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BOLZANO’S CONJECTURE: MEASURING THE NUMEROSITY OF INFINITE SETS. 
     

JULIAN JACK 
 
The mere fact, therefore, that two sets A and B are so related that every member a of A corresponds by a fixed rule to some member b of B 
in such wise that the set of these couples (a+b) contains every member of A or B once and only once, never justifies us, we now see, in 
inferring the equality of the two sets, in the event of them being infinite, with respect to the multiplicity of their members ……….On the 
contrary, and in spite of their entering symmetrically into the above relation with one another, the two sets can still stand in a relation of 
inequality, in the sense that the one is found to be a whole and the other a part of that whole. [6, page 98]. 
 

ABSTRACT 
Bolzano and Cantor were the first mathematicians to make significant attempts to measure 
the size (numerosity) of different infinite collections. They differed in their methodological 
approaches, with Cantor’s prevailing. This led to the foundation of the theory of sets as well 
as Cantor’s transfinite arithmetic. This paper argues that Bolzano’s conjecture is correct and 
that Euclid’s principle, ‘that the whole is greater than a part’, should be considered as a 
necessary condition for the quantification of infinite sets (rather than bijection). Cantor had 
concluded that the rational and the algebraic numbers were of the same size as the natural 
numbers, whilst, in contrast, the real numbers were a larger set. Using Cantor’s methods it is 
shown in this paper that the rational numbers are of larger size than the natural numbers, 
thus showing that bijection is not a reliable measure of the size of infinite sets. It is also 
concluded, using mathematical induction, that different ‘countably’ infinite sets can have 
various different sizes. The implication for theorems using bijection as a measure of size is 
then briefly discussed. There already exist new methods of measuring numerosity, based on 
Euclid’s principle, which may develop a consistent system of infinite arithmetic. 
 
INTRODUCTION 
In the nineteenth century two mathematicians sought to develop an arithmetic of infinite 
quantities. Both Bolzano and Cantor were in favour of an actual or completed infinity and 
they also agreed that it should be possible to compare and count the sizes of different infinite 
collections. They differed in their methodological approach to counting. Cantor used a specific 
form of pairing (one-to-one correspondence) called bijection to decide whether two 
collections were of equal size (or cardinality). One problem was that it was already known 
that this assumption, for infinite collections, was incompatible with Euclid’s principle, ‘that 
the whole is greater than a part’ [16]. Bolzano, by contrast, thought Euclid’s principle should 
be given precedence over bijection. Bolzano’s last, posthumous, publication on the subject 
was in 1851. Cantor, who was born in 1845, subsequently produced a sequence of 
publications [e.g. 7, 8] that led to his version of counting to be widely accepted and this was 
reinforced by his larger body of work  which formed the basis for axiomatic set theory. 
Amongst the striking results arising from Cantor’s assumptions was the conclusion that there 
were different sizes of infinite collections, with the sizes being quantified by the (infinite) 
cardinal numbers. The smallest infinite cardinal number, ℵ0, denoted the size of the 
collections with a countable number of elements (amongst others, including the natural 
numbers, the rational numbers and the algebraic numbers), with larger cardinal numbers 
(ℵ1, ℵ2, ℵ3 … . ) then being generated by a power law (Cantor’s power theorem). Despite the 
acceptance of his work there has been persistent uncertainty and controversy [19], the 
principal issue being the assignment of a cardinal number to the real numbers (the continuum 
hypothesis), since they had been shown, by Cantor’s other method of size comparison, which 
was qualitative rather than quantitative, to be a larger collection than the natural numbers. 
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Cantor gave two proofs [7, 8], that the real numbers were more numerous that the natural 
numbers, both of which were indirect proofs (argument by contradiction) of which the 
simpler, later, proof [8] relied on the diagonal method.  
In contrast to Cantor’s form of infinite arithmetic, Euclid’s principle would result in a different 
hierarchy of infinite sizes with, for example, the natural numbers, the rational numbers, the 
algebraic numbers and the real numbers all being of successively greater size. This paper 
shows, using the diagonal method in the same way as Cantor, that subsets of the rational 
numbers, of a particular order, can be greater in size than the natural numbers. Since the 
method of bijection, in Cantor’s system, concludes that the natural numbers and the rational 
numbers are of the same size, the system allows the generation of contradictions i.e. it is 
inconsistent. Explanations are offered for the reason that the rational numbers, unlike the 
real numbers, have to have a particular order and also for why a bijective function is not a 
sufficient condition to measure infinite size.  
 
PROOF OF CONTRADICTION 

Consider the set made up of decimal numbers, where each number is defined by ∑ 10−𝑖𝑛
𝑖=1  , 

where n goes from 1 to ∞ ; i.e. an ordered list of decimals made up exclusively of the digits 0 

or 1, starting with the decimal equivalent of 
1

10
 and terminating with the equivalent of 

1

9
 . This 

set will be called the original set. In order to give a one-to-one correspondence between the 
members of this set and the natural numbers, the last decimal on the list (0.1111111…… or 

0.1̇) has to be paired with the first natural number and the first decimal (0.1 or 0.1000000……) 
with the second natural number, the second decimal (0.11 or 0.1100000……) with the third 
natural number, etc. Note that this method of pairing is that suggested for showing that sets 
of order type 𝜔 and 𝜔+1 have the same cardinality (e.g. Figure 1, p.617 in J. Bagaria, IV.22 in 
[9]). In Cantor’s terminology, this set has an ordinality of a member of the second ordinal 

number class ( +1) and a cardinality of the natural numbers. 
Diagonalization on this set (in which the nth digit of the nth number is changed) will always 
produce a new number that is not a member of the set, even if the diagonal rule is to replace 
0 with 1 and vice versa. However, using this diagonal rule, it is possible to generate a diagonal 
number that is a member of an extended version of this set. It is simply a matter of choosing 
to add as elements to the start of the set, one or more (m) distinct rational numbers which 
each have a 0 in the nth decimal place. An example, for m=5, is shown, where the decimal 
versions of 1/100, 1/1000, 1/10000, 1/100000 and 1/1000000 are put in the first five (vertical) 
ordinal positions. This extended set retains the cardinality of the natural numbers on Cantor’s 
bijective assumption. 
 
               1 2 3 4 5 6 7 8 9  . . . . . .n . . . . . . .          (horizontal ordinal number, of digits)  
1        0 . 0 1 0 0 0 0 0 0 0 . . . . . . . . . . . . . . 
2        0 . 0 0 1 0 0 0 0 0 0 . . . . . . . . . . . . . . 
3        0 . 0 0 0 1 0 0 0 0 0 . . . . . . . . . . . . . . 
4        0 . 0 0 0 0 1 0 0 0 0 . . . . . . . . . . . . . . 
5        0 . 0 0 0 0 0 1 0 0 0 . . . . . . . . . . . . . . 
6        0 . 1 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . 
7        0 . 1 1 0 0 0 0 0 0 0 . . . . . . . . . . . . . . 
8        0 . 1 1 1 0 0 0 0 0 0 . . . . . . . . . . . . . . 
9        0 . 1 1 1 1 0 0 0 0 0  . . . . . . . . . . . . . . 
.          . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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n         . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.          . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 

The diagonal number will be 0.1̇, which is in ordinal position 𝜔 on the list. The key assumption 
of the diagonal method, when applied to numbers between 0 and 1 expressed in their decimal 
form, is that since the number of digits in each decimal number and the number of numbers 
in the set are both bijectable with the natural numbers, a new number formed by changing a 
single digit of each number (as long as the change occurs for a digit at a different ordinal 
position in each number) cannot be a member of the set, since all the numbers in the set must 
have been changed, if the number of numbers and the number of digits in each number are 
the same size. If the diagonal number is a member of the set then the number of numbers 
must be larger than the number of digits in each number. Thus, on Cantor’s assumptions, the 
above extended set of rational numbers is larger in size than the natural numbers. 
 
A second example of this deduction comes from considering a set of decimal numbers in 

which the numbers in the odd vertical ordinal position are defined by 
1

99×10(𝑛−1)  and those in 

the even ordinal position by ∑ 10−𝑖
𝑛

2

𝑖=1   (where n goes from 1 to ∞). This leads to a set with 

the following appearance: 
 
 
 
               1 2 3 4 5 6 7 8 9  . . . . . n . . . . . . .          (horizontal ordinal number)  
1        0 . 0 1 0 1 0 1 0 1 0 . . . . . .   . . . . . . . 
2        0 . 1 0 0 0 0 0 0 0 0 . . . . . .   . . . . . . . 
3        0 . 0 0 0 1 0 1 0 1 0 . . . . . .   . . . . . . . 
4        0 . 1 1 0 0 0 0 0 0 0 . . . . . .   . . . . . . . 
5        0 . 0 0 0 0 0 1 0 1 0 . . . . . .   . . . . . . . 
6        0 . 1 1 1 0 0 0 0 0 0 . . . . . .   . . . . . . . 
7        0 . 0 0 0 0 0 0 0 1 0 . . . . . .   . . . . . . . 
.          . . . . . . . . . . . . . . . . . . . . . .   . . . . . . .  
.          . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . 
.          . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . 
n         . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . 
.          . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . 
.          . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . 
.          . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . 
 

followed by 0.0̇  in the 𝜔 position and 0.1̇ in the 𝜔+1 position (i.e. this set is of order type ( 
+2)). Once again, a diagonalization using the same rule yields a number, this time in the 𝜔+1 
position. 
The general rule for examples of this proof of different sizes of any countably infinite set is 
that, for the members of the set, a list is generated with the order of the second ordinal 
number class and a member in ordinal position 𝜔 or beyond is selected as the ‘target’, with 
the members in the first part of the ordinal listing then being selected, along with the diagonal 
rule, so that the ‘target’ is generated by the diagonalization. This applies, not only to decimal 
numbers, but also to sets made up of other members – such as sets containing the elements 
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m and w, as in Cantor’s original 1891 proof [8] – where the diagonal rule simply changes m to 
w and vice versa. 
 
CAN THE DIFFERENCE IN SIZE BE ‘QUANTIFIED’? 
Two specific examples of sets whose elements are a particular order of rational decimal 
numbers have been given above, in which it is concluded that the diagonal number is a 
member of the set. For each of them, there is a constructive proof, using mathematical 
induction, to deduce how the size of the set compares with the size of the natural numbers. 
Let L(n) specify the nth number in the list and d(n) the nth digit of each number. The simplest 
way to construct a diagonal number is to start with d(1) of L(1), then d(2) of L(2) etc. Let D(n) 
specify the diagonal number as it is being formed iteratively. Applying mathematical induction 
to each set in turn: 
First example. 
Base case: D(1)=L(6). 

Induction step: If D(n)=L(n+5), both equal ∑ 10−𝑖𝑛
𝑖=1 . 

To form D(n+1), note that d(n+1) in L(n+1) is 0. Therefore, on the diagonal    

rule, d(n+1) in D(n+1) is 1. In other words 10−(𝑛+1) must be added to D(n) to    
form D(n+1). 

  D(n+1)= ∑ 10−𝑖𝑛
𝑖=1  + 10−(𝑛+1) = ∑ 10−𝑖𝑛+1

𝑖=1  =L(n+6). 

Conclusion: For all n  1, D(n) is a member of the list, five positions further down the list. On 

completion (i.e. diagonalization over all the natural numbers), D() is the same number as 
the last member of the list and thus the set has a size of 5 more than the natural numbers 
(and of the original set). This conclusion will apply when the m of 5 is replaced by a different 
finite number of insertions at the start of the set, with the size differing by m. 
 
Second example. 
Base case: D(1)= L(2). 

Induction step: If D(n)= L(2n), then both equal ∑ 10−𝑖𝑛
𝑖=1 . 

To form D(n+1), note that d(n+1) in L(n+1), for both odd and even values of n, 

is 0. Therefore d(n+1) in D(n+1) is 1 and 10−(𝑛+1) has to be added to D(n) to 
form D(n+1). 

D(n+1)= ∑ 10−𝑖𝑛
𝑖=1  + 10−(𝑛+1) = ∑ 10−𝑖𝑛+1

𝑖=1  = L(2n+2). 

Conclusion: For all n ( 1), D(n) occurs at a position of 2n on the list. Therefore, the list is twice 
the size of the natural numbers (and of the original set). 
 
DISCUSSION 
The key conclusion of this paper is that selected subsets of the rational numbers (Q) can be 
shown, by the diagonal method, to be of a larger size than the natural numbers i.e. in Cantor’s 
terminology, uncountable. An assertion to the contrary is made by Abbott [1, Exercise 1.6.3]. 
“Rebut the following about the proof of Theorem 1.6.1: every rational number has a decimal 
expansion, so we could apply this same argument to show that the set of rational numbers 
between 0 and 1 is uncountable. However, because we know that any subset of Q must be 
countable the proof of Theorem 1.6.1 must be flawed.” Theorem 1.6.1. of Abbott states that 
the reals in the open interval 0 to 1 are uncountable (by the diagonal method). The solution 
offered by Abbott is as follows: ”if we imitate the proof to try to show that Q is uncountable, 
we can construct a real number x in the same way. This x will again fail to be in the range of 
our function f, but there is no reason to expect x to be rational. The decimal expansions for 
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rational numbers either terminate or repeat, and this will not be true of the constructed x”. 
Whilst this assertion is usually true, with random order of the numbers, this paper shows that 
there is an infinite number of counterexamples, when one selects subsets of rational numbers 
and puts them in a particular order. To understand this latter condition, it may be helpful to 
consider the diagonal method, when applied to a finite list of numbers each with a finite 
number of (significant) digits. Let us restrict our consideration to numbers with only two 
possible digits (so that there is only one appropriate diagonal rule), with the number of digits 
and the minimal number of numbers being n. There are only two sizes of the list of numbers 
which are certain, by diagonalization, to yield an unambiguous result: when the list is of size 
n, the result is a diagonal product not in the list and when the list is of size 2n (the largest it 
can be without repeating a number in the list) the diagonal product must be a member of the 
list. The reason for such a large range of uncertainty for sizes between (n+1) and (2n – 1) is 
that it will depend on both the order and selection of the numbers (out of the possible) in the 
list.  
As an illustration consider a finite set of decimal numbers between 0 and 1 with 5 significant digits, restricting 
the possible digits at each place to 0 or 1. There are 32 possible numbers. This set will be named rea. The 

numbers can be listed in 32!  ( 2.63x1035) different orders. Diagonalization (with the rule of 0 to 1 and vice 
versa) will cover the first five numbers in the order and the number generated will be somewhere in the 
remaining 27 numbers further down the order, whichever order is selected, because all possible numbers are in 
the set.  
Define a subset of rea: rat is those numbers in rea which terminate either in three 0’s or three 1’s. There are 8 
of these numbers and they can be ordered in 40,320 different ways. If one selects the ‘target’ number as the 
diagonal product  0.11111 then the first five numbers in the order must have 0 in the digital position equivalent 
to their place in the order and the ‘target’ number must be located in one of the last three positions in the order. 
These restrictions lead to the calculation that only 720 of the possible 40,320 orders will lead to a diagonal 
product which is a member of the set (rat). This illustrates how, for finite arithmetic, diagonalization is not, in 
general, a definitive probe of the size of the set, unless that set includes all possible elements. Of course, by 
selecting any of the other seven possible ‘target’ numbers, the number of possible orders which yield a definitive 
result from diagonalization increases, but it is still a small proportion of the total number of possible orders. 

This analysis of diagonalization in a finite system provides insight into the reason why, in the 
infinite case, order (including order type) is important unless the set on which the 
diagonalization is performed contains all the possible numbers in the chosen interval (i.e. the 
relevant real numbers). The nature of the ordering and selection that is required in the case 
of infinite sets of rational numbers for the diagonal product to be a member of the list is given 
in the final section of the Proof of Contradiction. 
This paper has shown that bijection is not a reliable measure of the size of infinite sets, 
although it is for finite sets. It is clear, in retrospect, why this arises. The principle of one-to-
one is a method of pairing that requires a mapping function so that one element of one set is 
exclusively paired with only one element of the second set. This requirement always leads to 
the same conclusion about size when both sets have a finite number of elements, despite the 
fact that there are a large number of different possible mappings. The same result is not true 
for the comparison of two infinite sets (for an historical account, see Mancosu [14]). For 
example, if a finite collection with m elements is added to an infinite collection there exist 
mappings that can ‘prove’ equality or leave unpaired from 1 to m of the elements of the 
extended collection. Mancosu [14] gives the example of two infinite sets, the even numbers 
and the natural numbers (starting with 1). The pairing with the mapping function 2n↔n gives 
equality whereas the mapping function 2n↔2n leaves all the odd numbers unpaired 
(suggesting the natural numbers are twice the size of the even numbers). Cantor decided to 
ignore this ambiguity and elected to make the existence of at least one mapping function, 
which concluded equality (bijection), as the necessary and sufficient condition for judging the 
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size of infinite sets. This meant he had to have another method to prove the inequality of two 
infinite sets and both of his proofs [7, 8] were indirect (argument by contradiction) which, in 
classical logic, requires a consistent system to be reliable. To make bijection reliable for 
infinite sets, the sufficient condition would be to establish that all possible one-to-ones 
reached the same conclusion about size, as for finite sets. The conclusion that bijection does 
not guarantee equal size has considerable implications, particularly for proofs using the 
diagonal method as well as any indirect proofs, which may not be reliable. Thus Cantor’s 
power theorem does not exclude the possibility of sizes intermediate between ℵ0 and ℵ1, etc. 
His proof about the existence and construction of transcendental numbers (see Gray [10]) is 
not reliable because, depending on the order of the algebraic numbers, the diagonal product 
may itself be an algebraic number. The implications for the application of the diagonalization 
lemma, as used in the first incompleteness theorem of G�̈�del, also needs to be carefully 
explored. 
It may be noted that in order to reach the conclusions about the ‘quantification’ of the size of 
the sets, using mathematical induction, it was assumed that quantification over all the natural 
numbers was possible. In simple terms this means that the possibility of a completed or actual 
infinity was assumed. Detailed discussions of this from different points of view  may be found 
in articles by Linnebo and Shapiro [12] and by Zenkin [21]. A more important point is that this 
method of ‘quantification’ is not a general method, since it is dependent on the order of the 
elements in the sets. There is therefore a need to develop a way of measuring the numerosity 
of infinite sets which is not sensitive to the order of the elements. 
The results presented here strongly reinforce Mancosu’s argument [13, 14, 15] that there is 
no inevitability to Cantor’s assumption that, for infinite sets, the existence of a one-to-one 
mapping function showing equinumerosity should be a sufficient condition for measuring 
size. Mancosu drew attention to the work of others (Katz [11] and Benci and his colleagues 
e.g. [ 3, 4, 5]) who have been developing new methods of measuring the size of infinite sets. 
These methods both incorporate Euclid’s principle as a necessary condition for the 
measurement. One important result, from Benci and DiMasso [3], is that their measurement 
of numerosity is not only consistent but independent of the axioms of set theory as well, so 
that a consistent system for measuring numerosity could be conjoined with an axiomatic 
theory (such as Peano’s arithmetic) and the result would be consistent, as long as the 
axiomatic theory is consistent. 
Recently, Bellomo and Massas [2] have cogently argued that much of Bolzano’s work on 
infinity is best described as the development of a theory for infinite sums. Further 
development of Bolzano’s approach to infinity has been made by Trlifajova [17, 18]; her 
numerosity theory is similar to that of Benci and DiMasso [3], but differs in an important way, 
because it is constructive. An infinite arithmetic that is both constructive and consistent, 
fulfilling  Hilbert’s program [see 20], may be possible. 
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