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Abstract

Treatment effect heterogeneity is of a great concern when evaluating the treatment. However,

even with a simple case of a binary treatment, the distribution of treatment effect is difficult

to identify due to the fundamental limitation that we cannot observe both treated potential

outcome and untreated potential outcome for a given individual. This paper assumes a finite

mixture model on the potential outcomes and a vector of control covariates to address treatment

endogeneity and imposes a Markov condition on the potential outcomes and covariates within

each type to identify the treatment effect distribution. The mixture weights of the finite mix-

ture model are consistently estimated with a nonnegative matrix factorization algorithm, thus

allowing us to consistently estimate the component distribution parameters, including ones for

the treatment effect distribution.
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1 Introduction

The estimation of the treatment effect distribution is an important but very difficult task even

in a binary treatment setup due to the fact that in general we cannot simultaneously observe the

two potential outcomes—treated potential outcome and untreated potential outcome—for a given

individual, even when the treatment is random. Thus, instead of estimating the whole distribution

of treatment effect, researcher often try to estimate some summary measures of the treatment

effect, such as the average treatment effect (ATE) or the quantile treatment effect (QTE). These

summary measures of the treatment effect distribution often provide insights into the treatment

effect distribution and thus help researchers with policy recommendations. However, there still

remain a lot of research questions that can only be answered from the treatment effect distributions;

e.g., is the treatment Pareto improving? what is the share of people who are worse off under the

treatment regime? This paper aims to answer these questions, by estimating the distributional

treatment effect, under a finite mixture model with conditional Markov property.

In this paper, I assume that the distribution of the two potential outcomes and some control

covariates follow a finite mixture model, with a fixed number of types K. The latent type variable

models the treatment endogeneity; within each type, the potential outcome distribution does not

depend on the treatment status. Given the finite mixture model, I use an instrument that shifts

the mixture weights; using the instrument, I construct a grouping structure on individuals in a way

that different groups differ in terms of their type shares/mixture weight and treatment status: let

J0 denote the number of untreated groups and J1 the number of treated groups.

The existence of the control covariates is crucial to the identification of the finite mixture. Since

the treated potential outcome and the untreated potential outcomes are fundamentally different,

we cannot use the outcome variable to identify the common finite mixture model for treated groups

and untreated groups. Instead, I use the control covariates to identify the finite mixture model.

Note that we now have J0 untreated groups and J1 treated groups thanks to the instrument, which

differ in terms of their type share/mixture weights. This difference in terms of the mixture weights

will be reflected in their distribution of the control covariates. Under a full rank assumption on the

component distribution for the control covariates, any two groups with the same distribution of the

control covariates have the same mixture weights across K types; the distribution of the control

covariates is informative about the mixture weights. If we additionally assume J0 + J1 ≥ K and

the mixture weights also satisfy full rank condition, the group-specific distribution of the control
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covariates partially identify the finite mixture model: for more discussion, see Henry et al. (2014).

Given some mixture weights and component distribution functions in the identified set, a coun-

terfactual outcome distribution can be easily constructed by applying the mixture weights for a

untreated group to the component distribution function for treated potential outcome or vice versa.

A key observation of this paper is that the mixture weights and the component distribution func-

tions do not need to be point identified to recover a counterfactual outcome distribution. Any pair

of the mixture weights and the component distribution functions in the identified set constructs

the same counterfactual outcome distribution.

Based on this observation, I construct a modified nonnegative matrix factorization minimiza-

tion problem to estimate a pair of the mixture weights and the component distribution function.

Though the solution to the minimization problem is not unique, induced weights for a counterfac-

tual outcome distribution consistently estimates the counterfactual outcome distribution and thus

the quantile treatment effects.

Recall that the goal of this paper is to estimate the distributional treatment effect. Though the

nonnegative matrix factorization problem finds a pair of the mixture weights and the component

distribution functions, it only finds the component distribution function for the treated potential

outcome and that for the untreated potential outcome separately. Thus, to estimate the distribution

of treatment effect, I impose additional assumption; the conditional distribution of the potential

outcomes only depends on a subvector of the control covariates and that subvector of the control

covariates is not independent of the rest of the control covariates. Given this ‘Markov’ property, I

can use the two separate distributions—the joint component distribution of the control covariates

and the treated potential outcome and the joint component distribution of the control covariates

and the untreated potential outcome—to recover the conditional component distribution of the

treated potential outcome given the untreated potential outcome.

When this Markov condition is assumed within the control covariates themselves, the mixture

weights is point identified and estimated by adding some additional quadratic constraints to the

nonnegative matrix factorization problem. Given the consistent estimates of the mixture weights,

the treatment effect distribution is estimated through a maximum likelihood estimation.

The assumptions of this paper are most suitable in a panel data setup where the lagged outcome

variables are used as control covariates, making a connection to the diff-in-diff literature. Consider a

short panel where a subset of individuals is treated only for the last time period. Then, the approach

of this paper to identify the finite mixture model by looking at the distribution of the control
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covariates is essentially to use the lagged outcome distribution to learn about the heterogeneity

across groups defined with the instrument. Though the untreated potential outcomes for a treated

group is not directly observed, we are assuming that the heterogeneity, i.e., the mixture weights,

that we learn from the lagged outcome is persistent to the last period as well; the same principle

as in the diff-in-diff. In this setup, the Markov condition assumes that the conditional distribution

of the last period potential outcome only depends on a subset of the most recent lagged outcomes

and the latent type. Thus, the lagged outcomes that are further away only affect the last period

potential outcome through the subset of the most recent lagged outcomes.

This paper relates to the recent development of the proxy variable approach: Deaner (2023); Hu

and Schennach (2008); Miao et al. (2018). This paper has two identification result: the identification

of the counterfactual outcome distribution and the identification of the treatment effect distribution.

The first identification result is directly implied by the previous works such as Deaner (2023); Miao

et al. (2018). Kedagni (2023) has a similar identification result in the context of binary instrument

and use the subpopulation of compliers, always-takers, etc, as the types. To my best knowledge,

the second identification argument, the identification of the treatment effect distribution, is new to

the literature.

In addition, this paper contributes to the program evaluation literature, especially on the es-

timation of the quantile treatment effect and the distributional treatment effect. For quantile

treatment effect, Callaway and Li (2019) also discusses a short panel and assumes copular stability

and independence between first-differenced potential outcome and treatment. For distributional

treatment effect, Frandsen and Lefgren (2021) build on Fan and Park (2010) and assumes stochastic

monotonicity to put bounds on the distributions of treatment effect; the distributional treatment

effect is partially identified. Kaji and Cao (2023) develop two new summarizing measure of the

treatment effect distribution and develop partial identification results on the two measures. Noh

(2023) assumes conditional independence of treatment effect and untreated potential outcome and

uses deconvolution to point identify the treatment effect distribution. This paper also discusses

point identification of the treatment effect distribution, under an arguably more flexible setup,

relying on a finite mixture model and restrictions applied only to the type-specific distributions.

The rest of the paper is organized as follows. Section 2 formally develops the finite mixture

model. Section 3 discusses the two identification results the counterfactual outcome distribution

and the treatment effect distribution. Section 4 explains the estimation procedure based on a

nonnegative matrix factorization problem and proves the consistency of the mixture weights. Sec-
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tion 5 applies the estimation procedure to the National Longitudinal Survey of Youth dataset and

estimates quantile treatment effects of the disemployment.

2 Setup

An econometrican observes a dataset {Yi, Xi, Di, Zi}ni=1 where Yi ∈ Y ⊂ R, Xi ∈ X ⊂ Rp,

Di ∈ {0, 1} and Zi ∈ Z. Yi is an outcome variable, Xi is a vector of control covariates, Di is

a binary treatment variable and Zi is an instrument. The outcome Yi is constructed with two

potential outcomes.

Yi = Di · Yi(1) + (1−Di) · Yi(0).

The treatment variable Di is potentially endogenous. For notational brevity, let Wi =
(
Yi, Xi

)
and

Wi(d) =
(
Yi(d), Xi

)
. Wi =Wi(d) when Di = d.

To put restrictions on the treatment endogeneity, I assume that there is some latent type variable

ki such that the treatment is as good as random after conditioning on the latent type variable ki

and the instrument Zi.

Assumption 1. (Unconfoundedness with a Latent Type)

There exists a latent type variable ki ∈ {1, · · · ,K} such that

(
Yi(1), Yi(0), Xi

)
⊥⊥ Di

∣∣ (ki, Zi

)
.

Also,
(
Yi(1), Yi(0), Xi, Di, ki, Zi

)
∼ iid.

Under Assumption 1, the conditional distribution of Wi given
(
ki, Di = d, Zi

)
is equal to the

conditional distribution ofWi(d) given
(
ki, Zi

)
. In addition, I assume the usual exclusion restriction

condition for the instrument.

Assumption 2. (Exclusion Restriction)

(
Yi(1), Yi(0), Xi

)
⊥⊥ Zi

∣∣ ki.
Assumption 2 assumes that the instrument Zi does not affect the distribution of

(
Yi(1), Yi(0), Xi

)
after conditioning on the latent type ki. Lastly, I assume that there are K finite types.
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Assumption 3. (Finite Support) ki ∈ {1, · · · ,K}.

Under Assumptions 1-3, the conditional distribution of Wi(d) given
(
Di = d′, Zi = z

)
admits

a finite mixture representation. Let Fd(·|d′, z) denote the conditional distribution of Wi(d) given(
Di = d′, Zi = z

)
. Then,

Fd(w|d′, z) = Pr
{
Wi(d) ≤ w|Di = d′, Zi = z

}
=

K∑
k=1

Pr
{
Wi(d) ≤ w|ki = k,Di = d′, Zi = z

}
· Pr

{
ki = k|Di = d′, Zi = z

}
· · · LIE

=
K∑
k=1

Pr {Wi(d) ≤ w|ki = k, Zi = z} · Pr
{
ki = k|Di = d′, Zi = z

}
· · · Assumption 1

=

K∑
k=1

Pr {Wi(d) ≤ w|ki = k} · Pr
{
ki = k|Di = d′, Zi = z

}
· · · Assumption 2

Note that Fd(·|d′, z) is identified when d = d′ and Pr {Di = d, Zi = z} > 0. Let Gdk denote the

conditional distribution of Wi(d) given ki = k. Note that G0k and G1k should be coherent in

the sense that the marginal distribution of Xi should be the same; let Gk denote the conditional

distribution of (Yi(1), Yi(0), Xi) given ki = k. G0k and G1k are induced from Gk. Also, let λ(k|d, z)

denote the conditional probability of ki = k given (Di = d, Zi = z). Then,

Fd(w|d′, z) =
K∑
k=1

λ(k|d′, z) ·Gdk(w).

Under Assumptions 1-3, the conditional distribution ofWi(d) given
(
Di = d′, Zi = z

)
is decomposed

into K mixture weights {λ(k|d′, z)}Kk=1 and K component distributions {Gdk}k.

The key assumption that will be maintained throughout the rest of the paper is that there is

sufficient variation in the mixture weights and the mixture component distributions. This directly

connects to the relevance of the instruments, meaning that the mixture weights λ(·|d, z) is not a

trivial function of z. Below I present two empirical contexts where there is a natural choice for

such an instrument and discuss what the relevance condition and Assumptions 1-2 mean in each

context.

Example 1. (clustered treatment) Suppose that there exist an observed clustering structure in

the dataset and the treatment is assigned at the cluster level. Then, I suggest using the clustering
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structure as an instrument. Let

Zi ∈ {1, · · · , J} and Di = D(Zi).

There are J clusters in the dataset and the unit-level treatment status Di equals the cluster-

level treatment status D(Zi). Assumption 1 is trivially satisfied since Di is a function of Zi.

Assumption 2 assumes that the cluster membership Zi does not have any information on the

unit-level heterogeneity, after conditioning on the unit-level latent type ki. Lastly, the relevance

condition assumes that the clusters are heterogeneous in terms of their unit-level type distributions.

Example 2. (event-study) Suppose that the dataset is now a panel data with multiple treatment

timings:
{
{Yit}Tt=1 , Ei

}n

i=1
. Ei ∈ {2, · · · , T,∞} is the treatment timing for unit i. In this canonical

staggered-adoption event-study setup, we can use the treatment timing as an instrument. To that

end, we first focus on a subpopulation of units that were not treated immediately; fix some time

period t∗ > 1 and drop units such that Ei < t∗. Let

Yi = Yit∗ , Xi = {Yit}t
∗−1
t=1 , Di = 1{Ei = t∗} and Zi = Ei.

Units that are not treated until t = t∗ are coded as ‘untreated’ and units that are treated at t = t∗

are coded as ‘treated.’ Again, Assumption 1 trivially holds since Di is a function of Ei = Zi.

Assumption 2 assumes that the treatment timing is as good as random after conditioning on the

unit-level latent type ki. The relevance condition assumes that the earlier-treated units and the

later-treated units are heterogeneous in terms of their unit-level type distributions.

Though the two empirical examples above both use a discrete instrument Zi, none of the

theoretical results of this paper requires Zi to be discrete. As long as the assumptions used in

the following sections hold for a discretized version of Zi, a continuous Zi can be used. Thus, for

notational brevity, I only consider discrete Zi; whenever the original instrument variable in the

dataset is continuous, an appropriate discretization is implicitly imposed. Specifically, I consider

discretization where Zi ∈ {1, · · · , J} with some J = J0 + J1 ≥ K and Di = 0 ⇔ Zi ≤ J0. Thus,

the instrument Zi forms a grouping structure over units so that there are J0 untreated groups and

J1 treated groups; each group has nonzero measure. For the rest of the paper, I drop Di in the
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conditioning set in modelling the finite mixture: for d ∈ {0, 1} and j ∈ {1, · · · , J},

Fd(w|j) =
K∑
k=1

λ(k|j) ·Gdk(w) (1)

Fd(·|j) is directly observed from the data when d = 0, j ≤ J0 or d = 1, j > J0. Also, I call

subpopulation {i : Zi = j} the group j.

3 Identification

In this section, I discuss identification of two objects of interest: distribution of counterfactual

outcome and distribution of treatment effect. Depending on the context, the counterfactual outcome

refers to treated potential outcome for untreated units, or untreated potential outcome for treated

units. For example, F0(·|j) for some j > J0 is a distribution of counterfactual outcome where the

counterfactual is the treated group j being untreated.

The first identification result, which is for distribution of counterfactual outcome, is tantamount

to those of Miao et al. (2018); Deaner (2023); under some relevance condition on the instrument

and sufficient variation condition on the component distributions, the marginal distribution is

point identified. The second identification result, which requires identifying the joint distribution

of potential outcomes, is new to the literature to my best knowledge. For the second identification

result, I further assume that a subvector of X works as an instrument for the rest of X. Then,

the joint distribution of untreated and treated potential outcome is identified from the conditional

distributions of the potential outcomes.

3.1 Identification of counterfactual outcome distribution

In this subsection, I discuss identification of counterfactual outcome distribution. For example,

suppose we are interested in F0(·|j) for some j > J0: untreated potential outcome distribution for

the treated group j. Once we identify F0(·|j), we can identify various treatment effect parameters:

e.g.,

CATT (j) = E [Yi(1)− Yi(0)|Di = 1, Zi = j] ,

CQTT (j, τ) = F−1
1 (τ |j)− F−1

0 (τ |j).
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CATT (j) is the conditional average treatment effect on the treated group j and CQTT (j, τ) is the

conditional quantile treatment effect on the treated group j, for the τ -th quantile.

The following is a modification of Miao et al. (2018) so that Xi is allowed to be discrete,

continuous or mixed random vector. The identification relies on two invertible matrices. Firstly,

Assumption 4 assumes sufficient variation across types, in the domain of Xi. Let Gx1, · · · ,GxK

denote the marginal distributions of Xi, constructed from G1, · · · ,GK , respectively.

Assumption 4. (Rank) There exist some x1, · · · , xK ∈ X such that the K ×K matrix

Γx =


Gx1(x1) · · · GxK(x1)

...
. . .

...

Gx1(xK) · · · GxK(xK)


is invertible.

Assumption 4 assumes that there is sufficient variation in the marginal distributions of Xi given ki

so that it preserves the variation in the mixture weights when we look at the marginal distributions

of Xi given Zi. Assumption 4 is plausible in the context of the event-study setup in Example 2, if

we believe that the variation in the outcome distribution would be preserved in the lagged outcome

distribution as well.

Secondly, Assumption 5 assumes that instrument Zi sufficiently shifts the mixture weights

λ(k|j) = Pr {ki = k|Zi = j}.

Assumption 5. (Relevance)

(i) The K × J0 matrix

Λ0 =


λ(1|1) · · · λ(1|J0)

...
. . .

...

λ(K|1) · · · λ(K|J0)


has rank K.

(ii) The K × J1 matrix

Λ1 =


λ(1|J0 + 1) · · · λ(1|J)

...
. . .

...

λ(K|J0 + 1) · · · λ(K|J)


has rank K.
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Note that Assumption 5-(i) only assumes relevance of Zi among untreated units while Assumption

5-(ii) only assumes relevance of Zi among treated units. To identify F0(·|j) for some j > J0, I only

use Assumption 5-(i); it suffices to have full rank on the mixture weights matrix for untreated units

to identify a counterfactual distribution of untreated potential outcome.

The following lemma establishes that the counterfactual outcome distribution could be identified

through the identified set of the mixture weights and the component distributions.

Lemma 1. Consider an identified set of
(
{G0k,G1k}Kk=1,Λ0,Λ1

)
that satisfies the following, as

in Henry et al. (2014):

1. {G0k,G1k}Kk=1 are component distribution functions on Y × X :

{G0k,G1k}Kk=1 are monotone increasing, right-continuous and have left limit of zero and right

limit of one. Also, for any x ∈ X ,

∫
Y
G0k(y, x)dy =

∫
Y
G1k(y, x)dy ∀k = 1, · · · ,K.

2. Λ0 is a K × J0 mixture weight matrix and Λ1 is a K × J1 mixture weight matrix:

Λ0 and Λ1 are nonnegative and each column of Λ0 and Λ1 sum to one.

3. For any w ∈ Y × X ,

K∑
k=1

λ(k|j) ·G0k(w) = Pr {Wi ≤ w|Zi = j} ∀j = 1, · · · , J0,

K∑
k=1

λ(k|j) ·G1k(w) = Pr {Wi ≤ w|Zi = j} ∀j = J0 + 1, · · · , J.

Assumptions 1-4 hold. For any two tetrads
(
{G′

0k,G
′
1k}Kk=1,Λ

′
0,Λ

′
1

)
,
(
{G′′

0k,G
′′
1k}Kk=1,Λ

′′
0,Λ

′′
1

)
in

the identified set, Assumption 5-(i) implies

K∑
k=1

λ(k|j)′ ·G′
0k =

K∑
k=1

λ(k|j)′′ ·G′′
0k ∀j = J0 + 1, · · · , J

and Assumption 5-(ii) implies

K∑
k=1

λ(k|j)′ ·G′
1k =

K∑
k=1

λ(k|j)′′ ·G′′
1k ∀j = 1, · · · , J0.
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Proof. Direct from identification argument as in Miao et al. (2018). See Appendix.

In general, the identified set is not a singleton. However, building on the identification argument

as seen in Miao et al. (2018); Deaner (2023), Lemma 1 states that the extrapolation for F0(·|j)

for j > J0 using the identified set is unique when Assumption 5-(i) holds and therefore F0(·|j) is

identified through the identified set of
(
{G0k}Kk=1,Λ0,Λ1

)
as well.

Remark 1. Given {xk}Kk=1 satisfying Assumption 4 and Assumption 5-(i), we can construct a

linear coefficient ψ such that the distribution of untreated potential outcome for the treated group

j is a linear combination of the (observed) distributions of the untreated groups {F0(·|j)}J0j=1. Let

Fx(·|j) denote the conditional distribution of Xi given Zi = j and let

ψ =


Fx(x1|1) · · · Fx(xK |1)

...
. . .

...

Fx(x1|J0) · · · Fx(xK |J0)





Fx(x1|1) · · · Fx(x1|J0)
...

. . .
...

Fx(xK |1) · · · Fx(xK |J0)




Fx(x1|1) · · · Fx(xK |1)
...

. . .
...

Fx(x1|J0) · · · Fx(xK |J0)




−1
Fx(x1|j)

...

Fx(xK |j)


for some j > J0. Then, for any w ∈ Y × X ,

F0(w|j) = ψ⊺


F0(w|1)

...

F0(w|J0)

 .

The linear coefficient ψ always sum to one but is not always nonnegative.

3.2 Identification of treatment effect distribution

The two marginal distributions of potential outcomes provide much information about treatment

effect heterogeneity; we can look at the quantile treatment effect and see how the treatment dispro-

portionately affects the distribution of outcome. However, there still remain a plenty of questions

which cannot be answered by the two marginal distributions: is the treatment Pareto improving?;

what is the proportion of individuals that are better off under the treatment? does the treatment

benefit individuals who would have been at the bottom of the counterfactual distribution?
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To answer these question, I impose an additional assumption on Xi.

Assumption 6. (Markov Property)

(i) Xi = (Xi1
⊺, Xi2

⊺)⊺ such that Xi1 ∈ X1, Xi2 ∈ X2 and

(
Yi(1), Yi(0)

)
⊥⊥ Xi1

∣∣ (ki, Xi2) .

(ii) Xi = (Xi0
⊺, Xi1

⊺, Xi2
⊺)⊺ such that Xi0 ∈ X0, Xi1 ∈ X1, Xi2 ∈ X2 and

(
Yi(1), Yi(0)

) ∣∣ (ki, Xi)
d≡
(
Yi(1), Yi(0)

) ∣∣ (ki, Xi2) ,

Xi2

∣∣ (ki, Xi0, Xi1)
d≡ Xi2

∣∣ (ki, Xi1) ,

Assumption 6-(i) divides Xi into two parts, Xi1 and Xi2, and assumes that the conditional distri-

bution of
(
Yi(1), Yi(0)

)
given

(
ki, Xi

)
only depends on

(
ki, Xi2

)
. Assumption 6-(ii) assumes that

Xi can be decomposed into three parts and additionally assumes that the conditional distribution

of Xi2 given
(
ki, Xi0, Xi1

)
only depends on

(
ki, Xi1

)
. In the context of the event-study setup in

Example 2, Assumption 6 is equivalent with assuming that the outcome process satisfy the Markov

property, conditioning on the type ki. Under some additional conditions, Assumption 6-(i) gives

us a partial identification result on the distribution of treatment effect and Assumption 6-(ii) gives

us a point identification result.

An important observation to be made here is that all of the conditional independence statements

in Assumption 6 have the latent type variable ki as a conditioning variable; I am not assuming that

the control covariates Xi satisfy some Markov property marginally.

Let us discuss the partial identification result first. Suppose Assumptions 1-5 hold; for more

discussion, see Henry et al. (2014). Then, the component distribution functions {G0k,G1k}Kk=1 in

the mixture model (1) are partially identified. Fix an arbitrary {G0k,G1k}Kk=1 in the identified set

and construct

G1|x1,k(y|x) = Pr {Yi(1) ≤ y|ki = k,Xi1 = x} ,

Φk(u|y, x2) = Pr {Yi(1)− Yi(0) ≤ u|Yi(0) = y, ki = k,Xi2 = x2} ,

G0x2|x1,k(y, x2|x1) = Pr {Yi(0) ≤ y,Xi2 ≤ x2|ki = k,Xi1 = x1}
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based on the component distributions. Let g1|x1,k, ϕk, g0x2|x1,k be the corresponding densities. Then,

G1|x1,k(y1|x1) = E [Pr {Yi(1) ≤ y1|Yi(0), ki = k,Xi1 = x1, Xi2] |ki = k,Xi1 = x1]

= E [Pr {Yi(1)− Yi(0) ≤ y1 − Yi(0)|Yi(0), ki = k,Xi2] |ki = k,Xi1 = x1]

= E [Φk(y1 − Yi(0)|Yi(0), Xi2)|ki = k,Xi1 = x1]

=

∫
X2

∫
Y
Φk(y1 − y0|y0, x2)g0x2|x1,k(y0, x2|x1)dy0dx2.

The second equality holds when we assume Assumption 6-(i). Then,

g1|x1,k(y1|x1) =
∫
Y×X2

ϕk(y1 − y0|y0, x2)g0x2|x1,k(y0, x2|x1)d (y0, x2) . (2)

After fixing y1, g1|x1,k can be written as an integral transform of ϕk with g0x2|x1,k as the integral

kernel. By ‘inverting’ the integral operator, we retrieve ϕk, the conditional distribution of Yi(1)−

Yi(0) given
(
Yi(0), ki = k,Xi2

)
. Consider a simple case where Yi, Xi are discrete random variables

and |X1| ≥ |Y × X2|. When


g0x2|x1,k(w1|x1) · · · g0x2|x1,k(w1|x|X1|)

...
. . .

...

g0x2|x1,k(w|Y×X2||x1) · · · g0x2|x1,k(w|Y×X2||x|X1|)


has full rank, ϕk is identified from multiplying its pseudo-inverse to Equation (2). Note that the

outcome depends on the input distributions, which come from the partially identified component

distributions Gdk. The following assumptions extend the full rank condition to continuous Xi and

assumes completeness on G0x2|x1,k.

Assumption 7. (Bounded Density) There exist some weighting function ξ1 : X1 → (0,∞) and

ξ2 : Y × X2 → (0,∞) such that

∫
X1

g1|x1,k(y|x)ξ1(x)dx <∞ ∀k = 1, · · · ,K and y ∈ Y,∫
Y×X2

ϕk(y1 − y0|y0, x)ξ2(y0, x)d (y0, x) <∞ ∀k = 1, · · · ,K and y1 ∈ Y,
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Assumption 8. (Completeness) For each k = 1, · · · ,K,

∫
Y×X2

|ϕ(y, x)|ξ2(y, x)d (y, x) <∞,∫
Y×X2

ϕ(y, x2)g0x2|x1,k(y, x2|x1)d (y, x2) = 0 ∀x1 ∈ X1

implies ϕ(y, x2) = 0 for all (y, x2) ∈ Y × X2.

Then, {ϕk}Kk=1 and therefore the conditional distribution of Yi(1) − Yi(0) given ki are partially

identified when Assumptions 1-5, 6-(i) and 7-8 hold, thanks to the partial identification result in

Henry et al. (2014).

For point identification, I impose additional restriction on the shape of Gk; Gxk, the observed

part of Gk, satisfy the Markov property: Assumption 6-(ii). Let gx2|x1,k denote the conditional

density of Xi2 given
(
ki = k,Xi1

)
and let gx0|x1,k denote the conditional density of Xi0 given(

ki = k,Xi1

)
.

Assumption 9. (Sufficient Variation in Xi) There exist some set X̃1 ⊂ X1 such that

(i) For any k ̸= k′, there exist some (x1, x2) ∈ X̃1×X2 such that gx2|x1,k(x2|x1) ̸= gx2|x1,k′(x2|x1).

(ii) For any x1 ∈ X̃1,

- gx0|x1,1(·|x1), · · · , gx0|x1,K(·|x1) are linearly independent;

- gx0|x1,1(·|x1), · · · , gx0|x1,K(·|x1) are continuously differentiable;

- there is some x ∈ X0 such that limx0→x gx0|x1,k(x0|x1) = 0 for k = 1, · · · ,K.

Assumption 9 assumes that there is some set X̃1 in X1 such that the conditional distribution of Xi2

given Xi1 and the conditional distribution of Xi0 given Xi1 show sufficient variations. Assumption

9 ensures that the identified set with this additional restriction is a singleton.

Theorem 1. Assumptions 1-9 hold. Then, the joint component distribution {Gk}Kk=1 and the

mixture weight matrices Λ0 and Λ1 are point identified.

Proof. See Appendix.

4 Implementation

In this section, I discuss how to estimate the distribution of counterfactual outcome and the

distribution of treatment effect, based on the identification result. In estimating the distribution

14



of counterfactual outcome, I rely on Assumption 3 and use the nonnegative matrix factorization

(NMF), to directly estimate the component distribution functions of the mixture model. Though

the solution to the minimization problem is not unique, I show that the induced linear coefficients

ψ̂ converges to the true ψ as defined in Remark 1 and thus the estimator for the counterfactual

outcome distribution is consistent. In estimating the distribution of treatment effect, I further

impose the Markov property in the first step of the NMF. Then, given the estimated component

distribution functions, I use MLE to estimate the treatment effect distribution.

4.1 Counterfactual outcome distribution

When |X | = K, using the sample analogue of the weights ψ defined in Remark 1 is a straight-

forward way of estimating the distribution of counterfactual potential outcomes. However, when

|X | > K, it is often implausible to assume that there is only one set of (x1, · · · , xK) which As-

sumption 4 holds and the researcher knows that specific set. Thus, relying on Lemma 1, I suggest

estimating the weights ψ through the estimation of the mixture weights Λ and the component

distributions Gdk.

For that, I firstly partition X into Mx sets: {Am}Mx
m=1. For each set in the partition {Am}Mx

m=1,

I construct a partition on Y: {Bmm′}Lm
m′=1. Let M =

∑Mx
m=1 Lm. {Cm}Mm=1 := {Am × Bmm′}m,m′

forms a well-defined partition on Y × X . {Cm}Mm=1 is ordered lexicographically; i.e., C1 = A1 ×

B1
1 , C2 = A1 × B1

2 , · · · . Then, I construct a M × J0 matrix and a M × J1 matrix whose elements

are conditional probability masses for each set of the partition given Zi: let

H0 =


∑n

i=1 1{Wi∈C1,Zi=1}∑n
i=1 1{Zi=1} · · ·

∑n
i=1 1{Wi∈C1,Zi=J0}∑n

i=1 1{Zi=J0}
...

. . .
...∑n

i=1 1{Wi∈CM ,Zi=1}∑n
i=1 1{Zi=1} · · ·

∑n
i=1 1{Wi∈CM ,Zi=J0}∑n

i=1 1{Zi=J0}

 ,

H1 =


∑n

i=1 1{Wi∈C1,Zi=J0+1}∑n
i=1 1{Zi=J0+1} · · ·

∑n
i=1 1{Wi∈C1,Zi=J}∑n

i=1 1{Zi=J}
...

. . .
...∑n

i=1 1{Wi∈CM ,Zi=J0+1}∑n
i=1 1{Zi=J0+1} · · ·

∑n
i=1 1{Wi∈CM ,Zi=J}∑n

i=1 1{Zi=J}

 ,

Each column of H0 is a (discretized) conditional distribution function of Wi given
(
Di = 0, Zi

)
and

each column of H1 is a (discretized) conditional distribution function ofWi given
(
Di = 1, Zi

)
. The
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NMF solves the following minimization problem: with some γ > 0,

min
Λ0,Λ1,Γ0,Γ1

∥H0 − Γ0Λ0∥F
2 + ∥H1 − Γ1Λ1∥F

2 (3)

subject to

Λ0 ∈ R+
K×J0 , Λ1 ∈ R+

K×J1 , Γ0 ∈ R+
M×K , Γ1 ∈ R+

M×K ,

1K
⊺Λ0 = 1J0

⊺, 1K
⊺Λ1 = 1J1

⊺, 1M
⊺Γ0 = 1K

⊺, 1M
⊺Γ1 = 1K

⊺,

PΓ0 = PΓ1

where P is a Mx ×M matrix such that

I =


1L1

⊺ 0L2
⊺ · · · 0LMx

⊺

0L1
⊺ 1L2

⊺ · · · 0LMx

⊺

...
...

. . .
...

0L1
⊺ 0L2

⊺ · · · 1LMx

⊺

 .

Let Λ̂0, Λ̂1, Γ̂0 and Γ̂1 denote the solution to the minimization problem.

Note that the minimization problem (3) is a quadratic program when either (Λ0,Λ1) or (Γ0,Γ1)

is fixed. Thus, I suggest an iterative algorithm to solve the minimization problem.

1. Initialize Γ
(0)
0 ,Γ

(0)
1 .

2. (Update Λ) Given Γ
(0)
0 ,Γ

(0)
1 , solve the following quadratic program:

(
Λ
(s)
0 ,Λ

(s)
1

)
= arg min

Λ0,Λ1

∥∥∥H0 − Γ
(s)
0 Λ0

∥∥∥
F

2
+
∥∥∥H1 − Γ

(s)
1 Λ1

∥∥∥
F

2

subject to Λ0 ∈ R+
K×J0 ,Λ1 ∈ R+

K×J1 ,1K
⊺Λ0 = 1J0

⊺ and 1K
⊺Λ1 = 1J1

⊺.

3. (Update Γ) Given
(
Λ
(s)
0 ,Λ

(s)
1

)
, solve the following quadratic program:

(
Γ
(s+1)
0 ,Γ

(s+1)
1

)
= arg min

Γ0,Γ1

∥∥∥H0 − Γ0Λ
(s)
0

∥∥∥
F

2
+
∥∥∥H1 − Γ1Λ

(s)
1

∥∥∥
F

2

subject to Γ0 ∈ R+
M×K ,Γ1 ∈ R+

M×K ,1M
⊺Γ0 = 1K

⊺,1M
⊺Γ1 = 1K

⊺ and PΓ0 = PΓ1.

4. Repeat 2-3 until convergence.
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As discussed in Lemma 1, a distribution of counterfactual outcomes is identified when either As-

sumption 6-(i) or Assumption 6-(ii) holds. For example, when Assumption 6-(i) holds, there are at

least J0 ≥ K untreated groups whose observed distributions contain nonzero shares of each of the

K types. Thus, to initialize Γ
(0)
0 ,Γ

(1)
1 , we can consider every K-combination of columns from H0

for small enough J0 and choose the combination that minimizes the objective:
(
J0
K

)
initial values.

Likewise, we can consider randomly drawn K set of weights that sum to one and use the weighted

sums of columns of H0 as an initial value. Alternatively, we can select the eigenvectors associated

with the first K largest eigenvalues of H0
⊺H0 as an initial value. In the empirical example discussed

in Section 5, the factorization result was stable across the choice of the initial value. Likewise, when

J1 ≤ K and we assume Assumption 6-(ii), we can use H1 to initialize Γ
(0)
0 ,Γ

(0)
1 .

Note that

(
F0(·|1) · · · F0(·|J0)

)
=
(
G01 · · · G0K

)
Λ0,(

F0(·|J0 + 1) · · · F0(·|J)
)
=
(
G01 · · · G0K

)
Λ1.

When (Λ0Λ0
⊺)−1 exists, we get

(
F0(·|J0 + 1) · · · F0(·|J)

)
=
(
F0(·|1) · · · F0(·|J0)

)
Λ0

⊺ (Λ0Λ0
⊺)−1 Λ1.

Building on this observation, I estimate F0(·|j) for treated group j > J0, as a linear combination

of empirical distribution functions for untreated groups {F̂0(·|j)}J0j=1, using Λ̂0

(
Λ̂0Λ̂

⊺
0

)−1
Λ̂1 as

weights. Likewise, when (Λ1Λ1
⊺)−1 exists, I can estimate F1(·|j) for untreated group j ≤ J0.

The following Assumption replaces Assumption 5, in the context of the estimation.

Assumption 10.

(i) Let

Γ0 =


Pr {Wi(0) ∈ C1|ki = 1} · · · Pr {Wi(0) ∈ C1|ki = K}

...
. . .

...

Pr {Wi(0) ∈ CM |ki = 1} · · · Pr {Wi(0) ∈ CM |ki = K}

 .

Γ0, PΓ0 and Λ0 have rank K.
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(ii) Let

Γ1 =


Pr {Wi(1) ∈ C1|ki = 1} · · · Pr {Wi(1) ∈ C1|ki = K}

...
. . .

...

Pr {Wi(0) ∈ CM |ki = 1} · · · Pr {Wi(0) ∈ CM |ki = K}

 .

Γ1, PΓ1 and Λ1 have rank K.

Theorem 2. Assumptions 1-3 hold. When Assumption 10-(i) holds,

Λ̂⊺
0

(
Λ̂0Λ̂

⊺
0

)−1
Λ̂1

p−→ Λ0
⊺ (Λ0Λ0

⊺)−1 Λ1

as n→ ∞. When Assumption 10-(ii) holds,

Λ̂⊺
1

(
Λ̂1Λ̂

⊺
1

)−1
Λ̂0

p−→ Λ1
⊺ (Λ1Λ1

⊺)−1 Λ0

as n→ ∞.

Proof. See Appendix.

Let Fy(0)(·|j) denote the conditional distribution of Yi(0) given Zi = j. For j ≤ J0, Fy(0)(·|j)

is directly observed from the dataset. Corollary 1 shows that there is a consistent estimator of

Fy(0)(·|j) for the treated group j > J0, when Assumption 10-(i) holds.

Corollary 1. Assumptions 1-3 and 10-(i) hold. Let

Fy(0)(y|j) =
1∑n

i=1 1{Di = 0, Zi = j}

n∑
i=1

1{Yi ≤ y,Di = 0, Zi = j} ∀y ∈ Y

for each j = 1, · · · , J0 and let

(
Fy(0)(y|J0 + 1) · · · Fy(0)(y|J)

)
=
(
Fy(0)(y|1) · · · Fy(0)(y|J0)

)
Λ̂⊺
0

(
Λ̂0Λ̂

⊺
0

)
Λ̂1.

Then, for each j = J0 + 1, · · · , J ,

sup
y∈R

∣∣Fy(0)(y|j)− Fy(0)(y|j)
∣∣ p−→ 0

as n→ ∞.
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Proof. The proof is direct from the Glivenko-Cantelli Theorem and Theorem 2.

Similarly, when Assumption 10-(ii) holds, we have a consistent estimator for Fy(1)(·|j) for the

untreated group j.

4.2 Treatment effect distribution

For estimation of the treatment effect distribution, the estimation procedure is three steps.

Firstly, by solving some NMF problem, we get
(
Λ̂0, Λ̂1

)
. Then, the treatment effect distribution is

estimated with MLE applied to (2). Suppose that the conditional distribution of (Yi(0), Xi2) given

(ki, Xi1) is parametrized with some finite-dimensional parameter ξ and the conditional distribution

of Yi(1) − Yi(0) given (Yi(0), ki, Xi2) is parametrized with some finite-dimensional parameter θ.

WLOG suppose θ = (θ1, · · · , θK) and ξ = (ξ1, · · · , ξK) where θk and ξk denote the distributional

parameters for type k in the finite mixture. ξ is a nuisance parameter. The second step is to

estimate the nuisance parameter, using the untreated groups:

ξ̂ = argmax
ξ∈Ξ

∑
i:Zi≤J0

log

(
K∑
k=1

λ̂(k|Zj) · g0x2|x1
(Yi, Xi2|Xi1; ξk)

)
.

Given
(
Λ̂0, Λ̂1, ξ̂

)
, the last step is to estimate the parameter of interest, using the treated groups:

θ̂ = argmax
θ∈Θ

∑
i:Zi>J0

log

(
K∑
k=1

λ̂(k|Zj) ·
∫
Y×X2

ϕ(Yi − y0|y0, x2; θk)g0x2|x1
(y0, x2|Xi1; ξ̂k)d (y0, x2)

)
.

For partial identification of (Λ0,Λ1), I use the same NMF algorithm from the previous sub-

section. For point identification, I slightly modify the NMF problem. The partition on X is now

constructed in a way that Assumption 6-(ii) can be checked. Let {Dm}Mx1
m=1 be a partition of X1.

For each Am, construct a partition on X0 and a partition on X2: {Eml}
Mm,x0
l=1 and {Fml}

Mm,x2
l=1 . Let

{Am}Mx
m=1 = {Dm × Eml × Fml′}m,l,l′ . Then, Mx =

∑Mx1
m=1Mm,x0 ·Mm,x2 . Construct {Cm}Mm=1 in

the same way as in the previous subsection. Assumption 6-(ii) implies

Pr {Xi0 ∈ Eml, Xi1 ∈ Dm, Xi2 ∈ Fml′ |ki = k}

=

∫
Dm

Pr {Xi0 ∈ Eml, Xi2 ∈ Fml′ |ki = k,Xi1 = x} gx1,k(x1)dx1

=

∫
Dm

Pr {Xi0 ∈ Eml|ki = k,Xi1 = x} · Pr {Xi2 ∈ Fml′ |ki = k,Xi1 = x} gx1,k(x1)dx1.
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Suppose |Pr {Xi0 ∈ Eml|ki = k,Xi1 = x} − Pr {Xi0 ∈ Eml|ki = k,Xi1 ∈ Dm}| ≤ η for all x ∈ Dm.

Then,

|Pr {Xi0 ∈ Eml, Xi1 ∈ Dm, Xi2 ∈ Fml′ |ki = k} · Pr {Xi1 ∈ Dm|ki = k}

−Pr {Xi0 ∈ Eml, Xi1 ∈ Dm|ki = k} · Pr {Xi1 ∈ Dm, Xi2 ∈ Fml′ |ki = k}|

≤ ηPr {Xi1 ∈ Dm|ki = k}2 . (4)

The inequality imposes a quadratic constraints on (Γ0,Γ1) since all of the four probabilities that

appear in Equation (4) are linear in PΓ0 = PΓ1. Note that the quadratic constraints on (Γ0,Γ1)

are not positive definite and thus the minimization problem (3) may not be convex even when

(Λ0,Λ1) is fixed. In this modified version of the NMF problem, there is clear tradeoff in increasing

M ; with a finer partition of X , we can check Assumption 6-(ii) more tightly, giving us a smaller

identified set at the cost of having bigger noise in H0,H1. Thus, I letMx grow with n; we use a finer

partition on X when there are more observations. The dependency on n is omitted for notational

brevity.

The following assumption replaces Assumptions 6 and 9 in the context of estimation and assumes

smoothness on the conditional expectation so that we can use the inequality in (4).

Assumption 11. There exists some x̃ ∈ X1 such that

(i) Xi0 ⊥⊥ Xi2

∣∣Xi1 = x̃.

(ii) There exist some partitions {Ẽl}
M̃x0
l=1 , {F̃ml}

M̃x2
l=1 , respectively on X0,X2, such that

pk =
(
Pr
{
Xi0 ∈ Ẽ1|ki = k,Xi1 = x̃

}
· · · Pr

{
Xi0 ∈ ẼM̃x0

|ki = k,Xi1 = x̃
})⊺

,

qk =
(
Pr
{
Xi2 ∈ F̃1|ki = k,Xi1 = x̃

}
· · · Pr

{
Xi2 ∈ F̃M̃x2

|ki = k,Xi1 = x̃
})⊺

satisfy the following: for any k ̸= k′, qk ̸= qk′ and pk, pk′ are linearly independent; {D̃n}∞n=1 ⊂

X1 contains x̃ and

∥∥∥∥(Pr{Xi0 ∈ Ẽl, Xi2 ∈ F̃l|ki = k,Xi1 ∈ D̃n

})
l,l′

− pkqk
⊺

∥∥∥∥
F

≤ ηn

with some {ηn}∞n=1 converging to zero.

(iii) The partition used in the NMF algorithm includes {D̃n × Ẽl × F̃l′}l,l′ from Assumption (ii)
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for each n. Also, for (Γ0,Γ1) defined as in Assumption 10, which now changes with n, there

exists some K ×M matrix P̃ whose elements are either one or zero, in a way that product of

any two rows is zero and ∥P̃∥F =M . P̃Γ1 converge to some invertible matrices as M → ∞.

Lastly, M3/n→ 0 as n→ ∞.

Assumption 11-(i) replaces Assumption 6 and Assumption 11-(ii) replaces Assumption 9.

Theorem 3. Assumptions 1-3, 10-11 hold. Up to some permutation on {1, · · · ,K},

Λ̂0
p−→ Λ0 and Λ̂1

p−→ Λ1

as n→ ∞.

Proof. See Appendix.

The following corollary follows directly.

Corollary 2. Assumptions 1-3, 6-8, 10-11 and some regularity conditions on the density functions

g0x2|x1
, ϕ hold. Up to some permutation on {1, · · · ,K},

ξ̂
p−→ ξ and θ̂

p−→ θ

as n→ ∞.

Proof. Direct from the convergence of Λ̂0.

5 Empirical illustration

In this section, I revisit the question of measuring disemployment effect on earnings and apply

the nonnegative matrix factorization to five distribution functions retrieved from the National

Longitudinal Survey of Youth (NLSY). I focus on the annual earnings distribution in 1987 and use

the annual earning in 1985 and the Armes Forces Qualification Test (AFQT) as control variables.

For instrument, I follow the same spirit as in Example 2 (diff-in-diff) and use the disemployment
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timing as an instrument.

Xi : Armed Forces Qualification Test,Annual earnings in 1985,

Yi : Annual earnings in 1987,

Zi : categorical variable for disemployment timing.

Zi finds five groups: disemployed in 1987, disemployed in 1989, disemployed in 1991, dismploeyed

in 1993, never disemployed until 1993. Since I am using the annual earnings in 1987 as the outcome

variable, Zi finds one treated group and four untreated groups.

The main model of the paper (1) assumes that there are finite types of individuals which

follow different distributions of the AFQT score and annual earnings. Assumption 4 assumes

that we have sufficient variation across these type-specific component distribution in terms of

their marginal distribution of the AFQT score and the past earning, which we observe for every

individual. Assumption 5 assumes that each group defined with the disemployment timing show

sufficient variation in terms of their type shares; earlier-disemployed individuals are systemically

different from later-disemployed individuals, in terms of their types. Lastly, Assumption 6 assumes

that the conditional distribution of 1987 earnings does not depend on the AFQT score, when

conditioned on the 1985 earnings and the type; the (observed) 1985 earnings and the unobserved

type contain sufficient information about individual’s potential earning distribution so that the

AFQT score does not affect the conditional distribution of the 1987 earnings.

5.1 Preliminary result: quantile treatment effect

I present some preliminary empirical results on the quantile treatment effect in this subsection.

For the NMF minimization problem, I used Mx = 4 and Lm = 2; the support of Xi is partitioned

into four sets and the support of Yi is partitioned into two sets, for each of the four sets in the

partition for Xi. For the number of types K, I used K = 2 and K = 3.

When K = 2, the extrapolation weight Λ̂⊺
0

(
Λ̂0Λ̂

⊺
0

)−1
Λ̂1 is (0.381, 0.286, 0.258, 0.075), on the

four untreated groups: disemployed in 1989, disemployed in 1991, disempolyed in 1993, never

disemployed until 1993. When K = 3, the extrapolation weight is (0.312, 0.379, 0.228, 0.082). The

never-disemployed group gets less weights than the other untreated groups, which makes sense

intuitively; the type distributions among individuals in the disemployed groups are similar to each

other while the type distribution among individuals in the never-disemployed group is distinctvely
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different.

Figure 1 contains the estimation result when K = 2. The left panel is the observed distribution

of the 1985 earnings and the fitted distribution of the 1985 earnings, for the treated group. Note

that the distributions are fitted quite well even though only a small number of moments (Mx = 4)

were used. The right panel is the observed distribution of 1987 earnings, thus the treated potential

outcomes, and the estimated counterfactual distribution of the 1987 earnings, thus the untreated

potential outcomes, for the treated group. The difference between the two distributions denote the

treatment effect. Figure 2 contains the same estimation result for K = 3.

Table 1 contains the estimates for τ -th quantile; τ = 0.1, 0.25, 0.5, 0.75, 0.9. We see significant

disemployment effect on the earning distributions, except at the right tail. The disemployment

decreases the annual earnings by approximately 500 dollars at the 0.9-th quantile while the disem-

ployment effects are mostly larger than 1500 dollars at the rest of the four quantiles.

Figure 1: The annual earnings distribution, K = 2

Figure 2: The annual earnings distribution, K = 2
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τ 0.1 0.25 0.5 0.75 0.9

K = 2 -2024.8 -2060.6 -1989.2 -2068 8 -32.8

K = 3 -1445.4 -2063.5 -1988.2 -2044.7 -536.1

Table 1: Quantile treatment effects

6 Conclusion

This paper proposes a new estimation strategy using an NMF algorithm for the quantile treat-

ment effects and the distributional treatment effects, based on a finite mixture model. The quantile

treatment effects are identified and estimated under a fairly relaxed assumptions such as a full rank

assumption on the mixture weight matrix. A key observation is that the mixture weights and the

component distribution functions need not be point identified when the object of interest is the

counterfactual outcome distribution. For the identification and the estimation of the distributional

treatment effects, I impose additional assumption that the observed control covariates satisfy a

Markov property, conditioning on the type. The Markov property condition is particularly suit-

able when we have a panel data and we can use lagged outcomes as controls; the outcome process

satisfies the Markov property, conditioning on the latent type. The NMF algorithm with some

additional constraints that reflect the Markov property consistently estimate the mixture weights,

allowing us the recover the component distribution functions.
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APPENDIX

A Proofs

A.1 Proof for Lemma 1

Suppose that Assumption 5-(i) holds. For any w ∈ Y × X ,

K∑
k=1

λ′(k|j) ·G′
0k(w) =

(
G′

01(w) · · · G′
0K(w)

)
λ′(1|j)

...

λ′(K|j)



=
(
F0(w|0, 1) · · · F0(w|0, J0)

)
Λ′
0
⊺ (

Λ′
0Λ

′
0
⊺)−1


λ′(1|j)

...

λ′(K|j)

 .

Λ′
0Λ

′
0
⊺ is invertible since


G′

x1(x1) · · · G′
xK(x1)

...
. . .

...

G′
x1(xK) · · · G′

xK(xK)

Λ′
0 =


Fx(x1|1) · · · Fx(x1|J0)

...
. . .

...

Fx(xK |1) · · · Fx(xK |J0)



=


Gx1(x1) · · · GxK(x1)

...
. . .

...

Gx1(xK) · · · GxK(xK)

Λ0

is full rank from Assumption 4 and Assumption 5-(i) and therefore Λ′
0 has full rank. Fx(·|j) denotes

the conditional distribution of Xi given Zi = j. It remains to show that

Λ′
0
⊺ (

Λ′
0Λ

′
0
⊺)−1


λ′(1|j)

...

λ′(K|j)

 = Λ′′
0
⊺ (

Λ′′
0Λ

′′
0
⊺)−1


λ′′(1|j)

...

λ′′(K|j)

 .
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Let Γ′
x and Γ′′

x be defined as in Assumption 4. Find that both Γ′
x and Γ′′

x are invertible, Γ
′
xΛ

′
0 = Γ′′

xΛ
′′
0,

and

Γ′
x


λ′(1|j)

...

λ′(K|j)

 =


Fx(x1|j)

...

Fx(xK |j)

 = Γ′′
X


λ′′(1|j)

...

λ′′(K|j)


since both of the two tetrads we consider are in the identified set. Thus,

Λ′
0
⊺ (

Λ′
0Λ

′
0
⊺)−1


λ′(1|j)

...

λ′(K|j)

 = Λ′
0
⊺
Γ′
x
⊺ (

Γ′
x
⊺)−1 (

Λ′
0Λ

′
0
⊺)−1 (

Γ′
x

)−1
Γ′
x


λ′(1|j)

...

λ′(K|j)



=
(
Γ′
xΛ

′
0

)⊺ (
Γ′
xΛ

′
0

(
Γ′
xΛ

′
0

)⊺)−1
Γ′
x


λ′(1|j)

...

λ′(K|j)

 .

We can repeat the same argument for the second half of the lemma as well.

A.2 Proof for Theorem 1

Let gx,k denote the conditional density of Xi given ki = k and gx0x1,k denote the conditional

density of
(
Xi0, Xi1

)
given ki = k. Assumption 6-(ii) assumes that

gx,k(x0, x1, x2) = gx2|x1,k(x2|x1)gx0x1,k(x0, x1).

Suppose a possibly misspecified component density function g =
∑K

k=1 αkgx,k such that
∑

k αk = 1.

Then,

g(x0, x1, x2) =

K∑
k=1

αkgx2|x1,k(x2|x1)gx0x1,k(x0, x1)

gx0x1(x0, x1) =

K∑
k=1

αkgx0x1,k(x0, x1)

g(x0, x1, x2)

gx0x1(x0, x1)
=

∑K
k=1 αkgx0|x1,k(x0|x1)gx1x2,k(x1, x2)∑K

k=1 αkgx0|x1,k(x0|x1)gx1,k(x1)
(5)

When g is correctly specified, i.e. g = gk for some k and αk′ = 0 for all k′ ̸= k, the quantity on the

RHS of Equation (5) is equal to gx2|x1,k(x2|x1) and is a trivial function of x0.
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The identification is complete by showing that there exist some (x0, x1, x2) ∈ X such that

g(x0, x1, x2)

gx0x1(x0, x1)
· gx1(x1)

gx1x2(x1, x2)
̸= 1.

whenever g is misspecified. Under misspecification, there are at least two k such that αk ̸= 0. From

Assumption 9-(i), we can find some (x1, x2) such that
(
α1gx1x2,1(x1, x2), · · · , αKgx1x2,K(x1, x2)

)
and

(
α1gx1,1(x1), · · · , αKgx1,K(x1)

)
are not linearly independent. Assume to the contrary that the

LHS on Equation (5) is a trivial function of x0 and let

g̃(x) =

∑K
k=1 αkgx0|x1,k(x|x1)gx1x2,k(x1, x2)∑K

k=1 αkgx0|x1,k(x|x1)gx1,k(x1)
.

Then,

g̃′(x) =
1∑K

k=1 αkgx0|x1,k(x|x1)gx1,k(x1)

(
α1gx1x2,1(x1, x2) · · · αKgx1x2,K(x1, x2)

)
g′x0|x1,1

(x|x1)
...

g′x0|x1,K
(x|x1)



−
∑K

k=1 αkgx0|x1,k(x|x1)gx1x2,k(x1, x2)(∑K
k=1 αkgx0|x1,k(x|x1)gx1,k(x1)

)2 (α1gx1,1(x1) · · · αKgx1,K(x1)
)

g′x0|x1,1
(x|x1)
...

g′x0|x1,K
(x|x1)

 .

Since
(
α1gx1x2,1(x1, x2), · · · , αKgx1x2,K(x1, x2)

)
and

(
α1gx1,1(x1), · · · , αKgx1,K(x1)

)
are not linearly

independent, g̃′(x) = 0 implies that there is some nonzero vector c ∈ RK such that

(
g′x0|x1,1

(x|x1) · · · g′x0|x1,K
(x|x1)

)
c = 0 ∀x ∈ X0

and therefore (
gx0|x1,1(x|x1) · · · gx0|x1,K(x|x1)

)
c = C ∀x ∈ X0

with some constant C. From Assumption 9-(ii), C = 0 and therefore there cannot be a nonzero

vector c satisfying the above. g̃ is not a trivial function of x0.
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A.3 Proof for Theorem 2

Let us prove the first half of the theorem. Let

H0 =


Pr {Wi ∈ C1|Zi = 1} · · · Pr {Wi ∈ C1|Zi = J0}

...
. . .

...

Pr {Wi ∈ CM |Zi = 1} · · · Pr {Wi ∈ CM |Zi = J0}

 = Γ0Λ0,

H1 =


Pr {Xi ∈ C1|Zi = J0 + 1} · · · Pr {Xi ∈ C1|Zi = J}

...
. . .

...

Pr {Xi ∈ CM |Zi = J0 + 1} · · · Pr {Xi ∈ CM |Zi = J}

 = Γ1Λ1.

From iid-ness of observations, we have

∥H0 −H0∥F = Op

(
1√
n

)
and ∥H1 −H1∥F = Op

(
1√
n

)
.

From the definition of Λ̂0 and Λ̂1, we have

∥∥∥H0 − Γ̂0Λ̂0

∥∥∥
F

2
+
∥∥∥H1 − Γ̂1Λ̂1

∥∥∥
F

2

≤ ∥H0 − Γ0Λ0∥F
2 + ∥H1 − Γ1Λ1∥F

2

≤ (∥H0 −H0∥F + ∥H0 − Γ0Λ0∥F )
2 + (∥H1 −H1∥F + ∥H1 − Γ1Λ1∥F )

2

= ∥H0 −H0∥F
2 + ∥H1 −H1∥F

2 = Op

(
1√
n

)
.

Then,

∥∥∥Γ0Λ0 − Γ̂0Λ̂0

∥∥∥
F

2
=
∥∥∥H0 − Γ̂0Λ̂0

∥∥∥
F

2
≤
(
∥H0 −H0∥F +

∥∥∥H0 − Γ̂0Λ̂1

∥∥∥
F

)2
= Op

(
1√
n

)

and likewise for
∥∥∥Γ1Λ1 − Γ̂1Λ̂1

∥∥∥
F
=
∥∥∥H1 − Γ̂1Λ̂1

∥∥∥
F
. From the submultiplicavity of ∥ · ∥F , we also

get
∥∥∥PΓ1Λ1 − P Γ̂1Λ̂1

∥∥∥
F
=
∥∥∥PΓ0Λ1 − P Γ̂0Λ̂1

∥∥∥
F
= Op

(
1√
n

)
.

Find that when (Γ0
⊺Γ0)

−1 , (Γ0
⊺P ⊺PΓ0)

−1 ,
(
Γ̂⊺
0Γ0

)−1
and

(
Γ0

⊺P ⊺P Γ̂0

)−1
exist,

Λ0
⊺ (Λ0Λ0

⊺)−1 Λ1 = Λ0
⊺Γ0

⊺Γ0 (Γ0
⊺P ⊺PΓ0Λ0Λ0

⊺Γ0
⊺Γ0)

−1 Γ0
⊺P ⊺PΓ0Λ1,

Λ̂⊺
0

(
Λ̂0Λ̂

⊺
0

)−1
Λ̂1 = Λ̂⊺

0Γ̂
⊺
0Γ0

(
Γ0

⊺P ⊺P Γ̂0Λ̂0Λ̂
⊺
0Γ̂

⊺
0Γ0

)−1
Γ0

⊺P ⊺P Γ̂0Λ̂1
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and therefore ∥∥∥∥Λ0
⊺ (Λ0Λ0

⊺)−1 Λ1 − Λ̂⊺
0

(
Λ̂0Λ̂

⊺
0

)−1
Λ̂1

∥∥∥∥
F

= op (1)

from
∥∥∥Γ0Λ0 − Γ̂0Λ̂0

∥∥∥
F
= op(1) and

∥∥∥PΓ0Λ1 − P Γ̂0Λ̂1

∥∥∥
F
= op(1). Assumption 10-(i) implies that

Γ0 and PΓ0 have full rank.
(
Λ̂0Λ̂

⊺
0

)−1
exists with probability going to one since:

∥∥∥Γ0
⊺Γ0Λ0 − Γ0

⊺Γ̂0Λ̂0

∥∥∥
F
≤ ∥Γ0∥F · op(1) = op(1).

Thus, the determinant of Γ0
⊺Γ̂0Λ̂0 converges to a nonzero constant in probability and thus Λ̂0 has

a full rank with probability converging to one. It remains to show Γ̂⊺
0Γ0 and Γ0

⊺P ⊺P Γ̂0 have full

rank, with probability converging to one.

Suppose Γ̂⊺
0Γ0 is not invertible. Then, there is some nonzero vector v ∈ RK such that Γ̂⊺

0Γ0v =

0K . Γ0v lies in the left null space of Γ̂0. Find some nonzero vector u ∈ RJ0 such that v = Λ0u.

Such u always exist since Λ0 has full rank. Then, for any Λ̂0u,

Γ0Λ0u− Γ̂0Λ̂0u = Γ0v − Γ̂0Λ̂0u ̸= 0.

WLOG we can find v such that Γ0v is orthogonal to the columns of Γ̂0 and ∥Γ0v∥2 = 1. Also,

we put a bound on ∥u∥2 by letting u = Λ0
⊺ (Λ0Λ0

⊺)−1 v; ∥v∥2 ≤ 1 from the observation that each

element of Γ0 lies between 0 and 1. Then, when Γ̂⊺
0Γ0 is not invertible,

1 = ∥Γ0v∥2 ≤
∥∥∥Γ0v − Γ̂0Λ̂0u

∥∥∥
2
=
∥∥∥Γ0Λ0u− Γ̂0Λ̂0u

∥∥∥
2
≤
∥∥∥Γ0Λ0 − Γ̂0Λ̂0

∥∥∥
F
∥u∥2

holds, giving us a contradiction. The first inequality holds since (a+ b)⊺(a+ b) = a⊺a+ b⊺b when

a⊺b = 0. Therefore

Pr
{
Γ̂⊺
0Γ0 is not invertible

}
≤ Pr

{∥∥∥Γ0Λ0 − Γ̂0Λ̂0

∥∥∥
F
≥ 1

∥u∥2

}
= o(1).

We can repeat the same argument for Γ0
⊺P ⊺P Γ̂0.

A.4 Proof for Theorem 3

Let us first prove the consistency of Λ̂0.

Step 1.
∥∥∥Γ0Λ0 − Γ̂0Λ̂0

∥∥∥
F
= Op

(√
M√
n

)
.
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Note that H0,H1,H0 and H1 now have growing number of rows, depending on the (sequence

of) partition we use. Find that

Pr

 n

M

J0∑
j=1

M∑
m=1

(
1

n

n∑
i=1

1{Wi ∈ Cm, Zi = j} − Pr {Wi ∈ Cm, Zi = j}

)2

≥ ε


≤

J0∑
j=1

M∑
m=1

Pr

n
(
1

n

n∑
i=1

1{Wi ∈ Cm, Zi = j} − Pr {Wi ∈ Cm, Zi = j}

)2

≥ ε

J0


≤ J0

ε

J0∑
j=1

M∑
m=1

Var (1{Wi ∈ Cm, Zi = j}) ≤ J0
ε

The second inequality holds from Markov’s inequality. The last inequality holds since

J0∑
j=1

M∑
m=1

Pr {Wi ∈ Cm, Zi = j} ≤ 1

and thus the summation of variances has an upper bound of
∑

j,m
J0M−1
J0

2M2 ≤ 1. Thus,

∥∥∥∥( 1
n

∑n
i=1 1{Wi ∈ Cm, Zi = j}

)
m,j≤J0

−
(
Pr {Wi ∈ Cm, Zi = j}

)
m,j≤J0

∥∥∥∥
F

= Op

(√
M√
n

)
.

We can repeat the same for j > J0. Thus, ∥H0 −H0∥F = Op

(√
M√
n

)
and ∥H1 −H1∥F = Op

(√
M√
n

)
.

From the same argument in the proof of Theorem 2,
∥∥∥Γ0Λ0 − Γ̂0Λ̂0

∥∥∥
F
= Op

(√
M√
n

)
.

Step 2. There is an envelope for the identified set of Γ0 that shrinks to an arbitrarily small set

as n→ ∞.

Define a M̃x0 × M̃x2 matrix Γ̃k such that

Γ̃k =
(
Pr
{
Xi0 ∈ Ẽl, Xi2 ∈ F̃l′ |ki = k,Xi1 ∈ D̃n

})
l,l′
.

Γ̃k depends on n. Let An be the set of linear coefficients on the mixture component distributions

that satisfy some of the constraints in the NMF minimization problem, in the context of the
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partition used at n:

An =
{
(α1, · · · , αK) ∈ RK×K : 1K

⊺αk = 1,min
p,q

∥∥∥ K∑
l=1

αklΓ̃l − pq⊺
∥∥∥
F
≤ ηn + η̃ ∀k,

∃Λ ∈ [0, 1]K×K s.t.
∥∥ (α1, · · · , αK) Λ− Λ0

∥∥
∞ ≤ η̃

}
. (6)

η̃ is an arbitrarily small number such that η̃ ≤ minj,k λ(k|j)
2 . αk is a vector of linear coefficients to

construct a type k component distribution, under the rotation (α1, · · · , αK); the rotated component

distributions still need to satisfy constraints used in the NMF, including Equation (4).

WTS An ⊂ Ān :=
{
(α1, · · · , αK) ∈ RK×K : ∥αk − eπ(k)∥∞ ≤ ε̃n ∀k with some permutation π

}
with some {ε̃n}∞n=1 converging to zero, where ek is a K × 1 vector whose k-th element is one and

the rest are zeros. Consider some a ∈ RK satisfying the conditions given in (6). Then,

∥∥∥∑
k

akΓ̃k − pq⊺
∥∥∥
F
=
∥∥∥∑

k

ak

(
Γ̃k − pkqk

⊺
)
+
∑
k

akpkqk
⊺ − pq⊺

∥∥∥
F

≥
∥∥∥∑

k

akpkqk
⊺ − pq⊺

∥∥∥
F
−
∥∥∥∑

k

ak

(
Γ̃k − pkqk

⊺
)∥∥∥

F

≥
∥∥∥∑

k

akpkqk
⊺ − pq⊺

∥∥∥
F
− ηn.

The last inequality is from Assumption 11-(ii) and 1K
⊺a = 1. We get

∥∥∥∑k akpkqk
⊺ − pq⊺

∥∥∥
F

≤

2ηn + η̃. Let

ρ(ε) = min

{
the second largest singular value of

∑
k

akpkqk
⊺ : min

k
∥a− ek∥∞ ≥ ε,1K

⊺a = 1

}
.

ρ(ε) is decreasing in ε and bounded from above by ε; consider (1 + ε)p1q1
⊺ − εp2q2

⊺. Also, from

Assumption 11-(ii), ρ(ε) > 0 whenever ε > 0. By letting ε̃n such that ρ(ε̃n) = 3ηn + η̃,

∥∥∥∑
k

akpkqk
⊺ − pq⊺

∥∥∥
F
≤ 2ηn + η̃ ⇒ min

k
∥a− ek∥∞ < ε̃n.

For any a ∈ An, there exists some ek that a is close to; the inequality restriction in (4) ensures that

each of the rotated component distributions is close to one of the true component distributions.

It remains to show that the rotation retains all of the K component distributions. Suppose

there exists some k such that ∥αl − ek∥∞ > ε̃n for al l. Then, the k-th row of the K ×K matrix

(α1, · · · , αK) lies in [0, ε̃n]
K . Thus, for any Λ ∈ [0, 1]K×K , the k-th row of (α1, · · · , αK) Λ lies in
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[0, ε̃n]
K , leading to a contradiction. Thus, for small enough ε̃n, the rotation matrix (α1, · · · , αK)

is close to an identity matrix.

Step 3. There exist some A such that
∥∥Γ̂0 − Γ0A

∥∥
F
= Op

(√
M√
n

)
and Pr {A ∈ An} → 1.

Recall that
∥∥∥Γ̂0Λ̂0 − Γ0Λ0

∥∥∥
F
= Op

(√
M√
n

)
. Let E = Γ̂0Λ̂0 − Γ0Λ0. Then,

Γ̂0 = Γ0Λ0Λ̂
⊺
0

(
Λ̂0Λ̂

⊺
0

)−1
+ EΛ̂⊺

0

(
Λ̂0Λ̂

⊺
0

)−1

(
Λ̂0Λ̂

⊺
0

)−1
exists with probability converging to one, from a similar argument as in the proof of

Theorem 2: with P̃ from Assumption 11-(iii),

∥∥∥P̃ Γ̂0Λ̂0 − P̃Γ0Λ0

∥∥∥
F
≤M ·Op

(√
M√
n

)
.

The determinant of P̃ Γ̂0Λ̂0 converges to a nonzero constant as M3/n → 0 . P̃ Γ̂0 is invertible and

Λ̂0 has full rank with probability converging to one. When
(
P̃ Γ̂0

)−1
and

(
Λ̂0Λ̂

⊺
0

)−1
exist,

∥∥∥(Λ̂0Λ̂
⊺
0

)−1 ∥∥∥
F
≤
∥∥∥Γ̂⊺

0P̃
⊺
∥∥∥
F

∥∥∥∥(P̃ Γ̂0Λ̂0Λ̂
⊺
0Γ̂

⊺
0P̃

⊺
)−1

∥∥∥∥
F

∥∥∥P̃ Γ̂0

∥∥∥
F
.

∥∥∥P̃ Γ̂0

∥∥∥
F
is bounded by K2 and

∥∥∥(P̃ Γ̂0Λ̂0Λ̂
⊺
0Γ̂

⊺
0P̃

⊺
)−1 ∥∥∥

F
converges to

∥∥∥(P̃Γ0Λ0Λ0
⊺Γ0

⊺P̃ ⊺
)−1 ∥∥∥

F
.∥∥∥(Λ̂0Λ̂

⊺
0

)−1 ∥∥∥
F
is bounded.

∥∥∥EΛ̂⊺
0

(
Λ̂0Λ̂

⊺
0

)−1 ∥∥∥
F
= Op

(√
M√
n

)
.

It remains to show that A := Λ0Λ̂
⊺
0

(
Λ̂0Λ̂

⊺
0

)−1
belongs in An. Firstly, find that

1M
⊺Γ̂0 = 1M

⊺Γ0A+
(
1M

⊺Γ̂0Λ̂0 − 1M
⊺Γ0Λ0

)
Λ̂⊺
0

(
Λ̂0Λ̂

⊺
0

)−1

1K
⊺ = 1K

⊺A+ (1K
⊺ − 1K

⊺) Λ̂⊺
0

(
Λ̂0Λ̂

⊺
0

)−1

= 1K
⊺A.

The first condition is satisfied. Secondly, let ̂̃Γk denote the Γ̂0-equivalent of Γ̃k. Find that

minp,q

∥∥∥ K∑
l=1

αklΓ̃l − pq⊺
∥∥∥
F
≤
∥∥∥ K∑

l=1

αklΓ̃l − ̂̃Γk

∥∥∥
F
+minp,q

∥∥∥̂̃Γk − pq⊺
∥∥∥
F

≤
∥∥∥ K∑

l=1

αklΓ̃l − ̂̃Γk

∥∥∥
F
+ ηn ≤

∥∥Γ̂0 − Γ0A
∥∥
F
+ ηn.
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The second inequality is from the construction of Γ̂0. The probabiltiy of the second condition being

satisfied goes to one as n→ ∞. Lastly, find that

∥∥∥AΛ̂0 − Λ0

∥∥∥
F
≤
∥∥∥(P̃Γ0

)−1
P̃
∥∥∥
F

∥∥∥Γ0

(
Λ0 −AΛ̂0

)∥∥∥
F

≤
∥∥∥(P̃Γ0

)−1
P̃
∥∥∥
F

(∥∥∥Γ0Λ0 − Γ̂0Λ̂0

∥∥∥
F
+
∥∥∥Γ̂0Λ̂0 − Γ0AΛ̂0

∥∥∥
F

)
= Op(M) ·Op

(√
M√
n

)
.

The probability of the third condition being satisifies goes to one as n→ ∞.

Step 4. For an arbitrary ε > 0, Pr
{∥∥Λ̂0 − Λ0

∥∥
F
> ε
}
→ 0 as n→ ∞.

Find that

∥∥Λ0 − Λ̂0

∥∥
F
≤
∥∥∥Λ0 −

(
P̃Γ0

)−1
P̃ Γ̂0Λ̂0

∥∥∥
F
+
∥∥∥(P̃Γ0

)−1
P̃ Γ̂0Λ̂0 − Λ̂0

∥∥∥
F

≤
∥∥∥(P̃Γ0

)−1
P̃
∥∥∥
F
·
∥∥Γ0Λ0 − Γ̂0Λ̂0

∥∥
F
+
∥∥∥(P̃Γ0

)−1
P̃ Γ̂0 − IK

∥∥∥
F
·
∥∥Λ̂0

∥∥
F

≤ Op

(
M

√
M√
n

)
+
∥∥Λ̂0

∥∥
F
·
(∥∥∥(P̃Γ0

)−1
P̃
(
Γ̂0 − Γ0A

)∥∥∥
F
+
∥∥∥(P̃Γ0

)−1
P̃Γ0 (A− IK)

∥∥∥
F

)

= Op

(
M

√
M√
n

)
+
∥∥Λ̂0

∥∥
F
·
∥∥A− IK

∥∥
F
.

For some fixed η̃, Pr
{
A ∈ Ān

}
→ 1 as n → ∞. Thus, we can relabel the types so that A is close

to IK . Then, for some ε̃ = ε̃(η̃) > 0, Pr
{
∥A− IK∥F ≤ K2ε̃(η̃)

}
→ 1. By choosing η̃ appropriately

for a given ε, we have

Pr
{∥∥Λ̂0 − Λ0

∥∥
F
> ε
}
→ 0

as n→ ∞.
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