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1QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University,
P.O. Box 13500, FI-00076 Aalto, Finland

2QTF Centre of Excellence, VTT Technical Research Centre of Finland Ltd., P.O. Box 1000,
02044 VTT, Finland

*miika.rasola@aalto.fi
†mikko.mottonen@aalto.fi

April 9, 2024

Abstract

We propose a recipe for demonstrating an autonomous quantum heat engine

where the working fluid consists of a harmonic oscillator, the frequency of which

is tuned by a driving mode. The working fluid is coupled two heat reservoirs

each exhibiting a peaked power spectrum, a hot reservoir peaked at a higher fre-

quency than the cold reservoir. Provided that the driving mode is initialized in a

coherent state with a high enough amplitude and the parameters of the utilized

optomechanical Hamiltonian and the reservoirs are appropriate, the driving mode

induces an approximate Otto cycle for the working fluid and consequently its os-

cillation amplitude begins to increase in time. We build both an analytical and a

non-Markovian quasiclassical model for this quantum heat engine and show that

reasonably powerful coherent fields can be generated as the output of the quan-

tum heat engine. This general theoretical proposal heralds the in-depth studies of

quantum heat engines in the non-Markovian regime. Further, it paves the way for

specific physical realizations, such as those in optomechanical systems, and for the

subsequent experimental realization of an autonomous quantum heat engine.

Introduction

The global societal impact of heat engines has been enormous through history. Various

types of heat engines such as those powering pumps and motors have been extensively
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analyzed and utilized in a great number of practical applications since the industrial

revolution. The idea of modelling a quantum system as a heat engine was presented

already in the 50’s, when Scovil and Schulz-DuBois analyzed the three-level maser as a

heat engine [1]. During the recent decades however, first the development of quantum

thermodynamics [2–4], and later the rapidly increasing number of quantum technologi-

cal devices [5], has led to renewed interest in heat engines operating at the mesoscopic

quantum level—quantum heat engines (QHEs).

Recently, QHE behaviour has been experimentally demonstrated in various micro-

scopic atomic devices, such as in single trapped ions [6], a spin coupled to single-ion

motion [7, 8], nitrogen vacancy center interacting with a light field [9], and in nuclear

magnetic resonance [10,11]. In addition, a QHE driven by atomic collisions was reported

in [12] where a quantum Otto cycle was achieved in large quasi-spin states of Cesium

impurities immersed in an ultracold Rubidium bath. Also superconducting circuits pro-

vide prospects for demonstrating QHEs [13–18]. All of these devices are inherently not

autonomous in the sense that they are all driven by some type of external control. In this

case, it is very difficult to extract, or even directly observe, the work produced by the heat

engine. If we wish to demonstrate an actual autonomous quantum heat engine, efforts

should be directed at creating a device, work output of which can be directly observed

instead of being superimposed on macroscopic external control fields. In this paper, we

propose and theoretically study a device potentially remedying this issue, a topic studied

previously in references [19–24] as discussed below.

Perhaps the simplest model system of a QHE is a quantum harmonic oscillator (QHO)

of variable frequency coupled to two heat reservoirs with peaked line shapes, so that

the coupling strength to each of the reservoir can be varied by driving the oscillator in

and out of resonance with the respective reservoir. Choosing the hot reservoir central

frequency higher than the cold reservoir central frequency, a cycle depicted in Fig. 1 can be

achieved [2,4]. This is called the quantum Otto cycle [25]. Typically, in this scenario the

frequency of the QHO is considered to be controlled by an external drive. There are plenty

of examples of such quantum heat engines as cited above [6–12]. In this case, however,

the device is not autonomous, but completely dependent on constantly being controlled

by some external force that in practical scenarios turns out to consume macroscopic

amounts of power, greatly exceeding any work extracted by the heat engine from the

thermal gradient. In this paper however, we propose a device, where the driving of the

tunable QHO is incorporated into the device itself on the mesoscopic level, removing the

need for macroscopic external driving. Our proposal, in essence, realizes an autonomous

QHE, which continuously produces work once set to motion, without the need for any

external control fields after the initialization phase.
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Figure 1: Quantum Otto cycle considered in this work. The angular frequency ωa

of the harmonic oscillator depicted as the quadratic potential traverses between
values ωc and ωh at average photon numbers nc and nh, respectively. The
work obtained from the cycle Wout exceeds the work done on the oscillator Win.
Consitently, the heat obtained from the hot reservoir by the system Qh exceeds
the heat released from the system to the cold reservoir Qc.

In the spirit novel quantum technologies and inspired by the simple QHO model, we

propose a way of utilizing systems realizing an optomechanical Hamiltonian [26,27] as an

autonomous quantum heat engine. In a prototypical optomechanical system, an optical

cavity mode with frequency ωa is coupled to a slower mechanical mode with frequency ωb

so that the frequency of the optical mode is modulated by the mechanical displacement x,

approximately as ωa(x) ≈ ω0
a +x∂ωa

∂x

∣∣
x=0

. Let the optical cavity be further coupled to two

heat reservoirs with peaked spectral densities such that the center angular frequencies

of the hot reservoir ωh and cold reservoir the ωc fulfill ωh > ωa(x) > ωc. Assigning

temperatures Th and Tc to the hot and cold reservoirs, respectively, such that Th > Tc,

leads to a device where the state of the optical cavity may undergo the quantum Otto

cycle. The cavity mode at ωa will traverse between the characteristic frequencies of the

heat reservoirs driven by the mechanical mode. The optical mode will therefore pump

photons from the high-frequency high-temperature environment to the low-frequency

low-temperature environment, leading to energy boost to the mechanical mode owing to

energy conservation. In this paper we aim to show, that the thermal energy released over

the cycle is transformed, at least partially, into the amplitude of the coherent state of

the mechanical mode, thus available for useful work in the realm of quantum devices.
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For the sake of simplicity, we refer to the modes used in our proposal as the optical and

the mechanical mode, but our theoretical proposal is hardware agnostic. If there are

two modes and reservoirs that fulfill the discovered conditions, such a physical system is

prone to be used as an autonomous quantum heat engine.

The proposed device is a heat engine in the most fundamental sense—a heat engine is,

by definition, a device that transforms heat into deterministic mechanical motion [28,29].

It should be noted, however, that this is not the first time an optomechanical system

is used as the basis for a QHE. References [30–32] extensively analyze the possibility

of realizing a coherently driven quantum Otto cycle in an optomechanical system. The

above-mentioned references [19–21] utilize optomechanical systems, but rely on periodic

incoherent thermal drives. Consequently, the coupling to the heat bath needs to be

controlled by some external method, possibly consuming significant power. In contrast to

such models, we propose a method which is fully free of temporally varied external controls

and aim for a device that can work fully autonomously drawing power from constant-

temperature heat reservoirs with static coupling spectra. Further, the references [22–24]

study theoretical models of autonomous QHEs based on optomechanical systems on the

level of Markovian master equations. In general, it may be difficult to justify the Markov

approximation if the heat reservoirs are spectrally separated and strongly structured in

the relevant frequency range of the system, as illustrated in Fig. 2. Thus, in contrast

to the previous works, we do not invoke the Markov approximation, but rather consider

the non-Markovian dynamics. Consequently, we rigorously take into account the spectral

shape arising in all bosonic thermal sources due to quantum effects. As a result, our QHE

exhibits autonomous cyclic dynamics in contrast to the traditionally classified completely

continuous QHEs and externally controlled reciprocating QHEs.

This paper is organized as follows. In section 1, we analyze the the proposed quantum

heat engine by building an approximate analytical model for it. Subsequently, we find

reasonable estimates for the net output power and efficiency of the device along with some

physical intuition. Next, in section 2, we develop a more detailed quasiclassical model

based on Heisenberg–Langevin equations to describe the intricate dynamics of the QHE.

We further outline how to numerically solve the resulting coupled non-linear stochastic

integro-differential equations. In section 3, we investigate the temporal evolution of the

device according to the quasiclassical model. We obtain estimates for the power and

efficiency, and analyze the power fluctuations inherently present in any QHE. Finally, in

section 4, we summarize our findings, draw conclusions, and provide our insight for the

fruitful future research on this autonomous quantum heat engine.
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1. Analytical Model of the Quantum Heat Engine

In order to gain physical intuition of the working mechanism of our device, we estimate

the efficiency of the proposed QHE by an approximate analytical model. We begin with

the usual model of the adiabatic quantum Otto cycle [25] and proceed by approximately
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Figure 2: Spectral densities of the reservoirs. (a) Experimentally realizable
Lorentzian line shapes of the cold (blue color) and hot (red color) reservoirs.
The vertical dotted lines denote the center angular frequencies of the cold and
hot reservoirs, ωc and ωh respectively, and the unbiased angular frequency of
the optical mode ω0

a. (b) Effective step function spectra denoted by the dashed
lines. The modulation of the optical-mode frequency ωa(t) in time is shown by
the sinusoidal purple line. The shaded areas represent the interaction regions
of the optical mode with the heat reservoirs. The interaction time τ is indicated
in the figure and assumed equal for the two reservoirs.

taking into account the finite widths of the reservoir spectra. First, let us assume that

the heat reservoirs have a step-function-like spectra rather than some experimentally en-

countered smooth peaked line shape, as depicted in Fig. 2. In this case the coupling

to each reservoir is sharply turned on and off without any residual coupling when the

frequency of the optical mode moves into and out of the corresponding spectrum, respec-

tively. The step function spectra are centered around ωh and ωc, respectively, and are

assumed to have equal widths lh = lc. Our optical mode frequency ωa(t) oscillates about

ω0
a, which is assumed to be centered in between ωh and ωc. We assume that the optical

mode frequency ωa(t) traverses from one reservoir to the other periodically in time with

the period τb = 2π/ωb. Further, we define the interaction time τ , which we assume to be

equal for both reservoirs since the frequency ωa(t) spends an equal amount of time per
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cycle in each frequency range defined by the step function of each reservoir. (See Fig. 2

for an illustration and Supplementary materials for theoretical details.) We further define

the average angular frequency over the interaction period ω̄
h/c
a , which is merely the time

average of ωa(t) over τ , respectively for each reservoir. We use this average value as the

effective angular frequency of the optical mode in the corresponding region. Note that

we allow the possibility of ωa(t) reaching values beyond the extents of the step function

spectra.

To estimate the net work output of this QHE, we need to compute the mean number

of photons transferred from the hot to the cold reservoir per cycle. Let the optical

mode be coupled to each of the reservoirs so that the dissipation rates are Γh and Γc,

respectively. The mean number of thermal photons in the optical mode under the steady-

state operation after the interaction period τ with the hot and cold reservoir is given,

respectively by

nh = N th
h − (N th

h − nc)e
−Γhτ , (1.1)

nc = N tc
c − (N th

c − nh)e
−Γcτ , (1.2)

where N th
h/c = 1/

(
exp

{
ℏω̄h/c

a

kBTh/c

}
− 1

)
is the mean photon number of the optical mode if

it is fully thermalized with the hot or the cold reservoir, respectively, ℏ is the reduced

Planck constant, and kB is the Boltzmann constant. This set of equations can be solved

for the steady state photon numbers given by

nh =
N th

h

(
1− e−Γhτ

)
+N th

c

(
1− e−Γcτ

)
e−Γhτ

1− e−(Γh+Γc)τ
, (1.3)

nc =
N th

c

(
1− e−Γcτ

)
+N th

h

(
1− e−Γhτ

)
e−Γcτ

1− e−(Γh+Γc)τ
. (1.4)

Note that we have used an equal interaction time τ for the reservoirs, without loss of

generality since the only the product Γh/cτ affects the end result, and hence different

interaction times may be compensated by the dissipation rates.

In this paper, we follow the traditional division of work and heat in quantum systems.

Work is considered to be the energy related to changing the frequency of the optical

mode operating here as the working fluid and heat is considered to be the energy related

to changing the population of the fluid. We assume that all the net energy released in

a cycle from the reservoirs is transferred to the mechanical mode and that the photon

number of the optical mode only changes during the interactions with the reservoirs. In

this case, we may compute the average energy output per cycle and the average output
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power as

Ecyc = ℏ(∆ω̄anh −∆ω̄anc) = ℏ∆ω̄a∆n, (1.5)

P =
ωb

2π
Ecyc, (1.6)

where ∆ω̄a = ω̄h
a − ω̄c

a and ∆n is the difference of the mean photon number in the optical

mode during a cycle. In the limit of ideal adiabatic operation, the efficiency of this device

is defined in the usual way, which we find to coincide with the Otto efficiency [25] given

by the effective frequencies as ηeff = ∆W/∆Qh = Ecyc/(ℏω̄h
a∆n) = 1 − ω̄c

a/ω̄
h
a . This

efficiency is smaller than the often-used efficiency given by the peak-to-peak compression

ratio κ = (ω0
a +∆ωa/2)/(ω

0
a −∆ωa/2): ηeff ≤ ηmax = 1− κ−1.

This model already has a considerable number of adjustable parameters. We aim

to illuminate the meaning and implications of the most important parameters here. In

Fig. 3, we show some derivative parameters of interest as a function of more fundamental,

system parameters. In Fig. 4 we study the power in Eq. (1.6) and various limits as

a function of the most interesting parameters. These graphs illustrate the dynamics

and parameter ranges of the device quite well. Note that in realized optomechanical

systems, the frequency of the mechanical mode is typically much lower than what is used

here, but such a case will merely lead to closely adiabatic dynamics with respect to the

thermalization and is theoretically easier and less interesting to analyze than the case

studied here.

First, we observe from Fig. 4(a) that the output power increases up to a limit with

increasing ωb. This limit is a result of the fact that there is a trade-off between increasing

speed of extracting Ecyc and decreasing the interaction time τ resulting in lower ∆n

and hence lower Ecyc as shown in Fig. 3(c). One of the most important fundamental

parameters here is how much we vary ωa(t) over the cycle. We define ∆ωa as the peak-

to-peak modulation amplitude of ωa(t), i.e., ωa(t) will oscillate between ω0
a −∆ωa/2 and

ω0
a + ∆ωa/2. In Fig. 4(b), we show the output power as a function of ∆ωa. We clearly

observe the limits of too low and too high modulation amplitudes, i.e., not reaching

the reservoir at all or overshooting. This phenomenon is also observed in Figs. 3(a)

and 3(b). In Fig. 4(c) we see compatible behaviour as a function of the difference between

the reservoir frequencies. Finally, in panel (d) of Fig. 3 we plot the efficiency of the

heat engine. We note that utilizing the whole width of the step function reservoir in

frequency gives the best efficiency, as expected. Increasing the peak-to-peak modulation

amplitude and the energy gap between the reservoirs would increase the compression

ratio, therefore allowing the increasing of the efficiency closer to the Carnot efficiency

ηC = 1− Tc/Th ≈ 80%.
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Figure 3: Derivative parameters and efficiency of quantum heat engine ac-
cording to the analytical model. (a) Difference of average frequencies
over the interaction periods of the hot and cold reservoirs, ∆ω̄a = ω̄h

a − ω̄c
a, as

a function of the peak-to-peak modulation amplitude ∆ωa of the optical-mode
frequency ωa(t) = ω0

a + ∆ωa/2 sin(ωbt). (b, c) Difference of the mean photon
number of the optical mode over the cycle as a function of (b) ∆ωa and (c) the
mechanical mode frequency ωb. (d) Efficiency of the device ηeff = 1− ω̄c

a/ω̄
h
a as

a function of ∆ωa. The dashed vertical lines in (a), (b), and (d) indicate the
threshold where the amplitude is just high enough for the optical-mode frequency
to enter the non-vanishing regions of the step-function-like power spectra of the
reservoirs (left, dark red) and the threshold where the frequency leaves at its ex-
trema the non-vanishing spectra. The parameters used here are the following:
∆ωa = 0.139 × ω0

a, ωb = 0.05 × ω0
a, kBTh = 0.56 × ℏω0

a, kBTc = 0.11 × ℏω0
a,

ωh = 1.03× ω0
a, ωc = 0.97× ω0

a, Γh = Γc = 0.022× ω0
a, and lh = lc = 0.04× ωa

To finalize our examination of the analytical model, we estimate the dissipation rate

and the resulting quality factor of the mechanical mode required for steady-state operation

of the QHE. Note that in practice, this effective dissipation of the mechanical mode is a

result of using the power flowing into the mechanical mode in a desired use case.

We assumed above that all the net thermal energy extracted over a cycle is trans-

ferred to the coherent motion of the mechanical mode. Under this assumption, which

we justify below with a numerical model, we can match the power calculated above and

the dissipated power from the mechanical mode in order to estimate the required quality

factor of the mechanical mode. The average dissipated power of the mechanical mode
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Figure 4: Output power of the quantum heat engine according to the analyt-
ical model. (a–d) Output power as a function of (a) the mechanical mode
angular frequency ωb, (b) the peak-to-peak modulation amplitude of the optical-
mode angular frequency ∆ωa, (c) the difference between centre angular frequen-
cies of the power spectra of the heat reservoirs ωh−ωc, and (d) the temperature
of the hot reservoir Th. The dashed vertical lines indicate the cases of zero dis-
tance (left, dark red), ideal distance (centre, turquoise), and too large distance
(right, yellow) of the reservoir spectra with respect to the modulation amplitude
∆ωa. We use identical parameters values to those in Fig. 3.

can be expressed as Pb = Γbℏnbωb, where Γb is the dissipation rate and nb the mean

phonon number of the mechanical mode. Assuming that the mechanical mode modulates

the optical mode frequency by ∆ωa ≈ 2
√
nbg0, where g0 is the optomechanical coupling

constant [26] discussed below, one can solve for the unknown parameter nb. By setting

the dissipated power equal to the power obtained in Eq. (1.6) and using Eq. (1.5), we

obtain Γb = 2∆ω̄a∆ng20/(π∆ω2
a). We read the optimal values for ∆ωa, ∆ω̄a, and ∆n

from Fig. 4 and set the optomechanical coupling to a reasonable value, g0 = 0.01 × ω0
a,

to retrieve a numerical value of Γb ≈ 2.6× 10−5×ω0
a, which translates to a quality factor

of about Qb = ωb/(2Γb) = 960 for the mechanical mode. Note this estimation does not

depend on how the excitations are removed from the mechanical mode. We merely state

that one can extract energy at this rate from the the mechanical mode. The extracted

energy is interpreted as the work output of our heat engine. Note that, even though in

reality there is also incoherent thermal occupation in the mechanical mode, we have not
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considered it here, nor does the analytical model capture the possibility. This will be

discussed more in section 3.

The analytical model presented here provides us intuition about the physics of the

device and reasonable estimates on the output power and other parameters. It, how-

ever, assumes step-like power spectral densities of the baths and that the net thermal

energy extracted from the reservoirs is fully transferred into the coherent motion of the

mechanical mode. The analytical model does not allow us to investigate the dynamics of

the whole system from arbitrary initial conditions. Of course, we also made a number of

other rather crude approximations in order to simplify the calculations to the bare min-

imum. Below, we develop a more detailed theoretical description of the device allowing

the investigation of the temporal evolution given arbitrary initial states, describing the

optomechanical coupling more carefully and taking into account experimentally feasible

spectral shapes of the reservoirs.

2. Heisenberg–Langevin Equations for the Quantum

Heat Engine

2.1 Derivation of the Equations of Motion

As discussed above, we consider a system realizing an optomechanical Hamiltonian Ĥopt [26,

27] of an optical mode with bare angular frequency ω0
a and a mechanical mode with angu-

lar frequency ωb. The optical mode is coupled to two non-Markovian heat reservoirs [33]

with peaked spectral line shapes at different central frequencies. The total Hamiltonian

of the optomechanical system and its reservoirs is written as

Ĥ = Ĥopt + Ĥh + Ĥc + Ĥh
int + Ĥc

int,

where

Ĥopt = ℏ
[
ω0
a â

†â+ ωbb̂
†b̂− g0â

†â
(
b̂† + b̂

) ]
, (2.1a)

Ĥh = ℏ
∑
k

ωh,kĥ
†
kĥk, (2.1b)

Ĥc = ℏ
∑
k

ωc,kĉ
†
kĉk, (2.1c)

Ĥh
int = ℏ

∑
k

λh,k

(
â† + â

) (
ĥ†
k + ĥk

)
, (2.1d)

Ĥc
int = ℏ

∑
k

λc,k

(
â† + â

) (
ĉ†k + ĉk

)
, (2.1e)
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where â and b̂ are the annihilation operators of the optical and the reservoirs mode,

respectively, g0 is the optomechanical coupling constant [26], the operators ĥk and ĉk are

the annihilation operators of the k:th modes at angular frequencies ωh,k and ωc,k in the

hot and cold reservoirs, respectively, and the corresponding coupling constants between

the reservoir modes and the optical mode are λh,k and λc,k, respectively. Thus, Ĥh and

Ĥc describe the reservoirs as infinite sums of bosonic modes. In addition, Ĥh
int and Ĥc

int

describe the linear interaction between the reservoir modes and the optical mode.

The Heisenberg equations of motion for the optical and mechanical modes, as well as

for the reservoir degrees of freedom are given by

˙̂a = −iω0
a â+ ig0â(b̂

† + b̂)− i
∑
k

λh,k

(
ĥ†
k + ĥk

)
− i

∑
k

λc,k

(
ĉ†k + ĉk

)
, (2.2a)

˙̂
b = −iωbb̂+ ig0â

†â, (2.2b)

˙̂
hk = −iωh,kĥk − iλh,k

(
â† + â

)
, (2.2c)

˙̂ck = −iωc,kĉk − iλc,k

(
â† + â

)
. (2.2d)

Let us integrate out the reservoir modes from the above set of equations. To this end,

we solve Eqs. (2.2c) and (2.2d) by explicit integration as

ĥk(t) = ĥk(0)e
−iωh,kt − iλh,k

∫ t

0

e−iωh,k(t−τ)
[
â†(τ) + â(τ)

]
dτ, (2.3a)

ĉk(t) = ĉk(0)e
−iωc,kt − iλc,k

∫ t

0

e−iωc,k(t−τ)
[
â†(τ) + â(τ)

]
dτ, (2.3b)

and substitute the solutions into equation (2.2a). Consequently, we arrive at the Heisenberg-

Langevin equation (HLE),

˙̂a = −iω0
a â+ ig0â(b̂

† + b̂)− ξ̂h(t)− ξ̂c(t)

+

∫ t

0

{Kh(t− τ) +Kc(t− τ)}
[
â†(τ) + â(τ)

]
dτ, (2.4)

where we define the memory kernels

Kh/c(t− τ) = 2i
∑
k

λ2
h/c,k sin[ωh/c,k(t− τ)] = 2i

∫ ∞

0

Jh/c(ω) sin[ω(t− τ)]dω, (2.5)

with Jh(ω) and Jc(ω) being the spectral functions of the hot and cold reservoir, respec-
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tively, and the noise operators are given by

ξ̂h(t) = i
∑
k

λh,k

[
ĥk(0)e

−iωh,kt + ĥ†
k(0)e

iωh,kt
]
, (2.6a)

ξ̂c(t) = i
∑
k

λc,k

[
ĉk(0)e

−iωc,kt + ĉ†k(0)e
iωc,kt

]
. (2.6b)

At this point, the Markovian approximation [33–35] is typically invoked such that the

noise is replaced by white noise, characterized by
〈
ξ̂†h/c(t)ξ̂h/c(t

′)
〉
= δ(t− t′), where the

average is taken over the reservoir degrees of freedom, and consequently the integrals in

the above equations are reduced to linear dissipation [26, 27, 36]. However, as described

above, the spectral density of the environment is here not frequency-independent, but

rather, has a peaked line shape. Therefore, we consider the full non-Markovian model [37].

The noise operators defined by Eqs. (2.6) have non-local temporal correlation relations,

and together with the memory kernels, they characterize the non-Markovian features of

the reservoirs and of the resulting dynamics of the system.

The coupled Eqs. (2.2b) and (2.4) determine the dynamics of the optical and me-

chanical modes driven by the noise terms with damping arising from the memory kernel

integrals. Unfortunately, these equations are challenging to solve exactly, even numer-

ically, since they are non-linear operator equations of high dimension [26]. However,

we can proceed by decomposing the operators into classical and quantum components,

â = α + δâ and b̂ = β + δb̂, and linearize in terms of the quantum components [26, 38].

Namely, we assume the quantum components to provide a small correction to the classical

dynamics. Consequently, we obtain

α̇ = −iω0
aα + ig0α(β

∗ + β)− ξh(t)− ξc(t)

+

∫ t

0

{Kh(t− τ) +Kc(t− τ)} [α∗(τ) + α(τ)] dτ, (2.7a)

β̇ = −iωbβ + ig0|α|2, (2.7b)

δ ˙̂a = −iω′
aδâ+ iG(δb̂† + δb̂) +

∫ t

0

{Kh(t− τ) +Kc(t− τ)}
[
δâ†(τ) + δâ(τ)

]
dτ, (2.7c)

δ
˙̂
b = −iωbδb̂+ i

(
Gδâ† +G∗δâ

)
, (2.7d)

where G = g0α(t), we have transformed the noise operators ξ̂h/c into stochastic complex-

valued variables ξh/c, and ω′
a = ω0

a−g0 [β(t) + β∗(t)]. These equations are exact up to the

linearization and describe the dynamics of the system under the influence of the reservoirs.

The quasiclassical equations (2.7a) and (2.7b) retain the inherent non-linearity of the

system, whereas the quantum equations (2.7c) and (2.7d) yield the quantum corrections.
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The classical equations can be understood as a mean-field-like approximation to the full

quantum equations (2.4) and (2.2b). Thus, they may provide a reasonable approximate

solution in many physical situations. For instance, in reference [21], where a QHE based

on optomechanical system pumped by periodic incoherent drive is studied, the difference

between quantum and classical models is found to be nighly negligible.

2.2 Considerations for Numerical Solution of the Equations

To analyze the system dynamics based on the approximate Heisenberg–Langevin equa-

tions derived in previous section, we resort to numerics. In order to relax the require-

ments of the computational resources, let us investigate a quasiclassical [39] model based

on Eqs. (2.7a) and (2.7b). Further, we are mostly interested in the non-linear dynamics

of the system, captured by the classical equation, and have already made the assumption

that the classical component of the dynamics is dominating. Using noise arising from

thermal quantum fluctuations, the quantum statistics of the reservoirs is taken into con-

sideration and a quasiclassical model for the system dynamics is achieved. Although we

neglect the quantum fluctuations of the system itself [40], we consider the model to likely

be accurate enough especially for average quantities since quasiclassical models similar to

this have been shown to produce valuable insight into quantum systems interacting with

heat sources [39].

Here, we numerically solve the coupled equations 2.7a and 2.7b in the time domain.

Strictly speaking, stochastic differential equations (SDEs), and more importantly the

numerical solution methods, are only defined for Wiener processes, i.e. white noise [41,42].

Physicist and engineers have however stretched the limits of mathematical definitions, and

considered equations with coloured noise obtaining physically meaningful results [41, 43,

44]. Therefore, we follow these footsteps and proceed with our analysis assuming that in

the sense of small enough time-steps our noise is locally white. We interpret our SDE in

the sense of Stratonovich stochastic calculus and apply a second-order predictor-corrector

method [41, 42, 45] to solve the above stochastic integro-differential equation [46]. The

coloured noise is generated from the power spectral densities, given below by Eq. 2.8, by

filtering zero-mean Gaussian white noise with a filter, the frequency response function

FRFh/c(ω) of which satisfies
∣∣FRFh/c(ω)

∣∣2 = Sh/c(ω). Note also that since we are dealing

with a stochastic system, single realizations of the dynamics exhibit random behaviour

with little conclusions to be drawn. Thus, we simulate the system with a large number

of repetitions and compute ensemble averages of the quantities of interest.

Let us specify the reservoir spectra and the temperature dependence of the heat

reservoirs. First, we consider the following power spectral density of the thermal fluctu-
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ations [47,48] in the reservoir:

Sh/c(ω) = F
[〈

ξ̂†h/c(t)ξ̂h/c(t
′)
〉]

(ω) = Jh/c(ω) coth

(
ℏω

2kBTh/c

)
, (2.8)

where F [f(t)] (ω) denotes the Fourier transform of function f(t) and

Jh/c(ω) = gh/c
ℏω3

ω2 + γ−2
h/c(ω

2 − ω2
h/c)

2
, (2.9)

where gh/c is a dimensionless constant scaling the coupling strength between the optical

mode and the corresponding reservoir, γh/c equals the full width of the spectrum at half

maximum, ωh/c is the renormalized centre frequency, and Th/c is the temperature of the

reservoir as defined above. The hyperbolic cotangent term in the above expression arises

by directly calculating the variance of noise operators following the usual analysis of

generalized bosonic heat reservoirs [47,49,50]. The line shape given by Jh/c(ω) is chosen

merely to consider spectra which are peaked in a reasonable way without an attempt to

optimize them for output power.

Let us make a minor remark about the parameters. We introduce two new parameter

here, namely gh/c and γh/c. Unfortunately, these are not directly quantitatively compara-

ble to their counterparts in the analytical model. Where Γh/c in the analytical model is

the relaxation time constant of the optical mode coupled to the reservoir, gh/c describes

the coupling strength with the reservoir. These are closely related, but not the identical,

and can vary from physical realization to another. The full width at half maximum of

the spectrum in Eq. (2.9) is given by γh/c. This can be compared to the width of the step

function spectrum, lh/c, more or less directly, keeping in mind that the spectrum here is

smooth with polynomially decreasing tails, in stark contrast with the step function. (See

Fig. 2 for comparison.)

3. Dynamics and Performance of the Quantum Heat

Engine

3.1 Temporal Evolution and Output Power

In Fig. 5, we show the temporal evolution of the amplitudes α and β and excitation

numbers na = ⟨|α|2⟩ and nb = ⟨|β|2⟩ of the optical and the mechanical mode, respec-

tively, assuming negligible dissipation on the mechanical mode. Here, the average is an

ensemble average with respect to many independent realizations of the noise trajectories

ξh(t) and ξc(t). This theoretical scenario allows us to gain insight into the operation
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principle of the quantum heat engine. The parameters are chosen to roughly optimize

the power generation in the mechanical mode with a constant temperature difference

between the reservoirs. Full systematic optimization of the parameters, being somewhat

computationally intensive, is left for future work.
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Figure 5: Temporal evolution of the quantum heat engine according to
the quasiclassical Heisenberg–Langevin equations (2.7a) and (2.7b).
(a) Mean occupation number of the mechanical mode as a function of time. The
dashed line shows a linear fit to the data in order to find out the average rate of
occupation generation. (b) Single realization of the real and imaginary parts of
the complex-valued amplitude of the mechanical mode as functions of time. (c)
Mean occupation number of the optical mode as a function of time. We show
the thermal photon numbers for the optical mode, N th

h (red dashed line) and
N th

c (blue dashed line), given by the Bose–Einstein distribution at the reservoir
temperatures. The red and blue crosses indicate the maxima and minima of the
optical-mode occupation in each cycle after the transient. (d) Single realiza-
tion of the complex-valued amplitude of the optical mode. The parameters used
are ωb = 0.048 × ω0

a, ωh = 1.04 × ω0
a, ωc = 0.964 × ω0

a, kBTh = 0.56 × ℏω0
a,

kBTc = 0.11× ℏω0
a, g0 = 0.012× ω0

a, gh ≈ 0.007, gc ≈ 0.0082, γh ≈ 0.031× ω0
a,

γc ≈ 0.025× ω0
a. At time instant t = 0, the modes are initialized into coherent

states corresponding to na = 0.5 and nb = 39. The mean values are found by
averaging over 1000 realizations of the noise.

Initially, the modes are set to coherent states with mean excitation numbers of

na = 0.5 and nb = 39, correspondingly. Firstly and most importantly, we observe from

Fig. 5(b) that the initially prepared coherent state tends to be preserved in the evolution
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and even increasing its amplitude rather than winding towards a thermal state. The

increasing amplitude of the oscillation is in agreement with Fig. 5(a) where the average

excitation number of the mechanical mode steadily increases in time. These key observa-

tions justify the assumption we introduced for the analytical model that the net thermal

energy extracted from the heat baths tends to convert into the coherent motion of the

mechanical mode.

From the results of Fig. 5(c), we observe for the optical mode that instead of ther-

malizing to a steady state with a constant average photon number between the thermal

occupation numbers N th
h and N th

c given by the Bose–Einstein distribution at the reservoir

temperatures, the average photon number of the optical mode exhibits clear temporal os-

cillations. These oscillations take place between the boundaries set by the thermal photon

numbers with a period given by the frequency of the mechanical mode ωb. This behaviour

arises from driving the frequency of the optical mode by the mechanical mode between

the peaked spectra of the hot and cold reservoirs that inject and absorb optical pho-

tons, respectively. In stark contrast to the traditional externally driven quantum heat

engines however, driving is here purely caused by the internal dynamics of the device.

In a qualitative agreement with our analytical model and Fig. 1, the average excitation

number of the mechanical mode exhibits oscillations phase shifted by π/2 from those of

the optical mode, i.e., when the optical mode has a peak in its average photon number,

the mechanical mode is gaining energy at maximum speed from the optical mode.

Since the dissipation of the mechanical mode is neglected and the mechanical mode

has a reasonably low amplitude, we do not observe the mechanical mode to stabilize into a

steady state. However, we can estimate the upper limit of power, at which the mechanical

mode accumulates energy. In Fig. 5(a), we employ a linear fit on the average excitation

number of the mechanical and find that based on the slope of the fitted line, this device

yields an average power of P = 8.63× 10−5ℏ(ω0
a)

2, which is clearly higher than the power

achieved according to the analytical model in section 1. This is partially attributed to the

slightly different parameter values and approximations used in the two models, but the

main reason for observing a higher power output is, however, expected to be the initial

thermalization transient experienced by the mechanical mode. From Figs. 5(c) and 5(d),

it is clear that the optical mode reaches a state dominated by thermal noise very quickly,

but the saturation of the mechanical mode may take significantly more time due to its

remarkably weaker coupling to the thermal sources. Of course, we do not even wish the

mechanical mode to reach a thermal state, but to retain its coherence as well as possible.

A reasonable estimate for the average thermal occupation in the mechanical mode after

a long time is given by the weighted average N th
b = (ghN

h
b + gcN

c
b)/(gh+ gc) ≈ 6.1, where

N
h/c
b is the mechanical-mode occupation fully thermalized at the reservoir temperature
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Th/c given by the Bose–Einstein distribution. This further supports the observation that

increasing occupation well above nb = 40 must be at least partially coherent generation,

as we would expect from Figs. 5(b) and 5(d). Therefore, it is reasonable to assume that

the increasing occupation is partially due to coherent generation and partially due to

thermalization. Let us next study the steady states of the mechanical mode with finite

dissipation and after a long evolution in order to shed some light on the matter.
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Figure 6: Operation of the quantum heat engine with finite extracted power.
(a) Temporal evolution of the average excitation number of the mechanical mode
under different levels of dissipation, as indicated by the given quality factors.
The dashed black lines show the fitted exponential evolution. (b) Output power
(left vertical axis) and efficiency (right vertical axis) of the QHE as a function
different levels of excess dissipation. The dots are the calculated values based
on the simulation results extracted at the different levels of dissipation found
in panel (a). The dots are connected by a solid line based on cubic spline
interpolation. Details of the calculation can be found in the main text. The
parameters and initial state used in the calculations are identical to those in
Fig. 5.

In Fig. 6(a), we show the temporal evolution of the average excitation number of

the mechanical mode for different levels of excess dissipation, i.e., non-vanishing quality

factors. As expected in this case, the excitation number exponentially reaches a steady

state where we constantly extract work from the mechanical mode. Note, that the work

here is simply dissipated away, but in practice it can be released to a waveguide and

measured. From Fig. 6(a), we note that the quality factors of the mechanical mode are

on a similar level to those found with the analytical model above.

Let us estimate the dissipated power based on the dissipation rate by the method

used above in the analytical model. However, in order to separate between work and

heat in the mechanical mode, we make the reasonable assumption that after a long time
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the mechanical mode stabilizes into a thermal coherent state [51], and use the fact that

the average occupation number of the thermal coherent state is given as a sum of the

coherent and thermal occupations. We treat the average occupation number resulting

from our simulation, nb, as the total occupation number of the thermal coherent state,

and use the above-obtained estimate for the thermal contribution N th
b . Thus the coherent

contribution is given by ncoh
b = nb − N th

b , which allows us to interpret the coherent

dissipated power as work and compute the corresponding power output as P = Γbℏncoh
b ωb.

We show the obtained power in Fig. 6(b) for different levels of excess dissipation. We point

out that for the highest efficiency with the mechanical-mode quality factor Qb = 1125, the

thermal contribution in the mechanical mode occupation is only about N th
b /nb = 14%

of the total occupation number. Furthermore, the power output obtained here is less

than half of the upper-bound estimate obtained above. This observation supports the

hypotheses of the thermalization transient.

In addition, we find in Fig. 6(b) that we can vary the dissipation level quite signifi-

cantly without much disturbing the power generation. As long as the dissipation is on a

reasonable level compared with the power generation rate found above, the systems seems

to be able to find a steady state. Bear in mind that this is a dynamic process involving

non-linear back and forth coupling between the mechanical and the optical mode as a

function of the occupation number nb. As opposed to the analytical model, this quasi-

classical model takes into account the intricate dynamics owing to the optomechanical

coupling.

3.2 Efficiency

From the above dynamics of our quantum heat engine, it is somewhat challenging to

rigorously define and determine certain quantities traditionally studied in quantum heat

engines, stemming from the lack of the external driving field. Typically, the work done

on the working fluid by the external drive plays an important role in defining these

quantities. As already mentioned in section 1, work is the energy related to changing

the Hamiltonian, or frequency, of the working fluid whereas heat is the energy related

to changing the populations. The issue arising from the lacking external drive is some-

what more pronounced in the quasiclassical model than in the analytical model since for

the quasiclassical model we are truly solving the dynamics of the whole optomechanical

system, whereas in the analytical model, we still treat them as separate systems.

Let us, nevertheless, try to estimate the efficiency of our quantum heat engine by

using the method we utilized for the analytical model. We consider the optical mode to

be the working fluid and assume that the thermal occupation of the mechanical mode

does not significantly vary over a cycle once the steady state is reached. We further
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approximate that the oscillation in the occupation of the optical mode is almost solely

due to the interactions with the thermal reservoirs. This is a very good approximation,

since the mechanical mode varies the occupation of the optical mode very little over a

cycle due to the relatively low optomechanical coupling, g0 ≪ ω0
a, and excitation level of

the mechanical mode. (See Supplementary Fig. S(1).) In this scenario, we find the heat

absorbed by the device from the hot reservoir per cycle, ∆Qh, by finding the average

variation of the photon number in the optical mode over cycle. This can be computed

from the maxima and minima of the photon number, na, over many cycles, as depicted by

the red and blue crosses in Fig. 5(c). The average work per cycle is simply given by the

power: ∆W = Pτb. With this method we estimate the efficiency, η, shown in Fig. 6(b) as

a function of excess dissipation levels of the mechanical mode. We note that the efficiency

is qualitatively remarkably close to the one achieved in the analytical model, which would

suggest that the analytical model captures the essence of the physics relatively well. As

one may expect, the efficiency is far below the Carnot efficiency, ηC ≈ 80%, and also

significantly below the Otto efficiency given by the compression ratio ηmax ≈ 16%.

Finally, we highlight an important detail, i.e., we cannot claim that the heating and

cooling processes of the working fluid are perfectly isochoric, nor can we say that the

compression and decompression are fully adiabatic. If we take into account the slowly

vanishing tails of the reservoir spectra, it becomes evident that there is constant heat

exchange between the optical mode and the reservoirs over the cycle. These considerations

inevitably lead to the fact that we cannot, strictly speaking, call this cycle an Otto cycle

in its ideal form. The cycle of our device displays more continuous dynamics, not perfectly

split into well defined phases. Moreover, we point out that the above discussion considers

only the internal efficiency of the device. In an experimental realization, there is also

direct heat leakage from the hot reservoir to the cold reservoir through spurious parallel

channels to the quantum heat engine, decreasing the total efficiency in practice.

3.3 Stability and Power Fluctuations

In this section, we briefly analyze the ensemble fluctuations of the output power and

the stability of the device with respect to some parameters. In Fig. 7, we compare the

net output power obtained from the quasiclassical model with the analytical model of

section 1 as a function of a few of the most important parameters. Interestingly, there

is a relatively narrow range of optimal mechanical-mode frequencies in the quasiclassical

model depicted in Fig. 7(a). In the analytical model, we do not restrict the mechanical-

mode frequency in any way, and seems that it can be increased indefinitely, whereas in the

quasiclassical model we clearly find a sweet spot for the frequency ωb. This discrepancy

may be a result of the fixed peak-to-peak modulation amplitude ∆ωa assumed in the
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Figure 7: Output power of the quantum heat engine according to the qua-
siclassical model compared with the analytical model. (a–d) Output
power of the quasiclassical (cyan color) and the analytical (purple color) model
as a function of (a) the mechanical mode angular frequency ωb, (b) the optome-
chanical coupling g0, (c) the difference between the centre angular frequencies
of the power spectra of the heat reservoirs ωh − ωc, and (d) the temperature of
the hot reservoir Th. For the quasiclassical model, we use identical parameters
values to those in Fig. 6 for Qb = 1250. The data for the analytical model
is identical to those in Fig. 4. The inset in (a) shows the output power in
the full range of Fig. 4(a). We use cubic spline method to interpolate (dashed
cyan color) the numerical data (cyan color dots) of the Heisenberg–Langevin
equation model. Note that because of the differences in the models and their
parameters, we do not expect the models to accurately quantitatively agree.

analytical model, whereas the amplitude in the quasiclassical model is a result of the

temporal evolution determined by the other parameters.

In Fig. 7(c), we find that the two models behave qualitatively similarly as a function of

the difference between the centre angular frequencies of the reservoir power spectra. Note

that the curve of the quasiclassical model does not display any sharp cusp as observed

for the analytical model, owing to the continuous spectral functions in the quasiclassical

model. The behaviour of the output power as a function of the hot-reservoir temperature

is found in Fig. 7(d) qualitatively quite similar to the analytical model, as expected.

However, the analytical model predicts a steeper increase in the power as function of

increasing hot-reservoir temperature than the HLE model, which is attributed to the
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accordingly rising mechanical-mode thermal occupation in the HLE model, which does

not contribute to the work.
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Figure 8: Mechanical mode occupation fluctuations of the quantum heat en-
gine (QHE). (a) Hundred realizations of the temporal evolution of the average
excitation number of the mechanical mode under dissipation characterized by
Qb = 1125. The black dashed line shows the average exponential behaviour as
found in Fig. 6(a). (b) Probability distribution of the mechanical mode occupa-
tion number after reaching a steady state together with a Poisson distribution
for reference. The parameters and initial state used in the calculations are
identical to those in Fig. 5.

It is interesting to investigate the relative occupation number fluctuations of the me-

chanical mode, because it gives insight to the excitation counting statistics one would

observe when measuring the mechanical mode. Further, because the output power is di-

rectly related on the occupation number, as defined above through dissipated power, the

relative output power fluctuations of the QHE [52, 53] are consequently directly related

to the occupation number fluctuations. In Fig. 8(a) we illustrate the occupation number

fluctuations by showing hundred different realization of the temporal evolution of the

excitation number of the mechanical mode under excess dissipation characterized by the

quality factor Qb = 1125. In Fig. 8(b), we display the probability density for the occu-

pation number after reaching a steady state and compare it to the Poisson distribution.

We use the Fano factor [54], which quantifies the deviation from a Poisson distribution,

as a measure to compare the occupation number distribution to the Poissonian. The

Fano factor is defined as F = σ2
P/ ⟨P ⟩, where σ2

P and ⟨P ⟩ are the variance and the expec-

tation value of the occupation number, respectively. For the data in Fig. 8(b), we find

F = 0.27, which signifies far sub-Poissonian (F < 1) statistics of the occupation number

fluctuations. This suggest a smaller output power fluctuations for the QHE than for a

Poisson process.
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4. Conclusions and Discussion

We have proposed and analyzed an autonomous quantum heat engine in the spirit of an

Otto cycle, where one harmonic mode, the working fluid, traverses the cycle driven by

another harmonic mode. We utilized an optomechanical Hamiltonian for this realization

and consequently referred to the working fluid as the optical mode and the driving mode

as the mechanical mode. However, any physical system realizing the optomechanical

Hamiltonian in the appropriate parameter range will suffice our heat engine.

The feasible parameter range for the quantum heat engine is straightforward to find

thanks to the analytical model we established by assuming that the net thermal energy

extracted from the thermal reservoirs is fully converted into the coherent motion of the

driving mode. By deriving a dynamical non-Markovian quasiclassical model and utilizing

it in demonstrating the operation of the quantum heat engine, we justified the assumption

made in the analytical model. We achieved output powers and efficiencies of the heat

engine in a very good agreement between the two models. The efficiency obtained was

roughly 10% and the output power was found to be a reasonable fraction of the energy

quantum of the working fluid times the frequency of the driving mode. Importantly,

the output power was found to monotonically increase with the temperature of the hot

reservoir providing prospects for possible applications.

Our initial analysis showed that the output power of the quantum heat engine sig-

nificantly fluctuates from noise realization to another. Although this fluctuation seems

suppressed in comparison to Poisson processes, it calls for future studies on the noise

spectrum of the coherent-field output of the heat engine, and possible ways to decrease

the observed phase noise and power fluctuations.

Thanks to the versatility of the proposal, we consider a future experimental realization

of our quantum-heat-engine proposal likely feasible, but requiring prior specific theoretical

analysis for each experimental realization. Although we leave such specialized analysis

for future work, we note that our example calculations show that the quality factor

the the working-fluid mode may be of the order of hundred and that of the driving

mode roughly thousand for the optomechanical coupling constant of roughly one percent

of the angular frequency of the working fluid. In typical optomechanical systems, for

example, such quality factors are straightforward to achieve, but the optomechanical

coupling constant may be smaller, which calls for an optimization of the separation of

the reservoir spectra [26, 27, 36]. In addition to optomechanical systems, it is interesting

to consider a realization of the quantum heat engine in superconducting circuits [14,

16, 21, 55] which may offer more flexibility in engineering the optomechanical coupling

constant [27, 56, 57] and angular frequencies of the two modes [57, 58]. For high-power
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operation, it may be interesting to consider engineered environments [18, 59] which have

recently been demonstrated to provide fast preparation of thermal states [60].

Even with the possible loss of quantum character due to our quasiclassical methods of

solution, we deemed retaining the non-linearity and non-Markovianity as the important

novelty of our approach, and although investigating the full quantum character of the

device is left for future work, the results obtained here remain significant and interesting

proof of concept. In the future, it is interesting to study several different possible ex-

perimental realizations of the proposed quantum heat engine and their advantages and

disadvantages with respect to each other. In addition, the mitigation of the phase and

amplitude noise in the coherent output field of the heat engine call for further studies

together with possible use cases of this work obtained from the quantum heat engine.
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quadratically coupled optomechanical system. J. Opt. Soc. Am. B, 36(11):3000–

3008, Nov 2019.

[20] Mohsen Izadyari, Mehmet Öncü, Kadir Durak, and Özgür E. Müstecaplioğlu. Quan-
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Räbinä, Vasilii Vadimov, Joachim Ankerhold, and Möttönen Mikko. Rapid on-
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Supplementary Material

This Supplementary Materials contains the following figures that provide additional

complementary data for the main text, but that are not pivotal for the conclusions of

the work: temporal evolution of the optomechanical system free of thermal fluctuation

(Fig. S(1)) dynamics of the optical and mechanical mode amplitudes in 2+1 dimensions

(Fig. S(2)), dependence on the output power in the analytical model on the dissipation

rates (Fig. S(3)), the dependence of the energy produced in a cycle on the mechanical-

mode frequency (Fig. S(4)), and the dependence of the interaction time between the

working fluid and its reservoirs on the speed of the driving mode (Fig. S(5)). Figure S(6)

shows how the interaction time τ is defined for the analytical model.
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Supplementary Figure S(1) : Temporal evolution of the optomechanical system
free of thermal fluctuation. Temporal evolution of
the mean occupation numbers of the optomechanical system
modes, orange for the mechanical mode and magenta for the
optical, uncoupled from the thermal noise sources. We use
identical parameters values to those in Fig. 5.
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Supplementary Figure S(2) : Dynamics of the amplitudes of the optical and me-
chanical modes. Phase space evolution of the complex-
valued amplitudes of the optical (purple color) and the me-
chanical (orange color) mode illustrated in two plus one
dimension. These data is identical to those shown in
Figs. 5(b) and 5(d).
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Supplementary Figure S(3) : Effect of the reservoir coupling strengths on the
output power. Net output power of the quantum heat en-
gine as a function of the energy relaxation rates Γh/c given
by the analytical model. We use identical parameters values
to those in Fig. 3.
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Supplementary Figure S(4) : Energy produced in a cycle. Energy per cycle as
given by the analytical model Eq. (1.5) as a function of
mechanical-mode angular frequency ωb. We use identical
parameters values to those in Fig. 3.
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Supplementary Figure S(5) : Dependence of the interaction time between the
working fluid and its reservoirs on the speed of the
driving mode. Interaction time τ of the analytical model
as a function of the mechanical-mode angular frequency ωb.
We use identical parameters values to those in Fig. 3.
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Supplementary Figure S(6) : Calculation of the interaction time τ of the ana-
lytical model. Optical-mode angular frequency ωa(t) as a
function time (purple solid line). The shaded areas represent
the interaction regions of the optical mode with the hot reser-
voir, defining the interaction time τ = (tout−tin)−(t′in−t′out),
where the existence of each term in parenthesis depends on
the amplitude of the angular-frequency modulation.
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The interaction time τ of the analytical model for the hot reservoir in the most general

case can be calculated, as depicted in Fig. S(5), from the inequality

ωh − lh/2 ≤ ω0
a +∆ωa/2 sin(ωbt) ≤ ωh + lh/2.

Solving the two equations arising at the limit of equality, we find the conditions

tin =
1

ωb

arcsin

(
2ωh − lh − 2ω0

a

∆ωa

)
,

tout =
1

ωb

[
π − arcsin

(
2ωh − lh − 2ω0

a

∆ωa

)]
,

t′out =
1

ωb

arcsin

(
2ωh + lh − 2ω0

a

∆ωa

)
,

t′in =
1

ωb

[
π − arcsin

(
2ωh + lh − 2ω0

a

∆ωa

)]
.

Using these definitions, the interaction time can be calculated from τ = (tout − tin) −
(t′in − t′out).

The average angular frequency over the interaction period ω̄h
a in the analytical model

is found by time averaging over the interaction period,

ω̄h
a =

1

τ

∫ tout

tin

[
ω0
a +

∆ωa

2
sin(ωbt)

]
[Θ(t′out − t) + Θ(t− t′in)] dt,

where Θ(t) is the Heaviside step function. Analogous calculations apply for the cold

reservoir.
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