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Abstract

Deep subsurface exploration is important for mining, oil and gas industries, as
well as in the assessment of geological units for the disposal of chemical or nuclear
waste, or the viability of geothermal energy systems. Typically, detailed exam-
inations of subsurface formations or units are performed on cuttings or core
materials extracted during drilling campaigns, as well as on geophysical borehole
data, which provide detailed information about the petrophysical properties of
the rocks.
Depending on the volume of rock samples and the analytical program, the labora-
tory analysis and diagnostics can be very time-consuming. This study investigates
the potential of utilizing machine learning, specifically convolutional neural net-
works (CNN), to assess the lithology and mineral content solely from analysis of
drill core images, aiming to support and expedite the subsurface geological explo-
ration. The paper outlines a comprehensive methodology, encompassing data
preprocessing, machine learning methods, and transfer learning techniques. The
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outcome reveals a remarkable 96.7% accuracy in the classification of drill core seg-
ments into distinct formation classes. Furthermore, a CNN model was trained for
the evaluation of mineral content using a learning data set from multidimensional
log analysis data (silicate, total clay, carbonate). When benchmarked against
laboratory XRD measurements on samples from the cores, both the advanced
multidimensional log analysis model and the neural network approach devel-
oped here provide equally good performance. This work demonstrates that deep
learning and particularly transfer learning can support extracting petrophysical
properties, including mineral content and formation classification, from drill core
images, thus offering a road map for enhancing model performance and data set
quality in image-based analysis of drill cores.

Keywords: Convolutional Neural Networks, Transfer Learning, Core Analysis,
Lithology, Mineral Composition

1 Motivation and Background

Geological exploration of the underground is important for the mining, mineral, oil,
and gas industries. In Switzerland, geological exploration of the underground for the
deep geological disposal of radioactive waste is currently in progress and includes
remote sensing (seismic data analysis), geophysical surveys (log analysis) and drill core
laboratory analysis. Although the combination of these techniques provides precise and
reliable results, laboratory investigations are often labor-intensive, time-consuming,
and costly when large sample numbers and volumes are present. Combining con-
ventional field and laboratory analytical techniques with machine learning may help
enhance data analysis and provide a deeper insight into data [1–3].

In this paper, we demonstrate the capacity of machine learning respectively, deep
learning, particularly emphasizing transfer learning to extract selected petrophysical
properties, like mineral content or sample formation from drill core images.

Machine learning has been successfully used in the past to classify the lithology
based on drill core images: Many of these studies applied convolutional neural networks
(CNN), a special type of neural network that has proved to be successful for handling
images. Particularly pretrained CNN architectures such as VGG16, DenseNet, ResNet,
ResNest, or ResNext applied to drill core samples from Norway, South Australia, Gulf
of Mexico & North Sea, China and Switzerland achieved good results for lithology
classification with accuracies for the test data sets ranging from 60% up to 99.6% [4–8].
Furthermore, in this context, autoencoders [9, 10] and vision transformer architectures
[11] have also been applied for this task. These techniques were utilized for several
thousand image slices from drill cores from Western Australia, Gulf of Mexico & North
Sea and Russia. The testing accuracy varied from 70% up to 96.4%, and showed a
strong dependency on the heterogeneity of the images and the number of classes that
the samples were categorized.

The analysis of the model performances reveals that the sample preparation and
data preprocessing are paramount steps when applying machine learning methods.
The necessary steps include the automatic detection of trays and cores [12, 13], the
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assessment of rock quality, the classification of intact and non-intact cores, as well as
the recognition of empty tray areas and non-rock objects [14, 15]. Depending on the
application, for preprocessing the automated crack detection [14] can also be impor-
tant. Moreover, the classification of lithology is done based on a narrow core interval
and not all cores have the same length, thus the preprocessing step includes slicing
the available data set into smaller images, ranging from 0.5x0.5cm up to 10x10cm, as
used in the aforementioned works. Besides full drill core images, thin section images
[16, 17], rock sample images [18], or rock debris [19] images were used to perform rock
type classification. Some approaches to predict lithology from drill core images involve
additional data to increase accuracy, like elemental information ([20, 21]), petrophysi-
cal and geochemical data ([22]), or pXRF measurements ([23]), and the use of machine
learning models designed for data fusion.

Assessing the mineral content has so far only been done with different types of
data, not drill core images alone. In [24], mineral abundance predictions relied on
a combination of hyperspectral short-wave infrared data and, for small areas, addi-
tional Scanning Electron Microscopy-based images with different machine learning
approaches: Random Forest (RF), Support Vector Machine (SVM), and Neural Net-
works (NN). A model based on RF was developed in [25] that estimated the mineral
proportion from Long-wave infrared spectra. For labeling the training data, micro-X-
ray fluorescence measurements were used. Spectral and geochemical data were utilized
to train a CNN model that predicts the Cu concentration in [26]. In [27, 28], hyper-
spectral data combined with different machine learning approaches like SVM, NN,
and Spectral Angle Mapper were investigated for mineral mapping and porosity esti-
mation. Also, spectral data, in terms of multi-sensor spectral imaging, together with
SVM, were used to distinguish between six mineralogically meaningful classes, and
the corresponding probability estimates of each class were derived in [29]. In the study
discussed in [30], core plug samples were combined with continuous Kimeleon colorlith
logs, which use information from the apparent matrix density, neutron porosity, and
gamma-ray logs. K-means clustering was then used to classify the different rock types.
From these continuous rock types, rock properties like permeability were calculated
and up-scaled.

The goal of this work is to train neural networks that take only drill core images as
input and can assess the lithological classes and the mineral content, respectively. We
first perform a simplified lithological classification of drill core images from Northern
Switzerland into distinct geological formations using pretrained CNNs designed for
image classification. Inspired by the recent progress in automated image processing,
we analyze the core images stemming from deep drilling exploration of the Mesozoic
underground conducted by Nagra, the Swiss National Cooperative for the Disposal of
Radioactive Waste [31], in the context of the national program on site selection for
Swiss deep geological repository for radioactive waste [32].

The second step and principle objective of this research is to assess the performance
of neural networks in predicting the mineral content (amount of carbonate, silicate
and total clay) from solely the drill core images. Because none of those studies men-
tioned above considers the drill core images alone to predict the mineral content. For
this purpose, parts of the classification model are used via transfer learning. Thereby,
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even with a relatively limited dataset (in our case 361 data points) the mineral con-
tent regression from drill core images is possible. For training the CNN, the images
are labeled with mineral content data retrieved from a multidimensional log analy-
sis of the petrophysical logs from one borehole. The so trained model is then applied
to previously unseen drill core images of the same borehole and the predictions are
compared to bulk XRD measurements of the mineral content.

The paper is structured in the following way: First, the available data set, consist-
ing of the drill core images and additional measurements for labeling, is described in
detail (Section 2). Section 3 introduces the methodology, covering data preprocessing,
machine learning methods, and transfer learning. Results for the formation classifica-
tion and mineral content regression are presented in Section 4 as well as details on the
comparison of the regression model predictions to measured mineral contents. This is
followed by final remarks and outlook for further research investigations in Section 5.
This study not only advances geological analysis but also underscores the potential of
machine learning to enhance subsurface exploration and characterization.

2 Data set

The samples and data used in this study are from the borehole Trüllikon 1-1 in the
siting region of Zürich Nordost (left Figure 1) in Switzerland, [31]. The borehole is
part of Nagra’s national program on site selection for Swiss deep geological repository
for radioactive waste, [32]. The total drilling depth was 1310m. The section between
498-1029m was cored with wireline coring. At the time of the study, only a fraction of
the cored section was measured, validated, and released, comprising non-continuous
segments of in total 55m of core between 770.35m and 939m depth of sedimentary
rocks. The available data segments are visualized by the blue bars next to the litho-
logical profile shown in Figure 1, right. Detailed information on all drilling procedures
and data can be found at [33, 34].

The extracted drill cores were washed, dried and photographed using a standard-
ized procedure together with a ruler and reference cards (X-Rite ColorChecker Classic
Mini color chart and BST14 gray scale chart) for samples referencing and colour
calibration. For the high-resolution (10px/mm) core photographs, a DMT CoreScan
system from avaluar GmbH with a CCD-Colour camera CSc3b1.26 was used. Note that
only single core images, not the 360 degree photos were considered in this work. Further
details on the photographing conditions can be found in [35]. The photographs were
stored along with the corresponding drilling depth. An example of such photographs
is shown in Figure 2 (a).

Along with the photographs, data from the petrophysical Multimineral Log Anal-
ysis (MultiMin) [36] was used for the labeling in the regression task. The MultiMin
method is a stochastic workflow for log analysis based on the assumption that every
borehole log measurement is determined by the mineral and fluid content of the rock
that surrounds the borehole. If the linear or non-linear relations between measured
properties and rock composition are known, it is possible to calculate the theoretical
log response for a given rock composition or use all available log information to esti-
mate the rock properties of interest. By comparing measured and predicted log values,

4



Fig. 1 Left: Cartographic representation illustrating the geographical region of northern Switzerland.
The map specifically features the borehole site of Trüllikon 1-1 which is selected for the data analysis
of this study. Background: ©Data:swisstopo and hillshading from NASA SRTM. Right: Abstracted
lithological profile of the section Trüllikon 1-1 showing the interval between 770.35m and 939m depth.
The blue bars denote the available data segments.

it is possible to assess the quality of the estimated properties. For details see Chapter
3.3 in [37]. Petrophysical logs available for the analysis included caliper log, gamma ray
log, spectral gamma ray log for U, Th and K, neutron hydrogen index, gamma-gamma
density log, element spectroscopy, electrical resistivity, and a sonic log. In addition,
multi-sensor core logger data (bulk density, compressional (P) wave velocity, spectral
gamma ray curves for K, Th and U, and X-ray fluorescence elemental analysis for Fe,
Si, Ca, Al, Ti and S were available for Opalinus Clay and its confining units. These
logs and lab measurements of mineralogy (XRD), porosity and density were used for
the MultiMin modeling of porosity and mineral composition; details on that can be
found in the Nagra working reports [36, 37].

The MultiMin model was utilized to calculate mineral composition approximately
every 15 cm in terms of clay minerals (kaolinite, illite, smectite, and chlorites), other
(alumino) silicates (quartz, potassic feldspars, plagioclase - this group of minerals
will be referred to as silicates for the rest of this work), carbonates (calcite, siderite,
dolomite, ankerite), iron oxide, evaporates (anhydrite), and organic carbon (kerogen).
For the sake of simplicity and robustness of the CNN model, only the total amount of
total clay, carbonate, and silicate was considered for the regression.

The core samples are grouped to six distinct formations: 1. Parkinsoni-
Württembergica-Schichten (738.97-774.55 m), 2. Humphriesioolith Formation (774.55-
787.50 m), 3. Wedelsandstein Formation (787.50-815.51 m), 4. Murchisonae-Oolith
Formation (815.51-816.42 m), 5. Opalinus Clay (816.42-927.91 m), 6. Staffelegg Forma-
tion (927.91-971.68 m); with the numbers in brackets giving the measured core depth.
A visual representation of the abstracted lithology is provided in Figure 1, right.
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For validating the trained neural network model, bulk XRD measurements were
used. Within the 55 meters of core, a total of 23 bulk XRD measurements were avail-
able. The exact positions within the core are detailed in Table A1, Appendix A.3,
and are visually accessible in the core photograph overview in the Appendix A.4
(highlighted by blue rectangles.)

3 Methodology

3.1 Image Data Preprocessing

To facilitate robust and automated analysis of drill core photographs, a standardiza-
tion process for colour balance and image dimensions was performed, and artifacts,
such as cracks or missing fragments were labeled. Accordingly, a five-step preprocess-
ing routine was introduced for all images. First, the photographs have been corrected
for color (Step 1) and white balance (Step 2). Then, an automated algorithm for core
segmentation from background (Step 3), core splitting into equally sized segments
(Step 4), and crack detection (Step 5) was applied.

The preprocessing was implemented using the Python Imaging Libraries PILLOW
and scikit-learn, [38, 39]. The five distinct steps of the automatic preprocessing pipeline
are described in detail below and are as follows:

1. The first step of the color correction involved creating a color profile (ICC profile)
using the ColorChecker from X-rite library. The ICC profile was then subsequently
applied to the images. This step ensured that the color representation across the data
set was consistent throughout the images.

2. The second step implemented the correction of the white balance using the white
colour patch (A) as a ground truth for true white. By comparing the color values of the
white patch with the rest of the image, the pixel values of the image were normalized
relative to the maximum value found on the white patch. Figure 2 (a) shows one
example from the data set. The color and white balance corrected image is depicted
in Figure 2 (b).

3. The third step consisted of subtracting the background and extracting the
domain representing the drill core from the photograph (Figure 2 (c), (d)). The seg-
mentation algorithm first used the length and depth of the core piece, recorded in the
name of the photograph, to approximately locate and cut the core domain from the
background (Figure 2 (c)). This was possible, since the core was always centered in
the middle of the image. Further, Otsu’s method ([40]) was used to separate the core
from the background based on intensity distribution. Morphological operations were
then applied to refine the segmentation. Next, continuous regions that belong to the
core were identified and used to create a bounding box that accurately encompasses
the core. The image was subsequently cropped using this bounding box, focusing the
analysis exclusively on the core region for further processing and evaluation (Figure 2
(d)).

4. In the fourth step of the preprocessing pipeline, the extracted core images were
divided into equally sized 1 cm depth segments. The segmentation algorithm was based
on the core length obtained from the image filename, resulting in images with a width
of around 100 pixels and a height of 850 pixels corresponding to a 1 cm segment of the

6



drill core with a certain depth. (Figure 2.(e)). If a segment overlapped two continuous
core images, they were merged to form a cohesive segment. This division resulted
in 5496 core segments from all available photos, out of which 361 could be used for
creating the regression model to predict the mineral content from the 1 cm drill core
images. The small number of images for the regression task is due to the number of
corresponding data from the MultiMin analysis. The remaining core segments (i.e.
5135) were used for the classification task.

5. In the final, fifth, step, cracked segments were detected by binarizing the image
again with Otsu’s method. The images containing a crack were not excluded from the
beginning, but the size of the cracked area per segment was stored in the filename.
The segment was saved as a TIFF file with the naming convention: “DxC.tif,” where
D was the depth and C was the cracked area size in pixels (Figure 2 (e)). These images
provided the input for the machine learning models. Images, where the cracked area
size exceeded a certain threshold of, e.g., 5000 pixels, were removed from the data set
for data quality improvements and thus better model performance.

Fig. 2 Preprocessing pipeline, consisting of five distinct steps, from the original image (a) to the
final 1cm image segments (e). The 1cm segments with the red cross next to the image are excluded
from the analysis, since the cracked area size is bigger than 5000 pixels.

3.2 Neural Networks and Transfer Learning

Neural networks have emerged as powerful tools for modeling a functional relationship
between generic input and output. In particular, convolutional neural networks (CNN)
have been proven specifically useful in image analysis, as they can autonomously learn
feature engineering through the use of filters. Here, the basic principles of CNN usage
are described, without providing intricate details, those can be found in [41].
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Two neural network architectures were applied in this work. The first NN architec-
ture was designed and trained to take the 1cm drill core images as an input and predict
the formation class as an output (i.e. classification task). The second NN architecture
was intended for regression, and it was set up to take the 1cm drill core images as an
input, and estimate the content of clay, carbonate and silicate minerals in the core as
output.

For that, the concept of transfer learning was used rather than creating and training
a neural network architecture from scratch. In this process, a model trained for a
similar but different task served as a backbone architecture and additional layers were
placed on top of the pretrained layers, see Figure 3. Training such a neural network
can be done in two ways, either all weights and biases are learned, or the ones of the
pretrained model are fixed and only the new ones are updated.

Fig. 3 Architecture of the neural network for the mineral content regression with three formation
models as a backbone architecture

In this work, pretrained deep convolutional neural networks (VGG16, ResNet18,
ResNet34, ResNet50, ResNet101, ResNet152 [42]) were used to generate appropri-
ate models. The residual neural networks (ResNet) are particularly powerful because
compared to very deep convolutional neural networks (like VGG) they overcome the
vanishing gradient problem by using shortcuts (skip-connections). The classification
and regression models using the different pretrained convolutional neural networks
were implemented using pytorch, [43], a machine learning library for python and C++.
The pretrained models implemented in pytorch, were originally trained on the Ima-
geNet data set, storing their weights and biases. The ImageNet data set comprises over
14 million hand-annotated images, spanning thousands of categories, such as vehicles,
animals, persons, fruits, and geological formations. For our models, pretrained models
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on this data set are responsible for extracting general features from images. There-
fore the weights and biases of these pretrained backbone architectures were kept fixed
during the training process of our specific models. While the last layers added on
top of the pretrained models were adapted for the specific tasks. This is the common
state-of-the-art procedure in image classification applications.

For training neural networks, typically the loss function is minimized, which
computes the difference between the actual and predicted output targets. Different
optimization algorithms are available. In this work, the Adam optimization algorithm
was used together with a cross-entropy loss for the classification and a mean squared
error loss for the regression. The training is additionally controlled by an early stop-
ping procedure. This entails continuing training as long as the loss is decreasing and
the performance on the validation data set is increasing. If this is not the case for a few
epochs, then the training is stopped. The metrics used for evaluating the model are
the accuracy for the formation classification and the (root) mean squared error and
coefficient of determination R2 for the mineral content regression. To see the general-
ization performance of the neural network and to not introduce a bias through transfer
learning, the data set was divided as follows: 5135 image segments were used solely
for classification, and another 361 (i.e. 6.6%) solely for regression. For both tasks, the
data were subdivided into three sets, the training and validation data set used for
training, and the test data set used solely for testing after the training had been com-
pleted. More specifically for the classification task with a crack threshold below 5000
pixels, 4658 images were used for training (Parkinsoni-Württembergica-Schichten:
330 images, Humphriesioolith Formation: 911 images, Wedelsandstein Formation: 250
images, Murchisonae-Oolith Formation: 43 images, Opalinus Clay: 2498 images, Staffe-
legg Formation: 626 images), 114 images for validation (19 images per class) and 113
images for testing (Parkinsoni-Württembergica-Schichten: 18 images and 19 images in
all other classes). For the regression task, 276 images were used for training, 34 images
for validation and 34 images for testing in the case of a crack threshold of 5000; for
the threshold of 1000, it was 254, 32 and 31 images for training, validation and test-
ing. Among the images for the regression task, in all images there were mixtures of
clay, carbonate and silicate and not purely one element. It is important to mention
that the images used for the regression task are independent from the images used
for the classification task. So no images were used twice in the whole process. Also
all the training, validation and testing images were independent from each other. All
the images amongst many others can be found in [35], in this document the cores are
extracted from the background.

4 Results and Discussion

4.1 Formation Classification

Six different pretrained backbone architectures (ResNet18, ResNet34, ResNet50,
ResNet101, ResNet152, VGG16) were benchmarked for the formation classification
task. The ResNet architecture requires same size and normalized input images. To use
the image segments as input for the ResNet, the segments were loaded into a range
between 0 and 1, normalized by using the mean and standard deviation, and resized
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to 850x100 pixels. The output of the ResNet was then a 1000-dimensional vector. Dur-
ing training, the loaded weights and biases of the pretrained network were fixed. The
1000-dimensional vector returned by the backbone architecture served as input for the
classification part. For the formation classification, the pretrained neural network was
complemented with a linear layer of input 1000 and output 500 dimensions (1000x500),
a ReLU layer (500x500) and again a linear layer (500x6). The last layer had 6 output
dimensions due to the chosen encoding. Since the formation classes were categorical,
each class needed to be encoded to a number; this was done with one-hot encoding,
where the first class was represented as (1,0,0,0,0,0), the second as (0,1,0,0,0,0), and
so forth until the last class (0,0,0,0,0,1). The implemented and trained model gave in
the end the number of the predicted class, as an integer among {0, 1, 2, 3, 4, 5}.

Fig. 4 Left: Formation classification results for the test data set for different backbone architectures
with 14 different seeds each. Right: Confusion matrix for the formation classification model based on
ResNet152 with artefact threshold T=5000 pixels for the test data set.

After the training phase, the performance of the models was evaluated exclusively
with the test data set in terms of accuracy. The graphical representation of the results,
depicted as box plots derived from 14 different seeds for training initialization, is
presented in Figure 4(a). In these plots, the blue star denotes the mean, the horizontal
orange line represents the median, while the box encapsulates the lower and upper
quartiles. The ”whiskers,” short horizontal lines, denote the values for the first (lower)
and third (upper) quartiles ±1.5 times the interquartile range, which is the length
between the first and third quartiles. Outliers are marked as individual circles. As can
be seen in Figure 4(a), the highest performing models are the ones with ResNet152 as
a backbone architecture with the best one having an accuracy of 96.7%. For the overall
best model, the confusion matrix is depicted in Figure 4(b). This matrix illustrates
the comparison between the predicted and true formation classes for the test data
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set. Considering, for example the true class 2 (i.e. Wedelsandstein Formation) in row
3, one can see in the matrix that 95% of the images were classified correctly as class
2, whereas 5% were wrongly classified by the model as class 3. The plot reveals that
misclassified images primarily correspond to neighboring classes. To investigate this
further, the analysis was extended to the whole data set. Notably, out of 4885 images,
only 48 were falsely classified (1 %), with the majority of these misclassifications
occurring between adjacent classes. Figure 5 illustrates the number of true and false
predicted image slices for each formation. Among the 48 falsely predicted image slices,
8 images between 891.03 to 891.18m depth were predicted to fall into the Staffelegg
formation instead of the Opalinus Clay. This misclassification is attributed to the high
lithological similarity between the Opalinus Clay and the Staffelegg clay-rich rocks.

Similarly, 14 images were misclassified at the boundary between these two forma-
tions which again is attributed to little lithological difference between the samples
at the boundary. Therefore, it is important to acknowledge that for classification
performance of the CNN on core samples, stark differences between rock compo-
sitions facilitate differentiation, while similar or weak differences may lead to false
classifications and further details would need to be considered.

The accuracy achieved at this stage is considered satisfactory and no further
refinement of the models was pursued.

Fig. 5 Counts of true and false predicted classes for each formation. In the x-axis, the classes are
numbered; C0 corresponds to Park.Wuertt.Schichten, C1 to Humphr. Formation, ..., C5 to Staffelegg
Formation. For a better understanding of the figure, consider e.g. the Park. Wuertt.Schichten, here
the first 6 x-labels are relevant, the number of counts, 366 for True C0 means that 366 images were
correctly classified as Park. Wuertt.Schichten, so class C0; no image was classified as class C1, C2,
C3, or C5 and only one image that should have been a Park. Wuertt.Schicht was classified as class
C4 (Opalinus clay), so this was misclassified.
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4.2 Mineral Content Regression

4.2.1 Comparison of Neural Network Model Architectures

Initially, the same architecture as for the formation classification, but with a linear
layer of output dimension 3 was tested for the mineral content regression. The perfor-
mance of this model was very poor with an average R2 value of -0.23 over 15 different
seeds. Hence, a different strategy was developed for the mineral content regression.
Since the formation classification model performed very well, the trained formation
classification neural network, except the last layer, was used as the backbone archi-
tecture for the regression model. A linear layer (500x250), a ReLU layer (250x250),
followed by a dropout layer and finally a linear layer (250x3) were added on top to
solve the regression task (see Fig. A1 in the appendix A.2). With such an architecture,
the classification of the images according to the rock type is performed first and helps
to perform mineral composition analysis. The same strategy was also tested not only
with one but with the three formation classification models showing the best perfor-
mance, which were concatenated, and the following layers were added on top, see Fig.
3: A linear layer (1500x700), a ReLU layer (700x700), a dropout layer, a linear layer
(700x250), a ReLU layer (250x250), a linear layer (250x3), and a sigmoid layer (3x3).
Additionally, models were trained using a reduced crack detection/deletion thresh-
old of 1000 pixels, as opposed to the previous threshold of 5000 pixels, for the model
employing the ensemble of three formation classification models.

In summary, three model types were trained and tested for mineral content
regression. These were: 1) the best formation classification model as backbone archi-
tecture with crack detection/deletion threshold of 5000 pixels (T5000-1m); 2) the
best trio of formation classification models as backbone architecture with a threshold
of 5000 (T5000-3m); 3) the best trio of formation classification models as backbone
architecture with a threshold of 1000 (T1000-3m).

Each model type was trained 18 times with different seeds. The outcomes in terms
of the coefficient of determination (R2) for the test data set are reported in Table 1
and are visualized in Figure A2 in the Appendix A.2. Data interpretations need to be
aware that data used for training are derived from a model with inherent uncertainty.

R2 test mean R2 test max

T5000 1m 0.560 0.641
T5000 3m 0.617 0.691
T1000 3m 0.580 0.673

Table 1 Mean and maximum R2 values
for the test data set for the three different
model types.

The data in Table 1 suggest a subtle better performance in the regression models
that utilize the ensemble of three formation models as a backbone architecture. The
R2 values for the models with a larger crack deletion area of 5000 pixels are higher,
but further investigations are needed to determine the significance of detected cracks
on the mineral content regression modeling. Therefore, saliency maps were considered,
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to better understand the importance of crack detection and further need to dismiss
these images. A saliency map for CNNs highlights the most relevant regions or features
within an input image, helping to identify areas of significance for the particular task.
The assigned dark colors refer to the ”unimportant” domains, whereas the lighter red
domains are the most ”significant” ones for the neural network. From these maps,
as depicted in Figure 6, one can see that cracks or color marks appear very dark in
the saliency maps, meaning that those features are not so relevant for solving the
regression task. Hence, the size of the crack deletion area was not considered further
within this work.

Fig. 6 Saliency maps of 4 different 1cm image slices, upper images show the true image, lower images
the corresponding saliency maps

4.2.2 Performance of Best Mineral Content Regression Model

The best model according to the R2 values on the test data set was the one with three
formation models as a backbone architecture and a threshold of 5000 pixels and a seed
of 1000. The comparison of the multiMin model data and the CNN predicted mineral
content is depicted in Figure 7. For this best mineral content regression model, the
absolute and relative errors as well as the R2 values for each individual mineral within
the test data set were computed: The model exhibits a moderate level of accuracy in
predicting carbonate mineral content, with an absolute error of 0.059 and a relative
error of 39.1%. While the model’s R2 value of 0.609 indicates a reasonable fit to the
data, further refinement may be necessary to enhance the accuracy of the model. In
contrast, the model performed much better in predicting the silicate mineral content,
with an absolute error of 0.038 and a relative error of 18.7%. The higher R2 value of
0.707 underscores the model’s ability to explain the variance in silicate content. The
best results with the trained models were obtained from the prediction of the total
clay content, with an absolute error of 0.046 and a lower relative error of 10.7%. The
R2 value of 0.811 refers to a robust correlation that emphasizes the model’s capability
to capture the variability in total clay content effectively (See also Figure 7). The high
prediction accuracy for the total clay content may be due to several reasons including
better spectral correlations with the clay phases.

In Appendix A.3 Figure A3, another direct comparison, of the MultiMin log data
on the x-axis versus the predictions on the y-axis is given. The overall trend looks
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Fig. 7 The first column shows the various formations along the depth, the second shows the
predictions of mineral content with MultiMin model, whereas the third column shows the CNN
predicted mineral content in this rock. Note that images were only available for the coloured areas.

quite assuring and is supported by the metrics on the test data set, although there are
some differences when considering all the details. Nevertheless, the model is already
well suited for distinguishing between low and high mineral content for each species.

4.2.3 Model Performance across Formations

To investigate the model performance further, the absolute and relative errors for
the mineral content predictions for each formation were investigated: The results are
depicted in Table 2, where nr gives the number of considered data points per formation.
From the table, one can see that the performance varies a lot among the different
formations. Summarizing, the lowest error values were achieved as follows: carbonates
content was predicted best for the Humphriesioolith and the Staffelegg Formation with
a relative error below 9.7 %. Clay minerals content predictions showed a relative error
below 6.8% for the Parkinsoni-Württembergica-Schichten and the Opalinus Clay, while
silicates predictions had a relative error below 5.1% for the Wedelsandstein Formation.
Throughout the analysis, across all formations a systematic better prediction emerged
for the mineral phases, which were prevalent in the selected formations. One reason
for the differences among the various formations could be, that the number of data
points for training the model was not the same for each formation class. In addition
to improving the results, assuming that many more data points may be available, one
model for each formation could be trained.
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Formation nr
Carbonate

abs.err.
Total clay

abs.err.
Silicate
abs.err.

Carbonate
rel.err.

Total clay
rel.err.

Silicate
rel.err.

Park 26 0.03 0.025 0.025 16.42% 5.21% 10.87%
Humphr 69 0.037 0.037 0.037 9.62% 13.37% 19.86%

Wedel 22 0.033 0.035 0.022 15.67% 11.24% 4.89%
Murch 5 0.033 0.038 0.067 21.06% 11.17% 16.00%

Opa 173 0.051 0.036 0.027 41.14% 6.73% 10.17%
Staffel 49 0.045 0.036 0.034 8.96% 10.75% 36.62%

Table 2 Comparison between the MultiMin log data and the CNN model prediction in terms of
absolute (abs.err.) and relative (rel.err.) error of all three minerals for each formation. nr gives the
number of data points available per formation.

4.3 Comparison with bulk XRD measurements

The training of the CNN for the mineralogical analysis was performed using data pro-
vided by MultiMin log model, which provides an indirect prediction of mineral content
based on drill-logs data. The only measured data available for the true evaluation of the
model’s performance are the actual bulk XRD measurements performed on the cores.
As explained in [36, 37] the core data of porosity, mineralogy and rock density were
used for calibration of log measurements in the MultiMin workflow, although this does
not mean that the MultiMin model data exactly reproduce the measured core data.
The difference between modelled and measured data allows us to evaluate the perfor-
mance of the model. Therefore, the analysis of the performance of CNN predictions
and MultiMin log model were both performed against true XRD core measurements.

In total 23 mineralogical data points obtained by XRD measurements on samples
from core intervals used in image analysis were available for comparison with the
model predictions. The comparison of core and log mineral compositions needs to
consider small differences and uncertainties. For example, the rock samples taken for
the analysis represent a core fragment with a volume of 1-10 cm3. These samples
are not necessarily located on the surface of the core. Quite in contrary, the samples
are taken from the core center to avoid contamination or any alteration processes.
Thus, the prediction based on the visual information from the surface can not be
more accurate than the typical variation of mineralogical content within a domain of
10×10×10 cm3, which was taken for the laboratory analysis. Accordingly, 11 image
segments were taken for each data point as input for the model and the mean and
standard deviation, σ, of the predicted mineral content were computed. The full table
of results can be found in the appendix A.3, Table A1. In Figure 8 the mean (red
dot) and the 95% confidence interval, i.e. the 2σ region, of predictions are depicted
for each mineral, together with the real measurements (blue stars). Almost all the
measurements lie within the 2σ region. The only significant deviation is observed in one
sample from Humphriesioolith. The photographic interpretation shows an unusually
high carbonate content and is part of a thin layer of elevated carbonate content present
within the heterogeneous Humphriesioolith unit.

To have a comparison to the MultiMin log data, also for the predicted model data
the Spearman correlation coefficient (cc) was calculated for each mineral, taking the
prediction at the MultiMin log data depth:
Carbonate: ccMultimin = 0.80 (pval = 4.21E−06), ccCNN = 0.90 (pval = 6.90E−09),
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Clay: ccMultimin = 0.93 (pval = 1.42E − 10), ccCNN = 0.90 (pval = 6.43e− 09),
Silicate: ccMultimin = 0.84 (pval = 5.51E − 07), ccCNN = 0.81 (pval = 3.31E − 06).
All values, including the relative and absolute errors; can be found in the appendix
A.3, A.3. This metric was chosen, since this was the metric used in [36] to compare the
MultiMin log data to the XRD measurements. The neural network model predictions
are in good agreement with the MultiMin log data and show similar accuracy as
illustrated in Figure 9.

Fig. 8 Mean (red dots) and 2σ of the CNN predicted mineral content from images at XRD depth
± 5cm and the according bulk XRD measurements (blue stars).

In summary, the mineral content regression model presents a promising tool for
mineral estimation from drill core images for the selected formations within this core,
although further refinement of the model to increase the accuracy would be desired.
In the future, an expansion of the dataset and inclusion of different lithological core
sections will be considered.

5 Conclusion and Outlook

This study successfully established and tested an automatic workflow for preprocessing
and analysis of drill core images based on machine learning methods. A pretrained
ResNet architecture was trained as part of the workflow to classify the 1cm drill core
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Fig. 9 Bulk XRD measurements (only representing carbonate, total clay, and silicate compositions)
plotted versus MultiMin log data (red and green dots) and overlain with CNN predicted mineral
content at MultiMin log data depth (black stars). The red dots correspond to the Opalinus clay,
whereas the green dots to all the other formations.

segments into 6 different formation classes (for which data and images were available).
The classification model achieved a prediction accuracy of 96.7% for unseen images.
Big parts of this formation classification model were subsequently used as a backbone
architecture to establish a NN model to predict the mineral content (silicate, total
clay and carbonate) from only drill core images. The CNN mineral content regression
predictions were compared to the XRD measurements and showed comparable good
correlations as the MultiMin log data. The critical technique used for both models
was transfer learning, which involved the usage of models that were trained on related
tasks and hence, the re-use of the obtained knowledge. It has to be emphasized that
due to the limited number of experimentally measured mineralogical data used in this
study (23), the CNN model was trained using a model based on the MultiMin log data
set (361) derived from drill log data. The data analysis shows that both models, CNN
and MultiMin log, demonstrate the same prediction performance when benchmarked
against the measured mineralogical lab (XRD) data. In contrast to other models in the
literature, the CNN model constructed in this study relies on images only and can be
used for the image-based interpolation of mineralogical data down to 1 cm resolution.

Although both presented CNN models (formation classification, mineral content
regression) show already good accuracy, there are several options to possibly further
improve the performance, which lie outside the scope of the current paper: First,
the hyperparameters, so the number of layers and neurons, as well as the activation
functions were chosen to be fixed. A thorough search for optimal hyperparameters
could drastically increase the performance of the model. Second, another choice of the
backbone architecture (here ResNet was used) could improve the model and is planned
for future work (like e.g. transformer networks or self-attention mechanisms).

In general, the transfer learning strategy from pretrained models seems to perform
better than starting training from scratch. The ideal case would be to have a model
that was trained on a huge data set of drill core images from different places all over the
world to extract already important features from the images. The model fine-tuning
could then be done for the specific applications and data sets.
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The number of data points is essential for the performance of a machine learning
model. In this study, the formation classification model is based on more than 5000
images, whereas the mineral content regression model was based on only 361 images.
Increasing the amount of data would definitely improve the model and make it more
robust and capable of generalization.

The data set in this study could benefit from further augmentation by incorporating
images from other boreholes of the same formations of complementary geological units.
This expansion would not only increase the data set’s size but also enhance the model’s
ability to generalize across diverse and possibly challenging geological formations and
thus rock compositions. Another cost-efficient option to augment the data set would
be to create a synthetic data set with geostatistical methods.

The performance of the models might also be influenced by the choice of the seg-
mentation size of the images, in this work we used 1 cm image segments. Decreasing the
width or height of the segments would be a way of enlarging the data set, although each
segment would have less information. Increasing the width would have the opposite
effect, the data set available would be reduced, but each segment would contain more
information. Optimizing this aspect can be crucial for achieving a balance between
data quantity and quality.

To enhance the data quality, the radial distortion of the images, due to the position
of the camera in relation to the drill core, should be considered. In future work, the
implementation of a transformation function for correcting the radial distortion is
planned.

In summary, this study provides a solid foundation for the regression of mineral con-
tent from drill core images using deep learning techniques. The outlined future research
directions provide a road map for improving model performance, data set robustness,
and overall predictive accuracy. Ultimately image-based regression methodologies will
have the potential to support the field of geological analysis and drilling technologies.

Declarations

5.1 Ethics approval and consent to participate

Not applicable

5.2 Consent for publication

All authors have given their consent for publication.

5.3 Availability of data and material

The data that support the findings of this study are available from Nagra but restric-
tions apply to the availability of these data, which were used under license for the
current study, and so are not publicly available. Data are however available from the
authors upon reasonable request and with permission of Nagra. The code framework
is available from the authors upon reasonable request.

18



5.4 Competing interests

The authors declare no competing interests.

5.5 Funding

EURAD-DONUT WP received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 847593.

5.6 Authors’ contributions

RB, SC and NP conceptualized the work. RB, ILB and NP designed the methodology.
RB and ILB developed the software framework and validated the models. RW provided
the data and accompanying information. GK contributed to the data analysis and the
data and model interpretation. RB drafted the first version of the manuscript. SC,
GK, ILB, RW and NP substantially contributed to the manuscript. All authors read
and approved the final manuscript.

5.7 Acknowledgements

We sincerely thank Marc Pollefeys (ETHZ) for his insights and discussions regarding
the implementation of neural networks in computer vision. We appreciate the intern-
ship of Geeta Goyal, that gave a starting point for this work. We are thankful for
thoughtful discussions with Maximilian Mandl (Nagra) beforehand on the usage of
machine learning for drill cores. Thanks also go the the Database Managment Group
at Nagra which provided maps and core images. We appreciate a lot the enlightening
conversations with Thomas Gimmi (PSI) on the available datasets.

19



Appendix A

A.1 Appendix List of Abbreviations (alphabetical order)

• cc: correlation coefficient
• chemical elements: U: Uranium; Th: Thorium; K: Potassium; Fe: Iron; Si: Silicon;
Ca: Calcium; Al: Aluminium; Ti: Titanium; S: Sulfur;

• CNN: Convolutional neural network
• ICC: International Color Consortium (colour profile)
• NN: Neural network
• pval: P-value (probability)
• pXRF: Portable X-ray Fluorescence analysis
• R2: Coefficient of determination
• ReLU: Rectified Linear Unit
• ResNet: Residual Neural Network
• RF: Random Forest
• SVM: Support Vector Machine
• TIFF: Tagged Image File Format
• VGG: Visual Geometry Group (a deep CNN architecture)
• XRD: X-ray Diffraction
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A.2 Appendix Additional figures for mineral content
regression

Fig. A1 Architecture of the neural network for the mineral content regression with one formation
model as a backbone architecture.

Fig. A2 Boxplot for comparing the three different model types for the mineral content regression
in terms of the R2 values of the test data set.
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Fig. A3 MultiMin log data vs CNN model predicted data for each mineral separately, the x and y
axis show the according weight %.

22



A.3 Appendix: Additional tables for comparison between
model and bulk XRD measurements

Mean
depth

[m]
Sil.

Sil.
pred
mean

Sil.
pred
std

Carb.
Carb.
pred
mean

Carb.
pred
std

Clay
Clay
pred
mean

Clay
pred
std

Lith-
ology

0 772.73 23.3 29.16 2.58 22.4 23.01 2.88 51.66 44.43 4.41 Park. Würt. Sch.
1 778.32 38.7 28.14 3.25 21.1 36.99 2.93 38.71 32.98 3.54 Humphr. Form.
2 783.13 12.8 30.63 2.38 75.34 39.36 5.2 11.62 32.02 2.44 Humphr. Form.
3 788.76 49 44.52 2.3 17.98 22.41 3.95 31.6 30.33 3.54 Wedels. Form.
4 814.82 53.4 48.2 3.47 17.52 19.4 5.05 27.93 24.97 3.56 Wedels. Form.
5 815.28 51.2 45.46 2.93 24.68 24.33 5.04 23.32 26.74 4.32 Wedels. Form.
6 826.39 31 30.44 1.77 10.17 12.28 4.19 54.68 56 2.09 Opalinus Clay
7 828.51 31.17 28.67 2.97 7.87 11.68 3.53 58.24 59.01 3.22 Opalinus Clay
8 851.84 30.66 35.15 2.7 10.41 10.66 3.87 57 53.53 1.69 Opalinus Clay
9 851.88 31.65 35.73 2.4 11.27 9.87 3.75 54.37 53.77 1.82 Opalinus Clay
10 851.95 33.99 34.93 1.77 11.04 14.19 6.62 53.4 53.36 1.87 Opalinus Clay
11 852.05 35.97 33.3 3.66 15.43 12.26 3.92 47.16 54.28 3.39 Opalinus Clay
12 854.18 35.89 34.72 3.84 12.49 14.49 5.94 50.11 51.23 2.92 Opalinus Clay
13 890.39 31.2 36.48 3.26 10.25 14.73 5.46 57.31 48.36 5.84 Opalinus Clay
14 923.34 23.2 27.72 2.64 8.67 9.2 3.5 66.37 60.36 3.25 Opalinus Clay
15 923.81 23.89 24.99 3.11 9.03 7.19 3.33 65.41 63.46 3.53 Opalinus Clay
16 925.11 22.11 27.02 3.28 10.96 13.19 6.28 65.41 59.32 4.37 Opalinus Clay
17 925.16 22.39 26.36 3.69 11.7 12.46 6.43 64.35 59.84 4.55 Opalinus Clay
18 925.17 22.86 26.12 3.79 11.73 12.41 6.43 63.71 59.99 4.6 Opalinus Clay
19 927.41 19.38 16.12 4.71 14.4 31.27 9.23 64.86 48.86 5.96 Opalinus Clay
20 935.59 12.52 6.24 4.37 48.63 47.13 7.84 33.77 32.39 5.43 Staffel. Form.
21 938.53 14.2 12.6 5.8 40.43 46.45 4.15 36.85 39.13 3.85 Staffel. Form.
22 938.9 15.2 7.93 5.14 42.77 45.05 10.55 35.6 36.77 5.85 Staffel. Form.

Table A1 Comparison of model predicted data and bulk XRD measured data. The mean depth is given in meter
[m]. The columns Sil., Carb., Clay show the measured mineral content. The columns Sil. pred.mean, Carb.pred.mean,
Clay pred.mean and Sil.pred.std., Carb.pred.std., Clay pred.std. denote the mean and standard deviation of the
predictions with the CNN model for images of the according measurement depth ±5cm.
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XRD
MultiMin
Carbonate

XRD
MultiMin
Total clay

XRD
MultiMin

Silicate

XRD
CNN

Carbonate

XRD
CNN

Total clay

XRD
CNN

Silicate
Abs.err. 5.36 3.91 3.81 5.69 4.26 3.87
Rel.err. 25.29% 12.84% 17.88% 24.08% 13.59% 17.38%
R2 0.68 0.88 0.75 0.61 0.84 0.78
cc 0.80 0.93 0.84 0.90 0.90 0.81
p-val 4.21E-06 1.42E-10 5.51E-07 6.90E-09 6.43E-09 3.31E-06

Table A2 Absolute (Abs.err.), relative (Rel.err.) error, coefficient of determination (R2) and
Spearman correlation coefficient (cc) of the three minerals and the according p-values (p-val),
computed for the 23 XRD measurement data points compared to the MultiMin Log data and the
CNN model predictions. The metrics are computed for the predicted values at the corresponding
MultiMin Log data depth.

A.4 Appendix Overview of core photographs

The following section contains the core images available and used in this study, already
preprocessed until step 3, so the original image was color and white balance cor-
rected and cropped from the background. For each photo, the specific depth range
is written above the photo together with the corresponding lithology class. The blue
rectangles indicate where XRD laboratory measurements were performed. For model
validation purposes, the slices at the depth given for the XRD measurements ± 5cm
are considered (blue rectangles).
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Drill core photographs, extracted from the background 

 

770.35m – 770.92m, Parkinsoni-Württembergica Schichten 

 
770.92m-771.75m, Parkinsoni-Württembergica Schichten 

 
771.75m-772.58m, Parkinsoni-Württembergica Schichten 

 
772.58m-773.06m, Parkinsoni-Württembergica Schichten 

 
773.06m-773.55m, Parkinsoni-Württembergica Schichten 

 
773.55m-773.73m, Parkinsoni-Württembergica Schichten 

 
773.73m-773.80m, Parkinsoni-Württembergica Schichten 

 
773.80m-773.93m, Parkinsoni-Württembergica Schichten 

 
773.93m-774.39m, Parkinsoni-Württembergica Schichten 

 
774.39m-774.55m, Parkinsoni-Württembergica Schichten 774.55m-774.83m Humphriesoolith Formation 

 
774.83m-775.23m, Humphriesoolith Formation 

 
775.23m-775.63m, Humphriesoolith Formation 

 
 

 



Drill core photographs, extracted from the background 

 

775.63m-776.36m, Humphriesoolith Formation 

 
776.36m-776.92m, Humphriesoolith Formation 

 
776.92m-777.80m, Humphriesoolith Formation 

 
777.80m-778.22m, Humphriesoolith Formation 

 
778.22m-778.54m, Humphriesoolith Formation 

 
778.54m-779.44m, Humphriesoolith Formation 

 
779.44m-779.93m, Humphriesoolith Formation 

 
779.44m-779.93m, Humphriesoolith Formation 

 
779.93m-780.63m, Humphriesoolith Formation 

 
782.94m-783.76m, Humphriesoolith Formation 

 
783.76m-784.60m, Humphriesoolith Formation 

 
784.60m-785.20m, Humphriesoolith Formation 

 
 

 



Drill core photographs, extracted from the background 

 

785.20m-785.94m, Humphriesoolith Formation 

 
785.94m-786.74m, Humphriesoolith Formation 

 
786.74m-787.50m, Humphriesoolith Formation; 787.50m-787.63m Wedelsandstein Formation 

 
787.63m-788.43m, Wedelsandstein Formation 

 
788.43m-788.99m, Wedelsandstein Formation 

 
788.99m-789.92m, Wedelsandstein Formation 

 
814.70m-815.51m, Wedelsandstein Formation; 815.51m-815.38m, Murchisonae-Oolith Formation 

 
815.38m-815.68m, Murchisonae-Oolith Formation 

 
815.68m-816.02m, Murchisonae-Oolith Formation 

 
816.02m-816.42m, Murchisonae-Oolith Formation 

 
816.42m-817.32m, Opalinus Clay 

 
817.32m-818.04m, Opalinus Clay 

 
 

 



Drill core photographs, extracted from the background 

 

818.04m-818.63m, Opalinus Clay 

 
818.63m-819.38m, Opalinus Clay 

 
819.38m-819.41m, Opalinus Clay 

 
819.41m-819.56m, Opalinus Clay 

 
819.56m-819.75m, Opalinus Clay 

 
819.75m-820.15m, Opalinus Clay 

 
824.04m-824.42m, Opalinus Clay 

 
824.42m-825.40m, Opalinus Clay 

 
825.40m-825.57m, Opalinus Clay 

 
825.57m-825.66m, Opalinus Clay 

 
825.66m-826.48m, Opalinus Clay 

 
826.48m-826.82m, Opalinus Clay 

 
 

 



Drill core photographs, extracted from the background 

 

826.82m-827.02m, Opalinus Clay 

 
827.02m-827.28m, Opalinus Clay 

 
827.28m-827.75m, Opalinus Clay 

 
827.75m-828.38m, Opalinus Clay 

 
828.38m-828.70m, Opalinus Clay 

 
850.04m-850.95m, Opalinus Clay 

 
850.95m-851.70m, Opalinus Clay 

 
851.70m-852.20m, Opalinus Clay 

 
852.20m-852.30m, Opalinus Clay 

 
852.30m-853.13m, Opalinus Clay 

 
853.13m-853.36m, Opalinus Clay 

 
853.36m-853.60m, Opalinus Clay 

 
 

 



Drill core photographs, extracted from the background 

 

853.60m-853.75m, Opalinus Clay 

 
853.75m-853.90m, Opalinus Clay 

 
853.90m-854.05m, Opalinus Clay 

 
854.05m-854.30m, Opalinus Clay 

 
854.30m-854.84m, Opalinus Clay 

 
854.84m-855.47m, Opalinus Clay 

 
860.03m-860.85m, Opalinus Clay 

 
860.85m-861.22m, Opalinus Clay 

 
861.22m-861.54m, Opalinus Clay 

 
861.54m-862.08m, Opalinus Clay 

 
862.08m-862.39m, Opalinus Clay 

 
862.39m-862.88m, Opalinus Clay 

 
 

 



Drill core photographs, extracted from the background 

 

862.88m-862.95m, Opalinus Clay 

 
862.95m-863.56m, Opalinus Clay 

 
863.56m-864.00m, Opalinus Clay 

 
864.00m-864.62m, Opalinus Clay 

 
887.15m-887.83m, Opalinus Clay 

 
887.73m-888.13m, Opalinus Clay 

 
888.13m-889.09m, Opalinus Clay 

 
889.09m-889.97m, Opalinus Clay 

 
889.97m-890.50m, Opalinus Clay 

 
890.50m-890.85m, Opalinus Clay 

 
890.85m-891.03m, Opalinus Clay 

 
891.03m-891.89m, Opalinus Clay 

 
 

 



Drill core photographs, extracted from the background 

 

922.49m-923.24m, Opalinus Clay 

 
923.24m-923.94m, Opalinus Clay 

 
923.94m-924.08m, Opalinus Clay 

 
924.08m-924.96m, Opalinus Clay 

 
924.96m-925.41m, Opalinus Clay 

 
925.41m-926.03m, Opalinus Clay 

 
926.03m-926.70m, Opalinus Clay 

 
926.70m-927.15m, Opalinus Clay 

 
927.15m-927.53m, Opalinus Clay 

 
927.53m-927.91m Opalinus Clay; 927.91m-928.31m Staffelegg Formation 

 
932.00m-932.96m, Staffelegg Formation 

 
932.96m-933.20m, Staffelegg Formation 

 
 

 



Drill core photographs, extracted from the background 

 

933.20m-933.29m, Staffelegg Formation 

 
933.29m-934.16m, Staffelegg Formation 

 
934.16m-935.03m, Staffelegg Formation 

 
935.03m-935.31m, Staffelegg Formation 

 
935.31m-935.94m, Staffelegg Formation 

 
935.94m-936.18m, Staffelegg Formation 

 
936.18m-937.17m, Staffelegg Formation 

 
937.17m-938.13m, Staffelegg Formation 

 
938.13m-939.01m, Staffelegg Formation 
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