ∈ {lst, reg}, then 𝑃 is
changed such that 𝑃(𝑎𝑙) = (𝑑, hfo𝑐, lst). Finally, each heap object and each value
(apart from the null address and null object) that are not reachable from any static
or stack object of the obtained SPC are removed from its SMG together with all the
edges adjacent to them.

The Top-Level Abstraction Algorithm

Assume we are given an SMG 𝐺, and a candidate DLS entry (𝑜𝑐, hfo𝑐, nfo𝑐, pfo𝑐)
defining the longest mergeable sequence of objects 𝜎 = 𝑜1𝑜2 . . . 𝑜𝑛 in 𝐺 of length
|𝜎 | = 𝑛 ≥ 2. We define the cost of merging a pair of objects 𝑜1, 𝑜2, denoted
cost(𝑜1, 𝑜2), as follows. First, cost(𝑜1, 𝑜2) = 0 iff the {nfo𝑐, pfo𝑐}-restricted sub-
SMGs 𝐺1 and 𝐺2 rooted at 𝑜1, 𝑜2 are equal (when ignoring the kinds of 𝑜1 and
𝑜2, i.e., when not distinguishing whether 𝑜1, 𝑜2 are regions or DLSs as well as
ignoring the minimum length constraints on 𝑜1, 𝑜2). This is indicated by the ≃ status
returned by the modified join algorithm applied on 𝐺1, 𝐺2. Further, cost(𝑜1, 𝑜2) = 1
iff 𝐺1 entails 𝐺2, or vice versa, which is indicated by the status ⊐ or ⊏. Finally,
cost(𝑜1, 𝑜2) = 2 iff 𝐺1 and 𝐺2 are incomparable, which is indicated by status Z. The
cost of merging a sequence of objects 𝜎 = 𝑜1𝑜2 . . . 𝑜𝑛, denoted cost(𝜎), is defined
as the maximum of cost(𝑜1, 𝑜2), cost(𝑜2, 𝑜3), ..., cost(𝑜𝑛−1, 𝑜𝑛).

Our abstraction is parameterized by associating each cost 𝑐 ∈ {0, 1, 2} with the
length threshold, denoted lenThr(𝑐), defining the minimum length of a sequence of
mergeable objects allowed to be merged for the given cost. Intuitively, the higher
the cost is, the bigger loss of precision is incurred by the merge, and hence a
bigger number of objects to be merged is required to compensate the cost. In our
experiments discussed in Section 1.5, we, in particular, found as optimal the setting
lenThr(0) = lenThr(1) = 2 and lenThr(2) = 3. Our tool, however, allows the user to
tweak these values.

Based on the above introduced notions, the process of abstracting an SPC can now
be described as follows. First, all candidate DLS entries are identified, and for each of
them, the corresponding longest mergeable sequence is computed. Then, each longest
mergeable sequence 𝜎 for which |𝜎 | < lenThr(cost(𝜎)) is discarded. Out of the
remaining ones, we select those that have the lowest cost. From them, we then select
those that have the longest length. Finally, out of them, one is selected arbitrarily.
The selected sequence is merged, and then the entire abstraction process repeats until
there is no sequence that can be merged taking its length and cost into account.

1 Algorithmic Details behind the Predator Shape Analyser 21

1.3.4 Checking Equality and Inequality of Values

Checking equality of values in SMGs amounts to simply checking their identity. For
checking inequality, we use an algorithm which is sound and efficient but incomplete.
It is designed to succeed in most common cases, but we allow it to fail in some
exceptional cases (e.g., when comparing addresses out of bounds of two distinct
objects) in order not to harm its efficiency. The basic idea of the algorithm is
as follows (cf. Section 1.11): Let 𝑣1 and 𝑣2 be two distinct values of level 0 to
be checked for inequality (other levels cannot be directly accessed by program
statements). First, if the same value or object can be reached from 𝑣1 and 𝑣2 through
0+ DLSs only (using the next/prev fields when coming through the fst/lst target
specifiers, respectively), then the inequality between 𝑣1 and 𝑣2 is not established.
This is due to 𝑣1 and 𝑣2 may become the same value when the possibly empty 0+
DLSs are removed (or they may become addresses of the first and last node of the
same 0+ DLS, and hence be equal in case the list contains a single node). Otherwise,
𝑣1 and 𝑣2 are claimed different if the final pair of values reached from them through
a sequence of 0+ DLSs represents different addresses due to pointing (1) to different
valid objects (each with its own unique address) with offsets inside their bounds,
(2) to the null object and a non-null object (with an in-bound offset), (3) to the same
object with different offsets, or (4) to the same DLS with length at least 2 using
different target specifiers. Otherwise, the inequality is not established.

1.3.5 A Note on Symbolic Execution over SMGs/SPCs

The symbolic execution algorithm based on SPCs is similar to [2]. It uses the
read reinterpretation operator for memory lookup (as well as type-casting) and the
write reinterpretation operator for memory mutation. Whenever a DLS is about to be
accessed (or its address with a non-head offset is about to be taken), a materialisation
(as described in Section 1.2.4) is performed so that the actual program statements
are always executed over concrete objects.12 If the minimum length of the DLS
being materialised is zero, the computation is split into two branches—one for the
empty segment and one for the non-empty segment. In the former case, the DLS is
removed (as described in Section 1.2.4) while in the latter case, the minimum length
of the DLS is incremented. When executing a conditional statement, the algorithm
for checking (in)equality of values from Section 1.3.4 is used. If neither equality
nor inequality are established, the execution is split into two branches, one of them
assuming the compared values to be equal, the other assuming them not to be equal.
This may again involve removing 0+ DLSs in one of the branches and incrementing
their minimum length in the other (cf. Section 1.11).

To reduce the number of SPCs generated by the symbolic execution, the join
operator introduced in Section 1.3.2 can be used to join an SPC that was newly
generated for some particular program location with some SPC generated for that
location sooner (e.g., joining a region with a 2+ DLS into a single 1+ DLS), hence

12 A DLS can be materialised from its last element too, which is analogous to the materialisation
from the first element as described in Section 1.2.4.

22 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

reducing the number of SPCs remembered for that location (and explored from that
location). Trading speed for precision, the operator can be applied at every control
location, at the beginning of every basic block, at every loop head location, or not at
all. Apart from the join operator, the abstraction mechanism from Section 1.3.3 is
to be applied to ensure termination on unbounded list structures. Again, the use of
the abstraction may be restricted as in the case of the join operator (it needs not even
be used if no unbounded data structures are used). As the terminating criterion, one
can use isomorphism or entailment checking between a newly generated SPC and
those already known for a given program location. Checking for isomorphism can
be done using the join operator of Section 1.3.2, making sure that it succeeds and
returns the ≃ status. Checking for entailment can also be done using the proposed
join operator, this time checking for the ⊏ or ⊐ status (allowing one to discard either
a sooner generated SPC or the new SPC).

Soundness of the Analysis

In the described analysis, program statements are always executed on concrete objects
only, closely following the C semantics. The read reinterpretation is defined such that
it cannot change the semantics of the input SMG, and the write reinterpretation can
only over-approximate the semantics in the worst case. Likewise, our abstraction and
join algorithms are allowed to only over-approximate the semantics—indeed, when
joining a pair of nodes, the semantics of the resulting node is always generic enough
to cover the semantics of both of the joined nodes (e.g., the join of a 2+ DLS with a
compatible region results in a 1+ DLS, etc.). Moreover, the entailment check used to
terminate the analysis is based on the join operator and consequently conservative.
Hence, it is not difficult to see that the proposed analysis is sound (although a full
proof of this fact would be rather technical).

1.3.6 Running Example

We now illustrate some of the main presented concepts on a running example. In
particular, we consider the C code shown in Fig. 1.8. For its five designated locations
L1–L5, Fig. 1.9 shows the SPCs generated by our analysis. We use a simplified
notation for the SPCs similar to that already used in Fig. 1.6. The “bar”-terminated
edges denote pointers to NULL. We draw edges corresponding to prev pointers to
the left of objects and those corresponding to next pointers to the right of objects.
Bidirectional edges denote a pair of prev/next pointers.

The way the different SPCs are obtained is discussed below. However, first, note
that all objects of all SPCs are at level 0 (i.e., there are no nested sub-SMGs here).
Assuming that the code is compiled for a 64-bit architecture with 8B-long pointers,
all objects are of size 16B. The next pointers start at offset 0 while the prev pointers
at offset 8, and they all have the target offset 0.

The first SPC that gets generated at the location L1 is denoted as L1.1. It sets
both the l and x program variables to NULL. From L1.1, the SPC L2.1 is generated
at the location L2. As we can see, it consists of a single region with the prev field
implicitly nullified (as calloc was used). L2.1 is propagated as the second SPC for

1 Algorithmic Details behind the Predator Shape Analyser 23

1 #include <stdlib.h> // calloc(), free()

2

3 struct list_item {

4 struct list_item *next;

5 struct list_item *prev;

6 };

7

8 int main(void)

9 {

10 struct list_item *l = NULL; // pointer to a DLL

11 struct list_item *x = NULL; // auxiliary pointer

12

13 while (__VERIFIER_nondet_int() != 0) {

14 L1:

15 x = calloc(sizeof(struct list_item),1);

16 x->next = l;

17 if (l != NULL)

18 l->prev = x;

19 l = x;

20 L2:

21 }

22 L3:

23 while (l != NULL) {

24 x = l;

25 l = l->next;

26 free(x);

27 L4:

28 }

29 L5: return 0;

30 }

Fig. 1.8: A running example creating and destroying a DLL.

the location L1, i.e., it becomes L1.2. The join operator presented above cannot join
L1.1 and L1.2, and so both of them are kept (for the time being). Through another
iteration of the first while loop, L2.2 is obtained from L1.2 in a natural way.

Now, several interesting changes happen. First, when closing the second iteration
of the first while loop, L2.2 gets abstracted to an SPC containing a single 2+ DLS
that is NULL-terminated at both of its ends: indeed, L2.2 contains an uninterrupted
sequence of two equally-sized regions linked in the fashion of a DLL. Second, the
resulting SPC can be joined both with L1.2, yielding an SPC consisting of a 1+
DLS, and then with L1.1, yielding the new SPC L1.3 containing a 0+ DLS, which
is kept as the sole SPC at the location L1.

The SPC L1.3 is once more passed through the first while loop. Notice that the
if (l != NULL) statement will split the 0+ DLS present in L1.3 to two cases: the
SPC l=x=NULL and an SPC containing a 1+ DLS. Only the latter SPC is then subject
to the l->prev = x statement. For this statement to be symbolically executed, the
1+ DLS is materialised to a sequence of a region, pointed to by l, and a 0+ DLS
segment linked to it through a pair of next/prev pointers. By linking the region
newly allocated by calloc and pointed to by x with the materialised region pointed
to by l, and by moving the l pointer, the L2.3 SPC will eventually arise at the end

24 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

l,x
L1.1:

l,x
L2.1=L1.2:

region

l,x
L2.2:

region region

l,x
L1.3=L3.1:

0+ DLS

l,x
L2.3:

region region 0+ DLS

x
L4.1:

undef.reg. 0+ DLS

l l,x
L5.1:

x
L5.2:

undef.reg.

l

Fig. 1.9: Some of the SPCs generated during analysis of the code from Fig. 1.8.

of the body of the first while loop. L2.3 entails L2.2, and so the latter does not
need to be kept at the location L2. More importantly, by abstraction applied when
going back to the loop header, L2.3 will be transformed into an SPC consisting of
a 2+ DLS, which will then be found to be entailed by L1.3.

Assuming that the analysis explores the program such that the first while loop
is first completely explored and only then the analysis continues further on, the only
SPC generated for location L3 is L3.1, which is the same as L1.3.

Due to the condition of the second while loop, L3.1 is split to two SPCs: once
again the SPC l=x=NULL, which then appears as the SPC L5.1 at the end of the
program, and an SPC containing a 1+ DLS. Only the latter enters the first iteration of
the second while loop. For the l = l->next statement to be symbolically executed,
the 1+ DLS is materialised into a sequence of a region, pointed to by both l and x,
and a 0+ DLS. The l pointer is then moved to point to the beginning of the 0+ DLS.
The x-pointed region is subsequently freed, after which all its outgoing edges are
removed, and the region itself is marked as undefined, taking us to the L4.1 SPC.

The condition of the second while loop splits L4.1 to two cases again: the case
where l=NULL, yielding the SPC L5.2 at the end of the program, and an SPC where
l points to a 1+ DLS whose prev pointer points to the freed region pointed to
by x. For the l = l->next statement to be symbolically executed, the 1+ DLS is
materialised to a sequence of an l-pointed region and a 0+ DLS. The prev-pointer
of the l-pointed region points to the previously freed region (with x already pointing
to the same region as l), and its next pointer points to the 0+ DLS. Subsequently, l
is moved to point to the beginning of the 0+ DLS, and the x-pointed region is freed.
Due to that, its outgoing edges are removed, and the previously freed region, which
is now completely inaccessible, is removed too. Hence, L4.1 is again obtained.

1 Algorithmic Details behind the Predator Shape Analyser 25

1.4 Extensions of SMGs

Next, we point out that the above introduced notion of SMGs can be easily extended in
various directions, and we briefly discuss several such extensions (including further
kinds of abstract objects), most of which are implemented in the Predator tool.

Explicit Non-equivalence Relations

When several objects have the same concrete value stored in some of their fields, this
is expressed by making the appropriate has-value edges lead from these objects to the
same value node in the SMG. On the other hand, two different value nodes in an SMG
do not necessarily represent different concrete values. To express that two abstract
values represent distinct concrete values, SMGs can be extended with a symmetric,
irreflexive relation over values, which we call an explicit non-equivalence relation.13
Such a relation can be introduced when the analysis proceeds to some branch of
a conditional statement such that the condition of the statement (negated for the
false branch) implies the non-equivalence relation. The introduced non-equivalence
relations are then to be taken into account in further operations, including symbolic
execution of conditional statements and the join operator. In the latter case, when
joining two SMGs where some non-equality edge exists in one of them only, it may
be dropped for the price of appropriately worsening the resulting join status.

Clearly, SMGs can be quite naturally extended by allowing more predicates on
data, which is, however, beyond the scope of this work (up to a small extension by
tracking not only the 0 value but also intervals with constant bounds that is mentioned
below) and has so far been not implemented in the Predator tool either.

Checking Equivalence of Valid and Invalid Objects

Testing of inequality described in Section 1.3.4 concerns inequality of pointers
pointing to different valid objects, null and non-null objects, the same object with
different offsets, or to different ends of a doubly-linked list segment with at least
two elements. However, there is one more way how inequality can be established,
namely, when comparing pointers to a valid region and to an invalid region where
the invalid one was allocated later than the valid one (which we can check due to
the way the objects are numbered in Predator). Indeed, in such a case, both of the
regions must have existed at the same time, the valid object is continuously valid
since then, and the two objects must lie on different addresses since the address of a
continuously valid object could not have been recycled.

Singly-Linked List Segments (SLSs)

Above, we have presented all algorithms on SMGs describing doubly-linked lists
only. Nevertheless, the algorithms work equally well with singly-linked lists rep-
resented by an additional kind of abstract objects, SLSs, that have no pfo offset,
and their addresses are allowed to use the fst and all target specifiers only. The

13 This is similar to the equality and non-equality constraints in separation logic, but only non-
equality constraints are kept explicit.

26 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

algorithm looking for DLS entry candidates then simply starts looking for SLS entry
candidates whenever it does not discover the back-link.

0/1 Abstract Objects

In order to enable summarization of lists whose nodes can optionally point to some
region or that point to nested lists whose length never reaches 2 or more, we introduce
the so-called 0/1 abstract objects. We distinguish three kinds of them with different
numbers of neighbour pointers. The first of them represents 0/1 SLSs with one
neighbour pointer, another represents 0/1 DLSs with two neighbour pointers14. These
objects can be later joined with compatible SLSs or DLSs. The third kind has no
neighbour pointer, and its address is assumed to be NULL when the region is not
allocated. This kind is needed for optionally allocated regions referred from list
nodes but never handled as lists themselves. The 0/1 abstract objects are created by
the join algorithm when a region in one SMG cannot be matched with an object
from the other SMG and none of the above described join mechanisms applies.

Offset Intervals and Address Alignment

The basic SMG notion labels points-to edges with scalar offsets within the target
object. This labelling can be generalized to intervals of offsets. The intervals can
be allowed to arise by joining objects with incoming pointers compatible up to
their offset. This feature is useful, e.g., to handle lists arising in higher-level memory
allocators discussed in the next section where each node points to itself with an offset
depending on how much of the node has been used by sub-allocation. Offset intervals
also naturally arise when the analysis is allowed to support address alignment, which
is typically implemented by masking several lowest bits of pointers to zero, resulting
in a pointer whose offset is in a certain interval wrt the base address. Similarly, one
can allow the object size to be given by an interval, which in turn allows one to
abstract lists whose nodes are of a variable size.

Integer Constants and Intervals

The basic SMG notion allows one to express that two fields have the same value,
which is represented by the corresponding has-value edges leading to the same value
node, or that their values differ, which is represented using the above mentioned
explicit non-equivalence relation. In order to improve the support of dealing with
integers, SMGs can be extended by associating value nodes with concrete integer
numbers. These can be respected by the join algorithm up to some given bound and
replaced by the unknown value when the bound is exceeded (as done in Predator).
Alternatively, they can be abstracted to intervals with bounds being concrete integer
constants up to some bound or plus/minus infinity (also supported by Predator), or
some other abstract numerical domains may be used (unsupported by Predator).

14 If a DLL consists of exactly one node, the value of its next pointer is equal to the value of its prev
pointer. There is no point in distinguishing them, so we call them both neighbour pointers.

1 Algorithmic Details behind the Predator Shape Analyser 27

1.5 Implementation

We have implemented the above described algorithms (including most of the men-
tioned extensions) in the Predator tool.15 Below, we describe the architecture of the
tool—in fact, a tool suite centred around the Predator analysis kernel—and vari-
ous further extensions, optimisations, and implementation details related to it. The
description is partly based on the tool paper [22].

1.5.1 Architecture

The architecture of the Predator tool suite is shown in Fig. 1.10. Its front end is based
on the Code Listener (CL) infrastructure [17] that can accept input from both the
GCC and Clang/LLVM compilers. CL is connected to both GCC and LLVM as their
plug-in (or “pass”).

When used with GCC, CL reads in the GIMPLE intermediate representation
(IR) from GCC and transforms it into its own Code Listener IR (CL IR), based on
simplified GIMPLE. The resulting CL IR can be filtered—currently there is a filter
that replaces switch instructions by simple conditions—and stored into the code
storage. When used with Clang/LLVM, CL reads in the LLVM IR and uses LLVM’s
AddressSanitizer for a use-after-scope instrumentation of the lifetime of variables,
removes LLVM switch instructions, and (optionally) simplifies the IR through
a number of other filters in the form of LLVM optimisation passes, both LLVM native
or newly added. These filters can in-line functions, split composed initialisation of
global variables, and/or change memory references to register references (removing
unnecessary alloca instructions). These transformations can be used independently
of Predator to simplify the LLVM IR to have a simpler starting point for developing
new analysers. Moreover, CL offers a listeners architecture that can be used to further
process CL IR. Currently, there are listeners that can print out the CL IR or produce
a graphical form of the control flow graphs (CFGs) present in it.

The code storage stores the obtained CL IR and makes it available to the Predator
verifier kernel through a special API. This API allows one to easily iterate over the
types, global variables, and functions defined in the code. For each function, one
can then iterate over its parameters, local variables, and its CFG. Of course, other
verifier kernels than the one of Predator can be linked to the code storage.

1.5.2 The Kernel of Predator

The kernel of Predator (written in C++ like its front end) implements a form of an
abstract interpretation loop over the SMG domain where the widening takes into
account the newest computed SMG for a given location only and is based on the
abstraction mechanism from Section 1.3.3.

15 https://www.fit.vutbr.cz/research/groups/verifit/tools/predator/

https://www.fit.vutbr.cz/research/groups/verifit/tools/predator/

28 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

predator
verifier
kernel

bounded
BFS

bounded
DFS Pr

ed
at

or
H

P
sc

ri
ptdefault

plotters

CFGs

errors

errors with location info safe / error
+ witness.xml

co
de

 p
ar

se
r i

nt
er

fa
ce

GCC

Clang/LLVM

front end

LLVM

IR

listeners

filters

compiler
GIMPLE

co
de

 s
to

ra
gefilters

CodeListener
IR

source files
.c,.h

LLVM

IR

loc info

error

*.txtstderr *.svg

linearized
code

*.svg *.svg

SMGs

compiler
options

analysis
options HP options

on CL IR

iterators

config.h
(rebuild)

traces

Fig. 1.10: Architecture of the Predator tool suite.

Programs To Be Verified

A program to be verified by Predator must be closed in that it must allocate and
initialize all the data structures used. By default, Predator disallows calls to external
functions in order to exclude any side effect that could potentially break memory
safety. The only allowed external functions are those that Predator recognizes as built-
in functions. From the C standard, the following functions are currently included and
properly modelled wrt proving memory safety (there are a few more, GCC-/LLVM-
specific ones):

• malloc, alloca, calloc, free, and realloc;
• exit and abort;
• memset, memcpy, and memmove;
• printf and puts; and
• strlen, strncpy, and strcmp.

Models of further functions can be added by the user for the price of recompiling
the analyser. Predator also provides several built-in functions that are specific to its
verification approach, e.g., functions to dump SMGs or program traces to files.

Interprocedural Features

Predator supports indirect calls via function pointers, which is necessary for verifi-
cation of programs with callbacks (e.g., Linux drivers). Predator does not support
recursive programs, but it implements an inter-procedural analysis based on function
summaries [33]. The summaries consist of pairs of (sub-)SPCs that appeared at the
input/output of a given function during the so-far performed analysis. Depending on
the configuration of Predator, input parts of the summaries are created either (1) by
taking the entire SPC encountered at a function call or (2) by carving out the part
of the SPC that is reachable from function parameters and global variables. The
summaries are stored in a call cache. When testing whether a summary for a call
with a certain input SPC has already been created (or covered by another SPC),
Predator can compare the current input SPC (or its relevant part) with those stored in
the call cache either by isomorphism or entailment, depending on its configuration.

1 Algorithmic Details behind the Predator Shape Analyser 29

Predator monitors how many consecutive cache misses are encountered for each
function after the last cache hit, and if that number gets above some configurable
threshold, the cache will not be used for the given function.

Regions for stack variables are created automatically as needed and destroyed as
soon as they become dead according to a static live variables analysis16, performed
before running the symbolic execution. When working with initialised variables17,
we take advantage of our efficient representation of nullified blocks—we first create a
has-value edge 𝑜

0,char[size(𝑜)]−−−−−−−−−−−−→0 for each initialised variable represented by a region
𝑜, then we execute all explicit initialisers, which themselves automatically trigger the
write reinterpretation. The same approach is used for calloc-based heap allocation.
Thanks to this, we do not need to initialise each structure member explicitly, which
would incur a significant overhead.

Various Optimisations

As an optimisation, a copy-on write approach is used when creating new SMGs by
modifying the already existing ones. Also, the algorithms for abstraction and join
implemented in Predator use some further optimisations of the basic algorithms
described in Section 1.3. While objects in SMGs are type-free, Predator tracks
their estimated type given by the type of the pointers through which objects are
manipulated. The estimated type is used during abstraction to postpone merging
a pair of objects with incompatible types. Note, however, that this is really a heuristic
only—we have a case study that constructs list nodes using solely void pointers,
and it can still be successfully verified by Predator. Another heuristic is that certain
features of the join algorithm (e.g., insertion of a non-empty DLS or introduction of
a 0/1 abstract object) are disabled when joining SMGs while enabled when merging
nodes during abstraction.

Predator iteratively computes sets of SMGs for each basic block entry of the
control-flow graph of the given program, covering all program configurations reach-
able at these program locations. Termination of the analysis is aided by the abstrac-
tion and join algorithms described above. Since the join algorithm is expensive, it
is used at loop boundaries only. When updating states of other basic block entries,
we compare the SMGs for equality18 only, which makes the comparison way faster,
especially in case a pair of SMGs cannot be joined. Similarly, the abstraction is by
default used at loop boundaries only in order not to introduce abstract objects where
not necessary (reducing the space for false positives that can arise due to breaking
assumptions sometimes used by programmers for code inside loops as witnessed by
some of our case studies).

Non-Pointer Data

Predator’s support of non-pointer data is currently limited. As mentioned already
above, Predator can track integer data precisely up to a predefined bound (±10 by

16 If a program variable is referenced by a pointer, its destruction needs to be postponed.
17 According to the C99 standard, all static variables are initialised, either explicitly or implicitly.
18 The join algorithm can be easily restricted to check for equality only—if any action that would
imply inequality of the input SMGs is about to be taken, the join operation fails immediately.

30 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

default), and once the bound is reached, the values are abstracted out. Optionally,
Predator can use intervals with constant bounds (which may be widened to infinity)
while also tracking some simple dependences between intervals, such as a shift by
a constant and a multiplication by −1. Reinterpretation is used to handle unions.
String and float constants can be assigned, but any operations on these data types
conservatively yield an undefined value. Arrays are handled as allocated memory
blocks with their entries accessible via field offsets much like in the case of structures.

Dealing with Integer Intervals

As can be seen from the previous text, integer intervals may arise in Predator in
multiple contexts: (1) One can get pointers with interval-based target offsets, e.g.,
by address alignment or when joining pointers pointing to the same object but with
different offsets. (2) Integer variables can get interval-based values, e.g., by joining
results of the analysis on different branches or when restricting unknown values by
some conditions on integer variables. (3) Finally, there can also arise memory regions
of interval-based size, e.g., when allocating structures or arrays whose size is given
by a variable whose value is given by an interval or when joining SMGs where a
pair of corresponding memory regions differs in the size. However, the introduction
of intervals can not only lead to some loss of precision (by loosing relations of
the individual values in the interval with values of other variables), but Predator
currently also imposes many restrictions on how the intervals can subsequently be
used. For example, it does not allow one to dereference interval-sized regions, due
to which the basic version of Predator behaves poorly when analysing programs
with structures or arrays of unknown size (dependent on program input or abstracted
away).

To at least partially improve on this situation, Predator has been extended by
the following pragmatic heuristic. Namely, whenever it hits a conditional statement
that would normally yield an interval value with fixed bounds (e.g., executing the
statement if (n >=0 && n<10) where n is unconstrained before the statement),
it will split the further run of the analysis into as many branches as the number
of values in the interval is, each of them evaluating for a concrete value from the
interval. After the split, no interval-based allocations and dereferences (nor any
other problematic interval-based operations), which Predator would fail on, happen.
Though this solution is rather simple, it works nicely in some cases. Of course, it
can lead to a memory explosion when the intervals are large, but then the analysis
fails with no answer as it would fail without the heuristic too.

The above modification of Predator concerns dealing with intervals with finite
bounds. For the case when one of the bounds is infinite, Predator has been extended
to sample the interval and perform the further analysis with the sampled values. The
sampling is done by simply taking some number of concrete values from the given
interval starting/ending with the bound that is fixed (intervals with both bounds
infinite correspond to the unknown value). The number of considered samples is
currently set to 3. Of course, this strategy cannot be used to soundly verify correctness
of programs, and so it is used for detecting bugs only.

1 Algorithmic Details behind the Predator Shape Analyser 31

Errors Sought and Error Reporting

Predator is able to discover or prove absence of various kinds of memory safety
errors, including various forms of illegal dereferences (null dereferences, deref-
erences of freed or unallocated memory, out-of-bound dereferences), illegal free
operations (double free operations, freeing non-heap objects), as well as memory
leakage. Memory leakage checks are optimized by collecting sets of lost addresses
for each operation that can introduce a memory leak (write reinterpretation, free,
etc.), followed by checking whether reachability of allocated objects from program
variables depend on the collected addresses. Moreover, Predator also uses the fact
that SMGs allow for easy checking whether a given pair of memory areas overlap.
Indeed, if both of them are inside of two distinct valid regions, they have no overlaps,
and if both of them are inside the same region, one can simply check their offset
ranges for intersection. Such checks are used for reporting invalid uses of memcpy
or the C-language assignment, which expose undefined behavior if the destination
and source memory areas (partially) overlap with each other. Predator also looks for
violations of assertions written in the code.

Predator can also detect invalid dereferences of objects local to a block from
outside of the block. For that, it tracks usage of the clobber instruction of CL IR,
which is used to terminate the life time of local variables of code blocks. Whenever the
instruction is encountered, the concerned memory region is marked as deallocated,
and further dereferences of that region are detected as erroneous.

Predator reports discovered errors together with their location in the code in the
standard GCC format, and so they can be displayed in standard editors or IDEs.
Predator can also produce error traces in a textual or graphical format or in the
XML format of SV-COMP (cf. Section 1.6.2). Predator also supports error recovery
to report multiple program errors during one run. For example, if a memory leak
is detected, Predator only reports a warning, the unreachable part of the SMG is
removed, and the symbolic execution then continues.

Options

The kernel supports many options. Some of them can be set in the config.h file
(requiring the kernel to be re-compiled) and some when starting the analysis (cf. the
tutorial in Section 1.12). Apart from various debugging options and some options
mentioned already above, one can, e.g., decide whether the abstraction and join
should be performed after every basic block or at loop points only (abstraction
can also be performed when returning from function calls). One can specify the
maximum call depth, choose between various search orders, switch on/off the use of
function summaries and destruction of dead local variables, control error recovery,
and control re-ordering of lists of SMGs kept for program locations (based on their
hit ratio) and/or their pruning wrt entailment and their location in CFGs.

32 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

scheduler: BFSscheduler: DFS
heap abstraction
join
call cache

scheduler: DFS
 depth 900
sampled intervals

scheduler: DFS
 depth 200
sampled intervals

D
F

S
hu

nt
er

D
F

S
hu

nt
er

B
F

S
hu

nt
er

V
er

ifi
er

safe
+ witness.xml

error
+ witness.xml

reach-/memsafetymemcleanup

propertyfilesource file

Fig. 1.11: The flow of control of Predator Hunting Party as used in SV-COMP’19.

1.5.3 Predator Hunting Party

The Predator Hunting Party (or PredatorHP for short) uses the original Predator
analyser to prove programs safe while at the same time using several bounded
versions of Predator for bug hunting. PredatorHP, whose flow of control is shown in
Fig. 1.11, is implemented as a Python script that runs several instances of Predator
in parallel and composes the results they produce into the final verification verdict.

In particular, PredatorHP starts four Predators: One of them is the original Predator
that soundly overapproximates the behaviour of the input program—we denote it as
the Predator verifier below. Apart from that, three further Predators, modified as
follows, are started: Their join operator is reduced to joining SMGs equal up to
isomorphism, they use no list abstraction, and they are also prohibited from using
the call cache, which is otherwise used for implementing fuction summaries.19 Two
of them use a bounded depth-first search to traverse the state space, and so we call
them Predator DFS hunters. They use bounds of 200 and 900 GIMPLE instructions,
respectively. The third of them—the Predator BFS hunter—uses a breadth-first
search to traverse the state space. The DFS hunters are allowed to use the above
described heuristic based on sampling intervals when looking for bugs in interval-
sized memory regions.

If the Predator verifier claims a program correct, so does PredatorHP, and it kills
all other Predators. If the Predator verifier claims a program incorrect, its verdict is
ignored since it can be a false alarm (and, moreover, it is highly non-trivial to check
whether it is false or not due to the involved use of list abstractions and joins). If
one of the Predator DFS hunters finds an error, PredatorHP kills all other Predators
and claims the program incorrect, using the trace provided by the DFS hunter who
found the error as a violation witness.20 One of the DFS hunters searches quickly for
bugs with very short witnesses, and one then searches for longer but still not very
long witnesses. If a DFS hunter claims a program correct, its verdict is ignored as it
may be unsound. If a BFS hunter manages to find an error within the time budget,

19 The use of function summaries is prohibited since they may yield over-approximation, in partic-
ular, when testing applicability of summaries by entailment.
20 The obtained trace can still be spurious due to abstraction applied on non-pointer data.

1 Algorithmic Details behind the Predator Shape Analyser 33

PredatorHP claims the program incorrect (without a time limit, the BFS hunter is
guaranteed to find every error). If the BFS hunter finishes and does not find an error,
the program is claimed correct. Otherwise, the verdict “unknown” is obtained.

The main strength of PredatorHP is that—unlike various bounded model
checkers—it treats unbounded heap manipulation in a sound way. At the same time,
it is also quite efficient, and the use of various concurrently running Predator hunters
greatly decreases chances of producing false alarms (there do not arise any due to
heap manipulation, the remaining ones are due to abstraction on other data types).

1.6 Experiments
In this section, we present results of experiments with Predator both outside of SV-
COMP as well as within SV-COMP. In the latter case, we concentrate in particular
on the 2019 edition of SV-COMP and on the influence of using PredatorHP as well
as one of the later introduced optimisations of Predator, namely, that of dealing with
intervals of values (Section 1.5.2).

1.6.1 Experiments with Predator Outside of SV-COMP

Already when SMGs and their implementation in Predator were first published in
[19], Predator had been successfully tested on a number of case studies. Among them
there were more than 256 case studies (freely available with Predator) illustrating
various programming constructs typically used when dealing with linked lists. These
case studies include various advanced kinds of lists used in the Linux kernel and
their typical manipulation, typical error patterns that appear in code operating with
Linux lists, various sorting algorithms (insert sort, bubble sort, merge sort), etc.
These case studies have up to 300 lines of code, but they consist almost entirely of
complex memory manipulation (unlike larger programs whose big portions are often
ignored by tools verifying memory safety). Next, Predator was also successfully
tested on the driver code snippets distributed with SLAyer [3] as well as on the
cdrom driver originally checked by Space Invader [38]. In some of these programs,
Predator identified errors not found by the other tools due to their more abstract (not
byte-precise) treatment of memory [19].21

Further, we also considered two real-life low-level programs: a memory allocator
from the Netscape portable runtime (NSPR) and a module taken from the lvm2
logical volume manager. The NSPR allocator allocates memory from the operating
system in blocks called arenas, grouped into singly-linked lists called arena pools,
which can in turn be grouped into lists of arena pools (giving lists of lists of arenas).
User requests are then satisfied by sub-allocation within a suitable arena of a given
arena pool. We consider a fixed size of the arenas and check safety of repeated
allocation and deallocation of blocks from arena pools as well as lists of arena pools.
The blocks are of aligned size chosen randomly and ranging up to the arena size.

21 Invader did not check memory manipulation via array subscripts, and SLAyer did not check size
of the blocks allocated on the heap. The case studies of SLAyer were later updated, and so they do
not contain the identified problems any more.

34 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

For this purpose, a support for offset intervals as described above is needed. The
intervals arise from abstracting lists whose nodes (arenas) point with different offsets
to themselves (one byte behind the last sub-allocated block within the arena) and
from address alignment, which the NSPR-based allocator is also responsible for. Our
approach allows us to verify that pointers leading from each arena to its so-far free
part never point beyond the arena and that arena headers never overlap with their data
areas, which are the original assertions checked by NSPR arena pools at run-time
(if compiled with the debug support). Our lvm2-based case studies then exercise
various functions of the module implementing the volume metadata cache. As in
the case of NSPR arenas, we use the original (unsimplified) code of the module, but
we use a simplified test harness where the lvm2 implementation of hash tables is
replaced by the lvm2 implementation of doubly-linked lists.

The original results of Predator, Invader, and SLAyer on the above described
case studies are available in [19]. In Table 1.1, we present results on some of these
case studies obtained from a wider selection of tools, complementing the originally
considered tools with more tools selected out of those scoring well in heap-related
categories of SV-COMP.22 All experiments were run on a computer with an Intel
Core i7-3770K processor at 3.5 GHz with 32 GiB RAM. However, due to problems
with installing some of the tools and due to some of them not being maintained
any more, we had to consider different environments for running the experiments
and consider tools made available in different years. Namely, Invader and SLAyer
(marked by “*” in the table) were taken in their versions from years 2008 and 2011,
respectively. Forester and CPA-kInd (marked by “**” in the table) were taken in
their versions from SV-COMP’17 and run in a virtual machine with Ubuntu 16.04
(which restricted the available memory to 17.5 GB) and BenchExec 1.14 [6]. The
remaining tools were taken in their versions from SV-COMP’19 and run in a virtual
machine with Ubuntu 18.04 (with the available memory again restricted to 17.5 GB)
and BenchExec 1.17.

All the tools were run in their default configurations. Better results can sometimes
be obtained for particular case studies by tweaking certain configuration options
(abstraction threshold, call cache size, etc.). However, while such changes may
improve the performance in some case studies, they may harm it in others, trigger
false positives, or even prevent the analysis from termination.

The results show that Predator provides the best results out of the considered
tools. Indeed, the other considered tools often even crash, timeout, provide false
positives, or even false negatives. Note also that PredatorHP provides worse results
than the original Predator analyser on the chosen test cases. This is due to the stress on
avoiding false positives (and not allowing the Predator verifier to announce errors)
and due to running Predator hunters in parallel with the verifier (causing overall
higher time consumption).

22 We have also considered MemCAD 1.0.0 [15], but we were unable to make it work on the chosen
programs, and so we do not include it into the results.

1 Algorithmic Details behind the Predator Shape Analyser 35

Table 1.1: Experimental results on the Invader’s cdrom test case and selected Preda-
tor’s test cases showing either the verification time or one of the following outcomes:
FP = false positive, FN = false negative, F = the expected error not found, an-
other potential error reported (may be spurious: not checked), T = time out (900 s),
oom = out of memory (15 GB), seg = segmentation fault, x = parsing problems,
xx = internal error, U = inconclusive verification result (some form of “don’t know”
explicitly produced by the tool), ? = unknown failure of the tool (we were unable to
closer diagnose the failure).

c
d
r
o
m
f
a
l
s
e
-
v
a
l
i
d
-
d
e
r
e
f
.
c

f
i
v
e
-
l
e
v
e
l
-
s
l
l
-
d
e
s
t
r
o
y
e
d
-
b
o
t
t
o
m
-
u
p
.
c

f
i
v
e
-
l
e
v
e
l
-
s
l
l
-
d
e
s
t
r
o
y
e
d
-
t
o
p
-
d
o
w
n
.
c

l
i
n
u
x
-
d
l
l
-
o
f
-
l
i
n
u
x
-
d
l
l
.
c

l
i
s
t
-
o
f
-
a
r
e
n
a
-
p
o
o
l
s
-
w
i
t
h
-
a
l
i
g
n
m
e
n
t
.
c

l
v
m
c
a
c
h
e
a
d
d
o
r
p
h
a
n
v
g
i
n
f
o
f
a
l
s
e
-
v
a
l
i
d
-
m
e
m
t
r
a
c
k
.
c

m
e
r
g
e
s
o
r
t
.
c

m
e
r
g
e
s
o
r
t
f
a
l
s
e
-
u
n
r
e
a
c
h
-
c
a
l
l
.
c

s
c
o
p
e
-
g
o
t
o
f
a
l
s
e
-
v
a
l
i
d
-
d
e
r
e
f
.
c

c
m
p
-
f
r
e
e
d
-
p
t
r
f
a
l
s
e
-
u
n
r
e
a
c
h
-
c
a
l
l
.
c

Predator 0.63 1.17 0.12 0.11 0.80 0.80 1.32 0.26 0.26 0.06 0.04 0.04
PredatorHP T 4.53 0.78 0.73 T T x 1.02 1.01 0.32 0.23 0.23
Invader* FN FP FP T FP - x FP - - - -
SLAyer* x x x x x - x x - - - -
Forester** xx xx T T xx xx x xx xx xx xx U
CPA-Seq T T T T T T U T T 75.78 T x
CPA-kInd** - - - - - T - - seg T - x
DepthK oom T T ? T T ? T T 1.11 ? ?
2LS xx T T xx xx xx xx T T T x FN
ESBMC-kind U oom oom FP oom oom x T T 0.68 FN FN
Map2Check ? ? ? T ? ? ? T ? ? T ?
UAutomizer xx T T xx xx xx x T T 12.99 6.28 5.60
UKojak xx T T xx xx xx x T T 14.18 6.52 5.64
UTaipan xx T T xx xx xx x T T 13.55 6.13 5.72
DIVINE 10.88 T T T U U x FP T 11.06 seg FN
DIVINE-explicit 10.42 T T T FP xx x U U 9.97 U FN
Symbiotic F xx xx T xx FP x T T 0.40 0.34 FN

36 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

Table 1.2: An analysis of results of PredatorHP and its component Predators on
SV-COMP’19 benchmarks. The meaning of the columns is as follows: T = correct
true, F = correct false, × = FN (false negative) / FP (false positive).

Benchmarks PredatorHP Predator Predator hunters
verifier BFS DFS 200 DFS 900

F T × F T × F T × F T × F T ×
MemSafety 172 153 134 110 52/0 154 121 124 64 0/1 166 148 0/3

Arrays 15 0 7 0 7 0 15 29 0/1 15 46 0/1
Heap 81 67 83 59 16/0 76 51 55 29 76 40 0/2
LinkedLists 28 66 27 32 36/0 27 49 16 3 28 48
Other 16 20 17 19 16 21 12 3 15 14
MemCleanup 32 - 0 - 28 - 26 - 32 -

ReachSafety
Heap 71 129 4/0 70 93 43/0 67 108 4/0 54 56 1/0 71 108 1/0

1.6.2 Predator and SV-COMP

Predator participated in SV-COMP since its beginning. In the first to third editions
(i.e., from SV-COMP’12 to SV-COMP’14), the basic Predator analyser was involved.
Since the 4th edition (SV-COMP’15), PredatorHP (see Section 1.5.3) was used. Its
usage very significantly reduced the number of false alarms. On the other hand,
although PredatorHP decreased the overall wall time of the verification (and some
verification tasks were speeded up even in terms of the CPU time), the overall CPU
time consumption increased.

In Table 1.2, we present an analysis of the performance of PredatorHP and its
components, i.e., Predator hunters and the Predator verifier on benchmarks of several
heap- and memory-related categories of SV-COMP’19. To get the data, we ran the
experiments on a machine with an Intel Core i7-3770K processor at 3.5 GHz with
32 GiB RAM. As in the previous subsection, they were run in a virtual machine with
Ubuntu 18.04 (with the available memory restricted to 17.5 GB) and BenchExec 1.17.

The use of PredatorHP allowed us to avoid 52 false alarms generated by Predator
Verifier in the MemSafety category: Under PredatorHP, 40 of these benchmarks are
successfully verified, 10 benchmarks end by a timeout, and the expected error is not
reported in 2 benchmarks (instead a false alarm about another issue is raised). Like-
wise, in the ReachSafety category, 39 false alarms are avoided: 34 of the concerned
benchmarks are successfully verified, 5 benchmarks end with a timeout (and there
still remain 4 false alarms due to imprecise treatment of integers).

Moreover, the BFS hunter managed to verify various benchmarks with small
finite state spaces, some of them with arithmetic operations on data fields of
nodes of bounded-length lists (e.g., list-simple/dll2*, list-simple/sll2*,
ldv-memsafety/memleaks_test23_{1,3}_true-valid-memsafety.i, or also
heap-data/shared_mem*). In their case, the list abstraction is not needed, and,
by not using it, we avoid interval abstraction on data fields, which causes impre-
cision and makes the Predator verifier to announce a false alarm (which Preda-
torHP ignores). In those cases where one needs to track data fields of unbounded
lists, a timeout is hit since the verifier produces false alarms and hunters run for-
ever (this happens, e.g., in heap-data/process_queue_true-unreach-call.c,

1 Algorithmic Details behind the Predator Shape Analyser 37

heap-data/min_max_true-unreach-call.c, list-ext-properties/list-
ext flag 1 true-valid-memsafety.c). Another cause of timeouts is then miss-
ing abstraction for non-list data structures (such as, e.g., trees in the benchmarks
of memsafety-ext/tree*), which prevents both the hunters and the verifier from
terminating.

As for the time consumption, the original Predator used 25,200 seconds of
CPU/wall time (that are equal in this case) to handle all benchmarks considered
in Table 1.2 in the MemSafety category. Further, it needed 14,700 seconds in the
ReachSafety category. On the other hand, PredatorHP needed 17,100 seconds of
wall time and 36,800 seconds of CPU time for the MemSafety category and 9,850
seconds of wall time and 20,000 seconds of CPU time for the ReachSafety category.
This shows what we mentioned already at the beginning of the section, i.e., the fact
that PredatorHP decreased the wall time but increased the CPU time.

However, even in terms of the CPU time, PredatorHP was faster in 6 correct and 6
erroneous benchmarks of the MemSafety category (with the correct cases and 3 of the
erroneous cases handled by the BFS hunter, and with the 3 remaining erroneous cases
handled by DFS hunters). In the ReachSafety category, PredatorHP was faster in 1
correct and 1 erroneous benchmark (both handled by the BFS hunter). The reason for
that is that the list abstraction introduces some overhead that is not necessary in some
cases: in particular, benchmarks on locks (locks/test locks *), and benchmarks
with arrays (ldv-regression/test23 {true,false}-unreach-call.c), and
benchmarks on lists with bounded-length and data fields (list-ext-properties/
simple-ext 1 true-valid-memsafety.c, list-ext2-properties/simple
and skiplist 2lvl false-unreach-call.c).

Next, we briefly discuss influence of the pragmatic heuristics for dealing with
intervals of values discussed in Section 1.5.2. The first of them replaces dealing with
an interval of a bounded size by performing the verification independently for each
element of the interval. This approach resolved unknown results of the basic Preda-
tor in the following two cases: list-ext3-properties/sll nondet insert
true-unreach-call true-valid-memsafety.c, which inserts a node at a spe-
cific index given by an interval into a list of an unknown but finite length (namely, two
to five elements), and ldv-regression/test24 true-unreach-call true-
termination.c, which indexes an array by an interval. Apart from that, due to
the heuristic sampling of unbounded intervals, DFS hunters found errors in 9 test
cases (array-memsafety/*) when looking for bugs in interval-sized memory re-
gions allocated by alloca .

The efficiency of SMGs together with all the optimisations allowed Predator to
win 7 gold medals, 5 silver medals, and 1 bronze medal at SV-COMP’12–19. In 2018
and 2019, it did not win any gold medal, which was caused to a large degree by that
SV-COMP merged benchmarks targeting at programs with arrays with those focusing
on pointers, dynamic memory, and dynamic linked data structures. However, even
in SV-COMP’19, Predator was the first in the MemSafety-Heap and MemSafety-
LinkedLists subcategory.

For SV-COMP’20, Predator was further improved in several relatively minor ways
(e.g., its SMG-based analysis has been extended to support memory reallocation on

38 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

the heap, Predator’s handling of intervals has been fine-tuned, etc.)—for more details,
see [32]. This allowed Predator to once again win a gold medal in the MemSafety
category. Moreover, in SV-COMP’20, Predator has been integrated as an auxiliary
tool of Symbiotic where it either helps it to prove some programs correct (if it
manages to do so quickly enough), or information contained in its bug reports is
combined with results of static pointer analysis implemented in Symbiotic to get
a more precise (i.e. smaller) set of potentially misbehaving instructions on which
Symbiotic subsequently concentrates its further analysis based on symbolic execution
[13].

Predator did not officially participate in SV-COMP’21 due to insufficient man-
power for keeping it up-to-date with various changes in the competition’s rules,
formats, and with various specific features of new verification tasks. However, it
participated “hors concours” with absolutely no change wrt the previous year, and
the results indicate that it would still be capable of scoring quite favourably in some
categories or sub-categories. Moreover, the integration of Predator with Symbiotic
was improved, and Predator appeared in SV-COMP’21 as a part of Symbiotic too.

1.7 Related Work

Many approaches to formal analysis and verification of programs with dynamic
linked data structures have been proposed. They differ in their generality, level
of automation, as well as the formalism on which they are based. As we said
already in the introduction of the chapter, SMGs and the shape analysis based
on them are inspired by the fully-automated approaches based on separation logic
with higher-order list predicates implemented in the Space Invader [2, 38] and
SLAyer [3] tools. Compared with them, however, we use a purely graph-based
memory representation.23 Our heap representation is finer, which—on one hand—
complicates its formalization but allows for treating the different peculiarities of low-
level memory manipulation on the other hand. Moreover, somewhat surprisingly,
although our heap representation is rather detailed, it still allowed us to propose
algorithms for all the needed operations such that they are quite efficient.24

Compared with Space Invader and SLAyer, Predator is not only faster, but also
terminates more often, avoids false positives and, in particular, is able to detect more
classes of program errors (as illustrated in the section on experiments). Both Space
Invader and SLAyer provide some support for pointer arithmetic, but their systematic
description is—to the best of our knowledge—not available, and, moreover, the
support seems to be rather basic as illustrated by our experimental results. A support
for pointer arithmetic in combination with separation logic appears in [9] too, which
is, however, highly specialised for a particular kind of linked lists with variable length
entries used in some memory allocators.

23 In fact, a graph-based representation was used already in the first version of Predator [18].
However, that representation was a rather straightforward graph-based encoding of separation logic
formulae, which is not the case anymore for the representation described here.
24 Indeed, the version of Predator based on SMGs as presented here turned out to be much faster
than the first one of [18] while at the same time producing fewer false positives.

1 Algorithmic Details behind the Predator Shape Analyser 39

As for the memory model, probably the closest to the notion of SMGs is [24],
which uses the so-called separating shape graphs. They support tracking of the
size of allocated memory areas, pointers with byte-precise offsets wrt addresses
of memory regions, dealing with offset ranges, as well as multiple views on the
same memory contents. A major difference is that [24] and the older work [14],
on which [24] is based, use so-called summary edges annotated by user-supplied
data structure invariants to summarize parts of heaps of an unbounded size. This
approach is more general in terms of the supported shapes of data structures but
less automated because the burden of describing the shape lies on the user. We
use abstract objects (list segments) instead, which are capable of encoding various
forms of hierarchically nested-lists (very often used in practice) and are carefully
designed to allow for fully-automated and efficient learning of the concrete forms of
such lists (the concrete fields used, the way the lists are hierarchically-nested, their
possible cyclicity, possibly shared nodes, optional nodes, etc.). Also, the level of
nesting is not fixed in advance—our list segments are labelled by an integer nesting
level, which allows us to represent hierarchically-nested data structures as flattened
graphs. Finally, although [24] points out a need to reinterpret the memory contents
upon reading/writing, the corresponding operations are not formalized there.

A graph-based abstraction of sets of heap configurations is used in [29] too. On
one hand, the representation allows one to deal even with tree-like data structures,
but, on the other hand, the case of doubly-linked lists is not considered. Further, the
representation does not consider the low-level memory features covered by SMGs.
Finally, the abstraction and join operations used in [29] are more aggressive and
hence less precise than in our case.

The work [23], which is based on an instantiation of the TVLA framework [35], fo-
cuses on analysis of Linux-style lists, but their approach relies on an implementation-
dependent way of accessing list nodes, instead of supporting pointer arithmetics,
unions, and type-casts in a generic way. Finally, the work [36] provides a detailed
treatment of low-level C features such as alignment, byte-order, padding, or type-
unsafe casts in the context of theorem proving based on separation logic. Our rein-
terpretation operators provide a lightweight treatment of these features designed to
be used in the context of a fully-automated analysis based on abstraction.

Another tool that can handle some features of pointer arithmetic is Forester [20].
It is based on hierarchically-nested forest automata, i.e., tuples of interconnected tree
automata, and the approach of abstract regular tree model checking [8]. Forester can
handle fully-automatically more general classes of dynamic linked data structures
than Predator (trees, trees with additional pointers, skip lists25), has a more flexible

25 Adding a support of such non-list dynamic data structures to Predator is non-trivial. For that,
new kinds of heap segments would have to be added, together with algorithms for all the needed
operations. In fact, an attempt to add tree segments was once done. It was realised that one would
need tree segments with and without “holes” on the leaf level, possibly even a variable number
of them, through which the tree segments would link to the rest of the heap. However, algorithms
that would be capable of handling such segments, combine them reasonably with list segments
(one needs to handle appropriately questions such as whether a tree degenerated to the left-most
branch is a list or a tree), and prevent state space explosion stemming from introducing a number
of different kinds of tree segments have never been finished.

40 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

abstraction (which can adjust to various non-standard shapes of data structures), and
a support for dealing with ordered data in one of its versions [1] as well as a support
for finite data together with a counterexample-guided abstraction refinement loop in
another version [11]. However, as our experimental results in Section 1.6.1 show,
Forester’s support of low-level features is much more limited and it is often less
efficient too (though not always as shown in [20]).

Interestingly, there have appeared two tools that attempt to reimplement SMGs in
the context of configurable program analysis (CPA) [7]: namely, CPAlien [31] and
CPAchecker [26]. CPAlien was an experimental tool with a partial implementation
of SMGs only: in particular, abstraction was missing. The support of SMGs in
CPAchecker is—as far as we know—more complete, but so far it is also used
without abstraction for efficiency reasons (at least that was the case up to SV-
COMP’20). Without abstraction, however, CPAchecker cannot successfully verify
correct programs in case dealing with unbounded lists is needed for the verification.

The above problem of not being able to soundly verify programs whose verifica-
tion requires dealing with unbounded dynamic data structures is much more common
among the tools that participated in heap- and memory-related (sub-)categories of
the different editions of SV-COMP up to SV-COMP’20. This problem manifests, e.g.,
in Symbiotic [12] or Ultimate Automizer [21]. In particular, in order not to sacrifice
soundness, the analysis implemented in these tools cannot successfully terminate on
such programs (while still other tools perform bounded analysis only and produce
in principle unsound answers). A tool that participates in SV-COMP and that can
handle verification on unbounded list structures in a sound way is 2LS [27]. This
tool is based on a combination of template-based invariants, 𝑘-induction, abstract
domains (for representing suitable parameters of the template-based invariants), and
SAT solving. 2LS can handle unbounded list structures and can even reason (to some
degree) about data stored in them [28]. However, 2LS currently has no support for
pointer arithmetic.

Finally, it is worth mentioning that the above mentioned works on separation logic
and Space Invader later led to the so-called bi-abductive analysis of programs with
dynamic linked data structures [10]. This approach was implemented in a tool called
Infer that concentrated on (nested) dynamic linked lists—despite that the approach
of [10] itself is more general. An advantage of the approach is that it can handle
open code fragments (i.e., there is no need to model the environment of the code
fragment under verification) and it can perform the analysis modularly, analysing
functions along the call tree, starting from the leaves (which is quite scalable though
it may involve some loss of precision). A generalisation of the approach appeared in
relation with the S2 tool [25]. This tool can handle programs with very complex data
structures (e.g., trees with linked leaves). On the other hand, the approach is rather
fragile in that it relies on the program to handle data structures in a way that is well
aligned with their inductive definitions and sometimes it fails even on rather simple
programs. Moreover, despite Infer contained some support of pointer arithmetic, the
support of low-level pointer features in bi-abductive analyses is quite limited and
remains an open problem for the future.

Indeed, for the future, it would be very useful to have an abductive analyser
supporting truly low-level features of memory manipulation and at the same time

1 Algorithmic Details behind the Predator Shape Analyser 41

capable of analysing code fragments (since analysis of such fragments is probably
the most welcome in real life according to our experience). As for the low-level
features, one can, of course, go even further than Predator does: e.g., sometimes
even bit-precision is needed—for instance, when some bits of pointers are used to
store non-pointer information by bit-masking (which is used sometimes, e.g., to store
the colour of nodes in red-black trees).

Acknowledgement.

The work was supported by the Czech Science Foundation project 20-07487S and
the FIT BUT project FIT-S-23-8151.

References

1. Abdulla, P.A., Holı́k, L., Jonsson, B., Lengál, O., Trinh, C.Q., Vojnar, T.: Verification of Heap
Manipulating Programs with Ordered Data by Extended Forest Automata. Acta Informatica,
53(4):357–385. Springer (2016).

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.: Shape
Analysis for Composite Data Structures. In: Proc. of CAV’07, vol. 4590 of LNCS, pp. 178–192.
Springer (2007)

3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory Safety for Systems-level Code. In: Proc.
of CAV’11, vol. 6806 of LNCS, pp. 178–183. Springer (2011)

4. Berdine, J., Cox, A., Ishtiaq, S., Wintersteiger, C.M.: Diagnosing Abstraction Failure for
Separation Logic-Based Analyses. In: Proc. of CAV’12, vol. 7358 of LNCS, pp. 155–173.
Springer (2012)

5. Beyer, D., Dangl, M., Wendler, P.: Boosting k-Induction with Continuously-Refined Invariants.
In: Proc. of CAV’15, vol. 9206 of LNCS, pp. 622–640. Springer (2015)

6. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solutions. Inter-
national Journal on Software Tools for Technology Transfer, 21(1). Springer (2019)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable Software Verification: Concretizing
the Convergence of In: Proc. of CAV’07, vol. 4590 of LNCS, pp. 504-518. Springer (2007)

8. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular (Tree) Model
Checking. International Journal on Software Tools for Technology Transfer, 14(2):167–191.
Springer (2012)

9. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Beyond Reachability: Shape Abstraction
in the Presence of Pointer Arithmetic. In: Proc. of SAS’06, vol. 4134 of LNCS, pp. 182–203.
Springer (2006)

10. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional Shape Analysis by
Means of Bi-Abduction. Journal of the ACM, 58(6):26:1–26:66. ACM (2011)

11. Holı́k, L., Hruška, M., Lengál, O., Rogalewicz, A., Vojnar, T.: Counterexample Validation and
Interpolation-Based Refinement for Forest Automata. In Proc. of VMCAI’17, vol. 10145 of
LNCS, pp. 288–309. Springer (2017)

12. Chalupa, M., Vitovská, M., Jonáš, M., Slabý, J., Strejček, J.: Symbiotic 4: Beyond Reachability.
In: Proc. of TACAS’17, vol. 10206 of LNCS, pp. 385–389. Springer (2017)

13. Chalupa, M., Jašek, T., Tomovič, L., Hruška, M., Šoková, V., Ayaziová, P., Strejček, J., Vojnar,
T.: Symbiotic 7: Integration of Predator and More (Competition Contribution). In Proc. of
TACAS’20, vol. 12079 of LNCS, pp. 413–417. Springer (2020)

14. Chang, B.-Y. E., Rival, X., Necula, G.C.: Shape analysis with structural invariant checkers. In:
Proc. of SAS’07, vol. 4634 of LNCS, pp. 384–401. Springer (2007)

42 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

15. Cox, A., Chang, B.-Y. E., Li, H., Rival, X.: Abstract Domains and Solvers for Sets Reasoning.
In: Proc. of LPAR’15, vol. 9450 of LNCS, pp. 356–371. Springer (2015)

16. Dudka, K., Holı́k, L., Peringer, P., Trtı́k, M., Vojnar, T.: From Low-Level Pointers to High-Level
Containers. In: Proc. of VMCAI’16, vol. 9583 of LNCS, pp. 431–452. Springer (2016)

17. Dudka, K., Peringer, P., Vojnar, T.: An Easy to Use Infrastructure for Building Static Analysis
Tools. In: Proc. of EUROCAST’11, vol. 6927 of LNCS, pp. 527–534. Springer (2012)

18. Dudka, K., Peringer, P., Vojnar, T.: Predator: A Practical Tool for Checking Manipulation of
Dynamic Data Structures Using Separation Logic. In: Proc. of CAV’11, vol. 6806 of LNCS,
pp. 372–378. Springer (2011)

19. Dudka, K., Peringer, P., Vojnar, T.: Predator: Byte-Precise Verification of Low-Level List
Manipulation. In: Proc. of SAS’13, vol. 7935 of LNCS, pp. 214–237. Springer (2013)

20. Habermehl, P., Holı́k, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest Automata for Verifi-
cation of Heap Manipulation. Formal Methods in System Design, 41(1), Springer (2012)

21. Heizmann, M. et al.: Ultimate Automizer with an On-Demand Construction of Floyd-Hoare
Automata. In: Proc. of TACAS’17, vol. 10206 of LNCS, pp. 394–398. Springer (2017)

22. Holı́k, L., Kotoun, M., Peringer, P., Šoková, V., Trtı́k, M., Vojnar, T.: Predator Shape Analysis
Tool Suite. In: Proc. of HVC’16, vol. 10028 of LNCS, pp. 202–209. Springer (2016)

23. Kreiker, J., Seidl, H., Vojdani, V.: Shape Analysis of Low-Level C with Overlapping Structures.
In: Proc. of VMCAI’10, vol. 5944 of LNCS, pp. 214–230. Springer (2010)

24. Laviron, V., Chang, BY.E., Rival, X.: Separating Shape Graphs. In: Proc. of ESOP’10,
vol. 6012 of LNCS, pp. 387–406. Springer (2010)

25. Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape Analysis via Second-Order Bi-Abduction.
In: Proc. of CAV’15, vol. 9206 of LNCS, pp. 52–68. Springer (2015)

26. Löwe, S., Mandrykin, M.U., Wendler, P.: CPAchecker with Sequential Combination of Explicit-
Value Analyses and Predicate Analyses (Competition Contribution). In Proc. of TACAS’14,
vol. 8413 of LNCS, pp. 392–394. Springer (2014)

27. Malı́k, V., Martiček, Š., Schrammel, P., Srivas, M.K., Vojnar, T., Wahlang, J.: 2LS: Memory
Safety and Non-termination (Competition Contribution). In Proc. of TACAS’18, vol. 10806
of LNCS, pp. 417–421. Springer (2018)

28. Malı́k, V., Hruška, M., Schrammel, P., Vojnar, T.: Template-Based Verification of Heap-
Manipulating Programs. In Proc. of FMCAD’18. IEEE (2018)

29. Marron, M., Hermenegildo, M., Kapur, D., Stefanovic, D.: Efficient Context-Sensitive Shape
Analysis with Graph Based Heap Models. In: Proc. of CC’08, vol. 4959 of LNCS, pp. 245–259.
Springer (2008)

30. Muller, P., Peringer, P., Vojnar, T.: Predator Hunting Party (Competition Contribution). In:
Proc. of TACAS’15, vol. 9035 of LNCS, pp. 443–446. Springer (2015)

31. Muller, P., Vojnar, T.: CPAlien: Shape Analyzer for CPAChecker (Competition Contribution).
In Proc. of TACAS’14, vol. 8413 of LNCS, pp. 395–397. Springer (2014)

32. Peringer, P., Šoková, V., Vojnar, T.: PredatorHP Revamped (Not Only) for Interval-Sized Mem-
ory Regions and Memory Reallocation (Competition Contribution). In Proc. of TACAS’20,
vol. 12079 of LNCS, pp. 408–412. Springer (2020)

33. Reps, T., Horwitz, S., Sagiv, M.: Precise Interprocedural Dataflow Analysis via Graph Reach-
ability. In: Proc. of POPL’95, pp. 49–61. ACM Press (1995)

34. Rival, X., et al.: The MemCAD Analyzer. Available at https://www.di.ens.fr/˜rival/
memcad.html. (2016)

35. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 24(3), ACM (2002)

36. Tuch, H.: Formal Verification of C Systems Code. Journal of Automated Reasoning, 42(2–4),
Springer (2009)

37. Yang, H., Lee, O., Calcagno, C., Distefano, D., O’Hearn, P.W.: On Scalable Shape Analysis.
Technical report RR-07-10, Queen Mary, University of London (2007)

38. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scalable
Shape Analysis for Systems Code. In: Proc. of CAV’08, vol. 5123 of LNCS, pp. 385–398.
Springer (2008)

https://www.di.ens.fr/~rival/memcad.html
https://www.di.ens.fr/~rival/memcad.html

1 Algorithmic Details behind the Predator Shape Analyser 43

Appendix

1.8 Data Reinterpretation of Nullified Blocks

In this appendix, we present a detailed description of the algorithms for read and write
reinterpretation of nullified blocks, which were briefly introduced in Section 1.3.1.
Given an SMG 𝐺 = (𝑂,𝑉,Λ, 𝐻, 𝑃), we define 𝐻𝑜𝑣 (𝑜, 𝑜𝑓 , 𝑡) as the set of all has-
value edges leading from 𝑜 whose fields overlap with the field (𝑜𝑓 , 𝑡), i.e.:

𝐻𝑜𝑣 (𝑜, 𝑜𝑓 , 𝑡) = {(𝑜 𝑜𝑓 ′,𝑡 ′−−−→𝑣) ∈ 𝐻 | 𝐼 (𝑜𝑓 , 𝑡) ∩ 𝐼 (𝑜𝑓 ′, 𝑡′) ≠ ∅}.

Further, we define 𝐻𝑧𝑟 (𝑜, 𝑜𝑓 , 𝑡) as the subset of 𝐻𝑜𝑣 (𝑜, 𝑜𝑓 , 𝑡) containing all its edges
leading to 0, i.e.:

𝐻𝑧𝑟 (𝑜, 𝑜𝑓 , 𝑡) = {(𝑜 𝑜𝑓 ′,𝑡 ′−−−→0) ∈ 𝐻𝑜𝑣 (𝑜, 𝑜𝑓 , 𝑡)}.

1.8.1 Read Reinterpretation of Nullified Blocks

Algorithm 1 gives the algorithm of read reinterpretation instantiated for dealing with
nullified blocks of memory as precisely as possible.

Algorithm 1 readValue(𝐺, 𝑜, 𝑜𝑓 , 𝑡)

Input:
• An SMG 𝐺 = (𝑂, 𝑉,Λ, 𝐻, 𝑃) .
• An object 𝑜 ∈ 𝑂.
• A field (𝑜𝑓 , 𝑡) within 𝑜, i.e., 𝑜𝑓 + size(𝑡) ≤ size(𝑜) .

Output:
• A tuple (𝐺′, 𝑣) that is the result of read reinterpretation of 𝐺 wrt the object 𝑜 and the field
(𝑜𝑓 , 𝑡) such that fields representing nullified memory are read as precisely as the notion of
SMGs allows (i.e., the operator recognises that the field to be read is nullified iff the input
SMG guarantees that each byte of the field is indeed zero).

Method:
1. Let 𝑣 := 𝐻 (𝑜, 𝑜𝑓 , 𝑡) .
2. If 𝑣 ≠ ⊥, return (𝐺, 𝑣) .
3. If the field to be read is covered by nullified blocks, i.e., if ∀𝑜𝑓 ≤ 𝑖 < 𝑜𝑓 + size(𝑡) ∃𝑒 ∈

𝐻𝑧𝑟 (𝑜, 𝑜𝑓 , 𝑡) : 𝑖 ∈ 𝐼 (𝑒) , let 𝑣 := 0. Otherwise, extend 𝑉 by a fresh value node 𝑣.
4. Extend 𝐻 by the has-value edge 𝑜

𝑜𝑓 ,𝑡−−−→𝑣 and return (𝐺, 𝑣) based on the obtained SMG 𝐺.

1.8.2 Write Reinterpretation of Nullified Blocks

Algorithm 2 gives the algorithm of write reinterpretation instantiated for dealing
with nullified blocks of memory as precisely as possible. An illustration of how the
algorithm works can be found in Fig. 1.12.

1.9 The Join Algorithms

This appendix provides a detailed description of the join algorithms introduced
in Section 1.3.2. We first describe the joinSubSMGs function, which implements the

44 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

r

(a) (b) (c)

 0,char[32]
0

a1

a2

r 0,char[3]
0

11,char[21]

a1

a23,ptr

r 0,char[3]
0

15,char[17]

a1

a27,ptr

G: G': G'':

Fig. 1.12: An illustration of write reinterpretation: (a) an initial SMG 𝐺, (b) the
SMG 𝐺′ obtained by writeValue(𝐺, 𝑟, 3, 𝑝𝑡𝑟, 𝑎1), and (c) the SMG 𝐺′′ obtained by
writeValue(𝐺′, 𝑟, 7, 𝑝𝑡𝑟, 𝑎2). Note that 𝐺′′ contains an undefined value in a field of
size of 4 bytes at offset 3.

Algorithm 2 writeValue(𝐺, 𝑜, 𝑜𝑓 , 𝑡 , 𝑣)

Input:
• An SMG 𝐺 = (𝑂, 𝑉,Λ, 𝐻, 𝑃) .
• An object 𝑜 ∈ 𝑂.
• A field (𝑜𝑓 , 𝑡) within 𝑜, i.e., 𝑜𝑓 + size(𝑡) ≤ size(𝑜) .
• A value 𝑣 such that 𝑣 ∉ 𝑂 (needed so that 𝑣 can be safely added into 𝑉).

Output:
• An SMG 𝐺′ that is the result of write reinterpretation of 𝐺 wrt the object 𝑜, the field (𝑜𝑓 , 𝑡) ,

and the value 𝑣 such that as much information on nullified memory as is allowed by the notion
of SMGs is preserved (i.e., each byte that is nullified in the input SMG will stay nullified in
the output SMG unless it is overwritten by a possibly non-zero value).

Method:
1. If 𝐻 (𝑜, 𝑜𝑓 , 𝑡) = 𝑣, return 𝐺.
2. Let 𝑉 := 𝑉 ∪ {𝑣}.
3. Remove from 𝐻 all edges leading from 𝑜 to non-zero values whose fields overlap with the

given field, i.e., the edges in 𝐻𝑜𝑣 (𝑜, 𝑜𝑓 , 𝑡) \ 𝐻𝑧𝑟 (𝑜, 𝑜𝑓 , 𝑡) .
4. If 𝑣 ≠ 0, then for each edge (𝑒𝑧 : 𝑜 𝑜𝑓𝑧 ,𝑡𝑧−−−−→0) ∈ 𝐻𝑧𝑟 (𝑜, 𝑜𝑓 , 𝑡) do:

a. Remove the edge 𝑒𝑧 from 𝐻.
b. Let 𝑜𝑓 ′ := 𝑜𝑓 + size(𝑡) and 𝑜𝑓 ′𝑧 := 𝑜𝑓𝑧 + size(𝑡𝑧) .
c. If 𝑜𝑓𝑧 < 𝑜𝑓 , extend 𝐻 by the edge 𝑜

𝑜𝑓𝑧 ,char[𝑜𝑓 −𝑜𝑓𝑧]−−−−−−−−−−−−→0.
d. If 𝑜𝑓 ′ < 𝑜𝑓 ′𝑧 , extend 𝐻 by the edge 𝑜

𝑜𝑓 ′,char[𝑜𝑓 ′𝑧−𝑜𝑓 ′]−−−−−−−−−−−−→0.
5. Extend 𝐻 by the has-value edge 𝑜

𝑜𝑓 ,𝑡−−−→𝑣 and return the obtained SMG.

core functionality on top of which both joining garbage-free SPCs (to reduce the num-
ber of SPCs obtained from different paths through the program) as well as merging
a pair of neighbouring objects of a doubly-linked list into a single DLS within abstrac-
tion are built. Subsequently, we describe the functions joinValues, joinTargetObjects,
and insertLeftDlsAndJoin / insertRightDlsAndJoin on which joinSubSMGs is based.
In fact, joinSubSMGs calls joinValues on pairs of corresponding values that appear
below the roots of the sub-SMGs to be joined, joinValues then calls joinTargetObjects
on pairs of objects that are the target of value nodes representing addresses, and the
joinTargetObjects algorithm recursively calls joinSubSMGs to join the sub-SMGs of

1 Algorithmic Details behind the Predator Shape Analyser 45

the objects to be joined. The insertLeft(Right)DlsAndJoin functions are called from
joinValues when the given pair of addresses cannot be joined since their target ob-
jects are incompatible, and an attempt to save the join from failing is done by trying
to compensate a DLS missing in one of the SMGs by inserting it with the minimum
length being 0 (which is possible since a 0+ DLS is a possibly empty list segment).
Finally, we describe the joinSPCs and mergeSubSMGs functions implemented on
top of the generic joinSubSMGs function. The joinSPCs function joins garbage-free
SPCs into a single SPC that semantically covers both. The mergeSubSMGs function
merges a pair of objects during abstraction into a single DLS while the non-shared
part of the sub-SMGs rooted at them is joined into the nested sub-SMG of the
resulting DLS.

𝑠1\𝑠2 ≃ ⊐ ⊏ Z
≃ ≃ ⊐ ⊏ Z
⊐ ⊐ ⊐ Z Z
⊏ ⊏ Z ⊏ Z
Z Z Z Z Z

As mentioned in Section 1.3.2, the join algorithm computes
on the fly the so-called join status which compares the semantics
of the SMGs being joined (with the semantics being either equal,
in an entailment relation, or incomparable). For the purpose of
maintaining the join status, the table shown on the right defines
the function updateJoinStatus : J × J −→ J that combines the
current join status 𝑠1, obtained from joining the so-far explored parts of the SMGs
being joined, with a status 𝑠2 ∈ J comparing the semantics of the objects/values
being currently joined. Note that the function is monotone in that once the status,
which is initially ≃, becomes ⊐ or ⊏, it can never get back to ≃, and once the status
becomes Z, it cannot change any more.

In case of the joinSPCs function, joinSubSMGs needs to be called multiple
times for a single pair of SPCs (starting from different program variables), and
it is necessary to keep certain state information between the calls. Besides the
join status mentioned above, the algorithm maintains a mapping of values and
objects between the source SMGs and the destination SMG. This is needed in order
to identify potentially conflicting mappings arising when starting the join from
different program variables as well as to identify parts of SMGs that have already
been processed. The mapping is encoded as a pair of partial injective functions
𝑚1 : (𝑂1 ⇀ 𝑂) ∪ (𝑉1 ⇀ 𝑉) and 𝑚2 : (𝑂2 ⇀ 𝑂) ∪ (𝑉2 ⇀ 𝑉). Additionally, we
assume that the # object and the 0 address, which have their pre-defined unique roles
in all SMGs, never appear in the ranges of 𝑚1, 𝑚2. In case of the mergeSubSMGs
function, the mapping of objects and values is used to obtain the sets of nodes
recognized as nested data structures.

In the following, we write kind1, size1, level1, len1, valid1, nfo1, pfo1, and hfo1
to denote kind, size, level, len, valid, nfo, pfo, and hfo from Λ1, i.e., the labelling
function of the first SMG being joined. Likewise for Λ2. We further define len′ as a
wrapper function of len such that len′ (𝑜) = len(𝑜) if kind(𝑜) = dls, and len′ (𝑜) = 1
if kind(𝑜) = reg.

1.9.1 Join Reinterpretation

The read and write reinterpretations described in Section 1.3.1 operate on a single
object of a single SMG. However, when joining a pair of SMGs, we need to compare

46 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

pairs of their objects, figure out what they have semantically in common, and modify
their sets of fields such that they become the same (even if for the price of loosing
some information), allowing one to subsequently attempt to join their corresponding
sub-SMGs. For that purpose, we introduce join reinterpretation.

A join reinterpretation operator inputs a pair of SMGs 𝐺1 and 𝐺2, whose
sets of objects are 𝑂1 and 𝑂2, respectively, and a pair of objects 𝑜1 ∈ 𝑂1
and 𝑜2 ∈ 𝑂2 such that size1 (𝑜1) = size2 (𝑜2). The operator returns a triple
(𝑠, 𝐺′1, 𝐺

′
2) where 𝑠 ∈ J is a join status, and 𝐺′1, 𝐺′2 are two SMGs with sets of

has-value edges 𝐻′1, 𝐻′2, respectively,

𝑠 semantics of 𝐺′1 semantics of 𝐺′2
≃ MI(𝐺1) = MI(𝐺′1) MI(𝐺2) = MI(𝐺′2)
⊐ MI(𝐺1) = MI(𝐺′1) MI(𝐺2) ⊂ MI(𝐺′2)
⊏ MI(𝐺1) ⊂ MI(𝐺′1) MI(𝐺2) = MI(𝐺′2)
Z MI(𝐺1) ⊂ MI(𝐺′1) MI(𝐺2) ⊂ MI(𝐺′2)

such that: (1) The sets of fields of
𝑜1 and 𝑜2 are the same, i.e., ∀𝑜𝑓 ∈
N ∀𝑡 ∈ T : 𝐻′1 (𝑜1, 𝑜𝑓 , 𝑡) ≠ ⊥ ⇔
𝐻′2 (𝑜2, 𝑜𝑓 , 𝑡) ≠ ⊥. (2) The status 𝑠 and
the semantics of 𝐺′1 and 𝐺′2 are defined
according to the table shown on the right.
Intuitively, the status ⊐ means that some aspects of 𝐺1 are less restrictive than those
of 𝐺2, implying a need to lift these restrictions in 𝐺2 to keep chance for its successful
join with 𝐺1, which enlarges the semantics of 𝐺2 while that of 𝐺1 stays the same.
Likewise for the other symbols of J.

For the particular case of dealing with nullified memory, we implement the join
reinterpretation as follows (cf. Algorithm 3). First, nullified fields are shortened,
split, and/or composed in each of the objects with the aim of obtaining the smallest
possible number of nullified fields such that either (1) each byte of such fields is
nullified in both original SMGs, or (2) the field is nullified in one SMG, and, in
the other, it contains a non-null address. The former is motivated by preserving as
much information about nullified memory as possible when joining two objects. The
latter is motivated by the fact that a null pointer may be interpreted as a special
case of a null-terminated 0+ DLS and hence possibly joined with an address in the
other SMG if its target is a DLS. Finally, whenever a field (𝑜𝑓 , 𝑡) remains defined
in 𝑜1 but not in 𝑜2 after the described transformations, i.e., if 𝐻1 (𝑜1, 𝑜𝑓 , 𝑡) ≠ ⊥ and
𝐻2 (𝑜2, 𝑜𝑓 , 𝑡) = ⊥, 𝐻2 is extended such that 𝐻2 (𝑜2, 𝑜𝑓 , 𝑡) = 𝑣′ for some fresh 𝑣′ (and
likewise the other way around). Note that the join status is not updated since it will
be updated later on when joining the appropriate values.

1.9.2 Join of Sub-SMGs

The joinSubSMGs function (cf. Alg. 4) is responsible for joining a pair of sub-SMGs
rooted at a given pair of objects and for constructing the resulting sub-SMG within
the given destination SMG. The function inputs a triple of SMGs 𝐺1, 𝐺2, 𝐺 (two
source SMGs and one destination SMG) and a triple of equally-sized objects 𝑜1,
𝑜2, 𝑜 from the SMGs 𝐺1, 𝐺2, 𝐺, respectively. If the joinSubSMGs function fails in
joining the given sub-SMGs, it returns ⊥. Otherwise, it returns a triple of SMGs 𝐺′1,
𝐺′2, 𝐺′ such that:

1 Algorithmic Details behind the Predator Shape Analyser 47

• MI(𝐺1) ⊆ MI(𝐺′1) and MI(𝐺2) ⊆ MI(𝐺′2) where 𝐺1 and 𝐺2 can differ from
𝐺′1 and 𝐺′2, respectively, due to an application of join reinterpretation on some
of the pairs of objects being joined only.

• The sub-SMGs 𝐺′′1 and 𝐺′′2 of 𝐺′1 and 𝐺′2 rooted at 𝑜1 and 𝑜2, respectively,
are joined into the sub-SMG 𝐺′′ of 𝐺′ rooted at 𝑜, i.e., it is required that
MI(𝐺′′1) ⊆ MI(𝐺′′) ⊇ MI(𝐺′′2).

• The sub-SMG 𝐺′ \𝐺′′ is exactly the sub-SMG of 𝐺 that consists of objects and
values that are not removed in Step 10 of the joinTargetObjects function due
to using the principle of delayed join of sub-SMGs described in Section 1.9.6
(which will take care of the fact that some sub-SMG may be reachable along
some access path in one of the SMGs 𝐺1/𝐺2 only, due to some optional nested
sub-heap missing in the other SMG, in which, however, it may be reachable via
some other access path and may thus be discovered and joined later on).

Algorithm 3 𝑗𝑜𝑖𝑛𝐹𝑖𝑒𝑙𝑑𝑠 (𝐺1, 𝐺2, 𝑜1, 𝑜2)

Input:
• SMGs 𝐺1 = (𝑂1, 𝑉1,Λ1, 𝐻1, 𝑃1) and 𝐺2 = (𝑂2, 𝑉2,Λ2, 𝐻2, 𝑃2) with sets of addresses 𝐴1

and 𝐴2, respectively.
• Objects 𝑜1 ∈ 𝑂1 and 𝑜2 ∈ 𝑂2, s.t. size1 (𝑜1) = size2 (𝑜2) .

Output:
• A tuple (𝑠′, 𝐺′1, 𝐺

′
2) consisting of a join status and two SMGs that is the result of join

reinterpretation of 𝐺1 and 𝐺2 wrt 𝑜1 and 𝑜2 which reorganizes the nullified fields of 𝑜1 and
𝑜2 with the aim of obtaining the smallest possible number of nullified fields such that either
(a) each byte of such fields is nullified in both 𝐺1 and 𝐺2, or (b) the field is nullified in one of
them, and in the other, it contains a non-null address.

Method:
1. Let 𝐻′1 := 𝐻1, 𝐻′2 := 𝐻2.
2. Process the set 𝐻1,0 = {𝑜1

𝑜𝑓 ,𝑡−−−→0 ∈ 𝐻′1} of edges leading from 𝑜1 to 0 in 𝐺1 as follows:
a. Remove the edges that are in 𝐻1,0 from 𝐻′1.
b. Extend 𝐻′1 by the smallest set of edges 𝐻′1,0 in which for each 0 ≤ 𝑖 < size1 (𝑜1) there

is an edge 𝑜1
𝑜𝑓 ′,𝑡 ′−−−→0 ∈ 𝐻′1,0 such that 𝑖 ∈ 𝐼 (𝑜𝑓 ′, 𝑡 ′) where 𝑡 ′ = char[𝑛] for some 𝑛 > 0

iff ∃(𝑜1
𝑜𝑓1 ,𝑡1−−−−→0) ∈ 𝐻1,0 ∃(𝑜2

𝑜𝑓2 ,𝑡2−−−−→0) ∈ 𝐻′2 : 𝑖 ∈ 𝐼 (𝑜𝑓1, 𝑡1) ∩ 𝐼 (𝑜𝑓2, 𝑡2) .
c. For each address 𝑎2 ∈ 𝐴2 \ {0} and each edge (𝑜2

𝑜𝑓 ,ptr−−−−→𝑎2) ∈ 𝐻′2 for which there is no
𝑎1 ∈ 𝐴1 \ {0} such that (𝑜1

𝑜𝑓 ,ptr−−−−→𝑎1) ∈ 𝐻′1, but 𝐼 (𝑜𝑓 , ptr) ⊆ ⋃
𝑒∈𝐻1,0 𝐼 (𝑒) , extend

𝐻′1 by the edge 𝑜1
𝑜𝑓 ,ptr−−−−→0.

Then do the same for 𝑜2 with swapped sets of edges 𝐻′1 and 𝐻′2, using 𝐴1 instead of 𝐴2, and
𝐻2,0 and 𝐻′2,0 instead of 𝐻1,0 and 𝐻′1,0, respectively.

3. Let 𝑠 := ≃.
4. For each 0 ≤ 𝑖 < size1 (𝑜1):

• If ∃(𝑒 : 𝑜1
𝑜𝑓 ,𝑡−−−→0) ∈ 𝐻1 such that 𝑖 ∈ 𝐼 (𝑒) and ∀(𝑒′ : 𝑜1

𝑜𝑓 ′,𝑡 ′−−−→0) ∈ 𝐻′1 : 𝑖 ∉ 𝐼 (𝑒′) ,
let 𝑠 := updateJoinStatus(𝑠, ⊏) .

• If ∃(𝑒 : 𝑜2
𝑜𝑓 ,𝑡−−−→0) ∈ 𝐻2 such that 𝑖 ∈ 𝐼 (𝑒) and ∀(𝑒′ : 𝑜2

𝑜𝑓 ′,𝑡 ′−−−→0) ∈ 𝐻′2 : 𝑖 ∉ 𝐼 (𝑒′) ,
let 𝑠 := updateJoinStatus(𝑠, ⊐) .

5. For all fields (𝑜𝑓 , 𝑡) such that 𝐻′1 (𝑜1, 𝑜𝑓 , 𝑡) ≠ ⊥ ∧ 𝐻′2 (𝑜2, 𝑜𝑓 , 𝑡) = ⊥, extend 𝐻′2 such that
𝐻′2 (𝑜2, 𝑜𝑓 , 𝑡) = 𝑣 for some fresh 𝑣 added into 𝑉2. Proceed likewise for non-nullified fields
of 𝑜2 not defined in 𝑜1.

6. Return (𝑠, 𝐺1, 𝐺2) where 𝐺1 = (𝑂1, 𝑉1,Λ1, 𝐻
′
1, 𝑃1) and 𝐺2 = (𝑂2, 𝑉2,Λ2, 𝐻

′
2, 𝑃2) .

48 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

The joinSubSMGs function first applies the join reinterpretation operator (denoted
𝑗𝑜𝑖𝑛𝐹𝑖𝑒𝑙𝑑𝑠) on 𝐺1, 𝐺2 and 𝑜1, 𝑜2, which ensures that the sets of fields of 𝑜1 and
𝑜2 are identical. The function then iterates over the set of fields of these objects, and
for each field (𝑜𝑓 , 𝑡) does the following:

• finds the pair of values 𝑣1 and 𝑣2 which the has-value edges of 𝑜1 and 𝑜2 labelled
by (𝑜𝑓 , 𝑡) lead to,

• calls the joinValues function for 𝑣1 and 𝑣2, which is responsible for recursively
joining the remaining parts of the sub-SMGs rooted at them (before the call,
the nesting level difference between 𝐺1 and 𝐺2 is possibly updated as described
below), and

• extends the set of edges of 𝐺 by 𝑜
𝑜𝑓 ,𝑡−−−→𝑣 where 𝑣 is the value returned by the

joinValues function.

Adjusting the Nesting Level Difference

In Section 1.3.2, it is said that the levels of the objects being joined can differ since
the objects may sometimes appear below a DLS and sometimes below a region
(and while an object that appears below a DLS may be considered nested—provided
that each node of the segment has a separate copy of such an object—there is no
notion of nesting below regions since for regions which represent concrete objects
there is no need to distinguish private and shared sub-SMGs). The functionality
of joinSubSMGs therefore includes tracking of the difference in levels (denoted
𝑙𝑑𝑖 𝑓 𝑓) at which objects and values to be joined within some sub-SMG can appear.
When objects 𝑜1 and 𝑜2 are being joined, the difference is computed as follows:
If 𝑜1 is a DLS and 𝑜2 is a region, the current value of 𝑙𝑑𝑖 𝑓 𝑓 is increased by one.
Symmetrically, if 𝑜1 is a region and 𝑜2 is a DLS, the value of 𝑙𝑑𝑖 𝑓 𝑓 is decreased
by one. Note that when going to sub-heaps in both 𝐺1 and 𝐺2, the change of the
difference is 0. The new difference is then used when joining the values of the fields
of 𝑜1 and 𝑜2 (apart from the next and prev fields of course).

1.9.3 Join of Values

The joinValues function (cf. Alg. 5) joins a pair of sub-SMGs rooted at a given pair
of values and returns a single value node that represents both the input values in
the destination SMG. The function inputs a triple of SMGs 𝐺1, 𝐺2, 𝐺 (two source
SMGs and one destination SMG) and a pair of values 𝑣1 and 𝑣2 from 𝐺1 and 𝐺2,
respectively. If the function fails in joining the given values, it returns ⊥. Otherwise,
it returns a triple of SMGs 𝐺′1, 𝐺′2, 𝐺′, and a value 𝑣 from 𝐺′ such that:

• MI(𝐺1) ⊆ MI(𝐺′1) and MI(𝐺2) ⊆ MI(𝐺′2) where 𝐺1 and 𝐺2 can differ from
𝐺′1 and 𝐺′2, respectively, due to an application of join reinterpretation on some
of the pairs of objects being joined only.

• The sub-SMGs 𝐺′′1 and 𝐺′′2 of 𝐺′1 and 𝐺′2 rooted at 𝑣1 and 𝑣2, respectively,
are joined into the sub-SMG 𝐺′′ of 𝐺′ rooted at 𝑣, i.e., it is required that
MI(𝐺′′1) ⊆ MI(𝐺′′) ⊇ MI(𝐺′′2).

1 Algorithmic Details behind the Predator Shape Analyser 49

Algorithm 4 joinSubSMGs(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑜1, 𝑜2, 𝑜, 𝑙𝑑𝑖 𝑓 𝑓)

Input:
• Initial join status 𝑠 ∈ J.
• SMGs 𝐺1 = (𝑂1, 𝑉1,Λ1, 𝐻1, 𝑃1) , 𝐺2 = (𝑂2, 𝑉2,Λ2, 𝐻2, 𝑃2) , and 𝐺 = (𝑂, 𝑉,Λ, 𝐻, 𝑃) .
• Injective partial mappings of nodes 𝑚1, 𝑚2 as defined in Section 1.9.
• Objects 𝑜1 ∈ 𝑂1, 𝑜2 ∈ 𝑂2, 𝑜 ∈ 𝑂.
• Nesting level difference 𝑙𝑑𝑖 𝑓 𝑓 ∈ Z.

Output:
• ⊥ in case the sub-SMGs of 𝐺1 and 𝐺2 rooted at 𝑜1 and 𝑜2 cannot be joined.
• Otherwise, a tuple (𝑠′, 𝐺′1, 𝐺

′
2, 𝐺

′, 𝑚′1, 𝑚
′
2) where:

– 𝑠′ ∈ J is the resulting join status.
– 𝐺′1, 𝐺

′
2, 𝐺

′ are SMGs as defined in Section 1.9.2.
– 𝑚′1, 𝑚′2 are the resulting injective partial mappings of nodes.

Method:
1. Let 𝑟𝑒𝑠 := 𝑗𝑜𝑖𝑛𝐹𝑖𝑒𝑙𝑑𝑠 (𝐺1, 𝐺2, 𝑜1, 𝑜2) . If 𝑟𝑒𝑠 = ⊥, return ⊥. Otherwise let
(𝑠′, 𝐺1, 𝐺2) := 𝑟𝑒𝑠 and 𝑠 := updateJoinStatus(𝑠, 𝑠′) .

2. Collect the set 𝐹 of all pairs (𝑜𝑓 , 𝑡) occurring in has-value edges leading from 𝑜1 or 𝑜2.
3. For each field (𝑜𝑓 , 𝑡) ∈ 𝐹 do:

• Let 𝑣1 = 𝐻1 (𝑜1, 𝑜𝑓 , 𝑡) , 𝑣2 = 𝐻2 (𝑜2, 𝑜𝑓 , 𝑡) , and 𝑙′
𝑑𝑖 𝑓 𝑓

:= 𝑙𝑑𝑖 𝑓 𝑓 .
• If kind1 (𝑜1) = dls and (𝑜𝑓 , 𝑡) is not the next/prev field of 𝑜1, let 𝑙′

𝑑𝑖 𝑓 𝑓
:= 𝑙′

𝑑𝑖 𝑓 𝑓
+ 1.

• If kind2 (𝑜2) = dls and (𝑜𝑓 , 𝑡) is not the next/prev field of 𝑜2, let 𝑙′
𝑑𝑖 𝑓 𝑓

:= 𝑙′
𝑑𝑖 𝑓 𝑓
− 1.

• Let 𝑟𝑒𝑠 := joinValues(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑣1, 𝑣2, 𝑙
′
𝑑𝑖 𝑓 𝑓
) . If 𝑟𝑒𝑠 = ⊥, return ⊥.

Otherwise, let (𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑣) := 𝑟𝑒𝑠.
• Introduce a new has-value edge 𝑜

𝑜𝑓 ,𝑡−−−→𝑣 in 𝐻.
4. Return (𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2) .

• The sub-SMG 𝐺′ \𝐺′′ is exactly the sub-SMG of 𝐺 that consists of objects and
values that are not removed in Step 10 of the joinTargetObjects function due to
using the principle of delayed join of sub-SMGs described in Section 1.9.6.

If the input values are identical (𝑣1 = 𝑣2), the resulting value 𝑣 is the same
identical value, say 𝑣1, which prevents shared nodes from being processed as nested
data structures during abstraction. If both values are mapped to the same value node
in the destination SMG, i.e., 𝑚1 (𝑣1) = 𝑚2 (𝑣2), the node 𝑚1 (𝑣1) (or, equivalently,
𝑚2 (𝑣2)) to which they are mapped is returned since such a pair of values has already
been successfully joined before. A pair of non-address values visited for the first
time, i.e., a pair of values for which 𝑚1 (𝑣1) = ⊥ = 𝑚2 (𝑣2), is joined by creating a
fresh value node 𝑣 in 𝐺′ with the appropriate nesting level26, and the mapping of
nodes is extended such that 𝑚1 (𝑣1) = 𝑚2 (𝑣2) = 𝑣. Non-address values are never
joined with addresses—if such a situation occurs, the whole join operation fails.27

26 In case the difference of level1 (𝑣1) and level2 (𝑣2) differs from 𝑙𝑑𝑖 𝑓 𝑓 , the join status is appropri-
ately updated. This reflects the fact that, e.g., a single unknown (or interval) abstract value that is
used as the value of multiple fields of some region (for instance, an array) that is more nested than
the region may concretise to different concrete values for each of the fields while it must concretise
to the same concrete value if the abstract value is on the same level as the given region.
27 Note that the handling of non-address values is kept simple since the basic notion of SMGs does
not distinguish any special kinds of non-address values (numbers, intervals, etc.), but there is still
room for improvement, especially in conjunction with the extensions described in Section 1.4.

50 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

Algorithm 5 joinValues(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑣1, 𝑣2, 𝑙𝑑𝑖 𝑓 𝑓)
Input:

• Initial join status 𝑠 ∈ J.
• SMGs 𝐺1 = (𝑂1, 𝑉1,Λ1, 𝐻1, 𝑃1) , 𝐺2 = (𝑂2, 𝑉2,Λ2, 𝐻2, 𝑃2) , and 𝐺 = (𝑂, 𝑉,Λ, 𝐻, 𝑃) .
• Injective partial mappings of nodes 𝑚1, 𝑚2 as defined in Section 1.9.
• Values 𝑣1 ∈ 𝑉1 and 𝑣2 ∈ 𝑉2.
• Nesting level difference 𝑙𝑑𝑖 𝑓 𝑓 ∈ Z.

Output:
• ⊥ in case the sub-SMGs of 𝐺1 and 𝐺2 rooted at 𝑣1 and 𝑣2 cannot be joined.
• Otherwise, a tuple (𝑠′, 𝐺′1, 𝐺

′
2, 𝐺

′, 𝑚′1, 𝑚
′
2, 𝑣

′) where:
– 𝑠′ ∈ J is the resulting join status.
– 𝐺′1, 𝐺

′
2, 𝐺

′ are SMGs as defined in Section 1.9.3.
– 𝑚′1, 𝑚′2 are the resulting injective partial mappings of nodes.
– 𝑣′ is a value in 𝐺′ satisfying the conditions stated in Section 1.9.3.

Method:
1. If 𝑣1 = 𝑣2, return (𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑣1) . In this case, the given pair of values matches

trivially, which happens whenever a shared value is reached during abstraction.
2. If 𝑚1 (𝑣1) = 𝑚2 (𝑣2) = 𝑣 ≠ ⊥, return (𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑣) . In this case, the pair

of values is already joined.
3. If both 𝑣1 and 𝑣2 are non-address values, i.e., 𝑃1 (𝑣1) = ⊥ and 𝑃2 (𝑣2) = ⊥, then:

• If 𝑚1 (𝑣1) ≠ ⊥ or 𝑚2 (𝑣2) ≠ ⊥, return ⊥.
• Create a new value node 𝑣 ∈ 𝑉 such that level(𝑣) = 𝑚𝑎𝑥 (level1 (𝑣1) , level2 (𝑣2)) .
• Extend the mapping of nodes such that 𝑚1 (𝑣1) = 𝑚2 (𝑣2) = 𝑣.
• If level1 (𝑣1) − level2 (𝑣2) < 𝑙𝑑𝑖 𝑓 𝑓 , let 𝑠 := updateJoinStatus(𝑠, ⊏) .
• If level1 (𝑣1) − level2 (𝑣2) > 𝑙𝑑𝑖 𝑓 𝑓 , let 𝑠 := updateJoinStatus(𝑠, ⊐) .
• Return (𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑣1) .

4. If 𝑃1 (𝑣1) = ⊥ or 𝑃2 (𝑣2) = ⊥, return ⊥.
5. Let 𝑟𝑒𝑠 := joinTargetObjects(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑣1, 𝑣2, 𝑙𝑑𝑖 𝑓 𝑓) .

If 𝑟𝑒𝑠 = ⊥, return ⊥. If 𝑟𝑒𝑠 ≠←↪, then return 𝑟𝑒𝑠.
6. Let 𝑜1 := 𝑜 (𝑃1 (𝑣1)) and 𝑜2 := 𝑜 (𝑃2 (𝑣2)) .
7. If kind1 (𝑜1) = dls, let 𝑟𝑒𝑠 = insertLeftDlsAndJoin(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑣1, 𝑣2, 𝑙𝑑𝑖 𝑓 𝑓) .

If 𝑟𝑒𝑠 = ⊥, return ⊥. If 𝑟𝑒𝑠 ≠←↪, then return 𝑟𝑒𝑠.
8. If kind2 (𝑜2) = dls, let 𝑟𝑒𝑠 = insertRightDlsAndJoin(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑣1, 𝑣2, 𝑙𝑑𝑖 𝑓 𝑓) .

If 𝑟𝑒𝑠 ∈ {⊥,←↪}, return ⊥. Otherwise, return 𝑟𝑒𝑠.

For addresses seen for the first time, the algorithm tries to join their targets with each
other with three possible outcomes:

1. The join succeeds, and joinValues then succeeds too.

2. The join fails in a recoverable way (denoted by the result being←↪). Intuitively,
this happens when trying to join addresses that are found to be obviously differ-
ent, i.e., addresses that are found to be different without going deeper into the
sub-SMGs rooted at them—e.g., due to they point to some object with differ-
ent offsets, different target specifiers, incompatible levels, size, validity, linking
fields (for DLSs), or when the objects they point to are already mapped to some
other objects. In case of the recoverable failure, if at least one of the target objects
is a DLS, the algorithm tries to virtually insert a DLS in one of the SMGs, which

1 Algorithmic Details behind the Predator Shape Analyser 51

allows it to create a 0+ DLS in the destination SMG and continue by joining the
appropriate successor values. If this fails too, the whole join operation fails.28

3. The join fails in an irrecoverable way (denoted by the result being ⊥) in which
case joinValues fails too.

1.9.4 Join of Target Objects

The joinTargetObjects function (cf. Alg. 6) joins a pair of sub-SMGs rooted at the
given pair of addresses and returns a single address node that represents both the
input addresses in the destination SMG. The function inputs a triple of SMGs 𝐺1,
𝐺2, 𝐺 (two source SMGs and one destination SMG) and a pair of addresses 𝑎1 and
𝑎2 from 𝐺1 and 𝐺2, respectively. If the function fails in joining the given addresses,
it returns ⊥ in case of an irrecoverable failure and←↪ in case of a recoverable failure
(intuitively, for efficiency reasons, this happens when the offsets, target specifiers,
nesting levels, the kinds of the target objects, their sizes, or validity are found
incompatible without going deeper in the sub-SMGs rooted at the given addresses).
If the function succeeds, it returns a triple of SMGs 𝐺′1, 𝐺′2, 𝐺′ and an address 𝑎

from 𝐺′ such that:

• MI(𝐺1) ⊆ MI(𝐺′1) and MI(𝐺2) ⊆ MI(𝐺′2) where 𝐺1 and 𝐺2 can differ from
𝐺′1 and 𝐺′2, respectively, due to an application of join reinterpretation on some
of the pairs of objects being joined only.

• The sub-SMGs 𝐺′′1 and 𝐺′′2 of 𝐺′1 and 𝐺′2 rooted at 𝑎1 and 𝑎2, respectively, are
joined as the sub-SMG 𝐺′′ of 𝐺′ rooted at 𝑎, i.e., it is required that MI(𝐺′′1) ⊆
MI(𝐺′′) ⊇ MI(𝐺′′2).

• The sub-SMG 𝐺′ \𝐺′′ is exactly the sub-SMG of 𝐺 that consists of objects and
values that are not removed in Step 10 of the function due to using the principle
of delayed join of sub-SMGs described in Section 1.9.6.

The algorithm first checks compatibility of the offsets that the points-to edges
leading from 𝑎1 and 𝑎2 are labelled with and checks whether the difference in the
nesting depth is appropriate. Then, provided that the target objects 𝑜1 = 𝑜(𝑃1 (𝑎1))
and 𝑜2 = 𝑜(𝑃2 (𝑎2)) are of the same kind, the algorithm checks whether they are
reached via the same target specifiers (when one is a DLS and one a region, the
specifiers may differ since the target specifier is not important for the region). If
these tests do not pass, the algorithm fails in a recoverable way.

Next, if both 𝑜1 and 𝑜2 are null or if they have already been joined with each other
(and they are now reached through a different pair of addresses only), the function
𝑚𝑎𝑝𝑇𝑎𝑟𝑔𝑒𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠 (cf. Alg. 7) is used to join the addresses 𝑎1 and 𝑎2 into a fresh
address 𝑎 ∈ 𝐴 (so that 𝑚1 (𝑎1) = 𝑚2 (𝑎2) = 𝑎) and to create a points-to edge from
𝑎 to the join of 𝑜1 and 𝑜2, i.e., the object 𝑚1 (𝑜1) = 𝑚2 (𝑜2). If the objects 𝑜1 and
𝑜2 have not been joined so far, the algorithm checks through the 𝑚𝑎𝑡𝑐ℎ𝑂𝑏 𝑗𝑒𝑐𝑡𝑠

function (Alg. 8 discussed below) whether 𝑜1 and 𝑜2 can be safely joined (based on
their labels, labels of their outgoing edges, and the state of their mapping so far). If

28 As mentioned already in Section 1.3.2, the recovery could be tried even when the impossibility
of joining two addresses is discovered much later during joining the sub-SMGs rooted at the given
addresses. Then, however, back-tracking would be necessary, which we try to avoid for efficiency
reasons.

52 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

Algorithm 6 joinTargetObjects(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎1, 𝑎2, 𝑙𝑑𝑖 𝑓 𝑓)

Input:
• Initial join status 𝑠 ∈ J.
• SMGs 𝐺1 = (𝑂1, 𝑉1,Λ1, 𝐻1, 𝑃1) , 𝐺2 = (𝑂2, 𝑉2,Λ2, 𝐻2, 𝑃2) , and 𝐺 = (𝑂, 𝑉,Λ, 𝐻, 𝑃) .
• Injective partial mappings of nodes 𝑚1, 𝑚2 as defined in Section 1.9.
• Addresses 𝑎1 ∈ 𝑉1 and 𝑎2 ∈ 𝑉2.
• Nesting level difference 𝑙𝑑𝑖 𝑓 𝑓 ∈ Z.

Output:
• ⊥ in case of an irrecoverable failure.
• ←↪ in case of a recoverable failure.
• Otherwise, a tuple (𝑠′, 𝐺′1, 𝐺

′
2, 𝐺

′, 𝑚′1, 𝑚
′
2, 𝑎

′) where:
– 𝑠′ ∈ J is the resulting join status.
– 𝐺′1, 𝐺

′
2, 𝐺

′ are SMGs as defined in Section 1.9.4.
– 𝑚′1, 𝑚′2 are the resulting injective partial mappings of nodes.
– 𝑎′ is an address in 𝐺′ satisfying the conditions stated in Section 1.9.4.

Method:
1. If 𝑜𝑓 (𝑃1 (𝑎1)) ≠ 𝑜𝑓 (𝑃2 (𝑎2)) or level1 (𝑎1) − level2 (𝑎2) ≠ 𝑙𝑑𝑖 𝑓 𝑓 , return←↪.
2. Let 𝑜1 := 𝑜 (𝑃1 (𝑎1)) and 𝑜2 := 𝑜 (𝑃2 (𝑎2)) .
3. If kind1 (𝑜1) = kind2 (𝑜2) and tg(𝑃1 (𝑎1)) ≠ tg(𝑃2 (𝑎2)) , return←↪.
4. If 𝑜1 = # = 𝑜2 or 𝑚1 (𝑜1) = 𝑚2 (𝑜2) ≠ ⊥,

let (𝐺, 𝑚1, 𝑚2, 𝑎) := 𝑚𝑎𝑝𝑇𝑎𝑟𝑔𝑒𝑡 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 (𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎1, 𝑎2) and return
(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎) . In this case, the targets are already joined, and we need to create
a new address for the corresponding object 𝑜 ∈ 𝑂.

5. Let 𝑠 := 𝑚𝑎𝑡𝑐ℎ𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑠, 𝐺1, 𝐺2, 𝑚1, 𝑚2, 𝑜1, 𝑜2) . If 𝑠 = ⊥, return←↪.
6. Create a new object 𝑜 ∈ 𝑂.
7. Initialize the labelling of 𝑜 to match the labelling of 𝑜1 if kind1 (𝑜1) = dls, or to match the

labelling of 𝑜2 if kind2 (𝑜2) = dls, otherwise take the labelling from any of them since both
𝑜1 and 𝑜2 are equally labelled regions.

8. If kind1 (𝑜1) = dls or kind2 (𝑜2) = dls, let len(𝑜) := 𝑚𝑖𝑛(len1 (𝑜1) , len2 (𝑜2)) .
9. Let level(𝑜) := 𝑚𝑎𝑥 (level1 (𝑜1) , level2 (𝑜2)) .

10. If 𝑚1 (𝑜1) ≠ ⊥, replace each edge leading to 𝑚1 (𝑜1) by an equally labelled edge leading to 𝑜,
remove 𝑚1 (𝑜1) together with all nodes and edges of 𝐺 that are reachable via 𝑚1 (𝑜1) only,
and remove the items of 𝑚1 whose target nodes were removed. Likewise for 𝑚2 and 𝑜2. Note
that this mechanism is called a delayed join of sub-SMGs and explained in Section 1.9.6.

11. Extend the mapping of nodes such that 𝑚1 (𝑜1) = 𝑚2 (𝑜2) = 𝑜.
12. Let (𝐺, 𝑚1, 𝑚2, 𝑎) := 𝑚𝑎𝑝𝑇𝑎𝑟𝑔𝑒𝑡 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 (𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎1, 𝑎2) .
13. Let 𝑟𝑒𝑠 := joinSubSMGs(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑜1, 𝑜2, 𝑜, 𝑙𝑑𝑖 𝑓 𝑓) . If 𝑟𝑒𝑠 = ⊥, return ⊥.

Otherwise return (𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎) .

so, a fresh object 𝑜 in 𝐺 is created that is intended to semantically cover both 𝑜1 and
𝑜2.

We allow DLSs to be joined with regions as well as with DLSs of a different
minimal length, which requires the minimal length of the object 𝑜 to be adjusted so
that it covers both cases, i.e., len(𝑜) := 𝑚𝑖𝑛(len1 (𝑜1), len2 (𝑜2)). The nesting level
must also be properly chosen: the larger value is chosen since a path through more
DLSs is more abstract and hence more general (covering the more concrete path
through less DLSs).

Line 10 now solves the case when exactly one of the mappings 𝑚1 (𝑜1) or 𝑚2 (𝑜2)
is already defined—the situation when both of them are already defined is handled
on line 4 and in function 𝑚𝑎𝑡𝑐ℎ𝑂𝑏 𝑗𝑒𝑐𝑡𝑠. This case can occur as a consequence of

1 Algorithmic Details behind the Predator Shape Analyser 53

the DLS insertion algorithm described in Section 1.9.5, and it is further discussed
in Section 1.9.6. For now, it is enough to note that line 10 eliminates the impact of
the DLS insertion algorithm on 𝑜1 or 𝑜2 (depending on which of them was mapped
within the DLS insertion) as well as on their sub-SMGs, so that they can subsequently
be merged as though both of them were encountered for the first time.

Next, the mapping of nodes is extended such that 𝑚1 (𝑜1) = 𝑚2 (𝑜2) = 𝑜, followed
by using the function 𝑚𝑎𝑝𝑇𝑎𝑟𝑔𝑒𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠 to map the addresses 𝑎1 and 𝑎2 to a
new address 𝑎 ∈ 𝐴 and to create a points-to edge from 𝑎 to 𝑜 (as we have already
seen above). Finally, the joinSubSMGs function is called recursively for the triple
𝑜1, 𝑜2, 𝑜.

While we believe that Alg. 7 is self-explaining, we provide some more intuition
to Alg. 8 that performs a local check whether objects 𝑜1, 𝑜2 from SMGs 𝐺1 and 𝐺2,
can be joined under the current mappings 𝑚1 and 𝑚2, respectively, possibly for the
price of updating the current joint status 𝑠. The algorithm assumes that at least one
of the objects is non-null (the case of both them being null is handled in Alg. 6).
Under this assumption, if one of the objects is null, the algorithm fails since null can
be joined with null only.

The algorithm also fails if both 𝑜1 and 𝑜2 are mapped but not to each other. Next,
even if 𝑜2 is not mapped, but 𝑜1 is mapped to some other object 𝑜′2 ∈ 𝑂2 \ {𝑜2},
a failure happens (and symmetrically with the roles of 𝑜1 and 𝑜2 swapped). The
reason for the failures based on the mappings is that at most two objects can be
mapped together. The only case when the join can succeed with one of the objects
mapped is when the other is not mapped—this scenario is a consequence of the
further discussed DLS insertion and will be handled by cancelling the mapping of
the object that has already been mapped and by mapping 𝑜1 and 𝑜2 to each other.

Subsequently, the algorithm checks whether the sizes of 𝑜1 and 𝑜2 are equal
and whether they have the same validity status. In case the objects are DLSs, their
defining offsets are checked for equality too. Then, the algorithm checks for all fields
that appear in both objects and whose values are already mapped whether their values
are mapped to each other. If some of the tests does not pass, the algorithm fails.

Finally, the algorithm checks whether the lengths of the objects or their kinds
imply a need to update the join status (joining a more concrete object with a more
abstract one). If so, the join status is updated accordingly.

1.9.5 DLS Insertion

Assume that a pair of addresses 𝑎1 and 𝑎2 from SMGs 𝐺1 and 𝐺2 is to be joined
in order to allow 𝐺1 and 𝐺2 to be joined into an SMG 𝐺. Further, assume that the
objects that the addresses refer to cannot be joined, but at least one of them is a
DLS—in particular, assume that it is the object with the address 𝑎1, denote it 𝑑1, and
denote the other object 𝑜2 (the other possibility being symmetric). As mentioned
already at the beginning of Section 1.9, in such a case, we proceed as though 𝑎2
pointed to a 0+ DLS 𝑑2 preceding 𝑜2 and labelled equally as 𝑑1 up to its length. We
then join 𝑑1 and 𝑑2 into a single 0+ DLS 𝑑 in 𝐺 and continue by joining the addresses
𝑎𝑛𝑒𝑥𝑡 and 𝑎2 where 𝑎𝑛𝑒𝑥𝑡 is the value stored in the next/prev pointer of 𝑑1 (depending
on whether we came to 𝑑1 via the fst or lst target specifier, respectively). We call
this mechanism a DLS insertion because it can be seen as if the join of objects was

54 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

Algorithm 7 𝑚𝑎𝑝𝑇𝑎𝑟𝑔𝑒𝑡 𝐴𝑑𝑑𝑟𝑒𝑠𝑠(𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎1, 𝑎2)

Input:
• SMGs 𝐺1 = (𝑂1, 𝑉1,Λ1, 𝐻1, 𝑃1) , 𝐺2 = (𝑂2, 𝑉2,Λ2, 𝐻2, 𝑃2) , and 𝐺 = (𝑂, 𝑉,Λ, 𝐻, 𝑃)

with the corresponding sets of addresses 𝐴1, 𝐴2, 𝐴.
• Injective partial mappings of nodes 𝑚1, 𝑚2 as defined in Section 1.9.
• Addresses 𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2 referring with the same offset 𝑜𝑓 = 𝑜𝑓 (𝑃1 (𝑎1)) = 𝑜𝑓 (𝑃2 (𝑎2))

to objects 𝑜1 = 𝑜 (𝑃1 (𝑎1)) , 𝑜2 = 𝑜 (𝑃2 (𝑎2)) , respectively, which are already joined into
an object 𝑜 = 𝑚1 (𝑜1) = 𝑚2 (𝑜2) and which are accessible via target specifiers such that
kind1 (𝑜1) = kind2 (𝑜2) ⇒ tg(𝑃1 (𝑎1)) = tg(𝑃2 (𝑎2)) .

Output:
• A tuple (𝐺′, 𝑚′1, 𝑚

′
2, 𝑎) where:

– 𝐺′ is an SMG obtained from 𝐺 by extending its set of addresses by an address 𝑎 rep-
resenting the join of 𝑎1 and 𝑎2 (unless 𝐺 already contains this address) together with
a points-to edge from 𝑎 to 𝑜 representing the join of the points-to edges between 𝑎1, 𝑎2
and 𝑜1, 𝑜2, respectively.

– 𝑚′1 and 𝑚′2 are the resulting injective partial mappings of nodes that are either identical
to 𝑚1 and 𝑚2 (if 𝑎 already exists in 𝐺) or obtained from 𝑚1 and 𝑚2 by extending them
such that 𝑚′1 (𝑎1) = 𝑚′2 (𝑎2) = 𝑎.

Method:
1. Let 𝑜1 := 𝑜 (𝑃1 (𝑎1)) , 𝑜𝑓 := 𝑜𝑓 (𝑃1 (𝑎1)) .
2. If 𝑜1 = #, let 𝑜 := #. Otherwise, let 𝑜 := 𝑚1 (𝑜1) .
3. If kind1 (𝑜1) = dls, let tg := tg(𝑃1 (𝑎1)) . Otherwise, let tg := tg(𝑃2 (𝑎2)) .
4. If there is an address 𝑎 ∈ 𝐴 such that 𝑃 (𝑎) = (𝑜𝑓 , tg, 𝑜) , return (𝐺, 𝑚1, 𝑚2, 𝑎) .
5. Extend 𝐴 by a fresh address 𝑎, then extend 𝑃 by a new points-to edge 𝑎

𝑜𝑓 ,tg−−−→𝑜.
6. Extend the mapping of nodes such that 𝑚1 (𝑎1) = 𝑚2 (𝑎2) = 𝑎.
7. Return (𝐺, 𝑚1, 𝑚2, 𝑎) .

preceded by a virtual insertion of a DLS from one of the SMGs into the other SMG.
This extension is possible since the semantics of a 0+ DLS includes the empty list,
which can be safely assumed to appear anywhere, compensating a missing object in
one of the SMGs.

Algorithm 9 implements the DLS insertion. The algorithm first checks whether
the DLS 𝑑1 from 𝐺1 that we would like to virtually insert into 𝐺2 has not been
processed by the join algorithm already in the past. If this is the case and there is
some object 𝑜 in 𝐺2 that has been joined with 𝑑1 into 𝑑, the join fails since the 𝑑2
segment (possibly represented by a region as its concrete instance) is not missing,
but it is not connected to the rest of the SMG in a way compatible with 𝑑1 (at least
not for the current way 𝐺1 and 𝐺2 are being joined). If no such object 𝑜 exists,
the DLS 𝑑 to which 𝑑1 is mapped in 𝐺 is used as the result of joining 𝑑1 with
the virtually added segment 𝑑2, and unless even the address 𝑎1 has already been
processed, the join continues by the addresses 𝑎𝑛𝑒𝑥𝑡 and 𝑎2. Intuitively, this case
arises when inserting a single missing segment that should be reachable through
several paths in the SMG. Note that such a situation is, in fact, quite usual since a
DLS can be reached both forward and backward. The algorithm, however, has to
insert a single virtual segment 𝑑2 for all such paths.

If 𝑑1 has not yet been processed, the algorithm checks whether there is some
hope that the virtual insertion of 𝑑2 could help (or whether it is better to try to
proceed with the join in some other way: e.g., try to insert a DLS from 𝐺2 into 𝐺1
in case both of the addresses 𝑎1 and 𝑎2 point to DLSs or fall-back to introducing

1 Algorithmic Details behind the Predator Shape Analyser 55

Algorithm 8 𝑚𝑎𝑡𝑐ℎ𝑂𝑏 𝑗𝑒𝑐𝑡𝑠(𝑠, 𝐺1, 𝐺2, 𝑚1, 𝑚2, 𝑜1, 𝑜2)

Input:
• Initial join status 𝑠 ∈ J.
• SMGs 𝐺1 = (𝑂1, 𝑉1,Λ1, 𝐻1, 𝑃1) and 𝐺2 = (𝑂2, 𝑉2,Λ2, 𝐻2, 𝑃2) .
• Injective partial mappings of nodes 𝑚1, 𝑚2 as defined in Section 1.9.
• Objects 𝑜1 ∈ 𝑂1 and 𝑜2 ∈ 𝑂2 such that 𝑜1 ≠ # ∨ 𝑜2 ≠ #.

Output:
• ⊥ in case 𝑜1 and 𝑜2 cannot be joined.
• Otherwise, 𝑠 ∈ J reflecting the impact of the labels of 𝑜1 and 𝑜2 on the relation of the semantics

of 𝐺1 and 𝐺2.
Method:

1. If 𝑜1 = # or 𝑜2 = #, return ⊥.
2. If 𝑚1 (𝑜1) ≠ ⊥ ≠ 𝑚2 (𝑜2) and 𝑚1 (𝑜1) ≠ 𝑚2 (𝑜2) , return ⊥.
3. If 𝑚1 (𝑜1) ≠ ⊥ and ∃𝑜′2 ∈ 𝑂2 : 𝑚1 (𝑜1) = 𝑚2 (𝑜′2) , return ⊥.
4. If 𝑚2 (𝑜2) ≠ ⊥ and ∃𝑜′1 ∈ 𝑂1 : 𝑚1 (𝑜′1) = 𝑚2 (𝑜2) , return ⊥.
5. If size1 (𝑜1) ≠ size2 (𝑜2) or valid1 (𝑜1) ≠ valid2 (𝑜2) , return ⊥.
6. If kind1 (𝑜1) = kind2 (𝑜2) = dls, then:

• If nfo1 (𝑜1) ≠ nfo2 (𝑜2) , pfo1 (𝑜1) ≠ pfo2 (𝑜2) , or hfo1 (𝑜1) ≠ hfo2 (𝑜2) , return ⊥.
7. Collect the set 𝐹 of all pairs (𝑜𝑓 , 𝑡) occurring in has-value edges leading from 𝑜1 or 𝑜2.
8. For each field (𝑜𝑓 , 𝑡) ∈ 𝐹 do:

• Let 𝑣1 = 𝐻1 (𝑜1, 𝑜𝑓 , 𝑡) and 𝑣2 = 𝐻2 (𝑜2, 𝑜𝑓 , 𝑡) .
• If 𝑣1 ≠ ⊥ ≠ 𝑣2 and 𝑚1 (𝑣1) ≠ ⊥ ≠ 𝑚2 (𝑣2) and 𝑚1 (𝑣1) ≠ 𝑚2 (𝑣2) , return ⊥.

9. If len′1 (𝑜1) < len′2 (𝑜2) or kind1 (𝑜1) = dls ∧ kind2 (𝑜2) = reg,
let 𝑠 := updateJoinStatus(𝑠, ⊐) .

10. If len′1 (𝑜1) > len′2 (𝑜2) or kind1 (𝑜1) = reg ∧ kind2 (𝑜2) = dls,
let 𝑠 := updateJoinStatus(𝑠, ⊏) .

11. Return 𝑠.

a 0/1 abstract object as mentioned in Section 1.4). However, unlike in the function
joinTargetObjects, if we do not want to go deeper in the SMGs (which we do not
want for efficiency reasons), there is not so many properties to check since we do not
have two objects whose labelling we could compare, but the single DLS 𝑑1 whose
counterpart we want to virtually insert into 𝐺2 only. So, we at least check that there is
no conflict of the successor addresses 𝑎𝑛𝑒𝑥𝑡 and 𝑎2 according to the current mapping
of nodes, i.e., we require 𝑚1 (𝑎𝑛𝑒𝑥𝑡) = ⊥ ∨ 𝑚2 (𝑎2) = ⊥ ∨ 𝑚1 (𝑎𝑛𝑒𝑥𝑡) = 𝑚2 (𝑎2).

If the above checks pass, the DLS insertion proceeds as follows: Let 𝐹 be the
set of the linking fields of 𝑑1 that are oriented forward wrt the direction of the
traversal. In particular, let 𝐹 = {nfo1 (𝑑1)} if tg(𝑃1 (𝑎1)) = fst, and 𝐹 = {pfo1 (𝑑1)}
if tg(𝑃1 (𝑎1)) = lst. First, the DLS 𝑑 representing the join of 𝑑1 and the virtually
inserted 𝑑2 is created in the destination SMG with the same labelling as that of 𝑑1
up to len(𝑑) = 0. Together with basically copying the DLS 𝑑1 from 𝐺1 to 𝐺, we also
copy the 𝐹-restricted sub-SMG rooted at it from 𝐺1 into 𝐺, excluding the nodes for
which 𝑚1 is already defined (these were already reached through some other paths
in the past, and the newly copied part of the 𝐹-restricted sub-SMG rooted at 𝑑1 is
just linked to them). Subsequently, the algorithm extends the mapping 𝑚1 for the
nodes newly inserted to 𝐺, creates the appropriate address node 𝑎 ∈ 𝐴 as well as the
points-to edge leading from 𝑎 to 𝑑, and extends the mapping of addresses such that

56 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

Algorithm 9 insertLeftDlsAndJoin(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎1, 𝑎2, 𝑙𝑑𝑖 𝑓 𝑓)

Input:
• Initial join status 𝑠 ∈ J.
• SMGs 𝐺1 = (𝑂1, 𝑉1,Λ1, 𝐻1, 𝑃1) , 𝐺2 = (𝑂2, 𝑉2,Λ2, 𝐻2, 𝑃2) , and 𝐺 = (𝑂, 𝑉,Λ, 𝐻, 𝑃) .
• Injective partial mappings of nodes 𝑚1, 𝑚2 as defined in Section 1.9.
• Values 𝑎1 ∈ 𝑉1 such that kind1 (𝑜 (𝑃1 (𝑎1))) = dls and 𝑎2 ∈ 𝑉2.
• Nesting level difference 𝑙𝑑𝑖 𝑓 𝑓 ∈ Z.

Output:
• ⊥ in case of an unrecoverable failure.
• ←↪ in case of a recoverable failure.
• Otherwise, a tuple (𝑠′, 𝐺′1, 𝐺

′
2, 𝐺

′, 𝑚′1, 𝑚
′
2, 𝑎

′) where:
– 𝑠′ ∈ J is the resulting join status.
– 𝐺′1, 𝐺

′
2, 𝐺

′ are SMGs as defined in Section 1.9.4.
– 𝑚′1, 𝑚′2 are the resulting injective partial mappings of nodes.
– 𝑎′ is an address in 𝐺′ satisfying the conditions stated in Section 1.9.4.

Method:
1. Let (𝑑1, 𝑜𝑓 , tg) := 𝑃1 (𝑎1) .
2. If tg = fst, let 𝑛 𝑓 := nfo1 (𝑑1); if tg = lst, let 𝑛 𝑓 := pfo1 (𝑑1); otherwise return←↪.
3. Let 𝑎𝑛𝑒𝑥𝑡 := 𝐻1 (𝑑1, 𝑛 𝑓 , ptr) .
4. If 𝑚1 (𝑑1) ≠ ⊥, then:

• Let 𝑑 := 𝑚1 (𝑑1) .
• If ∃𝑜 ∈ 𝑂 : 𝑚2 (𝑜) = 𝑑, return←↪.
• If 𝑚1 (𝑎1) = ⊥, create a new value node 𝑎 ∈ 𝑉 and a new edge 𝑎

𝑜𝑓 ,tg−−−→𝑑 in 𝑃, and
extend the mapping of nodes such that 𝑚1 (𝑎1) = 𝑎. Otherwise let 𝑎 := 𝑚1 (𝑎1) and
return (𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎) .

• Let 𝑟𝑒𝑠 := joinValues(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎𝑛𝑒𝑥𝑡 , 𝑎2, 𝑙𝑑𝑖 𝑓 𝑓) . If 𝑟𝑒𝑠 = ⊥, return ⊥.
Otherwise, let (𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎) := 𝑟𝑒𝑠.

5. If 𝑚1 (𝑎𝑛𝑒𝑥𝑡) ≠ ⊥ and 𝑚2 (𝑎2) ≠ ⊥ and 𝑚1 (𝑎𝑛𝑒𝑥𝑡) ≠ 𝑚2 (𝑎2) , return←↪.
6. Let 𝑠′ := (len1 (𝑑1) = 0) ? ⊐ : Z. Let 𝑠 := updateJoinStatus(𝑠, 𝑠′) .
7. Extend 𝐺 by a fresh copy of the {𝑛 𝑓 }-restricted sub-SMG of 𝐺1 rooted at 𝑑1, but excluding

the nodes that are already mapped in 𝑚1 such that the copy of 𝑑1 is a DLS 𝑑. Then extend the
mapping 𝑚1 such that the newly created nodes in 𝑂 ∪ 𝑉 are mapped from the corresponding
nodes of 𝑂1 ∪ 𝑉1.

8. Initialize the labelling of 𝑑 to match the labelling of 𝑑1 up to the minimum length, which is
fixed to zero, i.e., len(𝑑) = 0.

9. Let 𝑎 ∈ 𝑉 be the address such that 𝑃 (𝑎) = (𝑜𝑓 , tg, 𝑑) if such an address exists in 𝐺.
Otherwise, create a new value node 𝑎 ∈ 𝑉 and a new edge 𝑎

𝑜𝑓 ,tg−−−→𝑑 in 𝑃, and extend the
mapping of nodes such that 𝑚1 (𝑎1) = 𝑎.

10. Let 𝑟𝑒𝑠 := joinValues(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎𝑛𝑒𝑥𝑡 , 𝑎2, 𝑙𝑑𝑖 𝑓 𝑓) . If 𝑟𝑒𝑠 = ⊥, return ⊥. Oth-
erwise let (𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎

′) := 𝑟𝑒𝑠.
11. Introduce a new has-value edge 𝑑

𝑛 𝑓 ,ptr−−−−−→𝑎′ in 𝐻.
12. Return (𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑎) .

𝑚1 (𝑎1) = 𝑎. The algorithm then continues by joining the pair of successor values
𝑎𝑛𝑒𝑥𝑡 and 𝑎2.

1.9.6 Delayed Join of Sub-SMGs

The mechanism of DLS insertion increases the chances for two SMGs to be suc-
cessfully joined, but it brings one complication to be taken care of. Assume that
SMGs 𝐺1 and 𝐺2 are being joined into an SMG 𝐺. When applying the DLS inser-

1 Algorithmic Details behind the Predator Shape Analyser 57

tion mechanism on a DLS 𝑑1 from 𝐺1, the not yet traversed sub-SMG 𝐺′1 of 𝐺1
reachable from 𝑑1 is copied into 𝐺 too (likewise for the symmetric case). However,
some nodes of 𝐺′1 that are inserted into 𝐺2 may in fact exist in 𝐺2 and be reachable
through some other address than the address at which the DLS insertion is started.
Note that this may but needs not happen, and at the time when the DLS insertion is
run, it is unknown which of the two cases applies. In theory, a backward traversal
through the SMGs could be used here, but we chose not to use it since we were afraid
of its potential bad impact on the performance. That is why, we always insert a DLS
together with the sub-SMG rooted at it, and as soon as we realize that some DLS
𝑑1 from 𝐺1 whose counterpart was inserted into 𝐺2 does have a real counterpart in
𝐺2, the result of the join of 𝑑1 with the inserted DLS is deleted (together with all
the values and objects reachable from that DLS only) and a proper join—which we
denote as the so-called delayed join—is used instead (cf. Point 10 of the function
joinTargetObjects). Note that running the delayed join is indeed necessary since the
insertion of a DLS is optimistic in that its sub-SMG is either missing too, or if it is
not missing, it is the same as the sub-SMG of the inserted DLS. This needs, however,
not to be the case.

1.9.7 Join of SPCs
The joinSPCs function (cf. Alg. 10) is the top-level of the join algorithm used when
reducing the number of SPCs generated for particular basic blocks of the program
being analysed. It inputs a pair of garbage-free SPCs 𝐶1 = (𝐺1, 𝜈1), 𝐶2 = (𝐺2, 𝜈2)
where 𝑟𝑎𝑛𝑔𝑒(𝜈1) = 𝑟𝑎𝑛𝑔𝑒(𝜈2) = Var is the common set of program variables, and
for each 𝑥 ∈ Var, the objects 𝜈1 (𝑥) and 𝜈2 (𝑥) are labelled equally (this condition
necessarily holds for SPCs generated for the same program). The algorithm either
fails and returns ⊥, or it returns the resulting join status and an SPC 𝐶 = (𝐺, 𝜈)
where 𝑟𝑎𝑛𝑔𝑒(𝜈) = Var, and the triple 𝐺1, 𝐺2, 𝐺 satisfies the assertions about joined
SMGs stated in Section 1.3.2.

The function starts by initializing the mappings of nodes 𝑚1 and 𝑚2 to the
empty set and the join status 𝑠 to ≃. Then, for each program variable 𝑥 ∈ Var, a
fresh region 𝑟 is created in 𝐺, labelled equally as 𝑟1 (or 𝑟2), and the mappings are
extended such that 𝜈(𝑥) = 𝑚1 (𝑟1) = 𝑚2 (𝑟2) = 𝑟 where 𝑟1 = 𝜈1 (𝑥) and 𝑟2 = 𝜈2 (𝑥).
Next, for each program variable 𝑥 ∈ Var, the joinSubSMGs function is called with
the corresponding triple of objects 𝜈1 (𝑥), 𝜈2 (𝑥), 𝜈(𝑥). The value of 𝑚1, 𝑚2, and 𝑠

gets propagated between each pair of subsequent calls. Subsequently, the joinSPCs
function checks whether there was not created any cycle consisting of 0+ DLSs only
in 𝐺, and if so, the algorithm fails since the DLS consistency requirement would be
broken this way (cf. Section 1.2.3).

1.9.8 Join of Sub-SMGs within Abstraction

The 𝑗𝑜𝑖𝑛𝑆𝑢𝑏𝑆𝑀𝐺𝑠𝐹𝑜𝑟𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 function (cf. Alg. 11) implements the core
functionality of the elementary merge operation used as a part of our abstraction
mechanism (Section 1.3.3). It inputs an SMG 𝐺 = (𝑂,𝑉,Λ, 𝐻, 𝑃), a pair of objects
𝑜1, 𝑜2 ∈ 𝑂, and a triple of binding offsets hfo, nfo, pfo ∈ N. If it succeeds, it returns
an SMG 𝐺′ = (𝑂′, 𝑉 ′,Λ′, 𝐻′, 𝑃′) and a fresh DLS 𝑑 ∈ 𝑂′ which represents the
merge of 𝑜1 and 𝑜2 in 𝐺′ and which is the entry point of the sub-SMG representing a

58 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

Algorithm 10 joinSPCs(𝐶1, 𝐶2)

Input:
• Garbage-free SPCs 𝐶1 = (𝐺1, 𝜈1) , 𝐶2 = (𝐺2, 𝜈2) with SMGs
𝐺1 = (𝑂1, 𝑉1,Λ1, 𝐻1, 𝑃1) , 𝐺2 = (𝑂2, 𝑉2,Λ2, 𝐻2, 𝑃2)
where 𝑟𝑎𝑛𝑔𝑒 (𝜈1) = 𝑟𝑎𝑛𝑔𝑒 (𝜈2) = Var, and for each 𝑣 ∈ Var,
the labelling of 𝜈1 (𝑣) is equal to the labelling of 𝜈2 (𝑣) .

Output:
• ⊥ in case 𝐶1 and 𝐶2 cannot be joined.
• Otherwise, a tuple (𝑠, 𝐶) where:

– 𝑠 ∈ J is the resulting join status.
– 𝐶 = (𝐺, 𝜈) where 𝑟𝑎𝑛𝑔𝑒 (𝜈) = Var and the SMG 𝐺 satisfies the condition

MI(𝐺1) ⊆ MI(𝐺) ⊇ MI(𝐺2) .
Method:

1. Let 𝐺 be an empty SMG 𝐺, 𝜈 := 𝑚1 := 𝑚2 := ∅, 𝑠 := ≃.
2. For each program variable 𝑣 ∈ Var:

• Let 𝑟1 := 𝜈1 (𝑣) and 𝑟2 := 𝜈2 (𝑣) .
• Create a fresh region 𝑟 ∈ 𝑂, initialize its labelling to match the labelling of 𝑟1.
• Extend the mappings such that 𝑚1 (𝑟1) = 𝑚2 (𝑟2) = 𝜈 (𝑣) = 𝑟 .

3. For each program variable 𝑣 ∈ Var:
• Let 𝑟1 := 𝜈1 (𝑣) , 𝑟2 := 𝜈2 (𝑣) , and 𝑟 := 𝜈 (𝑣) .
• Let 𝑟𝑒𝑠 := joinSubSMGs(𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2, 𝑟1, 𝑟2, 𝑟 , 0) .
• If 𝑟𝑒𝑠 = ⊥, return ⊥. Otherwise, let (𝑠, 𝐺1, 𝐺2, 𝐺, 𝑚1, 𝑚2) := 𝑟𝑒𝑠.

4. If there is any cycle consisting solely of 0+ DLSs in 𝐺, return ⊥.
5. Return (𝑠, 𝐶) where 𝐶 = (𝐺, 𝜈) .

join of the sub-SMGs rooted at 𝑜1 and 𝑜2. What remains to be done in the elementary
merge operation is the reconnection of the pointers surrounding 𝑜1 and 𝑜2 to 𝑑 (apart
from those related to their nested sub-SMGs), cf. Section 1.3.3. As an auxiliary result
(used in the algorithm of searching for longest mergeable sequences), the algorithm
returns the join status 𝑠 ∈ J comparing the semantics of the sub-SMGs rooted at 𝑜1
and 𝑜2 as well as the sets 𝑂1, 𝑂2 ⊆ 𝑂′ and𝑉1, 𝑉2 ⊆ 𝑉 ′ that contain those objects and
values whose join produced the sub-SMG nested below 𝑑. Note that the join status
returned by mergeSubSMGs is not affected by the kinds of 𝑜1, 𝑜2 and the values in
their next/prev fields since the loss of information due to merging 𝑜1 and 𝑜2 into
a single list segment is deliberate.

The function proceeds as follows. Using the offsets nfo, pfo, the values of the
next/prev fields of 𝑜1 and 𝑜2 are remembered and temporarily replaced by 0 (in
order for the subsequently started join of sub-SMGs not to go through these fields).
Then a fresh DLS 𝑑 is created in 𝑂 and labelled by the given offsets hfo, nfo, pfo
and the minimum length equal to len1 (𝑜1) + len2 (𝑜2), other labels are taken from 𝑜1
(or 𝑜2 since the other labels are equal). The mapping of objects is initialized such
that 𝑚1 (𝑜1) = 𝑚2 (𝑜2) = 𝑑 and the nesting level difference is initialized based on
kind(𝑜1) and kind(𝑜2) using the rules stated in Section 1.9.2. The generic algorithm
joinSubSMGs is then called on the triple 𝑜1, 𝑜2, 𝑑. If it fails or the resulting SMG
contains any cycle consisting of 0+ DLSs only, the algorithm exits unsuccessfully.
If it succeeds, the values of the next/prev fields in 𝑜1, 𝑜2, which were temporarily
replaced by 0, are restored to their original values. If kind(𝑜1) = kind(𝑜2) = reg,

1 Algorithmic Details behind the Predator Shape Analyser 59

Algorithm 11 joinSubSMGsForAbstraction(𝐺, 𝑜1, 𝑜2, hfo, nfo, pfo)

Input:
• SMGs 𝐺 = (𝑂, 𝑉,Λ, 𝐻, 𝑃) .
• Objects 𝑜1, 𝑜2 ∈ 𝑂 that are the roots of the {nfo, pfo}-restricted sub-SMGs 𝐺1 and 𝐺2 of 𝐺

that are to be joined and that are such that 𝑙𝑒𝑣𝑒𝑙 (𝑜1) = 𝑙𝑒𝑣𝑒𝑙 (𝑜2) and 𝑠𝑖𝑧𝑒 (𝑜1) = 𝑠𝑖𝑧𝑒 (𝑜2) .
• Candidate DLS offsets hfo, nfo, pfo ∈ N.

Output:
• ⊥ in case 𝐺1 and 𝐺2 cannot be joined.
• Otherwise, a tuple (𝑠, 𝐺′, 𝑑, 𝑂1, 𝑉1, 𝑂2, 𝑉2) where:

– 𝑠 ∈ J is the resulting join status (determines the cost of joining 𝐺1 and 𝐺2).
– 𝐺′ is an SMG obtained from the input SMG 𝐺 by extending it with a new DLS 𝑑 below

which the join of 𝐺1 and 𝐺2 is nested.
– 𝑂𝑖 ⊆ 𝑂 and 𝑉𝑖 ⊆ 𝑉 for 𝑖 = 1, 2 are sets of non-shared objects and values of 𝐺1 and

𝐺2, respectively.
Method:

1. Let 𝑎𝑝 := 𝐻 (𝑜1, pfo, ptr) , 𝑎𝑛 := 𝐻 (𝑜2, nfo, ptr) , 𝑎1 := 𝐻 (𝑜1, nfo, ptr) ,
and 𝑎2 := 𝐻 (𝑜2, pfo, ptr) .

2. Replace each has-value edge of 𝐻 leading from 𝑜1 or 𝑜2 and labelled by (nfo, ptr) or
(pfo, ptr) by a has-value edge leading to 0 and having the same label.

3. Extend 𝑂 with a fresh valid DLS 𝑑 and label it with the head, next, and prev offsets hfo, nfo,
and pfo, the minimum length len(𝑜1) + len(𝑜2) , level level(𝑜1) , and the size size(𝑜1) .

4. If kind(𝑜1) = kind(𝑜2) , let 𝑙𝑑𝑖 𝑓 𝑓 := 0. Otherwise, let 𝑙𝑑𝑖 𝑓 𝑓 := (kind(𝑜1) = dls)?1 : −1.
5. Let 𝑟𝑒𝑠 := joinSubSMGs(≃, 𝐺1, 𝐺2, 𝐺, { (𝑜1, 𝑑) }, { (𝑜2, 𝑑) }, 𝑜1, 𝑜2, 𝑑, 𝑙𝑑𝑖 𝑓 𝑓) .

If 𝑟𝑒𝑠 = ⊥, return ⊥. Otherwise let (𝑠, , , 𝐺, 𝑚1, 𝑚2) := 𝑟𝑒𝑠.
6. If 𝐺 contains any cycle consisting of 0+ DLSs only, return ⊥.
7. Drop the temporarily created has-value edges of 𝐻 leading from 𝑜1 and 𝑜2 to 0 and labelled by
(nfo, ptr) or (pfo, ptr) and restore the original has-value edges 𝑜1

pfo,ptr−−−−→𝑎𝑝 , 𝑜1
nfo,ptr−−−−→𝑎1,

𝑜2
pfo,ptr−−−−→𝑎2, and 𝑜2

nfo,ptr−−−−→𝑎𝑛.
8. If kind(𝑜1) = kind(𝑜2) = reg, increase by one the level of each object and value that appears

in the image of 𝑚1 or 𝑚2, and relabel all points-to edges leading to 𝑑 by the all target
specifier.

9. Return (𝑠, 𝐺, 𝑑, 𝑂 ∩ 𝑟𝑎𝑛𝑔𝑒 (𝑚1) , 𝑉 ∩ 𝑟𝑎𝑛𝑔𝑒 (𝑚1) , 𝑂 ∩ 𝑟𝑎𝑛𝑔𝑒 (𝑚2) , 𝑉 ∩ 𝑟𝑎𝑛𝑔𝑒 (𝑚2)) .

the level of each node that appears in the image of 𝑚1 (or 𝑚2) is increased by one
(since these nodes are now recognized as nested), and all points-to edges leading to
𝑑 are relabelled by the all target specifier.

The resulting sets of nodes are computed as follows: 𝑂1 := 𝑟𝑎𝑛𝑔𝑒(𝑚1) ∩ 𝑂,
𝑂2 := 𝑟𝑎𝑛𝑔𝑒(𝑚2) ∩ 𝑂, 𝑉1 := 𝑟𝑎𝑛𝑔𝑒(𝑚1) ∩ 𝑉 , and 𝑉2 = 𝑟𝑎𝑛𝑔𝑒(𝑚2) ∩ 𝑉 . The
resulting join status is the status returned by joinSubSMGs.

1.10 Longest Mergeable Sequences
In this appendix, we formalize the notion of longest mergeable sequences informally
introduced in Section 1.3.3. Assume an SPC 𝐶 = (𝐺, 𝜈) where 𝐺 = (𝑂,𝑉,Λ, 𝐻, 𝑃)
is an SMG with the sets of regions 𝑅, DLSs 𝐷, and addresses 𝐴. The longest
mergeable sequence of objects given by a candidate DLS entry (𝑜𝑐, hfo𝑐, nfo𝑐, pfo𝑐)
where 𝑜𝑐 ∈ 𝑂 is the longest sequence of distinct valid heap objects of 𝐺 whose
first object is 𝑜𝑐; all objects in the sequence are of level 0; all DLSs that appear in
the sequence have hfo𝑐, nfo𝑐, and pfo𝑐 as their head, next, and prev offsets; and the
following holds for any two neighbouring objects 𝑜1 and 𝑜2 in the sequence:

60 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

1. The objects 𝑜1 and 𝑜2 are doubly-linked, i.e., there are addresses 𝑎1, 𝑎2 ∈ 𝐴 such
that 𝑜1

nfo𝑐 ,ptr−−−−−−→𝑎1
hfo𝑐 ,tg2−−−−−−→𝑜2 for tg2 ∈ {fst, reg} and 𝑜2

pfo𝑐 ,ptr−−−−−−→𝑎2
hfo𝑐 ,tg1−−−−−−→𝑜1 for

tg1 ∈ {lst, reg}.
2. The {nfo𝑐, pfo𝑐}-restricted sub-SMGs 𝐺1, 𝐺2 of 𝐺 rooted at 𝑜1 and 𝑜2 can be

joined using the extended join algorithm that yields the sub-SMG 𝐺1,2 to be
nested below the join of 𝑜1 and 𝑜2 as well as the sets 𝑂1, 𝑉1 and 𝑂2, 𝑉2 of
non-shared objects and values of 𝐺1 and 𝐺2, respectively, whose join gives rise
to 𝐺1,2.

3. The non-shared objects and values of 𝐺1 and 𝐺2 (other than 𝑜1 and 𝑜2 them-
selves) are reachable via 𝑜1 or 𝑜2, respectively, only. This is, ∀𝑎 ∈ 𝐴 \𝑉1 ∀𝑜′ ∈
𝑂1 \ {𝑜1} : 𝑜(𝑃(𝑎)) ≠ 𝑜′, ∀𝑜′ ∈ 𝑂 \𝑂1 ∀𝑣 ∈ 𝑉1 : 𝑣 ∉ 𝐻 (𝑜′), and likewise for
𝑜2, 𝑉2, and 𝑂2. Moreover, the sets 𝑂1 and 𝑂2 contain heap objects only.

4. The objects 𝑜1 and 𝑜2 are a part of an uninterrupted sequence. Therefore:

a. Regions that are not the first nor last in the sequence can be pointed
to their head offset from their predecessor, successor, or from their
non-shared restricted sub-SMG only. Formally, if 𝑜1 ∈ 𝑅 \ {𝑜𝑐}, then
¬ ∃𝑜 ∈ 𝑂 \ (𝑂1 ∪ {𝑜2, 𝑜

′}) ∃𝑎 ∈ 𝐴 ∃𝑜𝑓 ∈ N : 𝑜
𝑜𝑓 , 𝑝𝑡𝑟−−−−−→𝑎

hfo𝑐 ,reg−−−−−−→𝑜1 where
the object 𝑜′ is the predecessor of 𝑜1, i.e., 𝑜′ = 𝑜(𝑃(𝐻 (𝑜1, pfo𝑐, ptr))).29

b. If 𝑜1 (𝑜2) is a DLS, the only object that can point to its end (begin-
ning) is 𝑜2 (𝑜1), resp. Formally, if 𝑜1 ∈ 𝐷, then ¬ ∃𝑜 ∈ 𝑂 \ {𝑜2} ∃𝑎 ∈ 𝐴

∃𝑜𝑓 ∈ N : 𝑜 𝑜𝑓 ,ptr−−−−−→𝑎
hfo𝑐 ,lst−−−−−−→𝑜1. If 𝑜2 ∈ 𝐷, then ¬ ∃𝑜 ∈ 𝑂 \ {𝑜1} ∃𝑎 ∈ 𝐴

∃𝑜𝑓 ∈ N : 𝑜 𝑜𝑓 ,ptr−−−−−→𝑎
hfo𝑐 ,fst−−−−−−→𝑜2.

c. Finally, only non-shared objects of 𝐺1 and 𝐺2 can point to non-head offsets
of 𝑜1 and 𝑜2, respectively. Formally, ¬ ∃𝑜 ∈ 𝑂 \𝑂1 ∃𝑎 ∈ 𝐴 ∃𝑜𝑓 , 𝑜𝑓 ′ ∈
N ∃tg ∈ S : 𝑜

𝑜𝑓 ,ptr−−−−−→𝑎
𝑜𝑓 ′,tg−−−−→𝑜1 ∧ 𝑜𝑓 ′ ≠ hfo𝑐, and likewise for 𝑜2 and 𝑂2.

1.11 Symbolic Execution of Conditional Statements
Checking equality of values is trivial in SMGs since it reduces to identity checking.
To check non-equality, we propose a sound, efficient, but incomplete approach as
mentioned already in Section 1.3.4. This approach is formalized in the function
𝑝𝑟𝑜𝑣𝑒𝑁𝑒𝑞 shown as Alg. 12 that contains a number of comments to make it self-
explaining. The algorithm uses the 𝑙𝑜𝑜𝑘𝑇ℎ𝑟𝑜𝑢𝑔ℎ function (Alg. 13) for traversing
chains of 0+DLSs while looking for objects whose existence is guaranteed and whose
unique addresses can serve as a basis for a non-equality proof. Note that the algo-
rithms do not allow for comparing values of fields with incompatible types. Hence,
we require all type-casts to be explicitly represented as separate instructions of the
intermediate code so that the fields being compared are always of compatible types.

If neither equality nor inequality of a pair of values 𝑣1 and 𝑣2, which are compared
in a conditional statement, can be established, the symbolic execution must follow
both branches of the conditional statement. For each of the branches, we attempt to
reflect the condition allowing the execution to enter that branch in the SMG 𝐺 to

29 Note that no special formal treatment is needed for 𝑜2 since it will take the role of 𝑜1 when
checking the next neighbouring pair in the sequence. The above also implicitly ensures that pointers
to the head offset of the last object are not restricted.

1 Algorithmic Details behind the Predator Shape Analyser 61

be processed in the branch, effectively reducing the semantics of 𝐺. However, for
efficiency reasons, we do again not reflect all consequences of the branch conditions
that could in theory be reflected, but only the easy to handle ones, which is sound,
and it suffices in all the case studies that we have considered. In particular, we restrict
SMGs according to the branch conditions as follows (if none of the below described
cases applies, the SMGs are not modified):

• If 𝑣1 and/or 𝑣2 are non-address values, one of them is replaced by the other in
the 𝑣1 = 𝑣2 branch (a non-address value can be replaced by an address but not
vice versa).

• If there is a chain of 0+ DLSs connected into a doubly-linked list in the given
SMG such that the fst address of the first DLS is 𝑣1 and the last DLS contains
𝑣2 in its next field (or vice versa), the chain is removed by calling the DLS
removal algorithm repeatedly in the 𝑣1 = 𝑣2 branch. In the 𝑣1 ≠ 𝑣2 branch, the
computation is split to as many cases as the number of 0+ DLSs in the chain is,
and in each of the cases, the minimum length of one of the DLSs is incremented
(reflecting that at least one of them must be non-empty).

• If 𝑣1 points to a DLS 𝑑 with the fst target specifier and 𝑣2 points to 𝑑 with the
lst target specifier (or vice versa), it is clear that len(𝑑) < 2 since otherwise
𝑝𝑟𝑜𝑣𝑒𝑁𝑒𝑞 would succeed in proving the inequality between 𝑣1 and 𝑣2. In this
case, the following two modifications of the encountered SMGs can be applied
in the different branches of the encountered conditional statement:

– In the 𝑣1 = 𝑣2 branch, if len(𝑑) = 1, the DLS 𝑑 is replaced by an equally
labelled region (excluding the DLS-specific labels) since 𝑑 must consist of
exactly one concrete node in this case.

– In the 𝑣1 ≠ 𝑣2 branch, if len(𝑑) = 1 or the value of the next address is equal
to the value of the prev address, i.e., 𝐻 (𝑑, pfo(𝑑), ptr) = 𝐻 (𝑑, nfo(𝑑), ptr),
then the minimum length of 𝑑 is increased to 2 since 𝑑 must consist of at
least two concrete nodes in this case.

Besides equality checking, we also allow for comparisons of addresses using the
less than or greater than operators in case both of the addresses point to the same
(concrete) object—we simply compare the offsets. This functionality is needed for
successful verification of the NSPR-based case studies mentioned in Section 1.6.

62 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

Algorithm 12 𝑝𝑟𝑜𝑣𝑒𝑁𝑒𝑞 (𝐺, 𝑣1, 𝑣2)

Input:
• An SMG 𝐺 = (𝑂, 𝑉,Λ, 𝐻, 𝑃) .
• A pair of values 𝑣1, 𝑣2 ∈ 𝑉 such that level(𝑣1) = level(𝑣2) = 0.

Output:
• true if the inequality between the given pair of values was proven, false otherwise.

Method:
1. Let (𝑣1, 𝑂1) := 𝑙𝑜𝑜𝑘𝑇ℎ𝑟𝑜𝑢𝑔ℎ (𝐺, 𝑣1) .
2. Let (𝑣2, 𝑂2) := 𝑙𝑜𝑜𝑘𝑇ℎ𝑟𝑜𝑢𝑔ℎ (𝐺, 𝑣2) .
3. If 𝑣1 = 𝑣2 or 𝑂1 ∩𝑂2 ≠ ∅, return false. // possible sharing of values
4. If 𝑣1 ∉ 𝐴 or 𝑣2 ∉ 𝐴, return false. // simplified handling of data values
5. Let 𝑜1 := 𝑜 (𝑃 (𝑣1)) and 𝑜2 := 𝑜 (𝑃 (𝑣2)) .
6. If 𝑜1 = 𝑜2:

• If tg(𝑃 (𝑣1)) = tg(𝑃 (𝑣2)) , return true. // same object, different offsets
• If tg(𝑃 (𝑣1)) = fst and tg(𝑃 (𝑣2)) = lst, return len′ (𝑜1) ≥ 2.
• If tg(𝑃 (𝑣1)) = lst and tg(𝑃 (𝑣2)) = fst, return len′ (𝑜1) ≥ 2.
• Otherwise return false.

7. If 𝑜𝑓 (𝑃 (𝑣1)) < 0 or 𝑜𝑓 (𝑃 (𝑣2)) < 0, return false. // out of bounds
8. If 𝑣1 ≠ 0 and size(𝑜1) ≤ 𝑜𝑓 (𝑃 (𝑣1)) , return false. // out of bounds
9. If 𝑣2 ≠ 0 and size(𝑜2) ≤ 𝑜𝑓 (𝑃 (𝑣2)) , return false. // out of bounds

10. If 𝑣1 = 0 or 𝑣2 = 0, return true. // 0 and a valid address of an object
11. Return valid(𝑜1) ∧ valid(𝑜2) . // addresses of allocated objects

Algorithm 13 𝑙𝑜𝑜𝑘𝑇ℎ𝑟𝑜𝑢𝑔ℎ (𝐺, 𝑣)

Input:
• An SMG 𝐺 = (𝑂, 𝑉,Λ, 𝐻, 𝑃) .
• A value 𝑣 ∈ 𝑉 such that level(𝑣) = 0.

Output:
• A pair (𝑣′, 𝑉𝑖𝑠𝑖𝑡𝑒𝑑) where:

– 𝑣′ ∈ 𝑉 is the value reached after all 0+ DLSs are traversed.
– 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 is the set of all 0+ DLSs reachable from 𝑣 in the forward direction without

traversing any other object.
Method:

1. Let 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 := ∅.
2. Let 𝑜 := 𝑜 (𝑃 (𝑣)) .
3. If 𝑜 ∉ {⊥, #} and len′ (𝑜) = 0, then:

• Let 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 := 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑜}.
• If tg(𝑃 (𝑣)) = fst, let 𝑣 := 𝐻 (𝑜, nfo(𝑜) , ptr) and continue with step 2.
• If tg(𝑃 (𝑣)) = lst, let 𝑣 := 𝐻 (𝑜, pfo(𝑜) , ptr) and continue with step 2.

4. Return (𝑣, 𝑉𝑖𝑠𝑖𝑡𝑒𝑑) .

1.12 Usage of Predator
The simplest way of running Predator is to use either the slgcc or slllvm scripts
as shown below with SOURCE.c being the C program that Predator should analyse:

/PATH_TO_predator_DIRECTORY/sl/slgcc SOURCE.c

/PATH_TO_predator_DIRECTORY/sl/slllvm SOURCE.c

The run of Predator can be influenced by a number of options summarised in
Table 1.3. The options can be passed to Predator via the environment variable

1 Algorithmic Details behind the Predator Shape Analyser 63

SL_OPTS). Further settings can then be provided via the config.h file from the
Predator distribution as discussed below.

Predator can also be invoked directly through the chosen compiler. In particular,
one can proceed as follows with the GCC compiler:

gcc [CFLAGS] -fplugin=LIBSL [SL_OPTS] SOURCE.c

Here, LIBSL represents a path to the Predator plug-in, which always ends with
the .so suffix for GCC. For instance, when starting Predator from its main directory,
LIBSL should be replaced by ./sl_build/libsl.so. When launching Predator
this way, one can use compiler options CFLAGS, such as -m32/-m64, as well as
Predator options SL_OPTS described in Table 1.3.

For the Clang/LLVM compiler, one has to first create the bitcode file and then
start the analysis:

clang [CFLAGS] -Xclang -fsanitize-address-use-after-scope\

-g -S -emit-llvm SOURCE.c -o SOURCE.bc

opt SOURCE.bc -lowerswitch -load LIBSL -sl [SL_OPTS]

A further possibility not requiring additional options but available on Linux only
is the following:
clang -g SOURCE.c -Xclang -load -Xclang LIBSL

For Clang/LLVM, the Predator plug-in has the .so suffix on Linux and the
.dylib suffix on Darwin.

1.12.1 Deeper Configuration of Predator

Apart from using the above described options, one can further configure the be-
haviour of Predator using the config.h file from its distribution. After that, Preda-
tor must, of course, be recompiled. Moreover, usage some of the above described
options can be replaced by changing the config.h file.

Via the config.h file, one can control various aspects of the abstractions used
in Predator. For instance, one can say whether the abstraction should be performed
at each basic block or at loop points and/or returns from function calls only, whether
abstraction to singly-/doubly-linked list segments is allowed, what the various ab-
straction thresholds are, set an additional cost for introducing list segments by ab-
straction, or decide whether the abstraction of SMGs should be applied to longest
sequences of SMG nodes that are amenable to abstraction only or whether it can be
applied to shorter sequences too. One can also decide whether integer intervals may
be used to represent values and/or offsets and whether they can widened.

One can enable/disable the call cache implementing a table of summaries and
set its various parameters (e.g., whether matches in the table are sought using
isomorphism or entailment, how the cache should be pruned, etc.). One can choose
the scheduler choosing basic blocks to be explored (corresponding to a depth-first
search, breadth-first search, or a load-driven search choosing blocks with fewest
SPCs waiting to be explored).

64 Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar

Table 1.3: Predator plug-in options. For the GCC-plugin, use with the prefix
-fplugin-arg-libsl.

Options Description
-help Help
-verbose=<uint> Turn on verbose mode
-pid-file=<file> Write PID of self to ¡file¿
-preserve-ec Do not affect the exit code
-dry-run Do not run the analysis
-dump-pp[=<file>] Dump linearised CL code
-dump-types Dump also type info
-gen-dot[=<file>] Generate CFGs
-type-dot=<file> Generate type graphs
-args=<peer-args> Arguments given to the analyser (see below)

Peer arguments
track_uninit Report usage of uninitialised values
oom Simulate possible shortage of memory (malloc

can fail)
no_error_recovery No error recovery, stop the analysis as soon as an

error is detected
memleak_is_error Treat memory leaks as an error
exit_leaks Report memory leaks while executing a no-return

function
verifier_error_is_error Treat reaching of __VERIFIER_error() as an

error
error_label:<string> Treat reaching of the given label as an error
int_arithmetic_limit:<uint> The highest integer number Predator can count to
allow_cyclic_trace_graph Create a node with two parents on entailment
forbid_heap_replace Do not replace a previously tracked node if en-

tailed by a new one
allow_three_way_join[:<uint>] Using the general join of possibly incomparable

SMGs (so-called three-way join)
0 never
1 only when joining nested sub-heaps
2 also when joining SPCs if considered useful
3 always

join_on_loop_edges_only[:<int>] -1 never join, never check for entailment, al-
ways check for isomorphism

0 join SPCs on each basic block entry
1 join only when traversing a loop-closing

edge, entailment otherwise
2 join only when traversing a loop-closing

edge, isomorphism otherwise
3 same as 2 but skips the isomorphism check

if possible
state_live_ordering[:<uint>] On the fly ordering of SPCs to be processed

0 do not try to optimise the order of heaps
1 reorder heaps when joining
2 reorder heaps when creating their union (list

of SMGs) too
no_plot Do not generate graphs (ignore all calls of

__sl_plot*() and __VERIFIER_plot())
dump_fixed_point Dump SPCs of the obtained fixed-point
detect_containers Detect low-level implementations of high-level

list containers and operations over them (such as
various initialisers, iterators, etc.) [16].

1 Algorithmic Details behind the Predator Shape Analyser 65

One can specify various limits of the analysis such as the maximum call depth,
the maximum integer constant to be tracked, or the maximum integer to be used
as the minimum length of a list segment. One can also control whether parts of
the generated SPCs should be shared using a copy-on-write mechanism. One can
control how much Predator should try to recover after a bug is found. Further, one
can also enable/disable a static pre-analysis trying to detect variables that are dead at
certain program locations whose results may subsequently be used to prune variables
tracked by the main analysis.

The config.h file can be used to activate various debugging outputs too. Further
information about what can be configured and how can be found directly in the
config.h file, which contains many explanatory comments too.

1.12.2 Installing and Using PredatorHP

In order to be able to use the Predator Hunting Party (PredatorHP), one has to
download its binary version or source code from https://www.fit.vutbr.cz/
research/groups/verifit/tools/predatorhp. When building from sources,
one has to make sure that git, python, and all dependencies for Predator itself are
installed. In the directory with PredatorHP, one can use the script build-all.sh. To
analyse a single program using PredatorHP, one can use the following script (whose
options are described in Table 1.4):

predatorHP.py --propertyfile=<prpfile> [--witness=<file>]

[--compiler-options=CFLAGS] SOURCE.c

Table 1.4: Options of the Predator Hunting Party.

Options Description
-h, --help Help
-v, --version Show the program’s version number
--propertyfile=<prpfile> A ¡prpfile¿ specifying properties to be verified

according to SV-COMP rules
--compiler-options=CFLAGS Specify options given to compiler

(e.g. --compiler-options="-m32 -g")
--witness=<file> Write the witness trace in XML to ¡file¿

https://www.fit.vutbr.cz/research/groups/verifit/tools/predatorhp
https://www.fit.vutbr.cz/research/groups/verifit/tools/predatorhp

	Algorithmic Details behind the Predator Shape Analyser Based on Symbolic Memory Graphs
	Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, Tomáš Vojnar
	Introduction
	Symbolic Memory Graphs
	The Predator Analyser
	Outline of the Chapter
	Symbolic Memory Graphs
	The Intuition behind SMGs
	Further Illustration of the Notion of SMGs
	Formal Definition of Symbolic Memory Graphs
	The Semantics of SMGs

	Materialisation and Removal of DLSs
	Concrete Memory Images
	Operations on SMGs
	Data Reinterpretation

	Read Reinterpretation
	Write Reinterpretation
	Join of SMGs
	Abstraction

	Candidate DLS Entries
	Longest Mergeable Sequences*-2mm
	Merging Sequences of Objects into DLSs
	The Top-Level Abstraction Algorithm
	Checking Equality and Inequality of Values
	A Note on Symbolic Execution over SMGs/SPCs

	Soundness of the Analysis
	Running Example

	Extensions of SMGs
	Explicit Non-equivalence Relations
	Checking Equivalence of Valid and Invalid Objects
	Singly-Linked List Segments (SLSs)
	0/1 Abstract Objects
	Offset Intervals and Address Alignment
	Integer Constants and Intervals
	Implementation
	Architecture
	The Kernel of Predator

	Programs To Be Verified
	Interprocedural Features
	Various Optimisations
	Non-Pointer Data
	Dealing with Integer Intervals
	Errors Sought and Error Reporting
	Options
	Predator Hunting Party

	Experiments
	Experiments with Predator Outside of SV-COMP
	Predator and SV-COMP

	Related Work
	Acknowledgement.
	References
	References
	Appendix
	Data Reinterpretation of Nullified Blocks
	Read Reinterpretation of Nullified Blocks
	Write Reinterpretation of Nullified Blocks

	The Join Algorithms
	Join Reinterpretation
	Join of Sub-SMGs

	Adjusting the Nesting Level Difference
	Join of Values
	Join of Target Objects
	DLS Insertion
	Delayed Join of Sub-SMGs
	Join of SPCs
	Join of Sub-SMGs within Abstraction

	Longest Mergeable Sequences
	Symbolic Execution of Conditional Statements
	Usage of Predator
	Deeper Configuration of Predator
	Installing and Using PredatorHP

