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Wissenschaften, Technikerstr. 21A, 6020 Innsbruck, Austria

2Universität Innsbruck, Fakultät für Mathematik, Informatik und Physik,
Institut für Experimentalphysik, 6020 Innsbruck, Austria

(Dated: March 28, 2024)

Supersolids are states of matter that spontaneously break two continuous symmetries: translational invariance
due to the appearance of a crystal structure and phase invariance due to phase locking of single-particle wave
functions, responsible for superfluid phenomena. While originally predicted to be present in solid helium1–5,
ultracold quantum gases provided a first platform to observe supersolids6–10, with particular success coming
from dipolar atoms8–12. Phase locking in dipolar supersolids has been probed through e.g. measurements of
the phase coherence8–10 and gapless Goldstone modes13, but quantized vortices, a hydrodynamic fingerprint of
superfluidity, have not yet been observed. Here, with the prerequisite pieces at our disposal, namely a method to
generate vortices in dipolar gases14,15 and supersolids with two-dimensional crystalline order11,16,17, we report on
the theoretical investigation and experimental observation of vortices in the supersolid phase. Our work reveals
a fundamental difference in vortex seeding dynamics between unmodulated and modulated quantum fluids. This
opens the door to study the hydrodynamic properties of exotic quantum systems with multiple spontaneously
broken symmetries, in disparate domains such as quantum crystals and neutron stars18.

Rotating fluids on all scales exhibit a whirling motion known
as vorticity. Unique to the interacting quantum world, how-
ever, is that this rotation is quantized due to the single-
valued and continuous nature of the underlying macroscopic
wavefunction19,20. Observing quantized vortices is regarded
as unambiguous evidence of superfluidity, relevant for a
wide variety of many-body quantum systems from super-
fluid 4He 21,22 through gaseous bosonic23 and fermionic24

condensates, exciton-polariton condensates25, to solid-state
superconductors26,27. Remarkably, this phenomenon persists
over a wide range of interaction scales, since it only requires
the irrotational nature of the velocity field. However, all of
these examples refer to the case in which the vortices are free
to move in the system, and any density non-uniformity due
to, e.g., the trap, occurs on scales much larger than the vortex
core.

The supersolid phase does not belong to this category,
spontaneously breaking this spatial uniformity. Super-
solids, characterized by the coexistence of superfluid and
solid properties1–5, have been investigated through two dis-
tinct approaches. The first approach involves infusing su-
perfluid characteristics into a solid, as demonstrated in
phenomena such as pair density wave phases28 in 3He29,
superconductors30,31, and through a 4He monolayer on
graphite32. The second approach entails imparting solid
properties into superfluid systems, as observed in ultracold
atomic settings in optical cavities7, those with spin-orbit
coupling6, and with atoms exhibiting a permanent magnetic
dipole moment8–11. Among these systems, supersolids com-
posed of dipolar atoms have emerged as a versatile platform
for exploring the superfluid characteristics and solid proper-
ties of this long sought-after state12, including the sponta-
neous density modulation and the global phase coherence8–10,
the existence of two phononic branches, one for each broken

symmetry13,33,34, and Josephson-type dynamics35,36. Where
these tests have found a roadblock is in probing the response
to rotation. One consequence of irrotational flow is the scis-
sors mode oscillation, where the signature of superfluidity is
the lack of a rigid body response to a sudden rotation of an
anisotropic trap37. However, supersolids show a mixture of
rotational and irrotational behavior, leading to a multimode re-
sponse to perturbation. This complexity hinders a straightfor-
ward extraction of the superfluid contribution16,38,39. Instead,
the presence of quantized vortices is an unequivocal signal
of irrotationality, and thus unambiguously proves the super-
fluidity of the system. These vortices are also anticipated to
exhibit other distinctive characteristics, including a reduced
angular momentum40,41, and unusual dynamics due to their
interplay with the crystal such as pinning and snaking18,42,43.
Nevertheless, a critical gap exists in the current experimen-
tal exploration of supersolids — an investigation into whether
the supersolid can maintain its structure and coherence un-
der continuous stirring, as well as if, and how, vortices may
manifest and behave in this unique state. The experimental
challenge lies in the inherent complexity and fragility of the
supersolid phase, which lives in a narrow region within the
phase diagram12. In our work, we explore this uncharted ter-
ritory by investigating the supersolid response to rotation, us-
ing a technique known as magnetostirring14,15,44. Combining
experiment and theory, our study explores both the unmod-
ulated and modulated states, revealing distinctive signatures
associated with the presence of vortices in the supersolid.

Predicting the supersolid response to rotation
Owing to the inherent long-range interactions among atoms,
a dipolar gas exhibits a density distribution that extends
along the magnetic field direction, a phenomenon known as
magnetostriction45. This imparts an elliptical shape to the
cloud. The rotation of the magnetic field consequently in-
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duces stirring of the gas44. This method, referred to as magne-
tostirring, has recently been employed to generate vortices in
unmodulated dipolar quantum gases14. These vortices eventu-
ally organize into distinctive patterns, forming either triangu-
lar or stripe vortex lattices15,44.

Generating vortices in the supersolid phase through mag-
netostirring has not yet been investigated, therefore, we the-
oretically explore the zero temperature dynamics of our state
through the so-called extended Gross-Pitaevskii equation46–49

(eGPE). This takes into account the cylindrically symmetric
harmonic trap, the short-range interactions, through the tun-
able s-wave interaction strength as, and long-range interac-
tions, with fixed amplitude add =130.8a0 for 164Dy. Also in-
cluded are beyond-mean field effects resulting from the zero-
point energy of Bogoliubov quasiparticles–shown to be cru-
cial for the energetic stability in the supersolid phase49. By
tuning the short-range interactions, we can access both the su-
persolid (typically ϵdd = add/as ≳ 1.3 for experimentally rel-
evant trap geometries) and unmodulated Bose-Einstein con-
densate (BEC) phases (ϵdd ≲ 1.3).

Figure 1 comparatively shows exemplar density and phase
distributions of an unmodulated dipolar BEC [a] and super-
solid phase (SSP) [b] rotating the magnetic field at increasing
frequency Ω, from left to right. In a BEC, Fig. 1a, at small
frequencies, with respect to the radial trap frequency ω⊥, the
cloud density is almost unchanged from the static result [a(i)].
Rotating faster, the cloud elongates, and we observe an irrota-
tional velocity field in the phase profile [a(ii)]. When rotating
faster than a given Ω∗

BEC, the irrotational flow can no longer be
maintained, and quantum vortices, observable as density holes
and quantized 2π phase windings, penetrate the condensate
surface following a quadrupole mode instability [a(iii)]14.

In contrast to unmodulated BECs, supersolids present a new
scenario, see Fig. 1b. Our simulations reveal that the system
is more susceptible to quantized vortex creation, happening at
significantly lower frequencies than the BEC case. At small
frequencies, the crystalline structure and surrounding ‘halo’ of
atoms follow the magnetic field in lockstep without generat-
ing vortices [b(i)]. At higher frequencies, yet still Ω < Ω∗

BEC,
we now see vortex lines smoothly entering into the interstitial
regions between the crystal sites [b(ii)]40,41,43. These vortices
persist even at higher frequencies, arranging into a regular lat-
tice structure [b(iii)].

To gain further insight, we study the total vortex number ob-
tained after 1 s of rotation as a function of Ω. Figure 1c shows
a striking difference in the response to rotation between the
two quantum phases. The BEC shows the well-known reso-
nant behavior, in which the rotation frequency must be at res-
onance with half the collective quadrupole mode frequency
ωQ. This drives an instability of the condensate surface, al-
lowing vortices to enter the state. For a non-dipolar BEC
ωQ =ω⊥/

√
250–52, while for dipolar quantum gases, small de-

viations from this value can occur depending on the dipolar
interaction and the trap geometry53. For our system, we see
the onset of the resonant behavior at Ω∗

BEC =0.6ω⊥, reaching
its maximum at Ω ≈ 0.75ω⊥.

FIG. 1. Simulation of vortex nucleation in a supersolid and un-
modulated BEC. Density isosurfaces and their corresponding nor-
malized integrated density and phase profiles for the a unmodulated
BEC and b supersolid phases after 1 s of rotation at (i) Ω=0.2ω⊥,
(ii) 0.4ω⊥, and (iii) 0.7ω⊥. Isosurfaces are shown at 15% of the
max density in all plots, and additionally at 0.5% in the SSP to
show the halo. Vortex tubes are shown in black in the 3D im-
ages and appear as 2π windings in the phase plots. c Compar-
ison of the time-averaged vortex number as a function of Ω be-
tween the SSP (red) and BEC (green), averaged between 0.75 s and
1 s of rotation, and the colored shading shows the standard devia-
tion. The yellow shaded area highlights Ω∗

SSP < Ω < Ω∗
BEC (see

main text). The results are obtained from eGPE calculations with
(ω⊥, ωz)= 2π× [50, 103]Hz, magnetic-field angle from the z-axis
θ=30◦, atom number N =5× 104, and scattering length as =95a0

(104a0) for the SSP (BEC) phase.

In the supersolid phase, we observe a vastly different be-
havior. The dual superfluid-crystalline nature of the state leads
to two distinguishing features: the reduced superfluidity re-
sults in vortices nucleating at a lower rotation frequency and
the solidity gives rise to a monotonic increase in vortex num-
ber at faster frequencies, reminiscent of rigid body rotation;
see Fig. 1c. This can be understood by studying the excita-
tion spectrum. A two-dimensional supersolid exhibits three
quadrupole modes: one from the broken phase symmetry as-
sociated with superfluidity and one from each direction of the
broken translational symmetry40. In our case, the latter are
nearly degenerate due to the cylindrically symmetric dipole
trap. Excitation of the ‘superfluid’ quadrupole mode is re-
sponsible for the weak resonance starting at Ω∗

SSP ≈ 0.25ω⊥
and centered around Ω≈ 0.35ω⊥, where just a few vortices
are created. The position of this resonance is highly depen-
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FIG. 2. Magnetostirring of a 164Dy dipolar supersolid. a
Density isosurfaces and corresponding integrated density of a
four droplet supersolid. b Column densities of a four droplet
supersolid state from theory (top row) and experiment (bot-
tom row) with Ω=0.3ω⊥; the images were taken after (i-v)
1, 19, 43, 70, 274ms. Experimental parameters: B=18.24(2)G,
N ≈ 7× 104, and (ω⊥, ωz)= 2π× [50.5(3), 135(2)] Hz. Illus-
trative simulation parameters: as =92.5a0, N =6× 104, and
(ω⊥, ωz)= 2π× [50, 135]Hz.

dent on the superfluid fraction, eventually vanishing in the
isolated droplet regime40. As we will discuss later, the de-
tection of this subtle effect is at the edge of our current ex-
perimental capability, indicating compatibility, albeit with a
low signal strength. Beginning at Ω≈ 0.45ω⊥, the system ex-
hibits instead a threshold response to rotation, where the an-
gular momentum, and thus vortex number, linearly increases
with Ω40,41. This prominent feature arises due to the near de-
generate crystal quadrupole mode resonance.

Experimental magnetostirring of a dipolar supersolid
Bolstered by the acquired theoretical understanding, we ex-
perimentally explore the suitability of magnetostirring to nu-
cleate vortices in the supersolid phase. We first produce an
optically trapped supersolid quantum gas of highly magnetic
bosonic 164Dy atoms via direct evaporative cooling10,11,17,54

and then apply magnetostirring14,15,44 to rotate the gas.
In all the experiments presented, the three-dimensional op-

tical dipole trap (ODT) is cylindrically symmetric, with radial
frequency ω⊥ ≈ 2π× 50Hz and a trap aspect ratio ωz/ω⊥
that varies between 2 and 3. Throughout the evaporation se-
quence, we apply a uniform magnetic field along the z-axis
and tilt the magnetic field vector by θ=30◦ in the last cooling
stage to prepare for magnetostirring14. With this sequence, we
obtain a supersolid typically composed of four density max-
ima (droplets) on top of a low-density background (halo) of
coherent atoms, which we probe by taking phase-contrast im-
ages after 3ms of expansion. This gives us access to the 2D
density profiles integrated along the axial direction, as illus-
trated in Fig. 2a. We magnetostir the system by rotating the
magnetic-field vector around the z-axis with a constant angu-
lar velocity Ω; see Fig. 2b. As predicted by theory, the droplets
align themselves along the magnetic-field direction, breaking
the cylindrical symmetry, thus enabling rotation. We are able
to stir the supersolid for hundreds of milliseconds without de-
stroying the state, as shown in Fig. 2b(i-v). This result is par-
ticularly relevant since it allows several full rotations, even for
small driving frequencies, giving the vortices enough time to
nucleate and percolate into the system.

Observation of vortices in a dipolar supersolid
Based on our simulations, on the one hand, we anticipate
vortex nucleation in the supersolid already at modest rota-
tion frequencies, but on the other hand, the density modu-
lated initial state poses a unique challenge in vortex detec-
tion. Traditional methods for probing quantized vortices in
quasi-homogeneous ultracold quantum gases typically rely on
observing density depletions of an expanded cloud23,24,55,56.
In the context of supersolids, vortices nest within the low-
density interstitial areas between the droplets, reducing the
contrast18,57. We implement an imaging sequence inspired
by recent theoretical proposals57 that draws parallels with a
protocol employed to observe vortices in strongly interacting
Fermi gases24. In particular, we project the SSP into the BEC
phase just before releasing the atoms from the trap by rapidly
(1ms) increasing the scattering length. This projection effec-
tively “melts” the high density peaks, providing a more homo-
geneous density profile, see Methods. Since vortices are topo-
logically protected defects, they are expected to survive dur-
ing this state projection57. Finally, we probe the system with
vertical absorption imaging after 3ms of expansion, without
allowing time for further dynamics in the BEC phase.

Figure 3 summarizes our main results, where we compare
the behavior of a BEC and SSP under magnetostirring. Akin
to theory, we see three regimes. At low frequencies (Ω <
Ω∗

SSP), we do not observe vortices in either state [b(ii)]. For
Ω∗

SSP < Ω < Ω∗
BEC, a striking difference between the BEC

and the SSP response to rotation appears [b(iii)]. While the
former does not show vortices, in the supersolid we clearly
observe the appearance of a vortex in the central region of
the cloud. Finally, at a larger frequency (Ω > Ω∗

BEC), we
observe multiple vortices in both cases [b(iv)]. This confirms
the expected reduction in vortex nucleation frequency, the first
characteristic feature of the impact of supersolidity.

In what follows, we generalize our observations to the full
range of driving frequencies, in order to identify the threshold
nucleation values and the vortex number behavior as a func-
tion of rotation frequency. We trace the time evolution of the
rotating system both in the SSP and BEC phase and extract for
each time step and Ω the number of vortices. We show the av-
erage vortex number obtained for each measurement in Fig. 3
together with the corresponding numerical simulations. In the
unmodulated case (Fig. 3a), we observe the expected resonant
behavior around Ω≈ 0.7ω⊥

14. After 0.5 s of rotation, both the
experiment and theory show Ω∗

BEC ≈ 0.6ω⊥.
In the supersolid case (Fig. 3c), we are able to observe clear

evidence for the threshold behavior for vortex nucleation. For
driving frequencies greater than Ω≈ 0.4ω⊥, vortices persist
even up to 1 s, and there is an increase of vortex number
with rotation frequency. This behavior is in contrast to the
BEC case, where above Ω=0.75ω⊥ we do not observe vor-
tices, unveiling the competing superfluid and solid contribu-
tions. Additionally, theory predicts a superfluid quadrupole
resonance centered at Ω≈ 0.3ω⊥, with one or at most two
vortices entering the cloud. A detailed analysis of the experi-
mental data reveals a signature compatible with the existence
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FIG. 3. Vortex nucleation in a dipolar supersolid and BEC. Vortex number as a function of rotation time and Ω for an a unmod-
ulated BEC and c supersolid. Top plots show the simulations (nBEC

max =8, nSSP
max =7.6429), bottom plots the experimental observation

(nBEC
max =2.5, nSSP

max =2), where in a the absolute value of the magnetic field is held at 19.30(2)G, but in c is instead ramped from
18.30(2)G to 19.30(2)G in 1ms at the end of the rotation. Exemplar images taken after 251ms of rotation are shown in b. All images
are taken after 3ms expansion, except the non-rotating supersolid state, which is a phase-contrast image with θ=0◦. In the experiment,
the trap has frequencies (ω⊥, ωz)= 2π× [50.3(2), 107(2)] Hz, and the initial condensed atom number is N ≈ 3 × 104. For the simulation:
(ω⊥, ωz)= 2π× [50, 103]Hz, with a as =104a0, initial N =2× 104, and c as =93a0, N =3× 104, where three-body recombination
losses have been added.

of this resonance, see Methods. However, a dedicated inves-
tigation beyond the scope of this work would be required to
confirm this feature.

Interference patterns
The modulation of supersolid states presents a unique possi-
bility for extracting the phase information, as the presence or
absence of a vortex strongly impacts the interference pattern
after time-of-flight (TOF)40. This is readily observable by per-
forming expansion calculations with the eGPE, as shown in
Fig. 4a. In the presence of a vortex, the interference pattern
shows a pronounced minimum in the central region of the sig-
nal [a(ii)], which is clearly not the case in a vortex free super-
solid [a(i)]. This remarkable feature is a direct consequence
of the phase winding and can even be reproduced by a simple
toy model simulating the expansion of three non-interacting
Gaussian wavepackets, as shown in the insets of Fig. 4a(i)
and (ii). Note that in the eGPE, the expansion time was set
to 36ms, during which the self-bound nature of the droplets
slows down the expansion corresponding to a few ms in the
toy model. Furthermore, this time is strongly dependent on
interaction and trap parameters, making the pattern very sen-

sitive to parameter variations, see Methods for more details.
Unlike vortex interference patterns from unmodulated states,
there is no longer a simple hole left in the center of the cloud,
but rather a three-pointed star structure reflecting the symme-
tries present in the density. The spiral arms appear due to the
nonlinear azimuthal 2π phase winding43, where between each
droplet there is a line of minimum signal given by the phase
difference of each droplet, in this case, 2π/3. In our calcula-
tion, we opt for an initial state featuring three droplets instead
of the previously used four droplet state. The symmetry of
this state, characterized by equal interdroplet spacing, yields
a singular and simple interference pattern when the vortex is
in the center of the system, facilitating the distinction between
a vortex and vortex-free state. Our simulations show that the
critical nucleation frequency is Ω∗ ≈ 0.1ω⊥ for this state.

When performing the experiment with similar parameters
as the theory, we observe a remarkable similarity. Figure 4b
shows an example interference pattern for a non-rotating sam-
ple [b(i)] and the one for a three droplet supersolid when ro-
tating above Ω∗ [b(ii)]. In the latter case, we clearly observe
a signal minimum at the center, providing the observation of
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FIG. 4. Time-of-flight interference pattern. a 36ms real-time
expansion interference pattern for three droplets (i) in the absence
of a vortex and (ii) with a vortex. b Experimental observation af-
ter TOF (i) without rotation and (ii) after 189ms of rotation at
Ω=0.3ω⊥ with θ=30◦, before spiraling up to θ=0◦ in 11ms,
while Ω is kept constant. The supersolid is produced at 18.24(2)G
with (ω⊥, ωz)= 2π× [50.0(4), 113(2)] Hz, the condensed atom
number N ≈ 5 × 104. The theoretical parameters: N =5 × 104,
(ω⊥, ωz)= 2π× [50, 113]Hz and as =92.5a0.

vortices directly in the supersolid state. To test the robustness
of this observation, we repeat the measurement many times,
and study the occurrence of the non-vortex [b(i)] or vortex
[b(ii)] pattern. Among the images with a clear interference
pattern, about 70% contain a vortex signature when rotating
above Ω=0.3ω⊥, see Methods. This can be understood by
considering that supersolid states exist in a very small pa-
rameter regime58, and typical shot-to-shot atom number and
magnetic-field (as) fluctuations can significantly alter the ob-
served interference pattern.

Conclusions
After three decades since the original predictions59, we re-
port on the observations of vortices in a supersolid state. This
result is relevant not only because it adds the final piece to
the cumulative framework of evidence for superfluidity in this
state12, but also because it reveals a distinctive vortex behav-
ior in the supersolid. The system’s characteristic response
to rotation can serve as a fingerprint to identify supersolid-
ity in diverse systems with multiple broken symmetries, over
scales ranging from solid-state systems30, high-temperature
superconductors60,61, and helium platforms29–32, to a neutron
star’s inner crust18,62.

Furthermore, in the context of supersolids, a fascinating in-
terplay of competing length scales emerges. These include
the separation between vortices, the wavelength of the self-
forming crystal, and the diameter of the vortex core. This
competition has the potential to lead to intriguing dynamics,
ranging from constrained motion and pinning to avalanche es-
cape. These phenomena are genuinely unique to supersolids.
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H. P. Büchler, T. Langen, and T. Pfau, The low-energy Goldstone
mode in a trapped dipolar supersolid, Nature 564, 386 (2019).

14. L. Klaus, T. Bland, E. Poli, C. Politi, G. Lamporesi, E. Casotti,
R. N. Bisset, M. J. Mark, and F. Ferlaino, Observation of vortices
and vortex stripes in a dipolar condensate, Nature Physics 18,
1453 (2022).

15. T. Bland, G. Lamporesi, M. J. Mark, and F. Ferlaino, Vortices in
dipolar Bose-Einstein condensates, Comptes Rendus. Physique
(Online first) (2023).

16. M. A. Norcia, E. Poli, C. Politi, L. Klaus, T. Bland, M. J. Mark,
L. Santos, R. N. Bisset, and F. Ferlaino, Can Angular Oscilla-
tions Probe Superfluidity in Dipolar Supersolids?, Phys. Rev.
Lett. 129, 040403 (2022).

17. T. Bland, E. Poli, C. Politi, L. Klaus, M. A. Norcia, F. Ferlaino,
L. Santos, and R. N. Bisset, Two-Dimensional Supersolid For-
mation in Dipolar Condensates, Phys. Rev. Lett. 128, 195302
(2022).

18. E. Poli, T. Bland, S. J. White, M. J. Mark, F. Ferlaino, S. Tra-
bucco, and M. Mannarelli, Glitches in rotating supersolids, Phys.
Rev. Lett. 131, 223401 (2023).

19. L. Onsager, In discussion on paper by C. J. Gorter, Nuovo Ci-
mento 6, 249 (1949).

20. R. Feynman, Chapter II Application of Quantum Mechanics to
Liquid Helium (Elsevier, 1955) pp. 17–53.

21. E. Yarmchuk, M. Gordon, and R. Packard, Observation of sta-
tionary vortex arrays in rotating superfluid helium, Phys. Rev.
Lett. 43, 214 (1979).

22. G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, Visualization
of quantized vortices, Nature 441, 588 (2006).

23. J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Ob-
servation of vortex lattices in Bose-Einstein condensates, Sci-
ence 292, 476 (2001).

24. M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H.
Schunck, and W. Ketterle, Vortices and superfluidity in a
strongly interacting Fermi gas, Nature (London) 435, 1047
(2005).

25. K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Caru-
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Methods

Experimental procedure
We prepare an ultracold gas of 164Dy atoms in an optical
dipole trap (ODT), similar to our previous work14. The trap
is formed through three overlapping laser beams, operating
at 1064 nm. All the studies are performed in a cylindrically
symmetric trap, typically with ω⊥ =2π× 50.3(2)Hz, where
ω⊥ is the geometric average ω⊥ =

√
ωxωy . The aspect ratio

ωz/ω⊥ varies from 2 to 3; the specific values of ωz are stated
in the figures’ captions. The aspect ratio ωx/ωy is crucial for
the applicability of magnetostirring14: throughout the paper,
the deviation of ωx/ωy from 1 is < 2%.

For this work, we tilt the magnetic field vector B from the
vertical position to θ=30◦ from the z-axis in the last stage of
evaporation, while maintaining its magnitude constant. The
values of the magnetic field are: 19.30(2)G for the unmodu-
lated BEC, 18.30(2)G for the SSP in Fig. 3, and 18.24(2)G
for Figs. 2 and 4. The magnetic field is calibrated through
radio frequency (RF) spectroscopy. Moreover, 164Dy has a
dense spectrum of narrow Feshbach resonances, as shown in
Extended Data Fig. 1. We use the positions of such resonances
as references to compensate for drifts of the magnetic field.
The condensed atom number after the evaporation sequence
ranges from 3× 104 to 7× 104, depending on the measure-
ment.

After preparation, the magnetic field is rotated; details can
be found in the following sections. Finally, we image the
quantum gas using a 421 nm light pulse, propagating along
the z-axis. For the data in Figs. 2 and 3, we let the atomic
cloud expand for 3ms and take a phase contrast and absorp-
tion image, respectively. When comparing theoretical and ex-
perimental images, we rescale the image size by 1.36 in the
theory to account for this small expansion time. The results
of Fig. 4 are instead obtained with absorption imaging after
36ms TOF.

For the experimental images in Fig. 2, we enhanced the
contrast of the droplets by applying a Gaussian filter of size
σ=1 px (≃ 0.5µm) followed by a sharpening convolution fil-
ter with kernel F :

F =

 0 −1 0
−1 5 −1
0 −1 0

 . (1)

Magnetostirring
To magnetostir the atomic cloud, we rotate the magnetic field
vector around the z-axis14. In brief, the breaking of cylindri-
cal symmetry that enables the transfer of angular momentum
by rotating the magnetic field vector B (magnetostirring) is
achieved by tilting B into the plane. This is a direct con-
sequence of the phenomenon of magnetostriction45. For all
the measurements in this paper, B is tilted from the z-axis
by an angle θ=30◦. At our magnetic field values, this an-
gle is optimal for vortex nucleation within the experimental
time scales15. In general, smaller angles would increase the

nucleation time; at the same time, a much bigger angle would
make the dipolar interaction dominantly attractive, holding the
cloud together and thus also increasing the nucleation time.
From the experimental point of view, θ=30◦ enables the ob-
servation of the droplets aligning along B while retaining the
ability to discern individual droplets when observing the in-
tegrated density, see Fig. 2. For all datasets, we then directly
rotate B at the chosen frequency Ω. The rotation is continued
for a rotation time tΩ after which the ODT is turned off, and
an image is taken after expansion.
Scattering length
The conversion from magnetic field to scattering length for
164Dy at our magnetic field values has not been mapped.
However, combining knowledge on the conversion in other
magnetic field ranges63–65, together with the theoretical iden-
tification of the critical scattering lengths for the BEC to SSP
transition, allows for an educated guess. It is important to
highlight that the isotope 164Dy has the advantage of ex-
hibiting supersolidity at the background value of the scat-
tering length, while the BEC phase usually requires some
mild tuning of as. The specific values used in this paper are
highlighted on the Feshbach loss spectrum in Extended Data
Fig. 1. For our theoretical simulations (see below), we find
that a scattering length as in the range 90a0-95a0 gives a good
agreement with the experimentally observed supersolid states.
Interaction quench
For the in situ detection of vortices in the supersolid phase, we
map the supersolid into an unmodulated BEC, similarly to the
approach used to observe them in the BCS phase of strongly
interacting Fermi gases24. In particular, we increase the abso-
lute value of the magnetic field from 18.30(2)G to 19.30(2)G
in 1ms after stopping the rotation and we then release the
sample from the trap. We repeat this sequence for different
values of angular velocity Ω and for different rotation times
tΩ. For each experimental point in Fig. 3a and 3c, we take 7-9
pictures. Using phase contrast imaging, we ensured that the
ramp time is long enough to melt the droplets into an unmod-
ulated state, but also short enough to avoid atom losses when
crossing the Feshbach resonances present between the initial
and final magnetic field values (see Extended Data Fig. 1).
Extended Gross-Pitaevskii equation
At the mean-field level, the ground state solutions, time-
dependent dynamics, and nature of the BEC-to-SSP tran-
sitions are well described by the extended Gross-Pitaevskii
formalism46–49. This combines the two-body particle inter-
actions, described by the two-body pseudo-potential,

U(r) =
4πℏ2as
m

δ(r) +
3ℏ2add

m

1− 3 (ê(t) · r)2

r3
, (2)

where the first term describes short-range interactions gov-
erned by the s-wave scattering length as, with Planck’s con-
stant ℏ and particle mass m. This quantity is independently
tunable through Feshbach resonances. The second term rep-
resents the anisotropic and long-ranged dipole-dipole inter-
actions, characterized by dipole length add =µ0µ

2
mm/12πℏ2,
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with magnetic moment µm and vacuum permeability µ0. We
always consider 164Dy, such that add =130.8 a0, where a0 is
the Bohr radius. For the trap parameters and atom numbers
used here, the supersolid phase is found for scattering lengths
in the range as = [90, 95]a0, i.e. ϵdd = add/as ≥ 1.37. The
dipoles are polarized uniformly along a time-dependent axis,
given by

ê(t) = (sin θ(t) cosϕ(t), sin θ(t) sinϕ(t), cos θ(t)) (3)

with time dependent polarization angle θ(t) and
ϕ(t)=

∫ t

0
dt′Ω(t′), for rotation frequency protocol Ω(t).

Three-body recombination losses are prevalent in dipo-
lar supersolid experiments due to the increased peak density
when compared to unmodulated states. In the theory, these
are introduced through a time-dependent atom loss

Ṅ = −L3⟨n2⟩N , (4)

for density n. We take the fixed coefficient
L3 =1.2× 10−41m6s−1 for our simulations47. This leads
to an additional non-Hermitian term in the Hamiltonian
−iℏL3n

2/2.
Beyond-mean-field effects are treated through the inclusion

of a Lee–Huang–Yang correction term66

γQF =
128ℏ2

3m

√
πa5s Re {Q5(ϵdd)} , (5)

where Qn(x) =
∫ 1

0
du (1−x+3xu2)n/2, which has an imag-

inary component for x > 1. Finally, the full extended Gross-
Pitaevskii equation (eGPE) then reads46–49

iℏ
∂ψ(r, t)
∂t

=

[
− ℏ2∇2

2m
+ Vtrap − iℏL3|ψ(r, t)|4/2

+

∫
d3r′ U(r − r′)|ψ(r′, t)|2 + γQF|ψ(r, t)|3

]
ψ(r, t) , (6)

where ωx,y,z are the harmonic trap frequencies in
Vtrap =

1
2m

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. The wavefunction

ψ is normalized to the total atom number N =
∫
d3r|ψ|2.

Stationary solutions to Eq. (6) are found through the standard
imaginary time procedure. The initial state ψ(r, 0) of the
real-time simulations is obtained by adding non-interacting
noise to the stationary solution ψ0(r). Given the single-
particle eigenstates ϕn and the complex Gaussian random
variables αn sampled with ⟨|αn|2⟩=(eϵn/kBT −1)−1+ 1

2 for
a temperature T =20nK, the initial state can be described as
ψ(r, 0)=ψ0(r) +

∑′
n αnϕn(r), where the sum is restricted

only to the modes with ϵn ≤ 2kBT
67.

Toy model interference pattern
Taking ND static Gaussian wavepackets with parameters of
the jth wavepacket given by the widths σj =(σ1,j , σ2,j , σ3,j),
positions r0j =(r01,j , r

0
2,j , r

0
3,j), atom numbers Nj , and phase

ϕj , the initial total wavefunction is

ψ(r, 0) =

ND∑
j

√
Nj

(2π)
3/2

exp (iϕj) (7)

×
∏

k=1,2,3

√
1

σk,j
exp

[
−1

4

(
rk − r0k,j

)2
/σ2

k,j

]
.

On the assumption that these wavepackets are non-interacting,
then their expansion due to kinetic energy alone can be ana-
lytically calculated by applying the free particle propagator in
three dimensions, such that the time-dependent solution is

ψ(r, t) =
∫ ∞

−∞
d3r′ ψ(r′, 0)K(r, t; r′, 0) , (8)

where

K(r, t; r′, t0) =
(

m

2πiℏ(t− t0)

)3/2

exp

(
im(r − r′)2

2ℏ(t− t0)

)
.(9)

Applying Eq. (8) to Eq. (7) gives the time-dependent multi-
wavepacket solution. For brevity, it is not stated here, but
the exact solution transpires to be a simple time-dependent re-
placement of the widths

{
σk,j →σk,j

√
1 + iℏt/(2mσ2

k,j)
}

appearing in Eq. (7). An example of the evolution of the TOF
pattern is shown in Extended Data Fig. 2 with the parameters
of Fig. 4 for longer times. Note that the 3ms TOF pattern,
equivalent to the 36ms when simulating the eGPE (i.e. in-
cluding interactions), has not yet evolved into the momentum
distribution.

Quadrupole modes calculation
We employ real-time simulations with the extended Gross-
Pitaevskii equation to investigate the quadrupole mode fre-
quency of the system with the tilted magnetic field, both in the
BEC and in the supersolid phase. We initially perturb the sys-
tem with a sudden small quadrupolar deformation of the trap
and, then, we let the system evolve for 1 s. The deformation is
done by increasing (decreasing) the trap frequency by 0.5Hz
in the x-direction (y-direction) for 1ms and then restoring the
trap to the original value. During the time evolution, the den-
sity distribution in the slice z=0 is fitted with a Gaussian
profile, from which we extract the time-dependent width of
the system during the evolution. The Fourier transform of the
time-dependent width gives the frequency spectrum of all the
expected superfluid and crystal quadrupole modes excited by
the sudden deformation40,68. These frequencies are in agree-
ment with the features of the rotational response of the BEC
and supersolid discussed in the main text.

Vortex detection in the theory
The number of vortices is determined by counting 2π wind-
ings in the central slice of the phase, arg(ψ(x, y, z=0)). We
restrict the search to a circle of radius 6µm, such that vortices
are only counted inside the condensate surface in the BEC
case, or within the halo in the supersolid state. To visualize
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the vortex tubes plotted in Fig. 1, we plot isosurfaces of the
velocity field.

In-situ vortex detection algorithm
To count the number of vortices, we identify the number of
voids in the density in the in-situ images, following a simi-
lar procedure of our earlier work14. In short, we first apply a
Gaussian filter of size σ=1 px (≃ 0.5µm), then the sharpen-
ing convolution filter of Eq. (1) to each image nimg for noise
reduction. We then prepare a blurred reference image nref by
applying a Gaussian filter of size σ=3 px (≃ 1.5µm) to each
nimg and calculate the residuals between this reference and
the original image nres =nref − nimg. Finally, vortices are
detected as peaks in the residual image nres using a peak de-
tection algorithm (peak local max from the SKIMAGE Python
library). To avoid spurious vortex detection, we discard peaks
with a distance below 3 px, and peaks with an amplitude be-
low a chosen contrast threshold of 0.34.

We verify the robustness of the vortex detection by varying
this contrast threshold between 0.34 and 0.42, which changes
the number of selected peaks but gives the same qualitative
result on the whole data set (see Extended Data Fig. 4). In
the experimental data (Extended Data Fig. 4b) there is a small
peak centered at Ω=0.35ω⊥ for all thresholds considered,
hinting towards the expected superfluid quadrupole mode res-
onance, see Fig. 3.

Time-of-flight vortex detection algorithm
In the interference pattern, a striking difference between a sin-
gle vortex and a vortex-free state is the absence or presence of
a central density feature. This feature provides us with another
fingerprint of vortices, thus allowing for binary classification
of the experimental TOF images and extraction of the vortex
occurrence probability as a function of Ω. In the following
paragraphs, our classification protocol is described.

First, we prepare all the images, ni, by denoising them with
a Gaussian filter of size σ = 2 px and by normalizing to the
maximum density, max(ni)= 1. Among those, we then select
two reference images, one for each case: the presence (nvr ) or
absence (n∅r ) of a vortex; see insets in Extended Data Fig. 5a.
These will be used to classify all images.

Then, using ‘Powell’ minimization69, we translate and ro-
tate each image to best overlap with the references. To quan-
tify the similarity of the images to each reference image, we
calculate the sum squared differences, S{v, ∅}, between ni and
n{v, ∅}. Here, high values of S{v, ∅} indicate large dissimilar-
ity between the images.

We generate a cumulative distribution function for Sv and
S∅, which are normalized by the total number of images (see
Extended Data Fig. 5a). Using the cumulative distribution, we
generate one subset of images for each reference, which are
the X% most similar images. The remaining images are not
classified. Note that so far, the analysis is rotation frequency
independent. Finally, we extract the number of images within
each category as a function of rotation frequency (Ω), see Ex-
tended Data Fig. 5b. Renormalizing to the total number of
classified images, we obtain the ratio of images that have a

central vortex, see Extended Data Fig. 5c.
At low rotation frequency, the vortex-free interference pat-

tern is dominating. Crucially, the ratio of images with a vor-
tex increases with increasing Ω, consistent with our eGPE
simulations and experimental findings shown in Fig. 3. This
result is robust against choice of the classification threshold
X as shown in Extended Data Fig. 5c(1-2) for X =15% and
X =30% (see dashed-dotted line in Extended Data Fig. 5a).
Note that fluctuations of the experimental parameters lead to
a non-zero vortex signal even without rotation. Note that the
selection threshold is kept low, ensuring unambiguous catego-
rization of the images.
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Extended Data Fig. 1. Loss spectrum of 164Dy. The spectrum is obtained from horizontal absorption imaging, by varying the magnetic field
at which the evaporative cooling (T ≈ 500 nK) is conducted, with a step size of 20mG. The magnetic field values used are highlighted in red
(SSP) and green (BEC). Error bars represent the standard error.
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Extended Data Fig. 2. Time of flight predictions from the Gaussian toy model. Longer TOF density profiles for the solution shown in
Fig. 4 of the main text. The inset of the first figure shows the initial condition for all states. After 10ms the density pattern has frozen into
the momentum distribution of the initial cloud. The gray lines show the axis center (0,0), highlighting the immediate difference between a no
vortex and vortex expansion from the central density.
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Extended Data Fig. 3. Image processing for the detection of vortices. Each row indicates different rotation frequency and duration parameters
(indicated on the left). Each column is a step of the processing protocol which goes as follows. The data (column 1) is normalized and denoised
with a Gaussian filter of size σ=1 (column 2), and a sharpening mask is applied to magnify the presence of vortices (column 3). The reference
image is built from the data image where all density variations are eliminated with a Gaussian filter of size σ=3 (column 4). The residuals
(column 5) are obtained from the subtraction of the data to the reference, converting the density depletions to a positive signal. The vortices
(black circles) are detected with a peak detection algorithm with threshold 0.38. The last column shows the location of the vortices on the
original image data. Varying the threshold value modifies the absolute vortex count of each individual image but not the overall qualitative
result (see Extended Data Fig. 4).
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Extended Data Fig. 4. Vortex detection as a function of the threshold parameter. Normalized vortex occurrence integrated over 500ms
of rotation in the BEC phase (left) and in the supersolid phase (right) as a function of the rotation frequency, for varying contrast threshold
between 0.34 and 0.42 (see Extended Data Fig. 3). The shaded areas indicate the error on the mean, i.e. the standard deviation divided by the
square root of the number of points (8). The solid lines are visual help. The results of the extended-GPE simulations (see Fig. 3) are plotted in
thick solid lines as a comparison.

Extended Data Fig. 5. Probability of detecting a vortex as a function of the rotation frequency. a Cumulative distribution function obtained
from the calculated sum squared differences over the whole data set, with each of vortex (solid line) and vortex-free (dashed line) references
(see inset images). b With a defined threshold X (dashed-dotted lines on a) on the cumulative distribution function, each image is assigned
to a category: vortex (red empty circles), vortex-free (blue filled circles), or no classification (grey filled circles). c Probability of detecting a
vortex signal and vortex-free signal out of the selected images in b. The error bars indicate the Clopper-Pearson uncertainty associated with
image classification. Top and bottom rows show the classification result for respective thresholds 0.15 and 0.30 on the cumulative distribution
function, showing the independence of the signal from the threshold.
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