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ABSTRACT

Unsupervised pathology detection can be implemented by training a model on healthy data only
and measuring the deviation from the training set upon inference, for example with CNN-based
feature extraction and one-class classifiers, or reconstruction-score-based methods such as AEs,
GANs and Diffusion models. Normalizing Flows (NF) have the ability to directly learn the
probability distribution of training examples through an invertible architecture. We leverage this
property in a novel 3D NF-based model named CT-3DFlow, specifically tailored for patient-level
pulmonary pathology detection in chest CT data. Our model is trained unsupervised on healthy 3D
pulmonary CT patches, and detects deviations from its log-likelihood distribution as anomalies.
We aggregate patches-level likelihood values from a patient’s CT scan to provide a patient-level
’normal’/’abnormal’ prediction. Out-of-distribution detection performance is evaluated using expert
annotations on a separate chest CT test dataset, outperforming other state-of-the-art methods.
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Unsupervised Pulmonary CT Anomaly Detection via 3D Normalizing Flow

1 Introduction

Normalizing flow (NF) models, such as NICE[1], RealNVP[2], and GLOW[3] learn the distribution of the observed
data by transforming it into a tractable distribution using invertible and differentiable mappings. This allows for exact
log-likelihood computation during inference, and anomaly detection methods based on normalizing flows, such as
DifferNet [4], CFLOW-AD [5], and FastFlow [6] have achieved high performance on industrial datasets. Although it is
possible to apply normalizing flows (NF) on both images and CNN-extracted features, at the risk of ignoring the 3D
context offered by volumetric data. Applying NF models on 3D data is possible but raises technical challenges. In
theory, a 3D NF model would need to be trained on whole 3D volumes to learn the distribution of normal scans, and the
log-likelihood of a sample scan would then be used to classify it as pathological or not. The corresponding memory
requirements would however be far superior to 2D approaches, making training more challenging. To our knowledge,
advancements in 3D anomaly detection models are scarce. The PET-3DFLOW model [7] operates at the feature level
via an encoder-NF-decoder scheme, and computes an anomaly score based on a weighted combination of negative
log-likelihood and reconstruction error, producing anomaly maps via reconstruction — a potentially sub-optimal
method [8, 9, 10, 9, 11]. We propose here a novel approach for anomaly detection and localization in chest CT scans
using a 3D patch-based normalizing flow model, whose architecture is a 3D extension of GLOW [3].

2 Methods
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Figure 1: Overview of the CT-3DFlow anomaly detection framework. The model, whose architecture is
shown in the middle, is trained on normal 48x48x48 CT sub-volumes. During inference, overlapping patches are
processed and aggregated to generate a full CT Log P map, which is binarized, filtered, and thresholded for classification.

We use a dataset of 822 patients for which 3D chest CT scans were obtained from hospital data at a single institution
(Hospices Civils de Lyon). It consists of a total of 570 normal and 252 abnormal CT scans (470 scans for training, 111
scans for the validation set, and 291 scans for the test set). These scans are pre-processed by resampling to 2 mm
resolution, automatically segmenting the lung in 3D with DL [12] to guide patch-selection, clipping voxel values to the
clinically relevant range of [−1020HU,+200HU ], and normalizing them to [−0.5,+0.5].

After training a NF model on 500,000 normal 3D CT 48x48x48-sized patches, we predict abnormalities, consisting of
four distinct chest-related abnormalities carefully selected by an expert radiologist based on the prevalence of the most
common pulmonary pathologies, at patient-level in a sample CT scan by applying the model on 48x48x48 patches
spanning the whole volume (with 10-voxel overlap). Each patch gives a log-likelihood value (indicated as Log P) which
serves as a proxy for an anomaly score. These Log P values are aggregated with gaussian smoothing to give a full CT Log
P map, which is post-processed to give a binary patient prediction. This involves binarization, filtering, and thresholding.
The optimal threshold value T (between 0.5 and 20 cm3) being obtained from the ROC curve on the validation set
(50 normal and 61 abnormal). Finally, we use our test set (50 normal, 191 abnormal) to assess the method’s performance.

In our experiments, we used a GLOW-based NF architecture which we adapted to 3D with L = 4 blocks, each one
having K = 64 flows. Each flow consists in an activation normalization layer, an invertible 1x1x1 convolution and
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Table 1: Comparison of patient-level classification performance with several anomaly detection methods.

Method AUROC F1 Accuracy
AE [13] 0.608 0.538 0.556
VAE [10] 0.647 0.607 0.598
f-AnoGan [11] 0.821 0.783 0.765
GANomaly [14] 0.772 0.74 0.694
DifferNet [4] 0.901 0.861 0.843
FastFlow [6] 0.942 0.912 0.903
CFLOW-AD [5] 0.732 0.739 0.706
AnoDDPM [15] 0.924 0.891 0.873
Ours 0.952 0.94 0.924

an affine coupling layer. The network is trained for 50,000 iterations on 2 NVIDIA A100 SXM4 GPUs, using the
maximum likelihood estimation objective with a batch size of 10, using Adam optimizer (lr = 10−4, weight decay
10−5). We compare, on a test set, our CT-3DFlow model against several reconstruction-based models (autoencoder AE,
and variational autoencoder VAE), GAN-based models, NF-based models (DifferNet, FastFlow, CFLOW-AD), and one
diffusion-based model (AnoDDPM). We adopted Area Under the Receiver Operating Characteristic curve (AUROC),
F1-score (F1), and accuracy (ACC) as metrics to evaluate the patient-level classification performance of our model.

3 Results and Perspectives

As shown on Table 1, the CT-3DFLow model outperforms the state-of-the-art methods by a noticeable margin in terms
of AUC, F1 and ACC. However, further validation of the aggregation methods is required due to the inherent differences
between 2D and 3D approaches. Our 3D patch-based NF model demonstrates the superiority of 3D flow-based model
over state-of-the-art 2D methods, while mitigating the problems associated to full volume normalizing flows. Further
work to generalize this promising approach on other modalities and different organs is envisioned in the future.
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